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tion in the first stage and a Bayesian estimation/inference approach in the second stage.

The study is motivated by structural discrete choice models that use the control function

methodology to correct for endogeneity bias. In this scenario, the first stage estimates

the control function using some frequentist parametric or nonparametric approach. The

structural equation in the second stage, associated with certain complicated likelihood

functions, can be more conveniently dealt with using a Bayesian approach. This paper

studies the asymptotic properties of the quasi-posterior distributions obtained from the

second stage. We prove that the corresponding quasi-Bayesian credible set does not have

the desired coverage in large samples. Nonetheless, the quasi-Bayesian point estimator

remains consistent and is asymptotically equivalent to a frequentist two-stage estimator.

We show that one can obtain valid inference by bootstrapping the quasi-posterior that

takes into account the first-stage estimation uncertainty.
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1. Introduction

The control function approach is commonly used in empirical economic studies to cope

with endogenous explanatory variables in the structural equations (Heckman and Robb,

1985; Wooldridge, 2015). This approach typically involves two stages: the first stage

projects the endogenous explanatory variables to a set of instruments and other exoge-

nous variables and obtains the residuals; these residuals serve as control functions in the

second stage as extra explanatory variables when estimating the structural equations. In

this paper, we propose a quasi-Bayesian method that combines a frequentist-type first-

stage estimation with some Bayesian approach in the second stage. The study is motivated

by structural discrete choice models that apply the control function method to correct for

endogeneity bias. In such scenarios, the second-stage estimation remains challenging for

frequentist methods. The practical computational convenience of our proposal is easy to

digest because the Bayesian paradigm turns the challenging integration or optimization

problem in the second stage into a sampling problem of posterior distributions. Therefore,

this quasi-Bayesian approach offers researchers great flexibility to combine various non-

parametric frequentist methods with state-of-the-art Bayesian algorithms. With a clear

understanding of its theoretical foundation, this new procedure can be particularly useful

in econometric models with sophisticated likelihood and endogeneity issues.

To formalize the idea, we consider independent and identically distributed (i.i.d.) ob-

servations Y n = (Yi, i = 1, · · · , n)⊤. The component ζ0 represents a vector of unknown

functions that one needs to estimate from the first-stage equation in order to obtain the

residuals. Throughout the paper, we assume that the true ζ0 is identifiable and can be

estimated from the subvector Y n
1 = (Y1,i, i = 1, · · · , n)⊤ that consists of the observables

from the first stage. We denote the resulting estimator by ζ̂n. The second stage postulates

a probability density function, pnθ (·; ζ) for the subvector Y n
2 = (Y2,i, i = 1, · · · , n)⊤ deter-

mined by the structural equation with the unknown parameter of interest θ ∈ Θ ⊂ Rp, for

some integer p ≥ 1. The unique truth is denoted by θ0. The Bayesian approach in the

second stage posits a prior distribution Π(θ) and updates this prior to the quasi-posterior

distribution given the limited-information likelihood1 in the second stage. Using the Bayes’

rule, the quasi-posterior of the finite-dimensional parameter θ is

(1.1) Π[θ ∈ A|Y n
2 ; ζ̂n] =

∫
A pnθ (Y

n
2 ; ζ̂n)dΠ(θ)∫

Θ
pnθ′(Y

n
2 ; ζ̂n)dΠ(θ′)

.

1The current approach is based on the “limited information” strategy in the sense that the information
contained in both stages (or equations) are not simultaneously considered.
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We refer to the estimation/inferential procedure derived from the above posterior as quasi-

Bayesian because the term pnθ (Y
n
2 ; ζ̂n) is not a genuine likelihood, and it depends on some

plug-in estimator ζ̂n. Two key questions arise: (1). Is the quasi-posterior distribution of θ

asymptotically Gaussian? (2). What are the center and dispersion of this quasi-posterior

distribution? To our best knowledge, such problems have not been investigated in the

literature even when the estimator ζ̂n is entirely parametric. Our paper fills this void, and

we allow for any flexible first-stage nonparametric estimation.

Our main objective is to provide a thorough theoretical understanding of the large sample

properties of this quasi-Bayesian procedure from the frequentist’s perspective. The chal-

lenge is that one faces a nonstandard posterior distribution that depends on the first-stage

estimation. It is unclear whether the corresponding quasi-Bayesian credible set agrees with

the frequentist’s confidence set, even asymptotically. We show that this credible set does

not have the right coverage in large samples because it ignores the estimation uncertainty

from the first stage. On the other hand, the quasi-Bayesian point estimator, such as the

quasi-posterior mean, is asymptotically equivalent to a frequentist two-stage estimator; that

is, it is root-n asymptotically normal with the same sandwich-type covariance matrix as its

frequentist counterpart. In essence, the quasi-posterior distribution is correctly centered

but with a wrong dispersion. We also show that a proper bootstrap method will restore

the desirable coverage probability and thus is valid for inference. Although the bootstrap

requires additional simulation, its implementation can be easily parallelized.

To illustrate our theory, we focus on an endogenous multinomial Probit (MNP) model

from Petrin and Train (2010), which we refer to as the Petrin–Train model in the se-

quel. The framework is popular in modeling consumer choices over different products,

say choosing from j ∈ {0, · · · , J}, with the 0-th category being the non-purchase option.

The endogenous variable (Xe
j )

J
j=0 can be the price, advertising, or quality in the context.

To address the endogeneity problem, researchers often construct the Hausman-type price

instruments (Petrin and Train, 2010). The first stage involves the estimation of a vector

of (ζj)
J
j=0, as the conditional mean functions of the endogenous variables given the exoge-

nous covariates and instrument variables. Given the estimated conditional mean functions

ζ̂n = (ζ̂n,j)
J
j=0, we can extract the residuals as the control functions or variables for the

second-stage MNP model. In this scenario, the likelihood function pnθ (Y
n
2 ; ζ̂n) is the prod-

uct of the conditional choice probabilities that involve complicated multiple integrals. As

reviewed in Train (2009), the Bayesian approach enjoys practical advantages over frequen-

tist methods in estimating the MNP-type models.

Going beyond the Petrin-Train model, our study reflects two generic features of mod-

ern econometric models. On the one hand, many models used to describe observed data

may be so complex that the likelihoods associated with these models are computationally
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intractable. These analytical difficulties can be alleviated by simulation-based procedures,

such as the Bayesian method, which has proven successful in many areas. On the other

hand, the control function approach provides an effective solution to deal with the endo-

geneity problem. This approach treats endogeneity as an omitted variable bias problem,

in which the inclusion of estimates of the first-stage errors as additional covariates cor-

rects the inconsistency of the second stage. The idea of combining a frequentist first

stage and a Bayesian second stage has been practiced in empirical research (Agarwal and

Somaini, 2018), though lacking a formal theoretical investigation for such a “hybrid” or

quasi-Bayesian procedure. In their empirical analysis of the distribution of students’ prefer-

ences for public schools, Agarwal and Somaini (2018) first estimate the believed assignment

probabilities at various schools using frequentist methods and then conduct Bayesian es-

timation in the second stage due to a complicated likelihood similar to the MNP. They

also suggest a bootstrap method for inference. Our paper sheds a theoretical light on the

asymptotic normality of the two-stage quasi-Bayesian estimator and the bootstrap validity

therein.

There is a clear advantage of our proposal over the frequentist two-step method or the

Bayesian full information paradigm in the current context, because it separates two tasks:

one can correct for the endogeneity bias via robust nonparametric first-stage estimation,

while tackling the complicated likelihood in the second stage by a Bayesian approach. This

separation of tasks allows for considerable algorithmic flexibility. Regarding the frequentist

two-step approach, the second stage requires the simulated method of moments (McFadden,

1989; Hajivassiliou and McFadden, 1998), which calls for Monte Carlo simulation, in addi-

tion to solving hard optimization problems for finding the frequentist type point estimator.

Referring to the full information Bayesian approach, one would focus on the posterior that

is proportional to p̃nθ,ζ(Y
n)dΠ(θ)dQ(ζ), where p̃nθ,ζ(Y

n) is the density function for the joint

distribution of Y n
1 and Y n

2 combining two stages together, and Q(·) is a suitable prior

on the functional component ζ. The joint likelihood inevitably requires a full model en-

compassing both stages, for which the applied researcher may be reluctant to hypothesize

such a structure (Murphy and Topel, 2002). If the researcher does not want to assume a

parametric model for ζ, the full-information Bayes must put a nonparametric prior Q(ζ)

on it. Although the non-parametric Bayesian inference is one of the most vibrant research

areas in econometric theory, verification of the related Bernstein–von Mises (BvM) theo-

rem either relies on the Gaussian processes priors or explores particular model structures;

see Ghosal and van der Vaart (2017). In addition, designing a feasible algorithm for the

posteriors remains a skillful task when the joint likelihood functions from both stages are

combined.
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1.1. Related Literature

Studying asymptotic properties of quasi-Bayesian procedures forms an important line

of work in econometrics. Regarding the discrepancy between quasi-Bayesian credible sets

and frequentist confidence sets, we highlight a recurring theme when the generalized infor-

mation identity fails (Chernozhukov and Hong, 2003). In this case, the local asymptotic

normality (LAN) expansion (van der Vaart, 1998) generates a centering term whose asymp-

totic variance is of the sandwich form that does not match the (minus) second derivative

matrix of the (quasi) log-likelihood function. These phenomena appear in studies of the

generalized method of moments (GMM) or the limited information approach (Kim, 2002;

Chernozhukov and Hong, 2003; Chib, Shin, and Simoni, 2018), as well as in misspecified

models (Kleijn and van der Vaart, 2012; Müller, 2013; Kim, 2014). Given the natural link

between GMM and two-step estimation (Newey and McFadden, 1994), it is tempting to

think that our framework is nested by the works mentioned above. This is not the case.

We emphasize that one distinct feature of our problem is that the first-stage estimation is

based on a frequentist method and then plugged into the posterior of the second stage. One

can view this as approximating the posterior of ζ using an infinitely narrow but tall spike

at a given value, like the Dirac delta function. Such feature usually violates the standard

assumptions in proving the BvM theorem.

Another line of research closely related to this paper is the profile sampler (Lee, Kosorok,

and Fine, 2005; Cheng and Kosorok, 2008). This literature recommends sampling from the

profile likelihood pln(θ) ≡ supζ p
n
θ (Y

n; ζ) for semiparametric models indexed by (θ, ζ).

The infinite-dimensional parameter ζ therein must be estimated via the profile maximum

likelihood so that there is no additional adjustment term; also, see the last paragraph on

page 1357 of Newey (1994) about the profiled out nuisance functions. Such procedures

are not required in our setup. The crux of our analysis is to characterize the first-stage

estimation effect on the quasi-Bayesian posteriors. On the technical ground, this paper

also refines the proof of Lee, Kosorok, and Fine (2005) and Cheng and Kosorok (2008):

we show the asymptotic negligibility of the posterior outside a shrinking neighborhood of

the truth, where the radius depends on the convergence rate of first-stage estimation. In

comparison, the result of Lemma A.1 of Lee, Kosorok, and Fine (2005) is stated for some

neighborhood with a fixed radius, yet later on, this lemma is cited to cover the case with a

shrinking radius of the order o(n−1/3). Our proof relaxes this rate to match the well-known

requirement at the order of o(n−1/4) in general semiparametric models (Newey, 1994).
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1.2. Organization

The rest of our paper is organized as follows: Section 2 contains the main theoretical

results. This relatively long section is divided into three subsections, in which we intro-

duce necessary assumptions, investigate the asymptotic behavior of the quasi-posterior for

the finite-dimensional parameter in the second stage, and show the validity of bootstrap

methods for inference. Section 3 applies the general theory to the Petrin–Train model. We

present low-level regularity conditions and state the asymptotic results. Section 4 conducts

Monte Carlo simulations and provides an empirical illustration. The last section concludes.

Proofs of the main results are presented in Appendix A. More technical lemmas and their

proofs are collected in Appendix B.

2. Main Theoretical Results

Bayesian methodology is attractive in its own right. Nonetheless, our problem is funda-

mentally non-Bayesian, as researchers aim to estimate unknown fixed parameters using the

control function approach to correct the endogeneity bias. This motivates us to investigate

the large sample behavior of the resulting quasi-posteriors under a fixed true probability

model P0 = Pθ0,ζ0 that generates the observed data. A thorough understanding will provide

solid justification for the quasi-Bayesian methods, which can be attractive to non-Bayesian

practitioners who use them because of their convenience.

We establish the asymptotic theory, drawing on two themes. The first is the frequentist

two-step estimation and inference in econometrics literature (Newey, 1994; Chen, Linton,

and Van Keilegom, 2003; Ichimura and Lee, 2010). The crux therein is how to characterize

the influence of the first-step nonparametric estimation on the remaining parametric com-

ponents and how to make proper adjustments for inference. This analysis is also central

to our study, and we formally show how the quasi-posterior ignores the effect from the

first-stage estimation. The second theme is the asymptotic analysis of Bayesian methods

for semiparametric models. Our theoretical findings have not been reported before; they

shed new light on the BvM theorem (van der Vaart, 1998; Ghosal and van der Vaart, 2017).

For standard semiparametric models using full information Bayesian methods, the BvM

theorem states that the marginal posterior for the finite-dimensional parameter is approxi-

mately a normal distribution centered at the semiparametric efficient estimator. Hence, the

point estimators and credible sets are produced by one stroke therein. However, estimation

and inference have to be dealt with separately for the quasi-posterior distribution in our

setting.
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2.1. Assumptions and Discussions

The (limited-information) log-likelihood function is of fundamental importance in the

second-stage Bayesian estimation. Throughout the paper, we focus on the case with i.i.d.

data, so the likelihood function becomes pnθ (Y
n
2 ; ζ) =

∏n
i=1 pθ(Y2,i; ζ) and the log-likelihood

is denoted by ℓn(θ; ζ) ≡ log pnθ (Y
n
2 ; ζ) =

∑n
i=1 log pθ(Y2,i; ζ). We define the following first-

order derivative with respect to (w.r.t.) the finite-dimensional parameter θ:

l̇θ (Y2, θ; ζ) ≡
(
∂ log p(Y2, θ; ζ)

∂β⊤ ,
∂ log p(Y2, θ; ζ)

∂η⊤

)⊤

,(2.1)

where θ is partitioned into the parameter of interest β and the nuisance parameter η.

The metric associated with the parameter θ is dΘ(·, ·). The second-order derivative is

denoted by l̈θ (Y2, θ; ζ) in the same vein. Thereafter, the score function is Sθ (θ, ζ) =

P0l̇θ (Y2, θ; ζ), with the corresponding empirical version as Sθ,n (θ, ζ) = Pnl̇θ (Y2, θ; ζ). The

negative Hessian matrix V0 = −P0l̈θ (Y2, θ0; ζ0) is the information matrix for the second-

stage likelihood, when ζ0 is known. The unknown function in the first stage may contain

multiple components, so we write ζ0 = (ζ0j)
J
j=0. Consider a map defined by Ψ(θ, ζ) ≡

Sθ(θ, ζ). The following pathwise derivative of Ψ plays a key role in determining the effect

of the first-stage estimation (Newey, 1994):

Ψ̇ζ(θ0, ζ0)[ζ − ζ0] :=
J∑

j=0

Ψ̇ζj(θ0, ζ0)[ζj − ζ0j],

where each Ψ̇ζj is a bounded linear functional that maps ζj − ζ0j to a real number. The

proper functional space for ζ is denoted by G with its pseudo metric dG(·, ·).
We list all regularity conditions followed by some heuristic discussions in order. They

are not necessarily the weakest possible assumptions. For a function f(·) of a random

vector Y that follows distribution P , we use the standard empirical process notations:

P0f =
∫
f(y)dP0(y),Pnf = n−1

∑n
i=1 f(Yi), and Gnf = n1/2 (Pn − P0) f . We also write E0

instead of P0 in bounding center stochastic terms. Definitions of the P0-Glivenko-Cantelli

class and the P0-Donsker class follow those in van der Vaart and Wellner (1996) and van der

Vaart (1998).

Assumption 2.1 (Identification). The function ζ0 is uniquely identified from the first

stage. The expected log-likelihood function E0[log pθ(Y2; ζ0)] has a unique maximum at θ0

over the parameter space Θ in the sense that supdΘ(θ,θ0)>δ E0[log pθ(Y2; ζ0)] < E0[log pθ0(Y2; ζ0)]

for any δ > 0. Also, Sθ (θ0, ζ0) = 0, and the matrix V0 is positive definite with its smallest

eigenvalue λ1 > 0.
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Assumption 2.2 (First-stage Estimation). The first-stage estimator ζ̂n ∈ Gn with proba-

bility 1, and dG(ζ̂n, ζ0) = OP0(rn), where rn = o(n−1/4) and nr2n → +∞.

Assumption 2.3 (Frequentist Two-stage Estimation). There exists a frequentist-type esti-

mator that approximately maximizes the second-stage likelihood, i.e., θ̂n = argmaxθ ℓn(θ; ζ̂n)+

oP0(n
−1/2). In addition, it satisfies

(2.2) Sθ,n

(
θ̂n, ζ̂n

)
= oP0(n

−1/2).

Assumption 2.4 (Prior). The prior measure Π on Θ is assumed to be a probability

measure with a bounded Lebesgue density π, which is continuous and positive on a neigh-

borhood of the true value θ0. In addition,
∫
|θ|aπ(θ)dθ < +∞, for a ≥ 0.

Assumption 2.5 (Smoothness). We assume the log-likelihood function satisfies the fol-

lowing restrictions for some positive constant terms C1, · · · , C4:

sup
ζ∈Gn

|E0 [log pθ0(·; ζ)− log pθ0(·; ζ0)]| ≤ C1r
2
n,

and

E0 [log pθ(·; ζ)− log pθ0(·; ζ0)] + en(θ, ζ) ≤ −C2d
2
Θ(θ, θ0) + C3d

2
G(ζ, ζ0),

for some en(·, ·) that satisfies

sup
dΘ(θ,θ0)≤ρ,ζ∈Gn

|en(θ, ζ)| ≤ C4ρrn.

Assumption 2.6 (Differentiability). The function E0[log pθ(Y2i; ζ)] is continuous with re-

spect to ζ uniformly in θ ∈ Θ. The function Ψ(θ, ζ) is Fréchet differentiable at (θ0, ζ0),

i.e. there exists a continuous and non-singular matrix Ψ̇θ(θ0, ζ0) and a continuous linear

functional Ψ̇ζ(θ0, ζ0) such that

∥ Ψ(θ, ζ)−Ψ(θ0, ζ0)− Ψ̇θ(θ0, ζ0)(θ− θ0)− Ψ̇ζ(θ0, ζ0)[ζ − ζ0] ∥≤ o(dΘ(θ, θ0)) +O(d2G(ζ, ζ0)).

Assumption 2.7 (Complexity). (i) The functional classes {log pθ(Y2i; ζ) : θ ∈ Θ, ζ ∈ Gn}
and

{
l̈θ(·, θ; ζ) : θ ∈ Θ, ζ ∈ Gn

}
belong to P0-Glivenko-Cantelli classes. (ii) The functional

class {l̇θ(Y2, θ0; ζ) : ζ ∈ Gn} belongs to a P0-Donsker class. The following functional class

{log pθ(Y2; ζ)− log pθ0(Y2; ζ)− (θ − θ0)
⊤l̇θ0(; ζ) : dΘ(θ, θ0) ≤ Crn, ζ ∈ Gn}

divided by each ordinates of (θ− θ0) belongs to a P0-Donsker class with its second moment

going to zero w.p.1. (iii) There exists some function ϕn(·) such that

E0

[
sup

dΘ(θ,θ0)≤ρ,ζ∈Gn

Gn |log pθ(·, θ; ζ)− log pθ(·, θ0; ζ)|

]
≤ ϕn(ρ),
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for ρ ≥ rn. ϕn(·) is a sequence of functions defined on (0,∞) that satisfies: ρ 7→ ϕn(ρ)/ρ
γ

is decreasing for some γ < 2; ρ−2ϕn(ρ) ≤
√
n for every n.

Assumption 2.8 (Normality). Let ∆n,0 ≡
√
n
(
Sθ,n(θ0, ζ0) + Ψ̇ζ(θ0, ζ0)[ζ̂n − ζ0]

)
. Assume

that the following linear representation holds:

∆n,0 =
1√
n

n∑
i=1

[Γ2(Y2i) + Γ1(Y1i)] + oP0(1),

with the influence function Γ2(·) + Γ1(·). Also, the following asymptotic normality holds:

1√
n

n∑
i=1

[Γ2(Y2i) + Γ1(Y1i)] ⇒ N(0,Ω0),

for some finite covariance matrix Ω0.

Assumptions 2.1 to 2.3 are generic, concerning the identifiability of the model parameters,

the asymptotics of the first stage nonparametric estimation, as well as the existence of a

frequentist two-stage estimator. The frequentist two-stage estimator θ̂n merely serves as

a theoretical device, as it will become the centering point in the local asymptotic normal

(LAN) expansion (Ghosh and Ramamoorthi, 2002; Chernozhukov and Hong, 2003; Lee,

Kosorok, and Fine, 2005). In our context of analyzing structural discrete choice models,

θ̂n is difficult to compute, which motivates the quasi-Bayesian procedure. The Assumption

2.4 on the prior density is also standard (Ghosh and Ramamoorthi, 2002; Chernozhukov

and Hong, 2003).

Compared with the standard conditions for the BvM theorem (van der Vaart, 1998),

our setting involves two complications due to the presence of the estimated control func-

tion. The first task is to ensure that the posterior probability concentrates in any small

neighborhood of the true parameter uniformly over a set Gn to which the estimated ζ̂n

belongs. The second distinction is that one needs an adjustment term in the LAN ex-

pansion, which accounts for the first-stage estimation error. Assumptions 2.5 and 2.7

(iii) are needed to ensure that the quasi-likelihood ratio decays exponentially fast for

{θ : dΘ(θ, θ0) > δ} with a fixed radius δ > 0, as well as to strengthen the exponential

type decay for {θ : Crn ≤ dΘ(θ, θ0) ≤ δ}, with the rate rn stated in Assumption 2.2. The

differentiability condition in Assumption 2.6 w.r.t. θ and ζ are needed to account for the

two stages in our quasi-Bayesian method. Finally, Assumption 2.8 is used in the LAN

expansion of the log-likelihood ratio.
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2.2. Large Sample Behaviors of Quasi-Posteriors

Our main use of the quasi-posterior is to interpret it as a frequentist’s device, similar

to that of a sampling distribution. Also, we are interested in whether the mean of this

quasi-posterior is a legitimate point estimator for θ0. Define the posterior density function

of h ≡
√
n(θ − θ̂n) by

π̃(h|Y n
2 ; ζ̂n) ≡

pn
θ̂n+

h√
n

(Y n
2 |ζ̂n)π(θ̂n + h√

n
)∫

pn
θ̂n+

h√
n

(Y n
2 |ζ̂n)π(θ̂n + h√

n
)dh

.

Furthermore, the limiting normal density is

π∞(h) ≡ (2π)−p/2| detV0|1/2 exp
{
−h⊤V0h

2

}
.

In order to metrize the weak convergence, we consider the following “total variation of

moments” norm (Chernozhukov and Hong, 2003) for a real-valued function f on S as

∥f∥TVM(a) ≡
∫
S
(1 + |h|a)|f(h)|dh,

for some a ≥ 0.

Theorem 2.1 (Posterior Measures). Suppose Assumptions 2.1 to 2.8 hold. Then, we have

(2.3) ∥π̃(h|Y n
2 ; ζ̂n)− π∞(h)∥TVM(a) = oP0(1).

Consequently, the rescaled sequence of quasi-posteriors for θ converges in total variation to

a standard normal measure, that is,

(2.4) sup
ξ∈Rp

|Π(
√
nV

1/2
0 (θ − θ̂n) ≤ ξ|Y n

2 ; ζ̂n)− Φp(ξ)| →P0 0.

where Φp(·) denotes the p-dimensional standard normal distribution.

Let Cn(α) be the quasi-Bayesian credible set constructed from the quasi-posterior, that

is, Cn(α) satisfies Π(θ ∈ Cn(α)|Y n
2 ; ζ̂n) = 1 − α for a given nominal level α ∈ (0, 1). An

important implication of Theorem 2.1 is that Cn(α) does not have the correct asymptotic

coverage probability in general, as stated in Corollary 2.1.

Corollary 2.1. Let Bn be the set that satisfies (2π)−p/2
∫
Bn

e−h⊤h/2dh → 1−α as n → ∞,

and recall the definition of ∆n,0 in Assumption 2.8. Under the same assumptions for

Theorem 2.1, we have

(2.5) P0{θ0 ∈ Cn(α)} = P0{−V
−1/2
0 ∆n,0 ∈ Bn}.
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In addition, if V0 = Ω0, then we have

(2.6) P0{θ0 ∈ Cn(α)} → 1− α.

Theorem 2.1 may look similar to the standard parametric BvM theorem at first glance.

However, the departures are the presence of the first-stage estimation ζ̂n and the cen-

tering point θ̂n, which is a two-stage frequentist estimator whose asymptotic covariance

matrix takes the sandwich form V −1
0 Ω0V

−1
0 , where Ω0 corresponds to the variance of

Γ2(Y2i) + Γ1(Y1i) in Assumption 2.8. On the other hand, as Corollary 2.2 below shows,

the variance of the quasi-posterior of θ is governed by the information matrix V0, which

only captures the variance of Γ2(Y2i). The discrepancy between Ω0 and V0 prevents the

right hand side of (2.5) from converging to the desired coverage probability 1 − α in gen-

eral. With the additional restriction V0 = Ω0, which corresponds to the case where the

generalized information equality holds (Chernozhukov and Hong, 2003), Cn(α) will have

the correct coverage probability coincidentally, as (2.6) shows. The general coverage fail-

ure of the quasi-Bayesian credible set is similar to what Kleijn and van der Vaart (2012)

found when they studied the Bayesian procedure for misspecified models. Considering the

formal decision theory of the interval estimation problem, Müller (2013) showed that the

asymptotic risk of a vanilla posterior is worse than that of a modified posterior using the

sandwich covariance matrix; see Section 2.4 of Müller (2013). Below, we show that the

quasi-posterior mean is asymptotically equivalent to the frequentist’s two-stage estimator

θ̂n. However, the rescaled posterior variance is not the same as the asymptotic variance of

the frequentist two-stage estimator.

Corollary 2.2. Denote the mean and variance of the quasi-posterior by θ̃n and Ṽarn(θ).

Assume that the prior for θ satisfies
∫
|θ|2dΠ(θ) < +∞. Then we have

(2.7) θ̃n = θ̂n + oP0(n
−1/2), and n−1Ṽarn(θ)

−1 = V −1
0 + oP0(1).

As a consequence of the first equality in (2.7), the quasi-posterior mean is asymptotically

normal: √
n(θ̃n − θ0) ⇒ N(0, V −1

0 Ω0V
−1
0 ).

Remark 2.1. In the context of GMM, Chernozhukov and Hong (2003) constructed a

quasi-likelihood by exponentiating the quadratic criterion function. Chernozhukov and Hong

(2003) demonstrated that the weighting matrix can be properly chosen so that the general-

ized information identity holds, and the resulting posterior distribution can be utilized for

asymptotically valid confidence sets. When the generalized information equality fails, Cher-

nozhukov and Hong (2003) also suggested that the posterior still contains useful information

for inference, as the posterior variance is related to the Hessian matrix. If Ω0 is easier to
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obtain, one can form the normal confidence interval by plugging in the sandwich-type covari-

ance matrix estimator, which combines the posterior variance and some external estimand

for Ω0. Our motivating example does not belong to this case, as it is not computationally

easy to obtain a consistent estimator for Ω0.

2.3. Validity of Bootstrap Inference

Now, we present the validity of a proper bootstrap inferential procedure that takes into

account the first-stage estimation error. We show that the bootstrap point estimator can

mimic the asymptotic behavior of the quasi-Bayesian point estimator. The essence of this

analysis lies in the bootstrap likelihood with multinomial weights. The non-trivial part

is to deal with the infinite-dimensional ζ from the first stage. Our theory also connects

the bootstrap procedure suggested by Agarwal and Somaini (2018) to a more general con-

text with two-stage semiparametric estimation. In principle, the theory works for other

exchangeable weights (van der Vaart and Wellner, 1996). However, the most convenient

approach is Efron’s nonparametric bootstrap (Efron, 1979) because it only requires generat-

ing a sequence of new data sets by sampling the rows of the original data with replacement

and then updating the posterior with the same prior. It is straightforward to compute all

bootstrap calculations in parallel.

Let the bootstrap weights Mn = (Mn1, ...,Mnn)
⊤ follow the multinomial distribution

Mult (n, (n−1, ..., n−1)) (Efron, 1979). We also write Y n∗
2 = (Y n

2 ,Mn)
⊤. The resulting

marginal posterior distribution on B is given by the Bayes formula:

(2.8) Π∗[θ ∈ A|Y n∗
2 ; ζ̂∗n] =

∫
A
pn∗θ (Y n; ζ̂∗n)dΠ(θ)∫

Θ
pn∗θ (Y n; , ζ̂∗n)dΠ(θ)

,

where pn∗θ (Y n
2 ; ζ) ≡

∏n
i=1 p

Mni
θ (Y2,i; ζ) stands for the bootstrap likelihood function and ζ̂∗n

stands for the first-stage bootstrap estimator. The bootstrap quasi-Bayesian point estima-

tor is

(2.9) θ̃∗n =

∫
Θ

θdΠ∗(θ|Y n∗
2 ; ζ̂∗n).

Also, denote the frequentist-type two-stage bootstrap estimator by θ̂∗n. We denote the

bootstrap empirical measure as P∗
n and the bootstrap empirical process as G∗

n =
√
n(P∗

n −
Pn). For a sequence of random variables Z∗

n, we write Z∗
n = oP ∗(1) if the law of Z∗

n is

governed by the bootstrap law P∗ and if P∗(|Z∗
n| > ϵ) = oP0(1) for any ϵ > 0.

To construct the confidence interval for θj,0, which denotes the jth coordinate of the

parameter θ0, we calculate the q-th quantile of the bootstrap distribution of θ̃∗n,j asQ
∗
n,j(q) ≡

inf{τ : P∗(θ̃∗n,j ≤ τ) ≥ q}. Then the percentile-type bootstrap 1− α confidence interval for
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θj,0 can be formed as

(2.10) C∗(j)
n (α) =

[
Q∗

n,j(α/2), Q
∗
n,j(1− α/2)

]
, for j = 1, · · · , p.

Theorem 2.2 (Bootstrap Consistency). In addition to Assumptions 2.1 to 2.8, we assume

that the envelope functions for the functional classes in Parts (i) and (ii) in Assumption

(2.7) have finite 2 + ι moments, for ι > 0. We have the following equivalence between

the bootstrap posterior mean and the frequentist-type two-stage bootstrap estimator: θ̃∗n =

θ̂∗n + oP ∗(n−1/2). Consequently, we have P0

{
θ0j ∈ C∗(j)

n (α)
}
→ 1− α, for j = 1, · · · , p.

3. The Petrin–Train Model

We demonstrate our theory by studying a class of endogenous discrete choice models

originally proposed by Petrin and Train (2010). In particular, we revisit the Petrin-Train

model with normal latent errors, which does not enforce the independence of irrelevant

alternatives (IIA) assumption. The joint normality of the latent errors in both stages nat-

urally leads to the identification strategy using the control function approach. We further

relax the first-stage specification in Petrin and Train (2010) for flexible nonparametric esti-

mation. Our study provides the theoretical foundation for the quasi-Bayes estimation and

inferential tools. To the best of our knowledge, this has not been formally developed.

Let (Uij)j=0,1,··· ,J denote the latent utility of choice j for individual i, with the following

linear specification:

(3.1) Uij = X⊤
ij β̃0 + εij, i = 1, · · · , n, j = 0, · · · , J.

The individual i’s choice Ci ∈ {1, · · · , J} is determined by

Ci =
J∑

j=1

jI {Uij > Uik for k ̸= j and Uij > 0} .(3.2)

And Ci = 0 if Uij ≤ 0 for all j = 1, · · · , J . Among the choice-specific covariates Xij, some

components Xe
ij can be correlated with the error term εij. The endogenous regressors Xe

ij

admit the following representation:

(3.3) Xe
ij = ζj(Zij) + vij, j = 0, · · · , J,

where Zij collects the instrumental variables and other exogenous regressors, and vij stands

for the unobservable error. The functions ζj’s are completely unspecified, except for some

standard smoothness restrictions as detailed later. Following Example 1 of Petrin and

Train (2010), the joint normality of latent errors εij and vij leads to the decomposition of
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εij:

(3.4) εij = E[εij | vij] + ϵij = λ0vij + ϵij, j = 0, · · · , J,

where λ0vij is the control function
2, and the the reminder errors (ϵij)j=0,··· ,J are also jointly

normal. Using (3.4), the latent utility of the second stage can be written as:

(3.5) Uij = X⊤
ij β̃0 + λ0vij + ϵij, j = 0, · · · , J.

Taking difference relative to Ui0 leads to

(3.6) Uij − Ui0 = (Xij −Xi0)
⊤β0 + λ0(vij − vi0) + ϵij − ϵi0, i = 1, · · · , n, j = 1, · · · , J.

The conditional choice probability for the j-th alternative in the second stage involves a

multivariate integral:

P0 (Ci = j | Xi, Zi)

=

∫
I
{
ϵ̃ikj < (Xij −Xik)

⊤β0 + λ0(vij − vik),∀k ̸= j
}
dG(ϵ̃ij),(3.7)

where ϵikj ≡ ϵik − ϵij for all k ̸= j, and ϵ̃ij denotes the vector (ϵikj)k ̸=j. The function G is

a J- dimensional normal distribution with mean zero and covariance matrix MjΓ0(η0)M
⊤
j ,

where Mj is a linear transformation that adds a column of −1 to the J-dimensional identity

matrix, and Γ0(η0) is the covariance matrix of ϵi ≡ (ϵij)j=0,1,···J that depends on the nuisance

parameter η0. We collect the regression coefficient as β⊤
0 = (β̃⊤

0 , λ0).

The quasi-Bayesian estimation applied to the Petrin–Train model consists of two stages.

The first stage estimates the functions ζj nonparametrically (e.g., kernel regression) and

then obtains the residuals v̂ij for j = 0, 1, · · · , J . The second stage corresponds to the

MNP model (3.6) with (vij − vi0) replaced by the first stage residual estimates. Due to the

analytically intractable conditional choice probability (3.7), the Bayesian approach becomes

more appealing as it explores the conditional conjugate structure induced by MNP. The

posterior of β can be drawn using Markov Chain Monte Carlo (MCMC) algorithms coupled

with data augmentation techniques (Albert and Chib, 1993; McCulloch and Rossi, 1994;

Nobile, 1998; Imai and Van Dyk, 2005).3 The point estimator for β can be constructed as

the posterior mean. We use bootstrap to construct the confidence interval. Resampling

the original data with replacement forms a bootstrap sample. For each bootstrap sample,

we apply the first-stage frequentist and the second-stage Bayesian procedures to obtain

the bootstrap quasi-posterior mean β̃∗
n as in (2.9). Repeatedly drawing the bootstrap

2In principle, we can allow for different λ0,j over j = 1, · · · , J . In this case, the model can be written in
the form of Uij = X⊤

ijβ0 + ṽ⊤ijλ0 + ϵij , by generating proper longer vectors of ṽ⊤ij and λ⊤
0 = (λ0,j)j=1,··· ,J .

For ease of exposition, we do not consider such complications.
3Chapter 5 of Train (2009) presents a comprehensive discussion about the computational advantages of
Bayesian methods in analyzing MNP-type models.
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sample and calculating the bootstrap point estimator for many times leads to a bootstrap

distribution of β̃∗
n, whose quantiles form the bootstrap confidence intervals described in

(2.10). Note that the second-stage Bayesian procedure does not require maximization of

any function. This reduces the computational burden of bootstrapping the quasi-Bayesian

estimator compared to bootstrapping a frequentist two-stage estimator whose second stage

involves maximization of the simulated likelihood function associated with the MNP model.

To spell out the regularity conditions that are sufficient to establish the asymptotic

results, we introduce the following notations. Denote the collection of vectors across non-

baseline choices by Ui = [Ui1 − Ui0, ..., UiJ − Ui0]
⊤. We write

Wi =


Wi1 0 · · · 0

0 Wi2 · · · 0
...

...
. . .

...

0 0 · · · WiJ

 and W⊤
i β =


W⊤

i1β

W⊤
i2β
...

W⊤
iJβ

 ,

where W⊤
ij = ((Xij −Xi0)

⊤, vij − vi0). Let R(Ci) specify the truncation region associated

with the choice variable. If Ci = 0, R(Ci) consists of the region such that each component

of the latent utility is negative. For Ci = j ̸= 0, R(Ci) restricts Uij to be positive and

greater than all other Uik, k ̸= j. Referring to the expression (2.1), the score functions

w.r.t. β and η take the following forms:

∂ log p(Y2, θ; ζ)

∂β⊤ = W⊤
i Σ−1E[Ui −W⊤

i β|Ui ∈ R(Ci)],

∂ log p(Y2, θ; ζ)

∂η⊤
= vec(Σ−1

(
IJ×J − E[(Ui −W⊤

i β)⊗2|Ui ∈ R(Ci)]Σ
−1
)
Γ(η))∂(vec(Γ(η)))/∂η

cf. equations (4) and (5) of Hajivassiliou, McFadden, and Ruud (1996). Clearly, the score

functions also involve multivariate integrals, which makes the analytical correction for the

first-stage estimation error difficult.

For any α ∈ R, let ⌊τ⌋ be its integer part. Considering a multi-index k = (k1, · · · , kd),
define k. = k1+k2+· · ·+kd. For any L > 0, τ ≥ 0 and nonnegative function L on Rd, define

the τ -Hölder class with envelope L, denoted by Cτ,L(Rd) (Section 3 of Ichimura and Lee

(2010)) to be the set of all functions f : Rd 7→ R that have finite mixed partial derivatives

Dkf of all orders up to k ≤ ⌊τ⌋, such that for very k ∈ Nd
0 with k. = ⌊τ⌋,

(3.8)
∣∣(Dkf)(x+ y)− (Dk)f(x)

∣∣ ≤ L ∥ y ∥τ−⌊τ⌋, ∀x, y ∈ Rd.

In Assumption 3.4 below, WJ denotes the Wishart distribution for J × J positive-definite

random matrices.
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Assumption 3.1. The parameter space Θ is a compact set, and the true θ0 is in the

interior of Θ. The latent error’s covariance matrix Γ0(η0) has its first element normalized

to be 1, and it is non-singular. The matrix V0 = −P0l̈θ (Y2, θ0; ζ0) is positive definite.

Assumption 3.2. The supports of covariates X and the control variable v are bounded.

We assume the function ζ0j ∈ Cτ,L(Rd), for j = 0, · · · , J with τ > d/2. The functions

ζ0j, j = 0, · · · , J are uniquely identified from the first stage.

Assumption 3.3. For the first-stage estimator, we assume its convergence rate with re-

spect to the supnorm is rn = o(n−1/4). Furthermore, it has the following linear representa-

tion:

(3.9) ζ̂n,j(Y1i)− ζ0j(Y1i) =
1

n

n∑
l=1

ϕn,j(Y1l) + bn,j(Y1i) +Rn,j(Y1i), 0 ≤ j ≤ J,

where ϕn,j(·) is a stochastic term that has expectation zero, bn,j is a bias term satisfying

max1j supy1 |bn,j(y1)| = o(n−1/2) and maxj supy1 |Rn,j(y1)| = oP0(n
−1/2).

Assumption 3.4. Priors for the finite-dimensional parameters follow the Gaussian–Wishart

type:

(3.10) β̃ ∼ N(µβ, Vβ), and Σ−1 ∼ WJ([ρV0]
−1, ρ)I{σ2

1 = 1},

in which the scalar ρ represents the degree of freedom of the Wishart distribution4 and

(µβ, Vβ) specify the mean and variance of the Gaussian distribution.

Assumption 3.5. The partial derivatives of l̇θ(·, θ; ζ) with respect to control variables

(vij − vi0)j=1···J are uniformly bounded over the support of the covariates and control vari-

ables (Wij)j=1···J . In addition, l̇θ(·, θ; ζ) is locally uniformly L2(P0)-continuous with respect

to θ and ζ in the sense that for all small positive δ = o(1),

(3.11) E

[
sup

dΘ(θ,θ0)<δ,dG(ζ,ζ0)<δ

∣∣∣l̇θ(Y2, θ; ζ)− l̇θ(Y2, θ; ζ)
∣∣∣2] ≤ Cδ2.

Furthermore, the second-order derivative
{
l̈θ(y2, θ; ζ) : θ ∈ Θ, ζ ∈ Gn

}
is upper semi-continuous

for almost all y2 and has a integrable envelope function.

Assumption 3.6. We express the pathwise derivative with respect to the first-stage esti-

mation as

(3.12) Ψ̇ζj(θ0, ζ0)[h] =

∫
h(·)gj(·, θ)dP0,

4The indicator function on the Wishart prior serves to enforce the identification restriction that the (1, 1)
element of Σ is unity; see McCulloch, Polson, and Rossi (2000). This restriction is made for the identification
purpose.
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for some function gj(·, θ), with j = 0, · · · , J . We further assume that
∫
ϕn,j(·, θ0)∂gj(·,θ0)∂θ

dP0

has a finite second moment for 0 ≤ j ≤ J .

The following proposition specializes Theorems 2.1 and 2.2 to the Petrin–Train Model.

It establishes the asymptotic normality of the quasi-Bayesian point estimator and the as-

ymptotic validity of the bootstrap confidence set.

Proposition 3.1. Under Assumptions 3.1 to 3.6, the quasi-posterior mean is asymptoti-

cally normal: √
n(θ̃n − θ0) ⇒ N(0, V −1

0 Ω0V
−1
0 ).

Moreover, the bootstrap confidence intervals are asymptotically valid.

Throughout the paper, we maintain the point identification assumption of all finite-

dimensional parameters in the MNP model. This is also assumed in the classical literature

on frequentist estimators (McFadden, 1989; Pakes and Pollard, 1989). When the identifica-

tion fails, one might consider extending our approach to the direction of Chen, Christensen,

and Tamer (2018) and develop a valid inferential procedure under partial identification.

This is beyond the scope of the current work and will be pursued elsewhere. When it

comes to the first-stage nonparametric estimation, one may use the kernel smoothing type

estimator, including the local constant or local polynomial estimators in Chen, Linton, and

Van Keilegom (2003); Ichimura and Lee (2010), or the sieve type estimators as displayed in

Chen (2007). Regarding the prior choice, one can also impose the restriction on the eigen-

value rather than the first diagonal element as in Imai and Van Dyk (2005). Examples of

other proper normalizations for the unrestricted or restricted covariance can be found in

Train (2009, Chapter 5.2). We also refer interested readers to Anceschi, Fasano, Durante,

and Zanella (2023) for a recent review on the contemporary development of various fast

and scalable MCMC or deterministic algorithms.

4. Numerical Results

4.1. Monte Carlo Simulation

We conduct Monte Carlo simulations to show that the quasi-Bayesian credible set does

not yield desirable coverage probabilities. However, this problem can be solved by boot-

strapping. Our simulation design is a multinomial choice model with three or four choices

and one endogenous regressor for each choice. The latent utility takes the form:

(4.1) Uij = β̃Xe
ij + εij, j = 0, 1, · · · , J.
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The true value of β̃ is 1. The endogenous regressor Xe
ij depends on the instrument Zij as

follows:

(4.2) Xe
ij = ζ(Zij) + vij, j = 0, 1, · · · , J.

The instruments Zi0, .., ZiJ and error terms vi0, ..., viJ in the first stage (4.2) are independent

standard normal random variables; the error term εij in the latent utility (4.1) is generated

by εij = λvij + ϵij for j = 0, 1, · · · , J , where the centered errors (ϵij, j = 0, 1, · · · , J) are

jointly normal with means equal to zero, variances σ2
j = 1 if j = 0 and 0.5 if j > 0.

In the case of three choices (J = 2), the correlation coefficient for any pair of errors is

corr(ϵij, ϵis) = ρ for j ̸= s. In the case of four choices (J = 3), corr(ϵi0, ϵi1) = corr(ϵi2, ϵi3) =

ρ, and corr(ϵij, ϵis) = 0 for other (j, s) pairs. We set ρ = 0.4 and λ = 0.6. We consider

two functional forms for ζ(·) in (4.2): (I). ζ(z) = 0.9z + 0.9z2 + ln(z + 1)2; (II). ζ(z) =

0.9z + 0.9z2 + exp(0.9z). Our first stage estimate for ζ uses a kernel regression with the

bandwidth chosen by leave-one-out cross-validation. This step is implemented by the R

package np. Controlling for the estimated v̂ij = Xe
ij − ζ̂(Zij), we draw the posterior of β̃

from the MNP model in the second stage, using Gibbs sampler with data augmentation

(Imai and Van Dyk, 2005). This step uses the R package MNP.

Table 1 presents the empirical coverage probabilities and the average lengths for the

quasi-Bayesian credible interval (QB CI) and the bootstrap quasi-Bayesian confidence in-

terval (BQB CI). The sample size is fixed at 1, 000. When simulating the posterior, the

initial 2, 000 Gibbs draws are discarded, and the following 5, 000 draws are stored. BQB CI

is constructed following (2.10). The number of bootstrap repetitions is 500. We make the

following observations. First, QB CI systematically under-covers the true parameter β̃ in

all occasions. Consider the nominal coverage 1−α = 0.90 as an example; its coverage prob-

abilities are around 0.8 in three of the four scenarios and about 0.85 in the last scenario.

Second, the bootstrap version BQB CI significantly improves the coverage performance.

Again, considering α = 0.10, the empirical coverage probability of BQB CI ranges between

88% and 92%. Third, the average lengths of BQB CI are longer than those of QB CI, as

the former incorporates the estimation uncertainty from the first stage.

Results in Table 1 are computed using an improper non-informative prior distribution

on the coefficient β̃. Figure 1 illustrates how the coverage probabilities are affected by the

variance of the prior distribution. In particular, we consider the prior variance for β̃ equal

to 100, 1, 000, and +∞ (Table 1 uses +∞). The prior mean for β̃ is set as zero in all cases.

Figure 1 shows that the under-coverage of QB and the improvement achieved by BQB also

occur under more informative priors.

Overall, our simulation findings suggest that the under-coverage of the quasi-Bayesian

credible interval is ubiquitous for different first-stage relationships, number of choices, and
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Table 1. Coverage probabilities and average lengths of quasi-Bayesian (QB)
credible intervals and bootstrapped quasi-Bayesian (BQB) confidence inter-
vals for the coefficient β, n = 1, 000, nominal coverage 1 − α = 0.90, 0.95,
and 0.99.

Coverage probability Average length
# of choices ζ(·) form Methods 0.90 0.95 0.99 0.90 0.95 0.99

3 I QB 0.813 0.882 0.954 0.385 0.465 0.628
BQB 0.888 0.932 0.978 0.454 0.555 0.784

II QB 0.819 0.882 0.948 0.367 0.447 0.609
BQB 0.887 0.932 0.984 0.459 0.564 0.791

4 I QB 0.794 0.874 0.952 0.470 0.578 0.771
BQB 0.878 0.941 0.990 0.634 0.696 1.043

II QB 0.847 0.914 0.972 0.479 0.597 0.774
BQB 0.921 0.962 0.996 0.692 0.752 1.099

Figure 1. Coverage probability of quasi-Bayesian (QB) credible intervals
(gray, dashed) and bootstrapped quasi-Bayesian (BQB) confidence inter-
vals(blue, solid), with the prior variance for β being 100, 1, 000 and ∞, and
the nominal coverage probability (1 − α) being 0.90 (•), 0.95 (■), and 0.99
(▲); # of choices= 3, n = 1, 000.

Design I for ζ(·) Design II for ζ(·)

prior variance values. On the other hand, our recommended bootstrap procedure success-

fully restores the coverage probabilities to the nominal levels.
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4.2. Empirical Application

We apply the quasi-Bayesian approach to a real dataset about the firms’ incorporation

decisions, initially constructed by Eldar and Magnolfi (2020). We focus on the effect of

states’ anti-takeover laws on firms’ choice of where to incorporate their business. The

data includes an ATS index scoring from 0 to 5 that counts the number of anti-takeover

statutes in each of 51 states (including the District of Columbia). Two states dominate the

incorporation market in the US: in 2013, 63.9% firms were incorporated in Delaware, and

8.5% in Nevada. Letting i denote firm and j denote the incorporation choice, we consider

an MNP model with three choices: Delaware (j = 1), Nevada (j = 2), and other states

(j = 0). The regressors contain ATS and its interaction with firm-level characteristics.

We use the data in the year 2013, which contains 2,922 firms. We specify the firm’s latent

utility as follows:

Uij = β̃1ATSj + (ATSj ×Xi)
⊤β̃2 + εij, j = 0, 1, 2.(4.3)

where Xi is a vector of firm characteristics: share of institutional ownership (Institutional

ownership), dummies for small and median-sized firms (small and medium), and takeover

premium (premium) in the industry. The main concern for the endogeneity arises from

institutional ownership. Following Eldar and Magnolfi (2020), we use the dummy instru-

mental variable S&P 500 that indicates whether the firm is included in the S&P 500 index.

Inclusion in the S&P 500 index is positively correlated with a firm’s institutional owner-

ship. On the other hand, S&P 500 is mainly decided by the market’s view about the firm’s

representativeness and thus does not depend on the firms’ decisions. The first-stage is

Institutional ownershipi = ζ(S&P500, X−1i) + vi,(4.4)

where ζ is an unknown function and X−1i = {Smalli,Mediumi, P remiumi}. The control

function vi decomposes the error term in (4.3) by εij = λjvi+ϵij. We estimate the first stage

(4.4) by a kernel regression and then draw the posteriors of β̃1 and β̃2 in the same way as

our simulation exercise. The point estimates in Table 2 are posterior means, and the 95%

confidence intervals reported in brackets are constructed using bootstrap. The significantly

negative estimate for β̃1 suggests that firms on average prefer less legal restrictions on the

takeover. Moreover, such preference is heterogeneous in firm characteristics. In particular,

small firms are more likely to welcome the anti-takeover laws, which explains why Nevada,

with ATS = 5, occupies a notable market share for incorporation. Our results align with

the findings of Eldar and Magnolfi (2020), who estimated a multinomial logit model.
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Table 2. Quasi-Bayesian estimates for incorpora-
tion decision, bootstrapped 95% confidence intervals
in brackets, n = 2, 922.

ATS -0.065
[-0.108, -0.018]

ATS × Institutional ownership -0.253
[-0.311, -0.200]

ATS × Small 0.080
[0.024, 0.127]

ATS ×Medium -0.005
[-0.040, 0.030]

ATS × Premium -0.043
[-0.072, -0.012]

5. Conclusion

Our research highlights two key aspects of modern econometric models. Firstly, the com-

plexity of these models leads to analytically intractable likelihoods, which can be more con-

veniently dealt with by simulation-based procedures like the Bayesian method. Secondly,

the control function approach effectively handles the endogeneity problem by including the

first-stage residuals as additional covariates, rectifying the second stage’s inconsistency. Our

study extensively investigates this novel quasi-Bayesian method. Given the widespread use

of the Bayesian approach in contemporary econometrics and machine learning, our method

provides practitioners with enhanced flexibility to integrate cutting-edge algorithms from

various estimation stages. This methodology can be beneficial for other structural models

when the general theory is well understood.

6. Appendix A: Proofs of Main Results

Proof of Theorem 2.1. Our proof of (2.3) is patterned in line with generic arguments in

the proof of Theorem 1.4.2 from Ghosh and Ramamoorthi (2002) or Theorem 1 from

Chernozhukov and Hong (2003). The crux is to address the first-stage nonparametric

estimator ζ̂n. This is reflected in a different choice of splitting ranges of the integration and

a more delicate expansion of the quasi-log-likelihood ratio in our proof.
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Consider the following normalized quasi-posterior distribution of h ≡
√
n(θ − θ̂n):

π̃(h|Y n
2 ; ζ̂n) =

∏n
i=1 pθ̂n+ h√

n
(Y2,i|ζ̂n)π(θ̂n + h√

n
)∫ ∏n

i=1 pθ̂n+ h√
n
(Y2,i|ζ̂n)π(θ̂n + h√

n
)dh

=

∏n
i=1

[
pθ̂n+ h√

n
(Y2,i|ζ̂n)/pθ̂n(Y2,i|ζ̂n)

]
π(θ̂n +

h√
n
)∫ ∏n

i=1

[
pθ̂n+ h√

n
(Y2,i|ζ̂n)/pθ̂n(Y2,i|ζ̂n)

]
π(θ̂n +

h√
n
)dh

.

Denote its denominator as

(6.1) Cn ≡
∫ n∏

i=1

pθ̂n+ h√
n
(Y2,i|ζ̂n)

pθ̂n(Y2,i|ζ̂n)

π(θ̂n +
h√
n
)dh.

Recall that the limiting normal probability density function is as follows:

π∞(h) ≡ (2π)−p/2| detV0|1/2 exp
{
−h⊤V0h

2

}
.

The total variation norm we employ can be bounded from above by∫
|h|a

∣∣∣π̃(h|Y n
2 ; ζ̂n)− π∞(h)

∣∣∣ dh
≤C−1

n

∫
|h|a

∣∣∣∣∣∣
n∏

i=1

pθ̂n+ h√
n
(Y2,i|ζ̂n)

pθ̂n(Y2,i|ζ̂n)

 π(θ̂n +
h√
n
)− e−

h⊤V0h
2 π(θ0)

∣∣∣∣∣∣ dh︸ ︷︷ ︸
Nn1

+C−1
n

∫
|h|ae−

h⊤V0h
2

(
π(θ0)− Cn(2π)

−p/2 |detV0|1/2
)
dh︸ ︷︷ ︸

Nn2

.(6.2)

It is sufficient to show that

(6.3) Nn1 ≡
∫

|h|a
∣∣∣∣∣∣

n∏
i=1

pθ̂n+ h√
n
(Y2,i|ζ̂n)

pθ̂n(Y2,i|ζ̂n)

 π(θ̂n +
h√
n
)− e−

h⊤V0h
2 π(θ0)

∣∣∣∣∣∣ dh = oP0(1).

This is because if (6.3) holds, taking a = 0 leads to

(6.4) Cn = (2π)p/2 |detV0|−1/2 π(θ0) + oP0(1),

which yields Cn = OP0(1). The convergence in (6.4) also implies

Nn2 =
∣∣Cn(2π)

−p/2| detV0|1/2 − π(θ0)
∣∣ ∫

Rp

|h|a exp
{
−h⊤V0h

2

}
dh = oP0(1),

which makes the upper bound in (6.2) for the total variation norm satisfy (Nn1+Nn2)/Cn =

oP0(1). This completes the proof of 2.3.
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To show (6.3), we split its integration range into three mutually exclusive areas:

• H1,n ≡ {h : |h| ≤ C
√
nrn};

• H2,n ≡ {h : Crn
√
n < |h| ≤ δ

√
n};

• H3,n ≡ {h : |h| > δ
√
n};

for a large positive constant C and a small δ > 0 to be specified in the sequel. Note that∫
H2,n∪H3,n

exp

(
−h⊤V0h

2

)
π(θ0)dh = o(1),

given the fact that the smallest eigenvalue of V0 is positive and rn
√
n → ∞. We further

define

(6.5) ∆r
n ≡ sup

dΘ(θ,θ0)≥r

{
1

n

n∑
i=1

[log pθ(Y2i; ζ̂n)− log pθ̂n(Y2i; ζ̂n)]

}
.

First consider the integration over the outer range H3,n. By Lemma 7.1, for any small

ϵ > 0, we have

(6.6)∫
H3,n

|h|a
n∏

i=1

pθ̂n+ h√
n
(Y2,i|ζ̂n)

pθ̂n(Y2,i|ζ̂n)
π(h)dh ≤ I{∆δ

n < −ϵ}
√
n
a+1

e−nϵ

∫
θ∈Θ

|θ|aπ(θ)dθ, w.p.a.1.

The right hand side of the above inequality is of oP0(1).

Then consider the integration over the middle range H2,n. Applying Lemma 7.2, we have∫
H2,n

|h|a
n∏

i=1

pθ̂n+ h√
n
(Y2,i|ζ̂n)

pθ̂n(Y2,i|ζ̂n)
π(h)dh ≤ I{∆Crn

n < −cr2n}
√
n
a+1

e−cnr2n

∫
θ∈Θ

|θ|aπ(θ)dθ,

for any given positive c and a large enough constant C, w.p.a.1. The right hand side of the

above inequality is again of oP0(1).

Lastly, we consider the inner range H1,n. We first switch from π(θ0) to π(θ̂n + h/
√
n) by

noting that suph∈Hn
lim sup

∣∣∣θ̂n + h√
n
− θ0

∣∣∣ = oP0(1), which implies∫
H1,n

|h|a exp
(
−h⊤V0h

2

) ∣∣∣∣π(θ̂n + h√
n
)− π(θ0)

∣∣∣∣ dh = oP0(1),
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by the continuity of the prior density π(·) and the dominated convergence. The remaining

analysis is about∫
H1,n

|h|a
∣∣∣∣∣∣

n∏
i=1

pθ̂n+ h√
n
(Y2,i|ζ̂n)

pθ̂n(Y2,i|ζ̂n)

− exp

(
−h⊤V0h

2

)∣∣∣∣∣∣ π(θ̂n + h√
n
)dh

=

∫
H1,n

|h|ae−
1
2
h⊤V0h

∣∣∣∣∣exp
{

n∑
i=1

log pθ̂n+ h√
n
(Y2,i|ζ̂n)− log pθ̂n(Y2,i|ζ̂n) +

1

2
h⊤V0h

}
− 1

∣∣∣∣∣ π(θ̂n + h√
n
)dh

≤ An ×Bn,

where

An ≡
∫
H1,n

|h|a exp
{
−h⊤V0h

4

}
π(θ̂n +

h√
n
)dh,

Bn ≡ sup
h∈H1,n

[
e−

1
4
h⊤V0h

∣∣∣∣∣exp
{

n∑
i=1

log pθ̂n+ h√
n
(Y2,i|ζ̂n)− log pθ̂n(Y2,i|ζ̂n) +

1

2
h⊤V0h

}
− 1

∣∣∣∣∣
]
.

It is clear that An is stochastically bounded due to the boundedness of the prior density.

Lemma 7.4 shows Bn = oP0(1). Then we obtain An × Bn = oP0(1), which completes the

proof of (6.3).

The convergence in the norm TVM(a) stated in (2.3) immediately implies the conver-

gence of the distribution in the total variation as stated in (2.4); see Ghosh and Ramamoor-

thi (2002). □

Proof of Corollary 2.1. We denote the p-dimensional standard normal measure of a generic

set A by N(A) ≡ (2π)−p/2
∫
A
e−h⊤h/2dh. Recall the definition of ∆n,0 in Assumption 2.8.

Consider the quasi-Bayesian credible set Cn(α), which satisfies Π(θ ∈ Cn(α)|Y n
2 , ζ̂n) = 1−α.

Applying (2.3) in Theorem 2.1 with a = 0 and using (7.2) in Appendix B, we have

N(V 1/2
0 n1/2(Cn(α)− θ0 − n−1/2V −1

0 ∆n,0)) → 1− α in probability.

Thus, Cn(α) = θ0 + n−1/2V −1
0 ∆n,0 + n−1/2V

−1/2
0 Bn, where Bn satisfies N(Bn) → 1 − α, as

n → ∞. Therefore, the frequentist coverage of the Bayesian credible set is

P0{θ0 ∈ Cn(α)} = P0{θ0 ∈ θ0 + n−1/2V −1
0 ∆n,0 + n−1/2V

−1/2
0 Bn} = P0{−V

−1/2
0 ∆n,0 ∈ Bn}.

The above coverage probability of the set Cn(α) does not converge to 1−α in general, unless

the matrix V0 is equal to Ω0, which is the asymptotic covariance matrix of Γ1(Y1) + Γ2(Y2)

in our Assumption 2.8. □
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Proof of Corollary 2.2. The convergence in the total variation of moments norm with a = 1

implies that ∫
h
(
π̃(h|Y n

2 ; ζ̂n)− π∞(h)
)
dh →P0 0.

As the limiting normal distribution is centered around zero, i.e.,
∫
hπ∞(h)dh = 0, we have∫

hπ̃(h|Y n
2 ; ζ̂n)dh →P0 0.

Translating the above result to the quasi-posterior mean, we note that

θ̃n ≡
∫

θdΠn(θ|Y2; ζ̂n) =

∫ (
θ̂n +

h√
n

)
π̃(h|Y n

2 ; ζ̂n)dh = θ̂n + oP0(n
−1/2),

which leads to the desired result. The proof of the posterior variance follows along similar

lines involving the second-order moment. It is straightforward and hence omitted. □

Proof of Theorem 2.2. In Lemma 7.5, we have shown the convergence in total variation

norm for the bootstrapped posterior density function. This implies the asymptotic equiva-

lence of the mean of the bootstrapped quasi-posterior θ̃∗n and the bootstrap frequentist-type

two-stage estimator θ̂∗n, i.e.,
√
n
(
θ̃∗n − θ̂∗n

)
is oP ∗(1). For the two-stage frequentist estima-

tors, we have the following:

(6.7) sup
ξ∈Rp

|P0(
√
n(V0Ω0V0)

−1/2(θ̂n − θ0) ≤ ξ)− Φp(ξ)| →P0 0,

and its bootstrap analog:

(6.8) sup
ξ∈Rp

|P ∗(
√
n(V0Ω0V0)

−1/2(θ̂∗n − θ̂n) ≤ ξ)− Φp(ξ)| →P ∗ 0.

Using (6.7), (6.8), and the asymptotic equivalence between θ̃∗n and θ̂∗n, we conclude the

proof by applying Corollary 1 in Cheng and Huang (2010). □

Proof of Proposition 3.1. We verify the high-level assumptions that lead to our Theorems

2.1 and 2.2. Regarding Assumption 2.1, we have a well-separated maximum point, due to

the identification and the compactness of the parameter space in Assumption 3.1, as well

as the continuity of the log-likelihood function (Newey and McFadden, 1994). Assumption

3.3 also satisfies the convergence rate condition in Assumption 2.2. Referring to the fre-

quentist’s estimator θ̂n, one can take the simulated score estimator by Hajivassiliou and

McFadden (1998) in the second stage. The prior specification given in Assumption 3.4

satisfies the requirement in Assumption 2.4. The normality of the error term generates

sufficient smoothness of the conditional choice probabilities, which satisfy Assumption 2.6.

Therein, the function en(·, ·) in Assumption 2.5 can be taken as the cross product term

(θ − θ0)
⊤E[l̈θ,ζ ][ζ − ζ0] as in Lemma C.2 of Chen, Lee, and Sung (2014). The smoothness
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of MNP implies a stronger notion of differentiability than what is required in Assumption

2.6, i.e., the likelihood is Frechét differentiable w.r.t. ζ (Ichimura and Lee, 2010).

To verify Assumption 2.7, recall that the bracketing number N[] (ϵ,F , ∥·∥2) for a func-

tional class F is defined to be the minimum of m such that ∃ fL
1 , f

U
1 , . . . , f

L
m, f

U
m for ∀f ∈ F ,

fL
j ≤ f ≤ fU

j for some j, and
∥∥fU

j − fL
j

∥∥
2
≤ ϵ (van der Vaart and Wellner, 1996). Let

P ≡ {log pθ(Y2i; ζ) : θ ∈ Θ, ζ ∈ Gn}. Our Assumption 3.2 on the Hölder class implies the

P0-Glivenko-Cantelli property of P . Given the smoothness requirement in Assumption 3.2,

we can utilize the Lipschitz continuity and apply Theorem 2.7.11 and Theorem 2.7.1 in

van der Vaart and Wellner (1996) to bound its overall entropy by

logN[](ϵ,P , ∥·∥2) ≲ logN[](ϵ/2C,Θ, ∥·∥2) + logN[](ρ/2C,Gn, ∥·∥2) ≲ p log(ϵ−1) + ϵ−d/τ .

(6.9)

To check the P0-Donsker property as in Assumption 2.7(ii), we follow the route in Example

19.7 from van der Vaart (1998) given our Assumption 3.5, along with the restriction that

τ > d/2 in Assumption 3.2. Other properties, such as the functional class of the second

derivative l̈θ being P0-Glivenko-Cantelli, can be checked along similar lines, utilizing the

smoothness of the MNP in the second stage, as well as the entropy bound for the Hölder

class from the first stage in (6.9); see McFadden (1989) and Pakes and Pollard (1989).

The score functions of β and η (equations (14) and (15) in Hajivassiliou and McFadden

(1998)) have finite second-order moments given the bounded support of covariates and

control variables. Given the smoothness and boundedness of covariates suppport, we also

have the envelope functions being bounded. Thus, the slightly strong assumption used

in the bootstrap part is also satisfied. When it comes to Assumption 2.7(iii), one can

apply Lemma 2.14.3 in van der Vaart and Wellner (1996) to obtain ϕn(ρ) = ρ1−
d
2τ , which

satisfy the restrictions under the maintained assumption τ > d/2. By equation (3.15)

of Ichimura and Lee (2010), the influence function of the first-stage estimation defined

by Γ1(Y1i) =
∑J

j=0

∫
ϕn,j(·, θ0)∂gj(·,θ0)∂θ

dP0. The asymptotic normality in Assumption 2.8

follows from the Lindeberg-Lévy CLT under Assumption 3.6. □

7. Appendix B: Proofs of Technical Lemmas

We prove several technical lemmas needed in the proof of Theorems 2.1 and 2.2 in this

part. For simplicity, we state the lemmas under all of our maintained Assumptions 2.1 to

2.8. From the proofs, it is clear which specific conditions are actually invoked.
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Lemma 7.1. Under Assumptions 2.1 to 2.8, for any δ > 0, we have the following inequality

holds w.p.a.1,

(7.1) sup
dΘ(θ,θ0)>δ

Pn[log pθ(Y2i; ζ̂n)− log pθ̂n(Y2i; ζ̂n)] ≤ −c,

for some positive constant term c.

Proof. We start with the following decomposition:

Pn[log pθ(Y2i; ζ̂n)− log pθ̂n(Y2i; ζ0)]

=Pn[log pθ(Y2i; ζ̂n)− log pθ0(Y2i; ζ0)] + Pn[log pθ0(Y2i; ζ0)− log pθ̂n(Y2i; ζ̂n)].

The second term above can be shown to be oP0(1) following the standard consistency

argument for the two-stage estimation given the identification in Assumption 2.1 and P0-

Glivenko-Cantelli property in Assumption 2.7; see Chen (2007). Therefore, we focus on the

first term and decompose it as follows:

Pn[log pθ(Y2i; ζ̂n)− log pθ0(Y2i; ζ0)]

=(Pn − P0)[log pθ(Y2i; ζ̂n)]− (Pn − P0)[log pθ0(Y2i; ζ0)]

+P0[log pθ(Y2i; ζ̂n)− log pθ(Y2i; ζ0)] + P0[log pθ(Y2i; ζ0)− log pθ0(Y2i; ζ0)].

By the P0-Glivenko-Cantelli property, i.e., supθ∈Θ,ζ∈Gn
|(Pn − P0)[log pθ(Y2i; ζ)]| = oP0(1),

we have the first two terms on the right hand side of the above equality converging to

zero in probability uniformly for any θ ∈ Θ. When it comes to the third term, we utilize

the uniform (regarding θ) continuity of the criterion function with respect to the first stage

nuisance function in our Assumption 2.6, so that P0[log pθ(Y2i; ζ̂n)−log pθ(Y2i; ζ0)] = oP0(1).

For any given δ > 0, the last term satisfies

sup
dΘ(θ,θ0)>δ

|P0 [log pθ(·; ζ0)− log pθ0(·; ζ0)]| ≤ −c,

with a proper choice of constant c > 0, which concludes the proof. □

Our assumptions imply Conditions (i)-(iv) in Corollary 1 of Nan and Wellner (2013).

Thus, the frequentist’s two-stage estimator satisfies the following expansion:

(θ̂n − θ0) = −V −1
0

(
Sθ,n(θ0, ζ0) + Ψ̇ζ(θ0, ζ0)[ζ̂n − ζ0]

)
+ oP0(n

−1/2)

≡ −V −1
0

1√
n

n∑
i=1

[Γ2(Y2i) + Γ1(Y1i)] + oP0(n
−1/2),(7.2)

which implies that θ̂n is root-n consistent and asymptotically normal.
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Lemma 7.2. Recall the definition of ∆r
n in (6.5). Under Assumptions 2.1 to 2.8, for the

decreasing sequence rn = o(n−1/4) and nr2n → ∞, we have

(7.3) lim sup
n→∞

P0{∆Crn
n ≥ −cr2n} = 0,

for a given positive c and a large enough positive constant C.

Proof of Lemma 7.2. Because θ̂n is root-n consistent and nr2n → ∞, we have

{θ : dΘ(θ, θ̂n) ≥ Crn} ⊂ {θ : dΘ(θ, θ0) ≥ C ′rn},

for a proper choice of the constant term C ′. Therefore, we obtain

{∆Cr
n

n ≥ −cr2n} ⊂ { sup
θ:dΘ(θ,θ0)≥C′rn

Pn[log pθ(Y2; ζ̂n)− log pθ̂n(Y2; ζ̂n)] ≥ −cr2n}

⊂ { sup
θ:dΘ(θ,θ0)≥C′rn

Pn[log pθ(Y2; ζ̂n)− log pθ0(Y2; ζ̂n)] ≥ −cr2n},

where the second inclusion follows from Pn[log pθ̂n(Y2; ζ̂n)] ≥ Pn[log pθ0(Y2; ζ̂n)] by definition

of θ̂n from Assumption 2.3. We can further restrict to our attention to the set Bn ≡
{dG(ζ, ζ0) ≤ Crn}, as its complement is asymptotically negligible by Assumption 2.2. It

suffices to examine{
sup

dΘ(θ,θ0)≥C′rn,dG(ζ,ζ0)≤Crn

Pn[log pθ(Y2; ζ)− log pθ0(Y2; ζ)] ≥ −cr2n

}
(7.4)

Thanks to our Lemma 7.1, we can localize on the set {θ : dΘ(θ, θ0) ≤ δ} for a given small

δ. This localized set will be partitioned into the shells for ρ = C ′rn:

Sn,j,M =
{
(θ, ζ) ∈ Θn × Gn : 2j−1ρ < dΘ(θ, θ0) ≤ 2jρ, dG(ζ, ζ0) ≤ 2−MdΘ(θ, θ0)

}
.

In the slicing argument, we sum over the shells that 2jρ < δ. For the j-th set involved, we

have

P0(log pθ(Y2; ζ)− log pθ0(Y2; ζ))

=P0(log pθ(Y2; ζ)− log pθ0(Y2; ζ0)) + P0(log pθ0(Y2; ζ0)− log pθ0(Y2; ζ))

≤P0(log pθ(Y2; ζ)− log pθ0(Y2; ζ0)) + en(θ, ζ) + C1r
2
n

≲− d2Θ(θ, θ0) + d2G(ζ, ζ0) + C22
jρrn + C1r

2
n ≲ −(1− 2−2M)d2Θ(θ, θ0) ≲ −22j−2ρ2,(7.5)

under Assumption 2.5. In other words, we have

inf
(θ,ζ)∈Sn,j,M

−P0(log pθ(Y2; ζ)− log pθ0(Y2; ζ)) ≥ 22j−2ρ2.
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Thus, the probability of (7.4) can be bounded by∑
j≥M,2jρn≤δ

P0

(
sup

(θ,ζ)∈Sn,j,M

Pn[log pθ(Y2; ζ)− log pθ0(Y2; ζ)] ≥ −c1r
2
n

)

≤
∑
j≥M

P0

(
sup

(θ,ζ)∈Sn,j,M

Gn[log pθ(Y2; ζ)− log pθ0(Y2; ζ)] ≥ C22j−2
√
nρ2

)

≲
∑
j≥M

1

22j
√
nρ2

E0 sup
(θ,ζ)∈Sn,j,M

|Gn[log pθ(Y2; ζ)− log pθ0(Y2; ζ)]|

≲
∑
j≥M

1

22j
√
nρ2

ϕn(2
jρ) ≤

∑
j≥M

1

22j
√
nρ2

2jγϕn(ρ) ≲
∑
j≥M

2j(γ−2).

In the first inequality, we add/subtract P0[log pθ(·; ζ) − log pθ0(·; ζ)] and apply (7.5). The

fourth inequality makes use of the monotonicity of the mapping δ 7→ ϕn(δ)/δ
γ for some

γ < 2, so that we have ϕn(2
jρ) ≤ 2jγϕn(ρ). The final inequality follows from ϕn(ρ) ≤

√
nρ2

for every n. The desired result follows by choosing a large enough M , which is induced by

a large C. □

Lemma 7.3. Under Assumptions 2.1 to 2.8, for any θn converging to θ0 such that dΘ(θn, θ0) ≤
Crn w.p.a.1, one has

(7.6) ℓn(θn; ζ̂n)− ℓn(θ̂n; ζ̂n) = −1

2
(θn − θ̂n)

⊤V0(θn − θ̂n) + oP0(1 +
√
ndΘ(θn, θ0))

2.

Proof. Recall that ∆n,0 ≡
√
n
(
Sθ,n(θ0, ζ0) + Ψ̇ζ(θ0, ζ0)[ζ̂n − ζ0]

)
. We start with the follow-

ing string of equations:

ln(θn; ζ̂n)− ln(θ0; ζ̂n)

= nPn[log pθn(Y2; ζ̂n)− log pθ0(Y2; ζ̂n)]

=
√
nGn[log pθn(Y2; ζ̂n)− log pθ0(Y2; ζ̂n)] + nP0[log pθn(Y2; ζ̂n)− log pθ0(Y2; ζ̂n)]

=
√
nGn

[
log pθn(Y2; ζ̂n)− log pθ0(Y2; ζ̂n)− (θn − θ0)

⊤l̇θ(Y2, θ0; ζ̂n)
]

+
√
nh⊤

nGn

[
l̇θ(Y2, θ0; ζ̂n)− l̇θ(Y2, θ0; ζ0)

]
+
√
nh⊤

nGn

[
l̇θ(Y2, θ0; ζ0)

]
+ nP0

[
log pθn(Y2; ζ̂n)− log pθ0(Y2; ζ̂n)

]
By the P0-Donsker property in our Assumption 2.7, we have

(7.7)

sup
dΘ(θn,θ0)≤Crn

∣∣∣Gn

[
log pθn(Y2; ζ̂n)− log pθ0(Y2; ζ̂n)− (θn − θ0)

⊤l̇θ(Y2, θ0; ζ̂n)
]∣∣∣ = oP0(dΘ(θn, θ0)),
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and

(7.8) Gn

[
l̇θ(Y2, θ0; ζ̂n)− l̇θ(Y2, θ0; ζ0)

]
= oP0(n

−1/2).

In addition, the smoothness in Assumption 2.6 leads to

sup
dΘ(θn,θ0)≤Crn

∣∣∣∣nP0

[
log pθn(Y2; ζ̂n)− log pθ0(Y2; ζ̂n)

]
− 1

2
(θn − θ0)

⊤V0(θn − θ0)− (θn − θ0)
⊤Ψ̇ζ(θ0, ζ0)[ζ̂n − ζ0]

∣∣∣∣
= oP0(1 +

√
ndΘ(θn, θ0))

2,

where rn = o(n−1/4). Combining the previous steps, we have

ℓn(θn; ζ̂n)− ℓn(θ0; ζ̂n) =
√
n(θn − θ0)

⊤∆n,0 −
n

2
(θn − θ0)

⊤V0(θn − θ0)

+ oP0(1 +
√
ndΘ(θn, θ0))

2

ℓn(θ̂n; ζ̂n)− ℓn(θ0; ζ̂n) =
n

2
(θ̂n − θ0)

⊤V0(θ̂n − θ0) + oP0(1 +
√
ndΘ(θ̂n, θ0))

2.

Now we take the difference of the above two equations and utilize the linear representation

of θ̂n to get

ℓn(θn; ζ̂n)− ℓn(θ̂n; ζ̂n) = n(θn − θ0)
⊤V0(θ̂n − θ0)−

n

2
(θn − θ0)

⊤V0(θn − θ0)

− n

2
(θ̂n − θ0)

⊤V0(θ̂n − θ0) + oP0(1 +
√
ndΘ(θ̂n, θ0))

2

= −1

2
(θn − θ̂n)

⊤V0(θn − θ̂n) + oP0(1 +
√
ndΘ(θn, θ0))

2.

The last step follows from completing the square of (θn − θ̂n)
⊤V0(θn − θ̂n). □

Lemma 7.4. Let

B̃n(θ) ≡ e−
n
4
(θ−θ̂n)⊤V0(θ−θ̂n)

∣∣∣e∑n
i=1 log pθ(Y2,i|ζ̂n)−log p

θ̂n
(Y2,i|ζ̂n)+n

2
(θ−θ̂n)⊤V0(θ−θ̂n) − 1

∣∣∣ .
Under Assumptions 2.1 to 2.8, we have Bn ≡ supd(θ,θ0)≤Crn B̃n(θ) = oP0(1).

Proof. For any random sequence θn such that dΘ(θn, θ̂n) ≤ Crn for all n and some fixed

C < ∞, we have

B̃n(θn) ≤ exp
{
−n

4
(θn − θ̂n)

⊤V0(θn − θ̂n)
}
×
∣∣exp{oP0(1 +

√
ndΘ(θn, θ0))

2} − 1
∣∣ ,

where the remainder term satisfies

oP0(1 +
√
ndΘ(θn, θ0))

2 ≤oP0(1)[(1 +
√
ndΘ(θn, θ̂n))

2 + nd(θ0, θ̂n)
2]

=oP0(1)(1 +
√
ndΘ(θn, θ̂n))

2,
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due to Lemma 7.3. Note that |ex−1| ≤ e|x| for any x, we can proceed as follows for a given

large positive constant M :

B̃n(θn) ≤ exp
{
−n

4
(θn − θ̂n)

⊤V0(θn − θ̂n)
}
|exp{oP0(1)} − 1| × I{

√
ndΘ(θn, θ̂n) ≤ M}

+ exp
{
−n

4
(θn − θ̂n)

⊤V0(θn − θ̂n) + oP0(1)(1 +
√
nd(θn, θ0))

2
}
× I{

√
ndΘ(θn, θ̂n) ≥ M}

≤ oP0(1) + exp

{
M2

4
λ1(1− oP0(1))

}
→ exp{−λ1M

2/4},

where λ1 is the smallest eigenvalue of V0 which is strictly positive by our Assumption 2.1.

Therefore, Bn = oP0(1), as M can be made arbitrarily large. □

Lemma 7.5. Let the bootstrap posterior density function of h ≡
√
n(θ − θ̂∗n) be

(7.9) π̃∗(h|Y n∗
2 ; ζ̂∗n) ≡

∏n
i=1 p

Mni

θ̂∗n+
h√
n

(Y n
2 |ζ̂∗n)π(θ̂∗n + h√

n
)∫ ∏n

i=1 p
Mni

θ̂∗n+
h√
n

(Y n
2 |ζ̂∗n)π(θ̂∗n + h√

n
)dh

.

In addition to Assumptions 2.1-2.8, we assume that the envelope functions for the functional

classes in Parts (i) and (ii) in Assumption (2.7) have finite 2+ι moments, for ι > 0. Then,

we have the following convergence in total variation norm:

(7.10) ∥π̃∗(h|Y n∗
2 ; ζ̂∗n)− π∞(h)∥TVM(a) = oP ∗(1).

Proof. The bootstrap version follows along similar lines of the proof of our Theorem 2.1.

We highlight two main modifications needed herein.

First, we show the posterior mass outside an shrinking neighborhood around the truth

is negligible conditional on the observed data w.p.a.1. Specifically, we need to characterize

the order of ∆∗Crn
n , where

∆∗Crn
n = sup

θ:dΘ(θ,θ̂∗n)≥Crn

P∗
n[log pθ(Y2; ζ̂

∗
n)− log pθ̂∗n(Y2; ζ̂

∗
n)].

A key step in the chaining argument is to use a proper maximal inequality related to the

bootstrap empirical process. For this purpose, we resort to Corollary 1 from Han and

Wellner (2019) to obtain

(7.11) E∗
0 sup
(θ,ζ)∈Sn,j,M

|G∗
n[log pθ(Y2; ζ)− log pθ0(Y2; ζ)]| ≤ Cϕn(2

jρ),

with the multinomial weights.

Second, when we carry out an expansion of the bootstrap log-likelihood, we need to

verify the following stochastic equicontinuity as

(7.12) G∗
n

[
l̇θ(Y2, θ0; ζ̂

∗
n)− l̇θ(Y2, θ0; ζ0)

]
= oP ∗(n−1/2).
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Denote F ≡ {f = l̇θ(·, θ0; ζ) − l̇θ(·, θ0; ζ0), ζ ∈ Gn}. We apply the multiplier inequality in

Lemma 3.6.7 of van der Vaart and Wellner (1996), which states for any 1 ≤ n0 ≤ n

(7.13) EZM ∥ G∗
nf ∥≲ 2(n0 − 1)EZ |F | 1√

n
EM

∣∣∣max
i

Mni

∣∣∣+ 2EMM2
n1

∣∣∣∣ max
n0≤k≤n

EZ ∥ Gkf ∥
∣∣∣∣ ,

where F is the corresponding envelope function for the functional class F , and the subscript

on the expectation signifies the source of randomness.

For the multinomial weights, we have E|Mni|2 < ∞. We start with applying the Jensen’s

inequality to obtain(
EM

∣∣∣∣max
1≤i≤n

Mni√
n

∣∣∣∣)2

≤ EM

∣∣∣∣max
1≤i≤n

M2
ni

n

∣∣∣∣ ≤ m2

n
+

1

n

n∑
i=1

EM

[
M2

niI{Mni > m}
]
,

which goes to 0. Thus, the first term in (7.13) is of smaller order as 1√
n
EM |maxiMni| = o(1).

Regarding the term maxn0≤k≤n EZ ∥ Gkf ∥, it sufficies to bound EZ ∥ Gnf ∥ by Lemma 4.3

of Praestgaard andWellner (1993). Because of the stochastic equicontinuity of the empirical

process and the Hoffmann-Jorgensen inequality, the first-order moment version also holds,

i.e., EZ ∥ Gnf ∥= oP0(1). In sum, this makes the second term of (7.13) negligible, given

the original empirical process satisfies the P0-Donsker property. □
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