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1. Introduction

Innovation has long been considered the primary driver of a company’s growth

and is therefore a key focus of the stock market. Economists, in turn, use the

stock market to evaluate the value of innovations.1 Past empirical studies document

a substantial difference in the stock market valuation of patents filed in different

technology sectors. For example, Hall et al. (2005) show that the market premium

of patent yield for Drugs is three times as large as the average effect and that of

Computers is twice as high. Chen et al. (2019) compare the estimated market value

of FinTech innovations with other financial innovations and show that the median

value of a FinTech innovation is more than 10 times higher than that of the latter.

However, an important question remains untackled: What drives the aforementioned

differences in innovation values across different technology sectors? In this paper,

we aim to provide one of the first attempts to address this question by exploring the

role that a sector’s technological position plays in affecting the value of innovations.

Innovations rarely occur independently of each other. Knowledge accumulation in

a sector contributes to innovations not only in its own sector but also in neighboring

sectors, and the latter generates further knowledge spillovers to peripheral sectors.2

Consequently, a new innovation builds upon previous innovations within the entire

technology network. Innovations located in more central positions of the technology

network can draw on a wider range of knowledge stocks and potentially exhibit

superior quality.

To provide a conceptual framework for our analyses, we build a quality-ladder

innovation model with multiple technology sectors. Our model features both in-

trasectoral and intersectoral knowledge spillovers. In this model, the economy is

represented by a technology network that captures the topology of knowledge flows

1See, for example, Hall (1999); Hall et al. (2005); Kogan et al. (2017).
2For instance, Acemoglu et al. (2016) show that a 10% increase in upstream innovation corre-

sponds to a 3.5% increase in forward patenting.
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from one sector to another. A sector’s knowledge stock benefits future innovation

activities in the neighboring sectors directly and the peripheral sectors indirectly

through the network. A firm enters a sector by incurring research expenses to con-

duct innovation. When a firm innovates successfully, it applies for a patent, according

to which a generic product is designed. The firm draws on past knowledge accumu-

lations from different sectors when designing the new product, which improves the

quality of existing products. We show that the extent of quality improvement, and

thus the profit, of new innovations in a sector is determined by its technology cen-

trality, which captures the position of the sector in the technology network. The

more central the position in which a sector is located, the stronger innovations in the

sector benefit from knowledge spillovers, and the higher the values of innovations.

In equilibrium, the free-entry condition equalises the cost of innovations and the ex-

pected value across sectors. Therefore, innovations of higher values are also more

expensive to produce.

Our model provides a useful guidance for empirical analyses. We first follow

Kogan et al. (2017) to use an event study method, which relies on the responses of

the stock market to the announcement of corporate patenting activities, to measure

the economic value of innovations. This method is particularly suitable for our em-

pirical analyses as it offers a market valuation for every patent granted to a firm.

We then use a comprehensive patent database (PATSTAT Global), that contains

detailed information of patent citations, to construct a matrix capturing the tech-

nological connections between sectors in the economy. We proceed to calculate the

dominant right eigenvector centrality for each sector in the network, which is the em-

pirical counterpart of the technology centrality in our model. With the constructed

measure of technology centrality, the relationship between technology centrality and

innovation values is examined in various model specifications. The empirical results

provide consistent evidence for the importance of sectors’ technology centrality. We

find a positive and significant correlation between innovation values and technology

centrality. The estimation results suggest that the average patent value in the sector

at the 75th percentile of technology centrality is 80% higher than that in the sector
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at the 25th percentile.

We also investigate the relationship between the cost of innovations and firms’

technology centrality. Our model implies a higher innovation cost for firms conduct-

ing innovations in sectors with greater centrality. We thus construct a measure of a

firm’s technology centrality, which reflects the weighted centrality of the firm’s patent

portfolio, with weights equal to the sectoral shares of patents granted to a firm in

a given year. A regression of firms’ R&D expenses over their technology centrality

is implemented. We find consistent evidence of positive and statistically significant

relationship between firms’ technology centrality and their R&D expenses, with the

results robust to alternative measures of the dependent variables.

Our paper contributes to several strands of literature. First, our analyses build

upon the literature that uses stock price data to investigate the value of innovation

(see, e.g., Pakes (1985), Austin (1993), Hall et al. (2005), Nicholas (2008), Kogan

et al. (2017), Chen et al. (2019), and Kelly et al. (2021)). Hall et al. (2005) document

substantial differences in the market value of patents in broadly defined technology

sectors. Chen et al. (2019) focus on FinTech innovations and show the existence of

market premium of FinTech innovations over other financial innovations. All previous

studies analyze the value of innovations in different technology fields independently

and ignore the potential role that intersectoral technological connections play in

driving the difference of patent values across sectors.3 By the contrary, our paper

establishes a theoretical connection between the structure of the technology network

and the value of patents, and provides novel evidence to support this finding.

Our paper is also related to the large literature on endogenous growth (See, for

example, Romer (1990), Grossman and Helpman (1991), Aghion and Howitt (1992),

Aghion et al. (1997), Kortum (1997), Jones (1995), Klette and Kortum (2004), Ace-

moglu et al. (2018), Cai and Li (2019), Akcigit and Kerr (2018), Huang and Zenou

(2020) and Liu and Ma (2021).) Most previous studies focus on a representative sec-

3One exception is Huang and Xie (2023), who use stock price data to assess the value of patents
for participants of M&As.
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tor and ignore the potential heterogeneous intersectoral knowledge spillovers. Our

paper extends a quality-ladder growth model to incorporate a technology network

that captures intersectoral knowledge spillovers. In this sense, our model is closest

to Liu and Ma (2021), who solve for the optimal allocation of R&D resources in an

economy with an interconnected technology network. In their model, past knowledge

accumulations contribute to the arrival rate of new innovations, but the quality im-

provement of each sector remains independent of the network structure. Our model

differs in that the quality improvement, and hence the value of innovations, of each

sector depends critically on the network characteristics, which is the key feature of

our model that enables us to empirically verify the theoretical relationship between

the value of innovations and their network characteristics.

Obviously, our paper also belongs to the growing literature on social, economic

and production networks (Ballester et al., 2006; König et al., 2019; Acemoglu et al.,

2012; Baqaee, 2018; Acemoglu and Azar, 2020; Elliott et al., 2022). Ballester et al.

(2006) propose a measure of a player’s centrality reflecting her contribution to the

centrality of the others to identify the key players in a network. We obtain a similar

finding in the context of the technology network, which demonstrates that the key

innovation sectors in an economy are the ones with high technology centrality.

Lastly, our paper contributes to the literature that explores the impact of techno-

logical opportunity on innovative activity (Scherer, 1965, 1967; Pakes and Schanker-

man, 1984; Levin et al., 1985; Jaffe, 1986, 1989; Cohen and Levinthal, 1989). A

finding emerging from the literature is the significant power of opportunity vari-

ables representing the sources of extraindustry knowledge to explain the variance in

R&D intensity (Levin et al., 1985; Cohen and Levinthal, 1989). Our paper proposes

the eigenvector centrality as a sufficient statistic to capture the overall knowledge

spillovers from the whole technology network to individual sectors. An advantage of

this measure is that it incorporates the information of both the direct intersectoral

knowledge spillovers and the indirect ones through intermediate sectors, and thus it

serves as a more accurate measure.

The remainder of the paper is structured as follows: Section 2 outlines the in-
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novation model, followed by the introduction of the data in Section 3 and empirical

analyzes in Section 4. We conduct robustness tests in Section 5. Finally, our paper

is concluded in Section 6.

2. Model

In this section, we embed a technology network into a multi-sector quality-ladder

growth model, featuring both intrasectoral and intersectoral knowledge spillovers.

2.1. Model Environment

The economy admits a unit measure of continuum identical households who

choose the consumption in each period to maximize their lifetime utility, which takes

the form as follows:

U =
∞∑
t=0

βt log ct, (1)

where β > 0 is the time discount factor.

A representative household is endowed with one unit of labor, which is inelasti-

cally supplied to either the manufacturing market LY
t or innovation LA

t at the wage

rate wt. The budget constraint at period t is:

Ptct + at+1 ≤ (1 + rt)at + wt, ∀t = 0, 1, 2, · · · (2)

where Pt is the price of the consumption good, at is the asset of the household at

period t, and rt is the risk-free interest rate. The representative household maximizes

its lifetime utility (1) subject to the budget constraint (2), leading to the standard

consumption Euler equation:

Pt+1

Pt

= β(1 + rt+1)
ct
ct+1

. (3)

The optimal choice ensures that the household is indifferent between consuming one

unit of goods at period t and delaying consumption to period t+ 1.
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The final good Yt is produced by combining sectoral goods from N sectors ac-

cording to the following technology:

Yt =
N∏
i=1

Y αi
i,t , (4)

where Yi,t is the intermediate input produced in sector i, and αi is the relative

importance of sector i for the production of the final good.
∑N

i=1 αi = 1. The final

good producer maximizes its profit

Πt = PtYt −
N∑
i=1

Pi,tYi,t, (5)

subject to production function (4), where Pi,t is sector i’s composite price. It yields:

Pi,tYi,t = αiPtYt. (6)

Equation (6) implies that the expenditure share of any sector is equal to its

importance in the production of final good. The intermediate good Yi,t is a CES

aggregate of different varieties produced by individual firms. Specifically,

Yi,t =

[∫ Hi,t

0

z
1
ε
i,f,t (qi,f,t)

ε−1
ε df

] ε
ε−1

, (7)

where ε > 1 is the elasticity of substitution between varieties, qi,f,t is the quantity

of the variety produced by firm f in sector i in period t and zi,f,t is the quality of

this variety. Lastly, Hi,t denotes the measure of varieties (firms) in sector i, which

evolves over time.

The sectoral good producer aims to maximize her profit πi,t by choosing the

amount of quantity qi,f,t demanded for each variety:

πi,t = max
{qi,f,t}

{
Pi,tYi,t −

∫ Hi,t

0

pi,f,tqi,f,tdf

}
, (8)

6



subject to the production function (7), where pi,f,t is the price of the variety produced

by firm f in sector i in period t. Profit maximization leads to the inverse demand

function for each variety:

qi,f,t =

(
Pi,t

pi,f,t

)ε

zi,f,tYi,t. (9)

Intuitively, the quantity demanded for firm f ’s product is inversely related to its

price pi,f,t while positively correlated with the quality of the product zi,f,t.

The sectoral price index is given by:

Pi,t =

(∫ Hi,t

0

zi,f,tp
1−ε
i,f,tdf

) 1
1−ε

. (10)

Individual firms have access to a symmetric production technology that produces

one unit of a variety by hiring one unit of labor:

qi,f,t = li,f,t. (11)

Each firm maximizes its profit by choosing the price of the variety it produces

πi,f,t = max
pi,f,t

{pi,f,tqi,f,t − wtli,f,t} (12)

subject to the production technology and the inverse demand function. The optimal

price is a constant markup over the marginal cost of production, which is equal to

the wage rate wt. Without loss of generality, we normalize the wage rate wt to be

one. Consequently:

pi,f,t =
ε

ε− 1
. (13)

Substitution of (13) back into the profit function (12), taking into account the

production technology (11) and the inverse demand function (9), delivers the maxi-

mized profit:
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πi,f,t =
1

ε

zi,f,t
zi,t

αiPtYt, (14)

where zi,t =
∫ Hi,t

0
zi,f,tdf is the quality index for sector i in period t. The intuition

for equation (14) is straightforward. The profit of firm f depends positively on the

relative quality of this firm’s product, zi,f,t/zi,t. The higher the relative quality of

a firm’s product within a sector, the higher the demand for its product and thus

the profit for this firm. In addition, the importance of a sector for the final good

production determines the share of total revenue that this sector captures. Therefore,

a higher sectoral importance αi would benefit more for all firms operating in this

sector. Lastly, the elasticity of intrasectoral substitution ε is negatively related with

a firm’s profit, because a higher substitution elasticity implies a weaker monopoly

power of individual firms, leading to lower profits.

2.2. Innovation, Entry and Exit

In this section, we specify how entrepreneurs conduct innovations and produce

new patents. At the beginning of each period, there is a unit measure of potential

entrepreneurs in each sector. Entrepreneurs can direct their innovations towards any

sector by incurring a sector-specific labor cost of C(ϵi,t), which is a function of the

probability of successful innovation ϵi,t. This cost can be interpreted as expenses

induced by hiring workers to conduct innovation. The cost function increases with

ϵi,t and is convex, i.e., C
′
(ϵi,t) > 0 and C

′′
(ϵi,t) > 0. We further impose the restriction

that C(ϵi,t) → ∞ when ϵi,t → 1. These conditions ensure the existence of an interior

solution for our model.

When an entrepreneur succeeds in innovation, she produces a new patent and

designs a product based on the patent. Without loss of generality, the value of

the outside option for all entrepreneurs is assumed to be zero, which leads to the

following free-entry condition for each sector:

ϵi,tvi,f,t − C(ϵi,t) = 0,∀i = 1, · · · , N, (15)
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where vi,f,t is the value of a patent for firm f in sector i at period t, which will

be discussed later. The free entry ensures that the expected net value of entry is

equalized across sectors. In equilibrium, potential entrepreneurs are indifferent when

considering which sector to enter.

Every period an incumbent firm faces an exogenous destructive shock with a

probability of δ that forces the firm to leave the market. Therefore, the evolution of

the measure of the firms in sector i depends on the inflow of entrant firms and the

outflow of incumbent firms:

Hi,t+1 = (1− δ)Hi,t + ϵi,t. (16)

In equilibrium, the measure of the firms in each sector Hi,t is time-invariant, which

implies that the inflow of entrant firms ϵi equals the outflow of incumbent firms δHi,t.

2.3. Evolution of Product Quality

The quality of a new product is determined by two components: the average

product quality in the same sector and a composite term that captures knowledge

spillovers from both its own sector and other sectors. Specifically, the quality of a

new product takes the form as follows:

zi,f,t+1 = z̄i,t +
1

Hi,t

N∑
j

Ωi,jzj,t, (17)

where z̄i,t = zi,t/Hi,t is average product quality in sector i, and Ωi,j ≥ 0, i ̸= j,

captures the technological interdependence of sector i on j.4 Specifically, Ωi,j mea-

sures the strength of average knowledge spillovers from sector j to sector i, which is

assumed to be exogenous. If Ωi,j = 0, then the accumulation of knowledge in sector

j does not benefit innovation in sector i. An implicit assumption in our model is

4The assumption that intersectoral knowledge spillovers play an important role in innovation
is well documented by past studies (see, for example, the empirical analysis by Acemoglu et al.
(2016)).
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that the quality index for a sector reflects the knowledge accumulated previously in

this sector. We normalize
∑

iΩi,j = 1 so that Ωi,j can be reinterpreted as the share

of knowledge stock in sector j that can contribute to innovation in sector i.

Note that the model degenerates into a standard growth model without intersec-

toral knowledge spillovers when Ωi,j = 0, ∀i ̸= j. This is ruled out by assumptions in

our model. The summation term
∑

i Ωi,jzj,t captures the effective knowledge stock

that is available for innovation in sector i, which determines the size of quality im-

provement for a new product. Lastly, the ratio 1/Hi,t is used to adjust the aggregate

knowledge spillovers to measure the average spillovers.

The technology network that determines the evolution of product quality is rep-

resented by the matrix containing {Ωi,j}. This technology network governs the struc-

ture of technological interdependence in the economy and is the core of our analysis.

Observe that individual sectors demonstrate both direct and indirect effects of knowl-

edge spillovers. Direct knowledge spillovers from sector i to j exist if Ωi,j > 0, and

indirect knowledge spillovers exist if there exist some sectors (s1, s2, · · · , sn) such

that Ωi,s1Ωs1,s2 · · ·Ωsn,j > 0. Indirect knowledge spillovers generate a “ripple” effect

that spreads knowledge beyond the neighboring sectors to the peripheral sectors. To

ensure that all sectors converge to a balanced growth path, we assume, for the rest

of this paper, that all sector pairs are either directly or indirectly connected. That

is, the technology network is strongly connected, the formal definition of which is as

follows.

Definition 1. A technology network is a strongly connected network if ∀ i ̸= j, ∃ a
sequence of sectors (s1, s2, · · · , sn) such that Ωi,s1Ωs1,s2 · · ·Ωsn,j > 0.

Next, we aggregate individual firms’ product quality to determine the evolution

of the sectoral quality index. The quality index for sector i at time t+1 depends on

the quality index of both incumbent firms and entrants. The dynamics of the quality

index is shown as follows:
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zi,t+1 =

∫ Hi,t+1

0

zi,f,t+1df = (1− δ)zi,t +

∫ ϵi,t

0

zi,f,t+1df, ∀i = 1, · · · , N. (18)

Using (17) and the equilibrium condition ϵi,t/Hi,t = δ, the above equation can be

rewritten as:

zi,t+1 = zi,t + δ
N∑
j=1

Ωi,jzj,t, ∀i = 1, · · · , N. (19)

Equation (19) is intuitive. The evolution of a sector’s quality index is closely

related to this sector’s position in the technology network. A more central position

for a sector implies that this sector receives stronger knowledge spillovers from other

sectors in the technology network. Indeed, a sector’s position determines its relative

product quality in the economy. In addition, the structure of the technology network

determines the growth rate of individual sectors and the economy’s quality index.

These findings are summarized in the following proposition. We delegate the proof

of all propositions into the Appendix.

Proposition 1. Define the growth rate of any sector i’s product quality in period t
as:

gi,t =
zi,t − zi,t−1

zi,t−1

.

gi,t asymptotically approaches the same limit δλ∗, where λ∗ is the dominant eigenvalue
of the matrix Ω. Define the relative product quality of sector i in period t as:

Mi,t =
zi,t
zt

,

where zt =
∑

i zi,t is the economy-wise quality index. Mi,t approaches a constant Mi

asymptotically, where M = (M1, · · · ,MN)
′
satisfies

ΩM = λ∗M. (20)
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This proposition sheds light on how the structure of the technology network

shapes the economy. To understand the first part of this proposition, note that (19)

is a system of linear difference equations. Given that the dominant eigenvalue of

Ω is nonzero, this system of equations admits a solution that expresses the quality

index for any sector as a function of a linear combination of power functions with

base terms equal to one plus the product of δ and the eigenvalues of Ω. In the limit,

when t goes to infinity, the dominant eigenvalue dominates the process, therefore

the growth rate converges to δλ∗. This result offers an elegant and simple way to

characterize how the technology network determines the speed of quality upgrading

in equilibrium.

The second part of this proposition reveals a deep connection between the relative

quality of a sector and its position in the downstream technology network. First,

notice thatM = (M1, · · · MN)
′
represents the generalized right eigenvector centrality

in the technology network.5 The generalized eigenvector centrality measures the

importance of a node in a network. In particular, a node gets higher scores if it is

connected with other high score nodes. In our context, sectors benefit from knowledge

spillovers from both their own sectors and others when conducting innovation. The

eigenvector centrality of a sector reflects its position in the technology network that

determines the knowledge flows to the sector, which then determines the relative

quality of products of the sector.

2.4. Equilibrium

In this section, we define the equilibrium for our economy and discuss the rela-

tionship between the patent value and network centrality.

Definition 2. A balanced growth path equilibrium of the economy is a sequence of
variables such that: (i) The representative household maximises the lifetime utility
by choosing the consumption portfolio Ct, subject to the budget constraint; (ii) Given

5The usual eigenvector centrality is associated with the undirected adjacency network; the notion
of generalized eigenvector centrality here is adjusted for the weighted directed network.
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the prices of all sectoral goods Pi,t, the final product producer maximises his profit
by choosing the demand for each sectoral good Yi,t; (iii) Given the inverse demand
function for each individual variety f in sector i and the wage rate wt, the producer
maximises his profit by choosing labor li,f,t, and the price of his product pi,f,t and the
quantity of its product qi,f,t; (iv) Entrepreneurs choose the innovation success proba-
bility ϵi,t to maximise the expected return of innovation and the free entry condition
holds; (v) All markets clear.

Note that in equilibrium, the labor market clearing condition implies that:∫
f

li,f,tdf =

∫
f

qi,f,tdf = LY . (21)

Substituting the sectoral price index (10) into equation (9), and using the fact that

Pi,tYi,t = αiPtYt, gives:

qi,f,t =

(
ε

ε− 1

)−1
zi,f,t
zi,t

αiPtYt. (22)

The demand for the variety produced by firm f in sector i depends on the relative

product quality in the sector. The combination of the demand function (22) and the

labor market clearing condition (21), with some algebra, leads to

αiPtYt =
ε

ε− 1

zi,t
zt

LY . (23)

The profit flow of the variety produced by firm f in sector i in period t is thus:

πi,f,t =
1

(ε− 1)Hi,t

N∑
j=1

Ωi,j
zj,t−1

zt−1

zt−1

zt
LY . (24)

Recall that along the balanced growth path, Mj =
zj,t
zt

and zt−1

zt
= 1

1+g
= 1

1+δλ∗ .

From Proposition 1,
∑N

j=1 Ωi,jMj = λ∗Mi, where λ∗ is the dominant eigenvalue of

the technology network Ω. Consequently, we can rewrite the expected profit function

as:
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πi,f,t =
1

ε− 1

Mi

ϵi

δλ∗

1 + δλ∗L
Y , (25)

Equation (25) reveals that in equilibrium the profit flow of firm f in sector i

depends positively on this sector’s network centrality but negatively on the number

of new patents. Intuitively, a higher centrality of a sector reflects a more central

position of this sector in the technology network, which provides an advantage for

firms in this sector to conduct innovation as they benefit more spillovers from other

sectors. On the other hand, the larger the number of new patents, the stronger the

competition is, thus, the lower the profit. In equilibrium, the profit is constant over

time. We drop the time and firm subscript when no confusion arises.

The previous discussions help to establish the value function of firm f with a

patent in sector i:

vi = πi +
1

1 + r
(1− δ)vi. (26)

Equation (26) states that the value of a firm in sector i is equal to the profit this firm

receives at the current period plus the expected future value if this firm remains in

the market. Note that 1− δ is the probability of firm survival. With simple algebra,

we can derive:

vi =
1 + r

(ε− 1)(r + δ)

Mi

ϵi

δλ∗

1 + δλ∗L
Y , (27)

where r = 1/β − 1 is the equilibrium risk-free interest rate and LY denotes the

equilibrium amount of labor used in manufacturing, which is to be determined later.

The value function derived in (27) implies a close connection between research

expenses and the network centrality. To see this point, recall that the free entry

condition (15) pins down the relation between the research cost and the value of new

patents. Combining (27) with the free entry condition (15) delivers the following

result:

C(ϵi) =
1 + r

(ε− 1)(r + δ)

δλ∗

1 + δλ∗MiL
Y (28)

To close the model, we further assume that, for any potential entrant firm f , to
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obtain innovation success probability ϵi,t in sector i in period t, it requires to hire

lAi,f,t(ϵi,t) =
ϵi,t

1−ϵi,t
units of labor, for all i and all t.

Since wt is normalized to unity and the measure of potential firm entrants is also

unity, the total cost of all innovation for sector i in period t is given by:

C(ϵi,t) =
ϵi,t

1− ϵi,t
, ϵi,t ∈ [0, 1],∀i, ∀t. (29)

Applying the above function to (28) gives a solution for ϵi in equilibrium:

ϵi =
χMi

1 + χMi

, (30)

where χ = 1+r
(ε−1)(r+δ)

δλ∗

1+δλ∗L
Y . The measure of entrants in sector i, i.e. ϵi, is positively

related to this sector’s technology centrality. Intuitively, higher technology centrality

implies higher profit of innovations, which induces more entrants. However, note that

the marginal impact of technology centrality on innovation is diminishing due to the

convexity of the cost function.

Integrating over lAi,f,t(ϵi,t) gives the total labor demand for innovation workers:

LA =
N∑
i

χMiϵi =
N∑
i

χ2M2
i

1 + χMi

. (31)

Lastly, the total demand for labor is equal to the supply of labor in equilibrium:

LA + LY = 1. (32)

The above two equations, together with the definition of χ = 1+r
(ε−1)(r+δ)

δλ∗

1+δλ∗L
Y ,

determine the values of LY , LA and χ. Substituting the value of LY back into (28),

we obtain the following proposition:

Proposition 2. The cost of innovation is higher for sectors with higher technology
centrality, holding everything else constant.
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This proposition highlights a general equilibrium relationship between the cost of

innovation and the corresponding technology centrality. Sectors with higher central-

ity centrality endogenously induce more entrants in equilibrium, which bid up firms’

cost of innovation.

Now we explore the relationship between the value of patents and the correspond-

ing sectoral centrality. Combining (27) and (30) delivers the following result:

vi = 1 + χMi, (33)

which is formally stated in the following key proposition.

Proposition 3. The value of a patent depends positively on the technology centrality
of the sector that this patent belongs to.

This proposition relates the position of a sector in the technology network to

the value of patents invented in this sector. It suggests that a sector’s technology

centrality is a sufficient statistic that summarises the impact of knowledge spillovers

on the value of innovations. This sufficient statistic nests the standard intrasectoral

knowledge spillover effect as a special case and goes beyond that by incorporating

intersectoral knowledge spillovers. Proposition 3 highlights that innovations in sec-

tors with higher centrality are more valuable than their counterparts in less central

sectors.

Observe that there are two channels through which technology centrality affects

innovation value. The first channel is the knowledge spillover effect, which con-

tributes positively to value of a patent by enhancing the quality of the patent. This

effect captures the benefits that new innovations receive from previous innovations

through the technology network. The second channel is the competition effect, which

tends to reduce the patent value because a higher sectoral centrality results in more

entrants and thus generates more competition and smaller profit. This effect is clearly

shown by (27), where the number of new entrants ϵi appears in the denominator of

the patent value function. Overall, the positive knowledge spillover effect dominates

the negative competition effect, making the net effect positive.
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3. Data

This section describes the data and the methods that we use to construct the

technology centrality and value of patents in our empirical analyses.

3.1. Patent Citation

The backbone for our analyses is the patent data (PATSTAT Global) from the

European Patent Office,6 which covers more than 100 million patent documents

from leading industrialised and developing countries between 1927 and 2022. This

data set provides detailed information on patent assignees, citations, the patent

applied and granted dates, and a cooperative patent classification (CPC) number

that differentiates individual patents based on their technological fields. We drop

sectors that do not have consistent patent data in our sample period.7 We construct

a proxy of intersectoral knowledge spillovers using the patent citation data:

ωij,t ≡
Citationst−3→t−1

j→i∑N
k=1Citationst−3→t−1

j→k

, i, j = 1, · · · , N. (34)

The notation j → i designates a patent citation from technology i to j, which

in turn means knowledge flowing from technology j to i, and N is the number of

technological sectors in the economy. ωij,t is, therefore, a normalized measure of

knowledge spillovers from j to i in period t, the time average of which is an empirical

counterpart of Ωi,j discussed in our model. We construct our measure using citation

data generated from patents granted over a 3-year window to alleviate the potential

measurement error arising from annual observations. We also consider longer time

periods using 5-year data in our empirical analyses.

Next, we proceed to construct the technology centrality measure based on (20).

Specifically, we use ωij to form a matrix that represents the technology network. We

then calculate the dominant eigenvalue and the corresponding dominant eigenvectors

6The data we use is the PATSTAT Global 2022 Spring edition.
7Our results remain the same when we include these sectors.
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of the innovation matrix. The dominant eigenvector for sector i, denoted by Mi, is

the empirical measurement of sectoral technology centrality in our model.

Figure 1: The Technology Network (1960-2018)

Notes: Calculated using sectoral citations from 1960 to 2018. The size of each node represents

the centrality of each technological class, which was calculated using Equation (20). Nodes with

centrality lower than the mean are omitted.

Figure 1 presents a sub-sample of the technology network calculated using sectoral

citations from 1960 to 2018, where only sectors with technology centrality larger than

the average are shown. Each node in the network represents a technological sector

with a specific CPC, and is visualized with a distinct color. A bigger node means

that the corresponding sector has a higher eigenvalue centrality. The directed edges
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in the network represent the knowledge flows from the source sector to the target

sector.

An important feature shown by Figure 1 is the asymmetric network structure,

where a few sectors occupy central positions in the network, while most other sectors

reside remotely. The 3 most central sectors (G06, H04 and A61) have an average

technology centrality that is over 40000 times larger than the bottom 3 sectors (G12,

C14 and B68).8 Also note that the technology network is highly skewed. Only 30

technology sectors have technology centrality higher than the average, implying that

the majority of technology sectors demonstrate small centrality.

Table 1: Descriptive Statistics of Sectoral Centrality

Sectoral Centrality
M3

i M5
i

Mean 0.008 0.008
Std. Dev 0.014 0.014
Percentiles
p1 0.000 0.000
p5 0.000 0.000
p10 0.000 0.000
p25 0.001 0.001
p50 0.003 0.003
p75 0.008 0.008
p90 0.019 0.019
p95 0.031 0.031
p99 0.076 0.075

Notes: The table presents the distribution of sectoral centrality from 1960 to 2022. Sectoral cen-
trality is calculated using citations data according to Equation (20). M3

i is calculated using a three-
year window, while M5

i a five-year window. The sample comprises a total of 8,001 observations.

8The top 3 sectors are G06 (technologies for computing, calculating), H04 (counting, electric
communication techniques), and A61 (medical or veterinary science, hygiene), while the bottom 3
sectors are G12 (instrument details), C14 (skins; hides; pelts; leather) and B68 (saddlery; uphol-
stery).
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Table 1 provides further information on the sample distribution of sectoral tech-

nology centrality. The mean of sectoral technology centrality is roughly 2.6 times as

large as the median technology centrality, which is consistent with the features shown

in Figure 1. In general, there exists substantial heterogeneity of network centrality

across sectors, which is useful for our empirical analyses as we rely on the variations

of sectoral centrality to explore the impacts of technology centrality on patent values

and R&D expenses.

3.2. Patent Value

We follow the method developed by Kogan et al. (2017) to estimate the economic

value of patents. The estimation is based on an event study method using stock

market responses to the announcement of a patent grant.9 We briefly introduce the

method here.

First, each firm’s idiosyncratic return from a patent grant is calculated by sub-

tracting the return on the market portfolio from the firm’s return. Specifically, the

idiosyncratic stock return Rk for a given firm around the time that its patent k is

issued is given by:

Rk = νk + ιk (35)

where νk is the intrinsic economic value of patent k measured as a fraction of the

firm’s market capitalization, and ιk is a random component of the firm’s stock return

unrelated to the patent.

The economic value of patent k is estimated as the product of the estimate of the

stock return times the market capitalization Υk of the firm, adjusted by the number

9Before calculating patent value, we first match PATSTAT patent data with compustat firms
using patent-permno matching file from https://github.com/KPSS2017/Technological-I

nnovation-Resource-Allocation-and-Growth-Extended-Data. The data was retrieved on
September 1st, 2023.
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of patents issued to the firm on the same day:

PVk = (1− ζ)−1 1

Nf

E [νk | Rk] Υk. (36)

where ζ is the unconditional probability of a successful patent application. Nf is the

number of patent grants to firm f at the same day. νk follows a left-truncated normal

distribution, νk ∼ N+ (0, σ2
νkt), and that the noise term is normally distributed,

ιk ∼ N (0, σ2
ιkt). Consequently, the expected value of νk conditional on Rk is:

E [νk | Rk] = δRk +
√
δσιkt

ϕ
(
−
√
κ Rk

σιkt

)
1− Φ

(
−
√
κ Rk

σιkt

) , (37)

where ϕ and Φ represent the standard normal probability distribution function and

cumulative distribution function respectively, and κ represents the signal-to-noise

ratio:

κ =
σ2
νkt

σ2
νkt + σ2

ιkt

. (38)

κ can be estimated by calculating the increase in the volatility of firm returns around

the patent publication date using the following regression:

log (Rkt)
2 = γIkt + ζZkt + ϵkt,

where Rkt refers to the three-day idiosyncratic return of firm k on day t. Ikt equals

1 if a patent is issued for a firm k at time t and 0 otherwise. Day of week and

the firm-year fixed effect are included as controls Zkt. The estimated signal-to-

noise ratio is therefore κ̂ = 1 − e−γ̂. Lastly, σ2
ιkt can be estimated using σ2

ιkt =

3σ2
kt

(
1 + 3dkt

(
eγ̂ − 1

))−1
, where σ2

kt is the conditional volatility of firm k at year

t using the realized mean idiosyncratic squared returns, and dkt is the fraction of

trading days that are announcement days.

Following Kogan et al. (2017), we set γ and ζ to be 0.0143 and 0.55 respectively.
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With these estimates, we can calculate the market-based economic value of each

patent P̂ Vk. As robustness tests, we allow different distributional assumptions for νk

and ιk. We re-estimate the economic values of the patents when: (i) νk is modeled

as an exponential distribution; and (ii) νk and ιk follow a truncated Cauchy and a

standard Cauchy distribution, respectively. The detailed construction processes can

be found in Appendix B. The sample distributions of patent values under different

assumptions of νk and ιk are presented in Table 2. A common feature across different

specifications is that patent value tends to be right-skewed, with more than half

patents in our sample valued above 1 million dollars.

Table 2: Descriptive Statistics of Patent Value

Truncated Normal Exponential Cauchy
E[νk|Rk] PVk E[νk|Rk] PVk E[νk|Rk] PVk

(%) (USDm) (%) (USDm) (%) (USDm)
Mean 0.317 9.92 0.391 12.258 0.135 4.774
Std. Dev 0.252 27.851 0.343 34.599 0.096 13.979
Percentiles
p1 0.094 0.008 0.112 0.01 0.04 0.003
p5 0.126 0.03 0.152 0.037 0.051 0.013
p10 0.147 0.097 0.177 0.118 0.06 0.044
p25 0.187 0.687 0.228 0.842 0.079 0.293
p50 0.255 3.038 0.314 3.733 0.109 1.359
p75 0.364 9.003 0.45 11.082 0.159 4.166
p90 0.532 22.357 0.664 27.585 0.234 10.719
p95 0.706 39.025 0.876 48.437 0.299 18.932
p99 1.252 108.093 1.552 134.431 0.483 54.704

Notes: The table presents the distribution of following variables in our sample. The first vari-
able is the expected patent value E[νk|Rk], which is based on Equation (37). The second variable
is the filtered dollar value of patents, PVk , which is calculated using Equation (36). The patent
value is deflated to 1982 (million) dollars using the Consumer Price Index (the symbol CPIAUCNS
on FRED). In addition to the baseline case, we present results using two alternative distributional
assumptions described in Section 3.2. The sample in our study comprises 3, 488, 638 patents from
1927 to 2022.
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3.3. Firm Controls

We collect information on firms’ fundamentals from CRSP/Compustat merged

database for the period between 1968 and 2022. We then merge our patent data with

the CRSP/Compustat database. We restrict the sample to firm-year observations

with nonmissing SIC classification codes and omit financial firms (SIC ocdes 6000 to

6799) and utilities firms (SIC codes 4900 to 4949). The processing procedure leaves

us with a sample of 17961 firms.

The key variables included in our empirical analyses are firms’ R&D expenses,

leverage ratio (defined as total debt over total asset), net operating cash flow, stock

return, total assets, number of employees, the firm’s log idiosyncratic volatility and

the firm’s log market capitalization (measured on the day prior to the patent grant).10

The summary statistics of the firm variables are reported in Table 3.

Table 3: Summary Statistics

Variable N Mean Median SD Min Max
R&D 83175 16.179 16.191 2.255 6.908 25.017
Leverage 155757 0.227 0.185 0.245 0 17.781
Cash 106181 17.547 17.586 2.443 6.908 25.368
Return 141755 -0.02 0.02 0.639 -7.121 6.072
Asset 156245 19.362 19.228 2.362 6.908 27.589
Employment 150334 6.923 6.93 2.304 0 14.648
Volatility 1828721 -4.157 -4.194 0.469 -6.258 -1.540
Market Capitalization 1878148 15.231 15.223 2.713 5.774 21.677

Notes: The table presents descriptive statistics for the firm-level variables used in our empiri-
cal analyses. Leverage is measured by the debt to asset ratio (dt/at). R&D (xrd), Cash (oancf),
Asset (at) and Employment (emp) are on logarithmic scale. Return is calculated using the loga-
rithm of price change (prcc f) plus dividend per share (dvc/csho). Volatility is firm’s mean realized
idiosyncratic volatility. Market capitalization (DlyPrevCap) and Volatility are at daily frequency
and measured at logarithm scale.

10We lag 1 year for all firm-level controls for the empirical analysis.
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4. Empirical Analysis

In this section, we formulate our empirical analyses based on the predictions of

our model. First, we test the relationship between firms’ technology centrality and

the corresponding R&D expenses. Our model implies a positive correlation between

firms’ technology centrality and their R&D expenses, which constitutes the first

hypothesis in our analysis. We then examine the key prediction of our model, which

relates each sector’s technology centrality to the value of individual patents.

4.1. R&D and Firm Centrality

Our first empirical analysis involves examining the relationship between firms’

R&D expenses and their technology centrality. We construct a firm-specific measure

of technology centrality that reflects the technology centrality of each firm’s patent

portfolio as follows:

FirmCentralityf,t =
∑
i∈Ωf,t

Ni,f,t

Nf,t

Mi (39)

where Ωf,t is the set of technology sectors firm f innovates in, Mi is the sectoral

centrality for sector i constructed previously using patents granted over a 3-year

window before year t, and Ni,f,t and Nf,t are the number of patents invented by

firm f in sector i at year t and the total number of patents firm f invented at year t

respectively. This firm-specific technology centrality is essentially a weighted average

of sectoral technology centrality, with weights equal to the shares of patents granted

to a firm in each sector over the total number of patents the firm invented. We then

run the following regression:

R&Df,t = a1 FirmCentralityf,t + a Controlsf,t + εf,t, (40)

The coefficient of interest is a1, which is expected to be positive if a firm’s technology

centrality is positively related with their R&D expenses. We include a vector of

controls that are potentially related to the R&D expenditure. Specifically, we include:
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the firm’s leverage level and net operating cash flow, which account for firms’ external

and internal cost of financing respectively; the stock market return, since positive

stock returns may signal growth potential for firms (Lach and Schankerman, 1989);

total assets and the number of employees, which capture potential firm size effect on

R&D expenses. We also control for the 3-digit SIC product-year fixed effects and

firm fixed effects to rule out potential impacts of product market dynamics and firm

heterogeneity. a is a vector of coefficients associated with the control variables in the

regression. Lastly, we cluster the standard errors by year to account for potential

serial correlation in technology centrality across sectors in a given year.

Table 4 reports the estimation results. In column (1), we run a simple OLS

regression including the firm’s technology centrality as the only independent variable.

There is a strong positive correlation between individual firms’ technology centrality

and their R&D expenses. A 1% increase of a firm’s technology centrality leads to

a 0.62% increase of the firm’s R&D expenses. Next, a vector of various firm-level

controls are added to our regression and estimation results are shown in column (2).

We further control for the industry and year fixed effects in column (3) and the firm

fixed effects in column (4). In the last column, we control for the industry-year fixed

effects along with the firm fixed effects. This specification allows us to isolate any

dynamic product market effects to drive our results. Across different specifications,

technology centrality is positively correlated with firms’ R&D expense, providing

consistent evidence on the effect of technology centrality.

The estimated coefficients of control variables are consistent with the literature.

Higher external finance dependence (leverage) lowers firms’ R&D expenses, while

the opposite effect is observed for the internal cost of financing (cash). Higher stock

return, total assets and firm employment are all positively correlated with firms’

R&D expenses. The former implies a higher growth perspective induces greater

investment in R&D, while the latter two indicate a positive effect of firm size on

resources devoted to innovation.

Recall that our theoretical model implicitly assumes a stable sectoral technology

centrality over time. Our empirical analyses so far use patents granted over a 3-
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year window to construct the citation network and the corresponding technology

centrality. To test whether our results are sensitive to the choice of time periods, we

use a 5-year patent grant window and re-run our regressions. The results, which can

be found in Table A1, remain almost identical.

Table 4: R&D and Firm’s Technology Centrality

(1) (2) (3) (4) (5)
FirmCentrality 0.617*** 0.280*** 0.120*** 0.025*** 0.018***

(38.656) (26.946) (13.147) (4.345) (3.128)
Leverage -1.153*** -0.809*** -0.279*** -0.287***

(-10.971) (-9.777) (-5.678) (-5.702)
Cash 0.076*** 0.071*** 0.040*** 0.039***

(4.966) (6.624) (6.489) (6.815)
Return 0.037*** 0.048*** 0.021*** 0.013**

(3.105) (4.483) (3.406) (1.987)
Asset 0.759*** 0.761*** 0.397*** 0.383***

(24.846) (26.756) (15.257) (14.675)
Employment -0.136*** 0.010 0.380*** 0.377***

(-5.293) (0.364) (13.232) (11.917)
Firm FE No No No Yes Yes
Year FE No No Yes Yes No
Industry FE No No Yes Yes No
Industry × Year FE No No No No Yes
Observations 31172 20575 20551 19898 17729
R2 0.319 0.805 0.889 0.976 0.983

Notes: The table reports estimation results from Equation (40). The dependent variable is the
logarithm of R&D expense (Compustat: XRD) for firm f at year t. FirmCentrality is calculated
using a 3-year patent grant window. Controls includes firm’s leverage ratio, net operating cash flow,
stock market return, total assets and the number of employees. Leverage is measured by the debt
to asset ratio. All controls are measured at logarithm scale (except Leverage ratio) and lagged 1
year for the empirical analysis. We report t-statistics in parentheses. Our standard errors are ro-
bust and clustered at year level. *, **, and *** stands for the significance levels of 10%, 5%, and
1%, respectively. All variables are winsorized at the 1% level using annual breakpoints.

A potential concern of our empirical analysis is that there exists a substantial

amount of missing R&D in our data. It is quite often that a firm reports R&D one
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year but fails to provide any information in another year.11 In addition, it takes

a long time for firms to get their patents granted due to the tedious patent review

process.12 A patent granted to a firm in a year may be due to R&D investment in

the previous few years. Therefore, using annual data on firms’ R&D expenses can

exaggerate potential measurement errors of the dependent variable. To alleviate this

concern, we follow Chan et al. (2001) to construct a stock of R&D using the follow

equation:

R&DSf,t = R&Df,t+0.8R&Df,t−1+0.6R&Df,t−2+0.4R&Df,t−3+0.2R&Df,t−4. (41)

Essentially, the assumption here is that the productivity of each dollar of R&D

spending declines linearly by 20 percent a year.13 We re-estimate equation (40)

using this newly constructed dependent variable and present the estimation results

in Table 5.

A comparison between Table 4 and Table 5 reveals that our estimation results

are consistent across different measures of dependent variables. There is a stable

positive relationship between firms’ technology centrality and the R&D stock. The

estimated effects for the firm’s technology centrality are, in general, larger in the

current regressions. For instance, for the model specification with full controls in

column (5), the estimated coefficient of firms’ technology centrality is 0.028, which

is about 50% larger than the baseline result, while maintaining the same level of

statistical significance.14

11This can be due to firms failing to separate R&D expenses from other reported expenses or
their conscious decision Koh and Reeb (2015).

12According to the United States Patent and trademark Office (USPTO), it takes about 22
months to get patent approval after going through the steps to file a patent.

13Note that the baseline estimation shown previously corresponds to an extreme scenario where
the productivity of R&D expenses declines by 100 percent.

14We again conduct a robustness test using a 5-year patent grant window to construct the tech-
nology centrality and show the results in Table A2. The quantitative results remain the same.
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Table 5: R&D Stock and Firm’s Technology Centrality

(1) (2) (3) (4) (5)
FirmCentrality 0.617*** 0.277*** 0.132*** 0.041*** 0.028***

(37.519) (25.895) (14.423) (7.360) (5.169)
Leverage -0.956*** -0.653*** -0.168*** -0.178***

(-8.975) (-7.777) (-3.477) (-3.639)
Cash 0.050*** 0.049*** 0.019*** 0.020***

(3.243) (4.515) (3.428) (3.944)
Return 0.007 0.021** -0.007 -0.019***

(0.642) (2.158) (-1.251) (-3.354)
Asset 0.788*** 0.756*** 0.381*** 0.353***

(25.515) (26.269) (14.540) (13.284)
Employment -0.125*** 0.036 0.418*** 0.427***

(-4.864) (1.331) (15.060) (14.043)
Firm FE No No No Yes Yes
Year FE No No Yes Yes No
Industry FE No No Yes Yes No
Industry × Year FE No No No No Yes
Observations 25702 18805 18785 18252 16128
R2 0.346 0.828 0.906 0.984 0.989

Notes: The table reports estimation results from Equation (40). The dependent variable is the
logarithm of R&D stock calculated using Equation (41). The explanatory variable is calculated us-
ing 3-year window as in Equation (39) at logarithm scale. Controls includes firm’s leverage ratio,
net operating cash flow, stock market return, total assets and the number of employees. Leverage
is measured by the debt to asset ratio. All controls are measured at logarithm scale (except Lever-
age ratio) and lagged 1 year for the empirical analysis. We report t-statistics in parentheses. Our
standard errors are robust and clustered at year level. *, **, and *** stands for the significance
levels of 10%, 5%, and 1%, respectively. All variables are winsorized at the 1% level using annual
breakpoints.

4.2. Patent Value and Sectoral Centrality

In this section, we investigate the relationship between the value of patents and

sectoral technology centrality. In particular, we estimate the following model:

PVk,f,i,t = b1Mi,t + b Controlsk,f,i,t + εk,f,i,t, (42)
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where PVk,f,i,t is the estimated economic value of patent k invented by firm f in

technology sector i at time t, which is calculated using equation (36) and then deflated

to 1982 (million) dollars using the Consumer Price Index, and Mi,t represents sector

i’s technology centrality at time t, which is constructed previously. The left-truncated

normal distribution is assumed to estimate the economic value of patents for our

baseline analysis, and exponential and cauchy distributions are used for robustness

tests.

We include a vector of patent-, firm- and sector-level controls. As shown by

our theoretical model, the competition effects generated by rival patents in a sector

negatively impact the value of patents in the same sector. We therefore include the

number of patents granted to the sector that patent k belongs to on the same day

when patent k was granted to control for the competition effects.15

Another factor included in our regression is the number of citations a patent

receives. As shown by Kogan et al. (2017), patent citations are a good proxy for

the quality of a patent, which is highly correlated with the economic value of the

patent. Including patent citations in the regression rules out the possibility that our

results are driven by the scientific value of patents instead of their positions in the

technology network.

Lastly, we include a set of firm-level controls. Specifically, we include the firm’s

log market capitalization measured on the day prior to the patent grant to control

for potential effects of different firm size. Moreover, we include the firm’s log idiosyn-

cratic volatility in our regression because it mechanically affects the construction of

the economic value of patents.

In addition to the aforementioned controls, we experiment with different combi-

nations of fixed effects to rule out omitted variable bias in our empirical analyses.

Table 6 reports our estimation results.

15We also try an alternative measure that uses the number of patents granted one year before t
in our regressions, and our results are qualitatively similar.
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Table 6: Patent Value Regression

(1) (2) (3) (4) (5)
Sectoral Centrality 0.077*** 0.424*** 0.601*** 0.122*** 0.100***

(3.745) (9.468) (17.415) (18.510) (22.893)
Observations 1640692 1640692 1640692 1639309 1622312
R2 0.002 0.011 0.640 0.935 0.964
Controls
Sectoral Competition — Y Y Y Y
Patent Citations — — Y Y Y
Volatility — — Y Y —
Firm Size — — Y Y Y
Firm FE — — — Y —
Year FE — — — Y —
Firm × Year FE — — — — Y

Notes: The table illustrates the patent value regression. The dependant variable is PVk,f,i,t,
which is calculated using Equation (36) and then deflated to 1982 (million) dollars using the Con-
sumer Price Index (the symbol CPIAUCNS on FRED). The main explanatory variable is Sectoral
Centrality (Mi,t). Patent Citations is measured by log(1 + C), where C is the number of forward
citations; firm’s idiosyncratic volatility is measured by realized mean idiosyncratic squared returns;
firm size is measured by the firm’s market capitalization on the day prior to the patent issue date.
Column (4) use firm and year fixed effect separately, and Column (5) use Firm × Year fixed effect.
We report t-statistics in parentheses. Our standard errors are robust and clustered at the patent
grant year. *, **, and *** stands for the significance levels of 10%, 5%, and 1%, respectively. All
variables are at logarithm scale and are winsorized at the 1% level using annual breakpoints.

Table 6 column (1) presents the results of an OLS regression with sectoral central-

ity as the only independent variable in the regression. Our results reveal a positive

and significant relationship between technology centrality and the value of innova-

tions. We then control for the sectoral competition in our regression in column (2).

It is interesting to see that as sectoral competition is added to the regression, the

coefficient of technology centrality increases substantially. This is consistent with

our model, since sectoral competition negatively correlates with the value of patents

while positively relates to sectoral technology centrality. In the next column, we

further control for patent citations, the firm’s volatility and firm size. With these

additional controls, our estimated coefficient of sectoral technology centrality be-
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comes larger and more precise. In column (4), we include firm and year fixed effects

to avoid any time-invariant firm characteristics and aggregate time shocks to bias

our estimates.

Our analyses so far cannot exhaust all possible time-variant firm factors that can

potentially correlate with sectoral technology centrality. To address this issue, we

interact the firm fixed effects with the year fixed effects in our regression and present

the results in the last column of Table 6. This specification allows us to utilize the

cross-sectoral variation of patent values within firms on the same year to explore the

impact of technology centrality, which is ideal for our analyses. Our previous findings

remain valid in this setup, with the estimated coefficient of technology centrality

equal to 0.1 that is statistically significant at the 1% level. To get a sense of this

estimate, suppose we compare patent values in the sector at the 75th percentile of

technology centrality with that in the sector at the 25th percentile of technology

centrality. The estimated coefficient implies that the former is 80% larger than the

latter.16

We again report the results using a longer period of patent grant window for

the construction of technology centrality in Table A3 in the Appendix. All previous

results remain the same.

5. Robustness Tests

In this section, we conduct two tests to investigate the robustness of our key

empirical results regarding the impacts of technology centrality on patent value.

First, we examine the robustness of our results against alternative estimates of the

economic value of patents. Then we test the sensitivity of our results to the exclusion

of individual sectors to investigate whether our results are driven by potential outliers

in our sample.

16To get this result, recall from Table 1 that the 25th percentile of sectoral technology centrality
distribution is 0.001 and the 75th percentile is 0.008. The average patent value in the latter is
0.008/0.001 ∗ 100% ∗ 0.1 = 80% higher than the former.
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5.1. Alternative Estimates of Patent Value

A key assumption for the construction of the economic value of patents is that

the intrinsic economic value of patents follows a left-truncated normal distribution.

To access the robustness of our results against this assumption, we use alternative

distributional assumptions of the intrinsic value of patents suggested by Kogan et al.

(2017). Specifically, we allow the unconditional intrinsic value of patents to follow

an exponential distribution and a truncated Cauchy distribution respectively, and

estimate the value of patents.17

The estimation results with the two alternative measures of patent values from

regressing equation (42) are shown in Table 7. Panel A displays the results when

the exponential distribution is assumed while Panel B shows the results for the

Cauchy distribution. Consistent patterns arise from a comparison between Table 6

and Table 7: the estimated coefficient of sectoral technology centrality is mostly

precisely estimated when the firm-year fixed effects is controlled in the regression

regardless which measure of the dependent variable is used. This is clearly shown by

the highest t-statistic for the coefficient of sectoral centrality in column (5). Across all

specifications, the magnitude and significance of the estimated coefficient in Table 7

are in close proximity of that in Table 6, indicating a stable relation between sectoral

centrality and the value of patents.18

17The detailed construction process can be found in Appendix B.
18The parallel results for Table 7 using a 5-year patent grant window for the construction of

technology centrality are reported inTable A4.
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Table 7: Alternative Patent Value Regression

(1) (2) (3) (4) (5)
Panel A: Exponential
Sectoral Centrality 0.077*** 0.425*** 0.601*** 0.123*** 0.100***

(3.743) (9.452) (17.384) (18.381) (22.855)
Observations 1639317 1639317 1639317 1637932 1620936
R2 0.002 0.011 0.638 0.933 0.962

Panel B: Cauchy
Sectoral Centrality 0.068*** 0.436*** 0.579*** 0.122*** 0.099***

(3.228) (9.642) (16.403) (17.389) (23.433)
Observations 1684254 1684254 1634820 1633456 1666410
R2 0.001 0.012 0.614 0.913 0.949

Controls
Sectoral Competition — Y Y Y Y
Patent Citations — — Y Y Y
Volatility — — Y Y —
Firm Size — — Y Y Y
Firm FE — — — Y —
Year FE — — — Y —
Firm × Year FE — — — — Y

Notes: The table illustrates the alternative patent value regression. The main explanatory vari-
able is Sectoral Centrality (Mi,t). Patent Citations is measured by log(1+C), where C is the num-
ber of forward citations; firm’s idiosyncratic volatility is measured by realized mean idiosyncratic
squared returns; firm size is measured by the firm’s market capitalization on the day prior to the
patent issue date. Column (4) use firm and year fixed effect separately, and Column (5) use Firm
× Year fixed effect. We report t-statistics in parentheses. Our standard errors are robust and clus-
tered at the patent grant year. *, **, and *** stands for the significance levels of 10%, 5%, and 1%,
respectively. All variables are at logarithm scale and are winsorized at the 1% level using annual
breakpoints.

5.2. Exclusion of Technology Sectors

Another concern of our empirical analyses is that the relation between the sectoral

centrality and the value of innovations may be driven by individual technology sectors

instead of a general network property shared by all sectors. To alleviate this concern,

we perform a sensitivity test by re-estimating the patent regression (42) using the
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model specification in column (5) of Table 6 repeatedly, each time a technology sector

is excluded from the regression.

Figure 2: Sensitivity Test

Notes: This figure plots the sensitivity test for the patent value regression as in Column (5) of

Table 6. Each data point represents an estimated coefficient of sectoral technological centrality

when one technology sector is excluded from the regression. The 99% confidence interval is indicated

by the upper and lower bounds.

Figure 2 pools together the point estimates with 99% confidence interval for all

regressions ran in the sensitivity test. The middle solid line captures the estimated

coefficient of sectoral centrality for each regression, while the upper and lower bounds

constitute the 99% confidence interval. As shown by Figure 2, the estimate for the

sectoral centrality remains positive and statistically significant at the 1% level, inde-
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pendent of which technology sector is excluded from the regression. More strikingly,

the magnitudes of coefficients from different regressions are extremely close to each

other, most of which center around 0.1, confirming that our results indeed reflect a

correlation between the value of patents and sectors’ network property.

6. Conclusion

Our paper offers both novel theoretical insights and new empirical evidence on

the relationship between the structure of a technology network and the value of inno-

vations. We investigate this relation through the lens of a quality-ladder innovation

model with technological interdependence across sectors. Our model shows that the

extent of quality improvement of new innovations in a sector is determined by the

technology centrality of the corresponding sectors, which captures the position of

the sector in the technology network. Innovations in sectors with greater technology

centrality benefit more from knowledge spillovers and therefore demonstrate higher

market value to their inventors, which also results in more R&D expenses.

We use a comprehensive patent citation database, complemented with the finan-

cial information from Compustat/CRSP to empirically confront the predictions of

our model with data. The sectoral centrality is calculated by computing the eigen-

vectors of the empirically constructed technology matrix with the guidance of our

model, and the economic values of patents are estimated using an event study method

that relies on the stock market responses to corporate patenting activities. Our em-

pirical analyses provide strong and robust support for the importance of technology

centrality as predicted by our model.
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Appendix A. Proofs

Proof of Proposition 1. Rewrite (19) in the matrix form:

Zt+1 = (I+ δΩ)Zt,

where I is an identity matrix, Zt is the vector of sectoral quality index and Ω is the

matrix representing the technology network. The above system admits the following

solution:

Zt = (I+ δΩ)tZ0, given Z0.

Given that the dominant eigenvalue of the technology network Ω is positive, we can

decompose (I+ δΩ)t as follows

(I+ δΩ)t = V(I+ δT)tV−1,

where

T =


λ1 0 · · · 0

0 λ2 · · · 0
...

. . .
...

0 0 · · · λN

 , V = (V1,V2, · · · ,VN)

where {λk}k∈N are the eigenvalues of the matrix Ω, and {Vk}i∈N are the correspond-

ing eigenvectors. According to the Perron-Frobenius theorem, there is a dominant

eigenvalue λ∗ such that λ∗ ≥ λk, ∀k ∈ N . Therefore, we can express the quality

index of sector k at time t as

zk,t =
N∑
l=1

ckl(1 + δλl)
t = (1 + δλ∗)t

N∑
l=1

ckl(
1 + δλl

1 + δλ∗ )
t,

where ckl is a function of elements from V, V−1 and Z0. Let λ∗ = λ1, as t → ∞,

zk,t = ck1(1 + δλ∗)t. The growth rate of sector k is thus equal to gAk = δλ∗, ∀k ∈ N .

Since the quality index of all sectors grow at the same rate, so does the economy-wise

quality index. This completes the first part of the proof.
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To prove the second part of the proposition, we divide both sides of (19) by zt

and expand the system of equations to obtain:
(z1,t+1 − z1,t)/zt

...

(zN,t+1 − zN,t)/zt

 = δ


Ω11 · · · Ω1N

...
. . .

...

ΩN1 · · · ΩNN



M1,t

...

MN,t

 ,

which can be manipulated as follows
z1,t+1−z1,t

z1,t

z1,t
zt

...
zN,t+1−zN,t

zN,t

zN,t

zt

 = δ


Ω11 · · · Ω1N

...
. . .

...

ΩN1 · · · ΩNN



M1,t

...

MN,t

 .

In the equilibrium, gA = gAk ≡ zk,t+1−zk,t
zk,t

, ∀k. Therefore, the above system of equa-

tions can be written as
gAM1

...

gAMN

 = δ


Ω11 · · · Ω1N

...
. . .

...

ΩN1 · · · ΩNN



M1

...

MN

 .

This can be expressed in a compact form as

λ∗M = ΩM.

This completes the proof.

41



Appendix B. Alternative Patent Values Measure

Exponential

We first utilized an exponential distribution to model νk. Similarly to the previous

method, we posit that the firm’ stock return on the patent grant date conforms to a

certain set of parameters and is given by the equation:

Rk = νk + ιk

We now assume that νk follows an exponential distribution with the parameter

1/σνk . We attribute the noise term to be normally distributed, ιk ∼ N (0, σ2
ιkt) as

before. Based on these assumptions, we can proceed to calculate the conditional

expectation of E [νk | Rk], which is expressed as follows:

E[νk|Rk] = Rk + σιk

(√
2

π

exp(−R̃2
k/2)

Gc(R̃k/
√
2)

− σιk

σνk

)
,

where Gc is the complementary error function (also referred to as the “Q-function”),

which represents the probability that a normally distributed random variable will

exceed a certain threshold value.

R̃k =
σιk

σνk

− Rk

σιk

.

As before, we assume that the proportion σ2
νk
/σ2

ιk
remains the same for all firms.

Moreover, we rely on our pre-existing estimates that yield σ2
νk
/σ2

ιk
= 0.0143. Based

on these result, we proceed to calculate PVk and subsequently deflate it to CPI, just

like we did earlier.
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Cauchy

We formulate νk and ιk using a truncated Cauchy and a standard Cauchy distri-

bution, respectively. As before, firm’s stock return takes the form of:

Rk = νk + ιk

The distribution of νk has been updated to be the positive half of a Cauchy

distribution with its center at zero and scale parameter γν . Similarly, the distribution

of ιk is described by a Cauchy distribution with the same center and a scale parameter

of γι. Therefore, Rk on the announcement date also follows a Cauchy distribution

with a scale of γν + γι. Assuming that both ιk and νk follow a Cauchy distribution,

we can determine the conditional patent value as follows:

E[νk|Rk] =
γν(Θ ln(c(Rk)) + Ξ arctan(Rk

γι
)− 2Θ ln (γν) + Γ)

2γιγνRk ln(c(Rk)) + Πarctan
(

Rk

γι

)
− 4γιγνRk ln(γν) + Ψ

,

where Ξ = 2Rk (c(Rk) + γ2
ν), Γ = Rkπ

(
R2

k + (γι − γν)
2), Π = 2γν (γ

2
ν − γ2

ι +R2
k),

Ψ = π (γν + γι)
(
R2

k + (γι − γν)
2), Θ = γι (c(Rk)− γ2

ν), and c(Rk) = R2
k + γ2

ι . As

previous literature has mentioned, the second moments of the Cauchy distribution

do not exist. Therefore, we use alternative methods to estimate the distribution

parameters. We estimate the scale parameter of the noise term (γι) as half of the

interquartile range of firm-year idiosyncratic returns. We estimate the noise-to-signal

ratio κ̃ = γν/(γν+γι) = 0.0143.19 Table 2 presents the distribution of our constructed

patent value.

19See https://github.com/KPSS2017/Technological-Innovation-Resource-Allocation-a

nd-Growth-Extended-Data for details.
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Appendix C.

Table A1: R&D and Firm’s Technology Centrality

(1) (2) (3) (4) (5)
FirmCentrality 0.623*** 0.281*** 0.120*** 0.024*** 0.018***

(39.020) (26.848) (13.073) (4.269) (3.128)
Leverage -1.158*** -0.811*** -0.279*** -0.287***

(-11.025) (-9.790) (-5.675) (-5.698)
Cash 0.076*** 0.071*** 0.040*** 0.039***

(4.974) (6.631) (6.489) (6.815)
Return 0.037*** 0.048*** 0.021*** 0.013**

(3.044) (4.481) (3.406) (1.987)
Asset 0.757*** 0.762*** 0.398*** 0.383***

(24.779) (26.751) (15.260) (14.673)
Employment -0.135*** 0.010 0.380*** 0.377***

(-5.288) (0.356) (13.238) (11.918)
Firm FE No No No Yes Yes
Year FE No No Yes Yes No
Industry FE No No Yes Yes No
Industry × Year FE No No No No Yes
Observations 31172 20575 20551 19898 17729
R2 0.322 0.804 0.889 0.976 0.983

Notes: The table reports estimation results from Equation (40). The dependent variable is the
logarithm of R&D expense (Compustat: XRD) for firm f at year t. The explanatory variable is
calculated using 5-year window as in Equation (39) at logarithm scale. Controls includes firm’s
leverage ratio, net operating cash flow, stock market return, total assets and the number of em-
ployees. Leverage is measured by the debt to asset ratio. All controls are measured at logarithm
scale (except Leverage ratio) and lagged 1 year for the empirical analysis. Depending on the speci-
fication we also include: firm fixed effects, year fixed effect, industry fixed effect, and industry-year
fixed effects to rule out potential impacts of product market dynamics and firm heterogeneity. We
report t-statistics in parentheses. Our standard errors are robust and clustered at year level. *,
**, and *** stands for the significance levels of 10%, 5%, and 1%, respectively. All variables are
winsorized at the 1% level using annual breakpoints.
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Table A2: R&D Stock and Firm’s Technology Centrality

(1) (2) (3) (4) (5)
FirmCentrality 0.622*** 0.278*** 0.132*** 0.041*** 0.028***

(37.805) (25.827) (14.372) (7.337) (5.185)
Leverage -0.960*** -0.653*** -0.168*** -0.178***

(-9.016) (-7.785) (-3.473) (-3.634)
Cash 0.051*** 0.049*** 0.019*** 0.020***

(3.250) (4.523) (3.433) (3.945)
Return 0.007 0.021** -0.007 -0.019***

(0.589) (2.159) (-1.249) (-3.353)
Asset 0.787*** 0.756*** 0.381*** 0.353***

(25.445) (26.254) (14.537) (13.280)
Employment -0.125*** 0.036 0.418*** 0.427***

(-4.852) (1.322) (15.066) (14.046)
Firm FE No No No Yes Yes
Year FE No No Yes Yes No
Industry FE No No Yes Yes No
Industry × Year FE No No No No Yes
Observations 25702 18805 18785 18252 16128
R2 0.349 0.828 0.906 0.984 0.989

Notes: The table reports estimation results from Equation (40). The dependent variable is the
logarithm of R&D stock calculated using Equation (41). The explanatory variable is calculated us-
ing 5-year window as in Equation (39) at logarithm scale. Controls includes firm’s leverage ratio,
net operating cash flow, stock market return, total assets and the number of employees. Leverage is
measured by the debt to asset ratio. All controls are measured at logarithm scale (except Leverage
ratio) and lagged 1 year for the empirical analysis. Depending on the specification we also include:
firm fixed effects, year fixed effect, industry fixed effect, and industry-year fixed effects to rule out
potential impacts of product market dynamics and firm heterogeneity. We report t-statistics in
parentheses. Our standard errors are robust and clustered at year level. *, **, and *** stands for
the significance levels of 10%, 5%, and 1%, respectively. All variables are winsorized at the 1% level
using annual breakpoints.
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Table A3: Patent Value Regression

(1) (2) (3) (4) (5)
Sectoral Centrality 0.076*** 0.425*** 0.622*** 0.128*** 0.102***

(3.610) (9.647) (18.558) (19.092) (22.248)
Observations 1640692 1640692 1640692 1639309 1622312
R2 0.002 0.011 0.641 0.935 0.964

Controls
Sectoral Competition — Y Y Y Y
Patent Citations — — Y Y Y
Volatility — — Y Y —
Firm Size — — Y Y Y
Firm FE — — — Y —
Year FE — — — Y —
Firm × Year FE — — — — Y

Notes: The table illustrates the patent value regression. The dependant variable is ξk, which
is calculated using Equation (36) and then deflated to 1982 (million) dollars using the Consumer
Price Index (the symbol CPIAUCNS on FRED). The main explanatory variable is Sectoral Cen-
trality (Mi,t). We present results for 5-year window centrality in this table. Patent Citations is
measured by log(1 + C), where C is the number of forward citations; firm’s idiosyncratic volatil-
ity is measured by realized mean idiosyncratic squared returns; firm size is measured by the firm’s
market capitalization on the day prior to the patent issue date. Column (4) use firm and year fixed
effect separately, and Column (5) use Firm × Year fixed effect. We report t-statistics in paren-
theses. Our standard errors are robust and clustered at the the patent grant year. *, **, and ***
stands for the significance levels of 10%, 5%, and 1%, respectively. All variables are at logarithm
scale and are winsorized at the 1% level using annual breakpoints.
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Table A4: Alternative Patent Value Regression

(1) (2) (3) (4) (5)
Panel A: Exponential
Sectoral Centrality 0.076*** 0.425*** 0.622*** 0.128*** 0.102***

(3.607) (9.629) (18.520) (18.980) (22.219)
Observations 1639317 1639317 1639317 1637932 1620936
R2 0.002 0.011 0.639 0.933 0.962

Panel B: Cauchy
Sectoral Centrality 0.066*** 0.436*** 0.597*** 0.127*** 0.102***

(3.081) (9.763) (17.334) (18.013) (22.746)
Observations 1684254 1684254 1634820 1633456 1666410
R2 0.001 0.011 0.614 0.913 0.949

Controls
Sectoral Competition — Y Y Y Y
Patent Citations — — Y Y Y
Volatility — — Y Y —
Firm Size — — Y Y Y
Firm FE — — — Y —
Year FE — — — Y —
Firm × Year FE — — — — Y

Notes: The table illustrates the alternative patent value regression. The dependant variable is
patent value assuming exponential distribution. The main explanatory variable is Sectoral Cen-
trality (Mi,t). We present results for 5-year window centrality in this table. Patent Citations is
measured by log(1 + C), where C is the number of forward citations; firm’s idiosyncratic volatil-
ity is measured by realized mean idiosyncratic squared returns; firm size is measured by the firm’s
market capitalization on the day prior to the patent issue date. Column (4) use firm and year fixed
effect separately, and Column (5) use Firm × Year fixed effect. We report t-statistics in paren-
theses. Our standard errors are robust and clustered at the the patent grant year. *, **, and ***
stands for the significance levels of 10%, 5%, and 1%, respectively. All variables are at logarithm
scale and are winsorized at the 1% level using annual breakpoints.
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