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Intro: OLS with weak exogeneity

= Linear regression in time series
/
yt:$t6+6t7 te{LvT}

Object of interest is the linear contrast § = '3

The most commonly used assumption of weak exogeneity:
E{gt‘xtvxt—lv s ] =0

= It is common to have feedback from y, to =,

= All good properties of OLS (no bias) derived with strict exogeneity:

E[Et|...,xt+1,xt,xt,1,...] =10



Intro: OLS with weak exogeneity

= |t is known that OLS is biased in time series

= Common belief: OLS is consistent, asymptotically Gaussian, bias is
small

= Our claim: OLS may have large biases and be even inconsistent

= Factors leading to large bias of OLS:

= violations of strict exogeneity (even mild, one-period)
= regressors are auto-correlated (no strong persistence needed)
= many regressors



Intro: OLS with weak exogeneity

Simulation setup:

Z; is K-dimensional AR (1) process with parameter p

= ¢, ~i.i.d.N(0,1) independent from X

= violation of strict exogeneity for one period: x; 1 = Z;,1 + ag;
"y = 2B+

= %% = (X'X)' XY

éOLS _ T/BOLS



Intro: OLS with weak exogeneity

Simulation results (7" = 200):

0.14 0.14

0.12

0.1

0.08

0.06

0.04

0.02

4 20 50 100 0 0.3 0.5 0.98
K: Number of Regressors p: Autocorrelation Coefficient

Bias (OLS) — — Stddev (OLS)

Figure 1: Absolute Bias and Standard Deviation of OLS

Same results with MA(1) process M Results with T=800



Intro: OLS with weak exogeneity

= We derive formula for OLS (feedback) bias

= We propose a new estimator that is nearly unbiased

= Our estimator uses an oblique projection (IV motivated)
= Uses an ‘invalid’ IV; an endogenous instrument
= ‘Instrument’ is constructed (from regressors) so that

endogeneity bias cancels with the feedback bias.
= Qur estimator is consistent and asymptotically Gaussian
= |n most settings, simulated changes to standard deviations are

minimal in comparison to OLS



Intro: OLS with weak exogeneity

Comparison with new estimator (7" = 200):
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Figure 2: Absolute Bias and Standard Deviation of OLS and IV



Plan for This Talk

= Why is OLS biased?
= New estimator
= Consistency and asymptotic Gaussianity

. Multieriod_feed!



Why OLS is biased?



Why OLS is biased?

Special case (only first regressor is weakly exogenous)

s Y=X[+¢
= X are T' x K observed regressors

= X are strictly exogenous variables:

Ele,| X] = 0, Elee, | X] = 021{s = t}

Feedback: xy;, = 7, + ag;_q,

All other regressors are strictly exogenous X | = X_;

Normalization: X'X /T = I



Why OLS is biased?

= Frisch-Waugh theorem:

A0LS _ XiM_\Y  oLs _ g = X1M_je
! xXimo,x, TXIM X,

M, =1-X_,(X" ;X 1) 'X", is projection orthogonal to X_;

" Ty =Tyt agg

XiMflg = Z My Xser = X{M,NE + aZMstgsflgt
s,t

s,t

= Partialling out mixes up timing!!!
o 2
E [Zs,t Ms,t55—15t|X} =0, Mt+1,t



Why OLS is biased?

50LS XM e
1 _61 - /
XIM_, X,

= The denominator is T’ + a’c”*(T — K) + 0,(T)

= The order of the bias in B?LS is

ao” Dot Mt+1,t
T + a*0*(T — K)




Why OLS is biased?

Dot Mt+1,t == Pt+1,tr where P = X(X/X)AX/
Normalization: X'X /T = I, then

1 N I
> My, = T > XX~ —EXi 1 X,
t t

» >4 My, measures a linear connection between X, and X;

In stationary time series we should expect
Z M1 = —pK,
t

where p is average of the first order auto-correlation coefficients



Why OLS is biased?

Summary

= If only first regressor is weakly exogenous: x;; = Ty, + ag;_;
= Then
.. SOLS . 4 .
= the coefficient 87~ is biased by

ac® Y, Mye ac’pK
T +a*0*(T — K) T +a*0*(T — K)

= Inconsistency when: K /T — const; a and p separated from zero

= Bias comparable to standard error when: KQ/T — const; a and p
separated from zero

= All other coefficients are nearly unbiased

= Special case is more general than you may think — rotations!



Why OLS is biased; one period feedback

Assumption 1

(i) The regressors x, satisfy x; = &, + ae,_; where X has full rank
(i) The errors {e;}i_, are i.i.d. conditionally on X with E[e,| X] = 0,
o® = E[e7| X] and E[e}] < o0
(iii) The non-random vectors 7, o € R™ satisfy r'(X'X/T)"'r = O,(1)
and o/ (X'X/T) 'a = 0,(1).
(iv) The number of regressors K may diverge with the sample size T
T — K diverges to infinity



Why OLS is biased; one period feedback

Theorem: Asymptotic bias of OLS

Suppose Assumption 1 holds. Then,

T/BOLS - T/ﬁ — Uzrlg_l(lZMtJrl,t + Op(1)7
t

Value of 'S~ 'a = O(1/T) is not known and hard to assess,

Value of >7, My, ~ >, M, is observed



empirically important?

= Stock and Watson (2016) data set: quarterly observations from
1964 to 2013 (T = 200) on 108 US macro indicators

= Extracted cyclical component = a two-year-ahead forecast error
based on a AR(4) forecast (as in Hamilton (2018))
= 100 experiments:
= randomly draw a regression with K regressors
= estimate feedback

= keep exogenous part of regressors, simulate outcome with feedback
= calculate bias based on 1000 draws



Is it empirically important?

Simulation results with US macro data for Z; (7' = 200):
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Figure 3: Absolute Bias and Standard Deviation of OLS



New Estimator




New Estimator: one period case

= Assume 1-period violation of strict exogeneity

= Oblique projection:
Py x = X(z'x)"'Z, Mzx=1-Pyx

. M%X = My x but not symmetric

= Direction of projection: Ziy =2 =Ty — YTy

BV0) = (%) 2'Y



New Estimator: one period case

Generalization of Frisch-Waugh:

/!

3V () = iy = et
/

Z1Mz | x_ X1

= Special case with 1 weakly exogenous regressor: the same logic

» Mz | x_, is exogenous

—1
" Ty =Tyt agg

= 21y = Z1p taleig —E)

/ 51
le\4Z,l,X,1E = le\4Z,l,X,1E + GZ(ES,1 - Vgs)Mv,stEt
Sdb

IE[Zﬂ\/—fz X € = ao Z A ’YMv,tt)




New Estimator: one period case

When the direction of projection: 2z, = x; — yxy,1,

Vo) = (%) 2y
= Main bias term:

E [Z{MZ_I,X_le] = ao’ Z(M%t—&-l,t - ’VM-y,tt)
t

= Idea: choose 7 in such a way to make this zero

= Solution is possible since diagonal elements are larger than lower
diagonal

= Estimator has IV interpretation: technical 'instrument’
2 = x; — Yy, is invalid if/when x; is not strictly exogenous

= v is selected s.t. endogeneity bias of IV cancels OLS bias of weak
exogeneity



New Estimator: one period case

Z(M%t-i-l,t — M. ,tt) =0
t

= Non-linear equation
Lemma: Existence and uniqueness
= If X'X has rank K and T > 5K, then equation always has a

solution

o |3 My SpK and T > K(14 (/i + 1)?), then equation has

i VE
a solution |y| < i

= Solution is a fixed point of a contraction




Asymptotics




New estimator: consistency

Theorem: Consistency of IV

Suppose Assumption 1 holds.

(i) If |y| < 1 is fixed, then
r’ﬁlv(w —7'B = = o’y S az Lt T 'YM%tt) +0p(1),
. S = ZX+J oo Zt( vt ’YM ,t,t+1)

- M, =T1-X(ZX)7'7
(ii) If 4 solves equation >, (M, ;1 1, —YM., 1) = 0, then

BV () — '8 = 0,(1).



Asymptotics: gaussianity

Assumption 2 max, [|(X'X) /%%, = 0,(1)
Theorem: Gaussianity
Suppose Assumptions 1 and 2 hold. If 4 solve trace equation, then

BV (§) - '8 4

. N(0,1) as T — o0
iy

where

= 67 =" (I (ZX) 7 2
2(5) = v (I-4D)Myy
tr [(I-4D)M; |

]
S
)3

where D is ‘lag operator matrix’



Size in simulation

Simulation results with the US macro data for z, (7" = 200):
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Figure 4: Size of Nominal 5% two-sided tests using OLS and IV with 7" = 200



Summary

= We showed that the typical time series OLS estimator with large
number of regressors is prone to large biases
= Factors leading to bias:
= Weak exogeneity (feedback)

= Autocorrelation of regressors
= Number of regressors

= Potential for bias can be assessed by the size of lower traces of M



Summary

= We proposed a new estimator

Relies on oblique projection

Correction is made on regressors without looking on the outcome or
assessing the direction of feedback

Consistent under mild assumptions, asymptotically gaussian
Standard deviation is comparable to that of OLS



Intro: OLS with weak exogeneity

Simulation results with MA(1)-process for z, (1" = 200):
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Figure 5: Absolute Bias and Standard Deviation of OLS

Back to presentation



Intro: OLS with weak exogeneity

Simulation results (7" = 800):
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Figure 6: Absolute Bias and Standard Deviation of OLS

Back to presentation
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