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Abstract

How to search for potential bidders to allocate a product by a deadline? We fully solve
the optimal mechanisms, which can be implemented by a sequence of second-price auc-
tions with properly selected reserve prices and sampling rules. The optimal search for
long-lived bidders is characterized by a constant reserve (except for the last period) and
contingent sample sizes, and that for short-lived bidders is by decreasing reserves and
increasing sample sizes over time. Moreover, a seller with short-lived bidders searches
more intensively and accepts lower reserve prices for stopping. We also solve the effi-
cient mechanisms and provide relevant comparative results.
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1 Introduction

Time constraint is a common concern in many search problems. A consumer searches on

Amazon for a Christmas gift, a seller searches for buyers to allocate a perishable good, an

employer interviews candidates to fill a position by a deadline, a football club has to sign new

players by the end of a transfer window, the board of directors (BOD) searches for potential

acquirers in a complex and multi-step M&A process, and so on. This article investigates how

a seller should search for potential bidders to allocate a product by a deadline. The bidders’

product values are unknown to the seller, and they cannot bid if not invited. To invite a

bidder, the seller needs to pay a search cost, and she may invite the bidders batch by batch
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in each period. What would be the seller’s optimal selling mechanism if the objective is to

maximize the expected profit, i.e., the expected product revenue net of gross search costs?

One may observe that, due to the presence of a deadline, a one-by-one sequential search

may not be optimal; and due to the presence of a search cost, a full-scale simultaneous

transaction, e.g., inviting bidders only in one period, may not be optimal either, as the seller

would value the inter-temporal release of bidder information.

This setting encompasses many important situations. For example, a well-known puzzle

in M&As is that the dominant selling process is non-competitive negotiation, e.g., when

selling a company, the BOD usually contacts just one bidder at the beginning (Andrade

et al., 2001; Betton et al., 2008). It is against the conventional wisdom that a seller benefits

from the competition among bidders as it will raise the bid premium. Some researchers

have argued that the M&A process can be thought of as a multi-period search for potential

bidders, e.g., if a deal is not agreed at the negotiation stage, the seller will invite more bidders

to join the competition in later stages. As a result, the pressure of following-up auctions

will drive up the premium of the early negotiation stage (Aktas et al., 2010). This search

argument is supported by the empirical evidence that there is no significant difference in bid

premiums across negotiation and auction in M&As (Boone and Mulherin, 2007, 2008).

There are many other real-world examples. In academic hiring, UK universities commonly

run several rounds of recruitment campaigns and increase their recruiting intensities when

the Research Excellence Framework (REF) deadline gets closer. In public procurement,

a government agency needs to screen and contact potential contractors, and complete the

procurement auction by a deadline. In dating markets, men and women attend speed-dating

events regularly and search for potential partners, arguably under age pressures. When

exploring price quotes, a customer searches sequentially for good or service quotes offered

by potential suppliers, usually under a time constraint.

In this article, we develop a tractable framework to analyse this category of problems in

a seller-bidder context. In our model, a seller wants to allocate an indivisible product among

a large number of potential bidders within T periods. Bidders are ex-ante homogeneous,

2



with their product values being independent draws from a common distribution. Bidders

can only bid if invited. To invite a bidder, the seller needs to pay a constant search cost c,

and she needs to decide the sample size (i.e., the number of bidders to invite) and the stage

mechanism in each period. The seller’s objective is to maximize the expected profit.

We fully characterize the seller’s optimal search rules in both cases of short-lived and long-

lived bidders,1 and show that the optimal mechanisms can be implemented by a sequence of

second-price auctions with properly selected reserve prices and sampling rules. For long-lived

bidders, it is optimal to set a constant reserve price until the second-last period, but lower

it to the optimal reserve price for static auctions in the last period. The optimal sample

size is increasing over time and decreasing in the seller’s fallback revenue ceteris paribus.

As the realizations of fallback revenues are random, the sequence of optimal sample sizes is

generally a random process. For short-lived bidders, the sequence of optimal reserve prices

is decreasing, and that of optimal sample sizes is increasing over time. Both sequences are

deterministic and pre-determined, which is different from long-lived bidders. This is because,

with short-lived bidders, if the seller declines the current offers and continues to search, her

fallback revenue always turns to 0. Therefore, the optimal reserve prices and the optimal

sample sizes depend only on the number of remaining periods.

We provide some comparative results between long and short-lived bidders. First, the

optimal reserve price is lower for short-lived bidders than for long-lived bidders. This is be-

cause a seller with short-lived bidders has a lower fallback revenue (0 indeed) if she continues

to search, and hence, she is willing to accept a lower cutoff revenue. We call this discourage-

ment effect of short-lived bidders, as it discourages the seller from further searching. Second,

conditional on search, a seller with short-lived bidders searches more intensively (i.e., a larger

sample size) than one with long-lived bidders. Again, this is because the fallback revenue

turns to 0 if the seller continues to search, and a lower fallback revenue increases marginal

search revenue and encourages her to search more intensively. We call this encouragement

1A short-lived bidder only participates in the stage transaction when invited, yet a long-lived bidder,
once invited, will stay in the transaction till the deadline. The two cases of short and long-lived bidders are
analogous to sequential search with no and full recall, respectively.
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effect of short-lived bidders, as it encourages the seller to search more intensively if she

continues to search.

We further consider efficient search rules, where the seller’s objective is to maximize the

expected welfare which is the winner’s expected product value net of gross search costs. Sim-

ilarly, the efficient mechanisms can be implemented by a sequence of second-price auctions.

We demonstrate that an optimal search auction is featured by over-searching, in the sense

that the cutoff product value for optimal stopping is higher than that of an efficient auction.

It also indicates that the inefficiency of an optimal search auction stems from its inefficient

search rule. This result is robust in both cases of long and short-lived bidders and echoes

similar results in static search auctions (Szech, 2011; Xu and Li, 2019).

Finally, we show the convergence result that, when T → ∞, the optimal search rules and

values will converge to the standard results of the stationary and infinite horizon (SIH) search

problems. To be specific, in both cases of long and short-lived bidders, the cutoff revenues

for optimal stopping converge to the same constant, the optimal search profits converge to

the same value, and the optimal sampling rules are both one-by-one sequential search.

The remainder of this article is organized as follows. Section 2 reviews the literature.

Section 3 sets up the model. Section 4 solves the optimal search mechanism with long-lived

bidders. Section 5 solves the optimal search mechanism with short-lived bidders. Section 6

further characterizes the efficient search mechanisms in both cases of long and short-lived

bidders. Section 7 concludes. All proofs appear in the Appendix.

2 Related Literature

Our work is mainly related to the following strands of literature: sequential search and

search with a deadline, search mechanism, negotiation versus auction, sequential auctions

and revenue management, and finite horizon decision-making problems.

For classic sequential search problems with full recall (so-called Pandora’s problem),

Gittins (1979) and Weitzman (1979) have fully characterized the optimal search rule. To be

specific, Pandora faces a number of closed boxes, each containing a random prize; she can
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open the boxes sequentially, each at a search cost; her objective is to maximize the expected

prize value discovered net of gross search costs. They show that a unique cutoff value can

be allocated to each box, at which the searcher is indifferent between keeping that value and

inspecting that box. The optimal search rule is simple: i) the searcher should inspect the

boxes in the order of descending cutoff values; ii) she should stop searching whenever the

value discovered is greater than the highest cutoff values of the remaining unopened boxes.2

When the search is bounded by a deadline, a one-by-one sequential search may no longer

be optimal. Gal et al. (1981) introduces a deadline into the sequential job search model

of Lippman and McCall (1976). With no recall, they show that the optimal search rule is

featured by decreasing reservation wages and increasing search intensities over time. Morgan

(1983) further studies the case of full recall and shows that the sequence of optimal search

intensities is a stochastic process.3 Lee and Li (2022) investigate a problem of sequential

search with a deadline and continuous search effort. They solve the optimal search rules and

characterize the optimal search value and intensity. This article studies the optimal search

for strategic bidders by a deadline and with a discrete choice variable of sample size.

Second, our work is closely related to the literature on search mechanisms, where the

targets for search are strategic agents rather than non-strategic objects like boxes. McAfee

and McMillan (1988) study a procurement problem where a buyer searches for homogeneous

long-lived suppliers one-by-one sequentially. They show that the optimal search mechanism

is a sequential auction with a constant reserve price. Crémer et al. (2007) examine a search

mechanism where a seller searches for heterogeneous long-lived bidders. Using a mechanism

design approach, they prove that the optimal search mechanism problem can be reformu-

lated as Pandora’s problem. They further show that, in the case of private values and no

discounting, the mechanisms can be implemented by a sequence of second-price auctions

2Kleinberg et al. (2017) prove that the sequential search problem à la Pandora can be reformulated as a
static combinatorial optimization problem, and Armstrong (2017) and Choi et al. (2018) further show some
important applications of this new approach in consumer search problems.

3Morgan and Manning (1985) investigate the problem where a searcher also chooses the number of periods
for search, and present some results on the existence and properties of optimal search rules.
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with decreasing reserve prices and one-by-one sequential search.4

Different from one-by-one sequential search, Lee and Li (2023) study a seller’s compound

search for homogeneous bidders, where a seller commits to a partition of T bidder-samples

and searches across them sequentially. If one takes a bidder-sample as an aggregate bidder,

their compound search problem can be recast as Pandora’s problem as in Crémer et al.

(2007). For long-lived bidders, they show that the optimal stopping cutoff for a bidder-

sample is decreasing in its sample size. Therefore, the optimal search rule suggests a search

order of decreasing reserve prices and increasing sample sizes over time.

However, the articles mentioned have focused on search mechanisms without an effective

time constraint. For example, Lee and Li (2023) study a seller’s T period sequential search

across T preset bidder-samples, and there is no time constraint indeed. Moreover, their

compound search mechanism is in general suboptimal in a T period search problem, as the

seller commits to a set of preset bidder-samples. In other words, the seller cannot make full

use of the information released from the previous search history. In this article, we forgo the

commitment assumption and propose an optimal search mechanism where a seller can make

fully contingent search decisions in each period.

Third, we address the persistent debate on the choice between negotiation and auction

as an optimal selling mechanism. Bulow and Klemperer (2009) argue that a simultaneous

auction is better than a sequential negotiation in a setting of costly entry, where an early

entered bidder can make a jump-bid to deter the entries of outside bidders, which may harm

the seller.5 But the empirical evidence does not support their results in general. For example,

in M&As, the dominant selling process is negotiation, not auction. This article proposes a

4Lauermann andWolinsky (2016) study a common-value search auction, where an informed buyer searches
for short-lived sellers one-by-one sequentially. An invited seller may partially learn the buyer’s type through
a noisy signal. They find that information aggregation through price is worse in this search auction than in
a standard common-value auction. They attribute this failure of information aggregation to a stronger form
of the winner’s curse that arises with sequential search.

5Lu et al. (2021) study how to orchestrate costly information acquisition in an auction with a pre-short-
listing stage. Bidders are initially endowed with private signals that are positively correlated to their true
values, and a bidder can learn his true value by paying an entry cost. They show that, under a sequential
short-listing rule, the seller admits the most efficient remaining bidder in each round, provided that his
conditional expected contribution to the virtual surplus is positive.
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possible explanation for this puzzle by modelling the selling process in M&As as a seller’s

adaptive search for bidders by a deadline.

Fourth, our work is connected to the literature on sequential auctions and revenue man-

agement. Skreta (2015) investigates optimal sequential auctions with limited commitment,

where the same population participates in each round of the auction. Said (2011) studies

sequential auctions of multi-unit products with changing populations. Liu et al. (2019) study

sequential auctions in the case of limited commitment. Other literature on revenue manage-

ment includes Board and Skrzypacz (2016) with forward-looking buyers in the case of full

commitment, and Dilme and Li (2019), who study revenue management with the arrivals

of strategic buyers in the case of no commitment.6 This article studies an optimal search

mechanism by a deadline with a changing population.

Finally, our work also contributes to the literature on finite horizon decision-making

problems. Baucells and Zhao (2018) study a continuous time decision-making problem within

a finite horizon, and formalize the notion that fatigue accumulates with effort and decays

with rest. They show that the optimal effort is of a U-shape over time, which is supported

by the empirical evidence from swimming competitions. Du et al. (2022) consider a seller’s

optimal effort management when she sells a product over a finite horizon with consumers

arriving by a Poisson process. Under an all-or-nothing contract, they show that the optimal

sales effort is non-monotonic with respect to the remaining time or the outstanding sales

volume required to reach the target. We study a sequential search mechanism in the case of

discrete time and discrete choice variable of effort level, i.e., sample size.

3 The Model

A (female) seller wants to allocate an indivisible product among a large number of ex-ante

homogeneous (male) bidders. She needs to complete the transaction within T periods. A

6Zhang (2021) studies the optimal sequence of posted-price and auction in a sequential mechanism, where
a population of short-lived bidders enters the market periodically. In each period, the seller chooses between
a posted-price and an auction mechanism. He shows that, when there is a deadline and the auction cost is
moderate, the optimal mechanism sequence takes the form of posted-prices then auctions.
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bidder can not bid if not invited. To invite a bidder, the seller needs to pay a search cost

c > 0.7 Let Mt denote the bidder-sample the seller invites in period t, and Nt :=
⋃t
τ=0Mτ

is the union of disjoint bidder-samples the seller has invited till the end of period t, with

N0 ≡ M0 ≡ ∅. Denote mt the cardinality (sample size) of Mt. Both the seller and the

bidders are risk-neutral, and we disregard time discounting.

The seller’s value of the product is 0. Bidders’ product values, Xi’s, are independent

draws from the same distribution F on X = [0, x̄], with its density f > 0 on (0, x̄). F is

common knowledge, yet the realization of Xi, denoted by xi, is the private information of

bidder i. We assume F is of increasing failure rate, and hence the virtual value

ψ(x) = x− 1− F (x)

f(x)

is strictly increasing. Let G be the distribution of the virtual value V := ψ(X) on [v, v̄] with

v = ψ(0) and v̄ = ψ(x̄) = x̄. It then follows that

G(v) = Pr[V ≤ v] = Pr[ψ(X) ≤ v] = F (ψ−1(v)). (1)

Denote V m and Xm the largest order statistics of m independent draws from G and F

respectively, which follow the distributions of Gm and Fm, with V 0 ≡ v and X0 ≡ 0.

We consider both cases of long and short-lived bidders. A long-lived bidder, once invited,

will stay in the transaction till the deadline. Yet a short-lived bidder will only participate in

the stage transaction when invited, and then drops out. Apparently, for long and short-lived

bidders, the sets of participating bidders in period t are Nt and Mt, respectively.

4 Optimal Search Auctions: Long-lived Bidders

An optimal search mechanism is one that maximizes the seller’s expected search profit, i.e.,

the expected product revenue net of gross search costs. We can derive the optimal mechanism

by backward induction. Specifically, at the beginning of period T , suppose the seller has a

7Instead of a constant marginal cost c, introducing a non-decreasing marginal cost function c(m) does
not change the results qualitatively.
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fallback revenue v ≥ 0 from the set NT−1 of already invited bidders, which is reclaimable till

the deadline as bidders are long-lived.8 If the seller stops, she can claim the fallback revenue

v. If she continues to search, due to Myerson (1981), the optimal period-T mechanism is a

second-price auction with a reserve price ψ−1(v). In this case, the expected auction revenue

of inviting m bidders, denote by RT (m; v), is then

RT (m; v) := Emax{v, ψ(Xm)} = Emax{v, V m} = v +

∫ v̄

v

(1−G(z)m)dz, (2)

and the marginal revenue of inviting one more bidder is

MRT (m; v) := RT (m+ 1; v)−RT (m; v) =

∫ v̄

v

G(z)m(1−G(z))dz, (3)

which is strictly decreasing both in m and v, and converges to 0 as m→ ∞.

If MRT (0; v) ≤ c, the seller will stop and allocate the product among the set NT−1 of

bidders. We denote the cutoff revenue for optimal stopping by v0, which is given by

MRT (0; v
0) =

∫ v̄

v0
(1−G(z))dz = c. (4)

If v < v0, the seller will keep on inviting bidders as long as the marginal revenue is greater

than the marginal cost. Denote the optimal sample size, i.e., the optimal number of new

bidders to invite, in period T by m∗
T (v). It then follows that

m∗
T (v) = min{m ∈ N0 :MRT (m; v) ≤ c}, (5)

where N0 := {0, 1, 2, . . .}. The properties of MRT (m; v) guarantee the existence of m∗
T (v).

Given a fallback revenue v at the beginning of period T , let ΠT (v) be the expected profit

achieved in an optimal search mechanism. It then follows that

ΠT (v) = max

{
v,max

m∈N0

{Emax{v, V m} − cm}
}
.

8To be concrete, with the set NT−1 of participating bidders, the seller can guarantee a fallback revenue

v = max

{
0, max

i∈NT−1

ψ(xi)

}
≥ 0

using the second-price auction with a reserve price of ψ−1(0).
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Constructing the problem recursively, we have the Bellman equation as follows: for t ≤ T

Πt(v) = max

{
v,max

m∈N0

{EΠt+1(max{v, V m})− cm}
}
, (6)

and ΠT+1(v) = v as the seller keeps whatever she has after the deadline T . It is easy to show

Πt(v) is strictly increasing in v for any t ≤ T , using a standard induction argument.

Similarly, we define the expected revenue of inviting m bidders in any period t ≤ T by

Rt(m; v) := EΠt+1 (max {v, V m}), (7)

and the corresponding marginal revenue by MRt(m; v) := Rt(m+ 1; v)−Rt(m; v). Lemma

1 below gives some basic properties of the marginal revenue.

Lemma 1. For any t ≤ T , the marginal revenue MRt(m; v) is

i) strictly positive for any v < v̄;

ii) strictly decreasing in v; and

iii) strictly decreasing in m and limm→∞MRt(m; v) = 0.

These properties are intuitive. For example, ii) simply suggests that, when the fallback

revenue v gets higher, it becomes less likely to achieve a higher revenue by inviting one more

bidder. Result i) and iii) state that auction revenue increases in the number of bidders yet

at a diminishing rate, and in the limit when there are an infinite number of bidders, the

marginal benefit of inviting one more bidder is negligible. Example 1 and Figure 1 below

illustrate the properties in Lemma 1

Given a fallback revenue v at the beginning of period t, similar to (5), the seller will keep

on inviting bidders as long as the marginal revenue MRt(m; v) is greater than the marginal

cost c. The existence of an optimal sample size m∗
t (v) is guaranteed by the properties of

MRt(m; v) in Lemma 1. Solving the problem recursively, Theorem 1 specifies the optimal

search rule and the optimal search profit in the case of long-lived bidders.
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Figure 1: Optimal search rule m∗
t (v) in Example 1
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Note. c = 0.16, F (x) = x1(0 ≤ x ≤ 1), and T = 2. In period 1, the optimal number of
invitees is m∗

1(v) = 1(v < v0), where v0 = 0.2. In period 2, the optimal number of invitees
is m∗

2(v) = 1(v < v12) + 1(v < v0), where v12 ≈ 0.0267.

Theorem 1 (Optimal search for long-lived bidders). Let v be the seller’s fallback revenue

at the beginning of period t ≤ T . The optimal sample size m∗
t (v) in period t is given by

m∗
t (v) = min{m ∈ N0 :MRt(m; v) ≤ c}, (8)

where the marginal revenue MRt(m; v) is recursively determined by

MRt(m; v) =

∫ v̄

v

G(z)m(1−G(z))
∏
τ≥t+1

G(z)m
∗
τ (z)dz. (9)

It is optimal to stop in period t if m∗
t (v) = 0. The optimal search profit Πt(v) is

Πt(v) = Emax{v, V ∗
t } = vGt(v) +

∫ v̄

v

zdGt, (10)

where V ∗
t is the continuation search profit achieved by following the optimal search mechanism

from period t on, and its distribution function Gt(v) is recursively defined by

Gt(v) = G(v)m
∗
t (v)Gt+1(v) =

∏
τ≥t

G(v)m
∗
τ (v). (11)
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Remark 1. It is clear from Lemma 1 that the optimal sample size m∗
t (v) given by (8) is

uniquely determined and decreasing in v. Therefore, for each m = 0, 1, . . . ,m∗
t (0)− 1, there

exists a unique cutoff revenue, denoted by vmt , that solves MRt(m; v) = c. When v ≥ v0t ,

m∗
t (v) = 0 and it is optimal to stop as shown in Bellman equation (6). Importantly, Theorem

1 also suggests that, in any period t ≤ T , the cutoff revenue for optimal stopping v0t = v0

which is constant over time.9 We then have the following explicit expression of the optimal

sample sizes in any period t ≤ T

m∗
t (v) =

m∗
t (0)∑
m=1

1(v < vm−1
t ) =



0 if v ≥ v0

1 if v1t ≤ v < v0

2 if v2t ≤ v < v1t
...

m∗
t (0) if v < v

m∗
t (0)−1

t .

(12)

Remark 2. The marginal revenueMRt(m, v) is decreasing in v by Lemma 1 and increasing in

t by (9) as G(z)m
∗
τ (z) ≤ 1. It follows that the optimal sample sizem∗

t (v) is decreasing in v and

increasing in t. Therefore, other things being equal, the seller will invite the smallest number

of bidders at the beginning. The result explains why negotiation can be a dominant selling

process in many important markets, such as M&As. Furthermore, for long-lived bidders, the

time-invariant property of cutoff revenue v0 for optimal stopping also explains why there is

no significant difference in bid premiums across negotiation and auction, i.e., the seller has

the same reserve price for stopping no matter if it is in the early negotiation stage or the

later auction stages.

Remark 3. By (10), the optimal search profit Πt(v) is increasing and convex in v and de-

creasing in t. To be specific:

i) For v ∈ [0, v0), Πt(v) is strictly convex, and Πt(v) > v and Πt(v) > Πt+1(v)

ii) For v ∈ [v0, v̄], Πt(v) = v.

9For instance, in period T − 1, if the seller’s fallback revenue v is greater than or equals to v0T , then it
would be her last period of search, as she will stop searching in period T given her next period fallback
revenue will be no less than v. The proof of Theorem 1 formally shows this property by induction.
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In other words, the optimal search profit Πt(v) is larger if the fallback revenue v, which she

can reclaim in the case of stopping, is larger, or if it is in an early period (smaller t) such

that the seller will have more opportunities of search to increase her expected profit. One

may also observe that the distributions of V ∗
t are ordered in terms of first order stochastic

dominance, i.e., Gt+1(v) ≥ Gt(v), which implies that Πt(v) > Πt+1(v).

Sequential Second-Price Auction Implementation

The optimal mechanisms with long-lived bidders, as specified in Theorem 1, can be imple-

mented by a sequence of second-price auctions with properly selected reserve prices {rt}Tt=1

and sampling rules {m∗
t (v)}Tt=1. To be specific,

� At the beginning of any period t ≤ T , the seller’s fallback revenue

v = max

{
0, ψ−1

(
max
i∈Nt−1

xi

)}
is given by the auction outcome in period t− 1 with the set Nt−1 of invited bidders.

� Given v, the seller invitesm∗
t (v) new bidders in period t and runs a second-price auction

with a reserve price of

rt =

{
ψ−1(v0) if t < T

ψ−1(0) if t = T.

Note that any invited bidder will participate and to bid his true product value is a

weakly dominant strategy, regardless of when he has been invited.

A key feature of the optimal search auction is that the reserve price rt remains at the

same constant level of ψ−1(v0) through the periods of t = 1, · · · , T − 1, and drops to the

optimal reserve price for static auctions, i.e., ψ−1(0), only in the last period T . Therefore,

at the end of any period t < T , if any bid from the set Nt of bidders is greater than the

reserve rt = ψ−1(v0), the seller can guarantee a revenue higher than v0 and it is optimal for

her to stop and allocate the product among the set Nt of bidders. In the last period T , the

optimal reserve price drops to rT = ψ−1(0), as 0 is the revenue that the seller can guarantee
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Figure 2: Optimal search rules and profits
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Note. c = 0.16, F (x) = x1(0 ≤ x ≤ 1), and T = 2. Πt is the search profit with long-lived
bidders from the optimal search rule m∗

t (presented in blue); whereas Π̂t is that with short-
lived bidders from the corresponding optimal search rule m̂∗

t (presented in red).

by retaining the product. It is also interesting to observe the fallback revenue v will only

affect the optimal sample size m∗
t (v), yet not the reserve price rt for optimal stopping.

At the end of this section, we provide a uniform example of two-period search auction. It

also shows how to construct the optimal search auction for long-lived bidders by a deadline.

Example 1 (Optimal search auction with long-lived bidders). Consider c = 0.16, F (x) =

x1(0 ≤ x ≤ 1), and T = 2. The virtual value ψ(x) = 2x − 1 has the distribution G(v) =

1
2
(v + 1)1(−1 ≤ v ≤ 1). Backward induction yields the following optimal search rule.

� In the last period t = 2, the marginal search revenue is

MR2(m; v) =

∫ 1

v

G(z)m(1−G(z))dz =
2m+2 − (1 + v)m+1(m+ 3− v(m+ 1))

2m+1(m+ 1)(m+ 2)
,

which is illustrated in Figure 1(b) for m = 0, 1, 2. As MR2(2; 0) ≈ 0.1146 < c, the

optimal sample size should not be greater than 2 from (12). For m = 0, 1, the solution
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toMR2(m; v) = c gives the cutoff values v0 = v02 = 0.2 and v12 ≈ 0.02667. The optimal

sample size in period t = 2 is then

m∗
2(v) = 1(v < v12) + 1(v < v0). (13)

Given m∗
2(v), we have G2(v) = G(v)m

∗
2(v) and the optimal search profit in period t = 2

Π2(v) = Emax{v, V ∗
2 } = vG2(v) +

∫ v̄

v

zdG2. (14)

� In the first period t = 1, the marginal search revenue, by (9), is

MR1(m; v) =

∫ 1

v

G(z)m+m∗
2(z)(1−G(z))dz.

Using (13), we have the following piecewise expressions of MR1(m; v):

i) if v < v12,

MR1(m; v) =

∫ v12

v
G(z)m+2(1−G(z))dz+

∫ v0

v12

G(z)m+1(1−G(z))dz+
∫ 1

v0
G(z)m(1−G(z))dz;

ii) if v12 ≤ v < v0,

MR1(m; v) =

∫ v0

v
G(z)m+1(1−G(z))dz +

∫ 1

v0
G(z)m(1−G(z))dz; and

iii) if v ≥ v0,

MR1(m; v) =

∫ 1

v
G(z)m(1−G(z))dz,

which is illustrated in Figure 1(a), for m = 0, 1, 2. Observe that for any m and

any v ≥ v0, MR2(m, v) = MR1(m, v), which suggests that the cutoff revenue for

optimal stopping is v0 which does change over time. If v < v0, the optimal sample size

m∗
2(v) ≥ 1 in period 2 makes MR1(m; v) < MR2(m; v). That is, the marginal search

revenue is increasing over time, and the seller searches more intensively as the deadline

approaches. This deadline effect of m∗
1(v) ≤ m∗

2(v) is illustrated by Figure 2 (presented

in blue) or comparing Figure 1(a) and Figure 1(b). As MR1(1; 0) ≈ 0.1428 < c, the

optimal sample size is at most 1, and it follows

m∗
1(v) = 1(v < v0).
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Given m∗
1(v) and m

∗
2(v), the continuation search profit V ∗

1 has the following distribution

G1(v) = G(v)m
∗
1(v)+m

∗
2(v) =


G(v)3 if v < v12
G(v)2 if v12 ≤ v < v0

G(v)0 = 1 if v ≥ v0.

Given an initial fallback revenue of 0, the seller’s optimal search profit is then

Π1(0) = Emax{0, V ∗
1 } =

∫ 1

0

zdG1 = v0 −
∫ v0

v12

G(z)2dz −
∫ v12

0

G(z)3dz ≈ 0.1427.

The optimal search profits for each period t = 1, 2 are plotted in Figure 2 (in blue).

The optimal search profit can be implemented by the following sequence of second-price

auctions. Given a fallback revenue 0 at the beginning of period t = 1, the seller invites one

bidder (bidder 1) and runs a second-price auction with a reserve price ψ−1(v0) = 0.6. Bidder

1 will bid truthfully. If bidder 1’s bid is greater than or equals to ψ−1(v0), the seller then

allocate the product to him at the reserve price ψ−1(v0). Otherwise, the seller continues to

search in period t = 2 with the following optimal sample size m∗
2(v):

� invite two more bidders if bidder 1’s bid is lower than ψ−1(v12) = 0.5133;

� invite one more bidder if bidder 1’s bid is between ψ−1(v12) = 0.5133 and ψ−1(v0) = 0.6.

In period 2, the seller runs a second-price auction with a reserve price of ψ−1(0) = 0.5.

The two-period example can be extended to any finite T -period problems. Note that, in

any finite period problem, we have MRt(m; v) ≤MRt+1(m; v) and hence m∗
t (v) ≤ m∗

t+1(v).

In this particular case of c = 0.16 and F (x) = x1(0 ≤ x ≤ 1), we have m∗
T−1(0) = 1. It then

follows that in any finite period problem, m∗
t (0) = 1 for any t < T , i.e., the optimal sampling

rule is one-by-one invitation in any period t < T . We can similarly construct a sequence of

second-price auctions to implement the optimal search profit. Specifically, at the beginning

of any period t < T , if the highest ever bid is smaller than ψ−1(v0) = 0.6, the seller then

invites one more bidder in period t and asks him to bid, who will bid his true value. At the

beginning of the last period T , the optimal sampling rule is given as in the above two-period

example and the optimal reserve price is rT = ψ−1(0) = 0.5.
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Figure 3: Optimal Search Auctions with a Deadline

rt for t < TrT

ψ−1(0) ψ−1(v1T−1) ψ−1(v0)

T − 3T − 3

auction

T − 2T − 2

search

auction

maxi∈NT−3
{xi}

retain allocate

invite 1 bidder no further invitationno further invitation

T − 1T − 1

search
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maxi∈NT−2
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invite 1 bidder no further invitationno further invitation
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maxi∈NT−1
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retain allocate

invite 2 bidders invite 1 bidder no further invitationno further invitation

maxi∈NT
{xi}
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(a) Long-lived Bidders: The reserve price rt is constant except for the last period T , as the cutoff for
stopping is fixed with long-lived bidders.

r̂T−3r̂T−2r̂T−1r̂T

ψ−1(0) ψ−1(v1T−1) ψ−1(v0)
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search
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maxi∈MT
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(b) Short-lived Bidders: The reserve price r̂t is determined by the cutoff for optimal stopping in the next
period, and is decreasing over time. Compared to (a), the dotted areas capture the discouragement effect
of short-lived bidders, and the green slashed area in period T highlights the encouragement effect.
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This optimal search auction is illustrated in Figure 3(a), where the vertical axes repre-

sents different periods and the horizontal one is the highest bid maxi∈Nt{xi} at the end of

each period t. Observe that the optimal reserve price rt remains at the constant ψ−1(v0)

throughout all the periods t < T and drops to ψ−1(0) only in the last period T . In our

example, the optimal search auction runs as follows. At the beginning of any period t < T ,

if the highest bid of the set Nt−1 of participating bidders in period t − 1 is greater than

rt−1, the seller then allocates the product to the winning bidder in Nt−1; otherwise, the seller

invites one new bidder and runs an auction with the reserve price rt. Particularly, at the

beginning of the last period T , if the highest bid of the set NT−1 of bidders is greater than

rT−1, the seller then stops and allocates the product; otherwise, she will runs an auction

with a new reserve price rT by inviting either one or two more new bidders, depending on

the value of maxi∈NT−1
{xi}, as shown in the bottom block of Figure 3(a).

5 Optimal Search Auctions: Short-lived Bidders

For short-lived bidders, we can similarly derive the optimal search mechanism by backward

induction. At the beginning of period T , suppose the seller has a fallback revenue v from the

setMT−1 of bidders. If she stops, she can claim the revenue v. If she continues to search, her

fallback revenue turns to 0 as bidders are short-lived, and she no longer has an opportunity

to search after the deadline T . Therefore, the optimal period-T mechanism is a second-price

auction with a reserve price ψ−1(0), as her reservation revenue is 0. For short-lived bidders,

the expected revenue of inviting m bidders in period T is thus

Emax{0, V m} =

∫ v̄

0

(1−G(z)m)dz = RT (m; 0),

where the last equality is from (2). Note that RT (m; 0) is the period-T search revenue

for long-lived bidders with a fallback revenue 0, and the marginal revenue of inviting one

more bidder is then MRT (m; 0), as given in (3). Hence, for short-lived bidders, if the seller

continues to search in period T , the optimal sample size is m∗
T (0) which is independent of

the fallback revenue v at the beginning of period T .
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For short-lived bidders, let v̂T be the continuation search profit in period T , and

v̂T := max
m∈N0

{Emax{0, V m} − cm} = RT (mT (0); 0)− c ·mT (0) = ΠT (0).

In this case, the optimal search profit in period T , denoted by Π̂T (v), is then

Π̂T (v) = max

{
v,max

m∈N0

{Emax{0, V m} − cm}
}

= max{v, v̂T}.

Constructing the problem recursively, we have the following Bellman equation: for t ≤ T

Π̂t(v) = max

{
v,max

m∈N0

{EΠ̂t+1 (max{0, V m})− cm}
}
, (15)

and Π̂T+1(v) = v obviously. Note that, for short-lived bidders, the new state variable at the

beginning of period t+ 1 is the realization of max{0, V m}.

Theorem 2 gives the optimal search rule for short-lived bidders, which is featured by

decreasing cutoff values v̂t for optimal stopping and increasing sample sizes m̂∗
t over time.

Theorem 2 (Optimal search for short-lived bidders). Let v be the seller’s fallback revenue

at the beginning of period t ≤ T . It is optimal for the seller to stop searching in period t if

and only if v ≥ v̂t, where the cutoff value v̂t for stopping is recursively determined by

v̂t = ΠT (v̂t+1) = ΠT (ΠT (v̂t+2)) = · · · = ΠT ◦ · · · ◦ ΠT︸ ︷︷ ︸
T−t times

(v̂T ) = ΠT ◦ · · · ◦ ΠT︸ ︷︷ ︸
T−t+1 times

(0), (16)

with v̂T+1 ≡ 0. Moreover, v̂t+1 < v̂t < v0 and limT→∞ v̂1 = v0. The optimal sample sizes m̂∗
t

in period t is given by

m̂∗
t = m∗

T (v̂t+1)1(v < v̂t), (17)

and m̂∗
t is increasing over time. The optimal search profit is

Π̂t(v) = max{v, v̂t}. (18)

Remark 4. The recursive relation (16) reveals an interesting link between the optimal search

for short-lived and long-lived bidders, copied as follows

v̂t = max
m∈N0

{Emax{v̂t+1, V
m} −mc} = ΠT (v̂t+1).
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Note that v̂t is the continuation search profit in period t, which is achieved by choosing

the optimal sample size m̂∗
t in period t and then following the optimal search rule till the

deadline. Equation (16) establishes a recursive relation between v̂t and v̂t+1 through the

optimal search profit function ΠT . To be specific, it states that, when a searcher with short-

lived bidders decides to search in period t, she behaves as if she is searching for long-lived

bidders in the last period T , yet with a fallback revenue v̂t+1.

Remark 5. It is intuitive that the continuation search profit v̂t is decreasing over time, as the

searcher has fewer search opportunities to improve her payoff when the deadline gets closer.

It also implies that the optimal sample size m̂∗
t is increasing over time, as the marginal search

revenue MRT (m; v̂t+1) gets larger when v̂t+1 decreases over time.

The monotone properties of the optimal search rule fit many real-world observations. For

example, in M&As, if bidders are short-lived, a seller will contact the smallest number of

bidders and has the highest reserve price at the beginning. Therefore, it may explain why

negotiation is the dominant selling process in M&As. In academic recruiting, UK universities

generally increase their recruitment intensities when the REF deadline approaches. Natu-

rally, job candidates on a waiting list may no longer be available with time going on, and

therefore can be thought of short-lived candidates. Our results may explain the dynamics of

recruitment intensities observed in the UK academic markets.

Remark 6. For short-lived bidders, the sequences of optimal cutoffs for stopping and opti-

mal sample sizes are both deterministic and predetermined. This is because, when the seller

continues to search, her fallback revenue always turns to 0, and therefore, a declined fall-

back value will no affect her decisions in the following periods. Rather, both sequences are

determined by the number of remaining periods. This is different from the case of long-lived

bidders, where the sequence of optimal sample sizes is a random process, as the optimal

sample size m∗
t (v) depends on the realization of the fallback value v, which is random.

Remark 7. Theorem 2 also provides an algorithm for deriving the sequences of {v̂t}Tt=1 and

{m̂∗
t}Tt=1. Specifically, in period T , the continuation search profit v̂T+1 = 0, and we can solve
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for the optimal sample size m̂∗
T = m∗

T (0) using (5). With m̂∗
T , we then can calculate the

continuation search profit of v̂T using (16). Moving one period earlier, in period t = T − 1,

we can again derive the optimal sample size m̂∗
T−1 = m∗

T (v̂T ) using (5), and then get the

continuation search profit v̂T−1 using (16). Continuing with the process, we then fully solve

the optimal search rule for short-lived bidders.

Sequential Second-Price Auction Implementation

The optimal mechanisms with short-lived bidders, as specified in Theorem 2, can be imple-

mented by a sequence of second-price auctions with properly selected reserve prices {r̂t}Tt=1

and sample sizes {m̂∗
t}Tt=1. To be specific,

� At the beginning of any period t ≤ T , the seller’s fallback revenue

v = max

{
0, ψ−1

(
max
i∈Mt−1

xi

)}
is given by the auction outcome in period t− 1 with the set Mt−1 of bidders.

� If v is greater than the cutoff value v̂t, then the seller stops and claims the revenue v

by allocating the product to the winning bidder in Mt−1.

� Otherwise, the seller invites m̂∗
t = m∗

T (v̂t+1) new bidders in period t and runs a second-

price auction with a reserve price of r̂t = ψ−1(v̂t+1).

Again, in the proposed second-price auction with a reserve price, it is a weakly dominant

strategy for a bidder to participate if invited and to bid his true product value. Continuing

with the uniform Example 1, Example 2 below shows how to derive the optimal search

rule for short-lived bidders and how to implement the optimal mechanism by a sequence of

second-price auctions.

Example 2 (Optimal search auction with short-lived bidders). Consider the same setting

of Example 1, yet the bidders are now short-lived.
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� In the last period T = 2, if the seller continues to search, she will choose the optimal

sample size m̂∗
2 = m∗

2(v̂T+1 = 0) = 2 by (13) in Example 1. From (16), the continuation

search profit v̂2 = Π2(0) ≈ 0.0967 using equation (14). Hence, the seller’s optimal

search profit with a fallback revenue v at the beginning of period T is

Π̂2(v) = max{v, v̂2}. (19)

� In the first period t = 1, if she continues to search, she will choose the optimal sample

size m̂∗
1 = m∗

2(v̂2) = 1 by (13) again. The continuation search profit v̂1 = Π2(v̂2) ≈

0.1407 using equation (14). Hence, the seller’s optimal search profit with a fallback

revenue 0 at the beginning of period 1 is

Π̂1(0) = max{0, v̂1} = v̂1.

The optimal sample sizes m̂∗
t and the search profits Π̂t are plotted in Figure 2 (in red).

The optimal search profit can be obtained by the following sequential second-price auc-

tion. At the beginning of the period t = 1, the seller’s fallback revenue v = 0, which is smaller

than the continuation search profit v̂1 ≈ 0.1407. The seller will then invite m̂∗
1 = m∗

2(v̂2) = 1

bidder and run a second-price auction with a reserve price r̂1 = ψ−1(v̂2) ≈ 0.5703. If the

bidder’s bid x1 ≥ r̂1, the seller then allocates the product to him at price r̂1; otherwise, the

seller continues to search in period 2, by inviting m̂∗
2 = m∗

2(0) = 2 new bidders and running

a second-price auction with a reserve price of r̂2 = ψ−1(0) = 0.5.

The two-period example can be easily extended to any finite T -period problems. As

shown above, one can recursively derive the optimal sample size m̂∗
t and continuation search

profit v̂t from the last period T . Note that the optimal sample size m̂∗
t is increasing over

time, and m̂∗
T−1 = 1 in this example. It is then follows that, at the beginning of any period

t < T , if the seller decides to search, it is optimal to invite just one bidder. Second, the cutoff

revenue for optimal stopping v̂t is strictly decreasing over time. The monotone properties of

optimal sample sizes and the reserve prices are illustrated in Figure 3(b).
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Similarly, for short-lived bidders, we can implement the optimal search profit by a se-

quence of second-price auctions, as illustrated in Figure 3(b). Specifically, the optimal re-

serve price in any period t is r̂t = ψ−1(v̂t+1), and an invited bidder will bid his true product

value. As illustrated in Figure 3(b), at the beginning of any period t, if the highest bid

maxi∈Mt−1{xi} of the period t− 1 participating bidders is higher than the reserve price r̂t−1,

the seller then allocates the product to the winning bidder in Mt−1; otherwise, she will con-

tinue by inviting m̂∗
t new bidders in period t and run an auction at the reserve price r̂t. The

seller runs the auctions in this way till the last period T . Figure 3(b) also illustrates that r̂t

is decreasing and m̂∗
t is increasing over time.

Long-lived vs. short-lived bidders

We here present some comparative results between long-lived and short-lived bidders. With

short-lived bidders, a seller cannot reclaim previously declined offers as those bidders already

drop out of the transaction. This induces two seemingly opposite effects on a seller’s optimal

search decisions. On the one hand, a seller with short-lived bidders is more likely to stop and

accept a lower offer than one with long-lived bidders. That is, for short-lived bidders, the

cutoff revenue for optimal stopping is lower than that for long-lived bidders, e.g., v̂t < v0.

We term this as discouragement effect, i.e., it discourages the seller from further searching

by accepting a lower fallback revenue. On the other hand, conditional on search, a seller

with short-lived bidders will search more intensively than one with long-lived bidders. This

is because the seller’s fallback revenue turns to 0 if she continues to search, and a lower

fallback revenue will increase the marginal search revenue and hence the optimal sample

size. We term this effect as encouragement effect which encourages the seller to search more

intensively. Corollaries 1 and 2 formally summarize the two effects.

Corollary 1 (Discouragement Effect). A seller with short-lived bidders stops at a lower

cutoff revenue than one with long-lived bidders in any period t = 1, · · · , T . To be specific,

v0 > v̂1 > v̂2 > · · · > v̂T > 0.
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Corollary 2 (Encouragement Effect). Conditional on searching, a seller with short-lived

bidders searches more intensively than one with long-lived bidders in any period t = 1, · · · , T .

That is, for any v < v̂t, we have m̂∗
t (v) ≥ m∗

t (v).

We can also compare the optimal search profit with long-lived and short-lived bidders.

Intuitively, as a seller can reclaim a long-lived bidder’s previous offer, long-lived bidders are

more valuable, and hence, the optimal search profit with long-lived bidders is greater than

that with short-lived bidders. We call the difference between them as the value of bidder

longevity, which is shown to be positive and single-peaked.

Corollary 3 (Value of Bidder Longevity). The value of Πt(v)− Π̂t(v) is

i) non-negative for all v and t;

ii) strictly increasing in 0 ≤ v ≤ v̂t and strictly decreasing in v̂t ≤ v ≤ v0.

Example 3 (Optimal search: long vs. short-lived bidders). Figure 2 summarizes the optimal

search rules and profits for both cases of long and short-lived bidders, as derived in Example

1 and Example 2. The horizontal axes is the fallback revenue v, and the vertical one is the

search profit. First, we observe that a seller with short-lived bidders has lower cutoffs for

optimal stopping than one with long-lived bidders, i.e., v̂2 < v̂1 < v0. This demonstrates

the discouragement effect (Corollary 1), that is, a seller with short-lived bidders is willing

to accept a lower reserve price and then stop. Second, we also observe that, conditional

on searching, a seller with short-lived bidders searches more intensively. Particularly, when

v12 < v̂2, m̂
∗
2 = 2 for short-lived bidders is strictly greater than m∗

2(v) = 1 for long-lived

bidders. This reveals the encouragement effect (Corollary 2). Third, Figure 2 also illustrates

that the value of bidder longevity is always positive and single-peaked. Particularly, when

v ≥ v0, Πt(v) = Π̂t(v) as the seller always stops and keeps the fallback revenue v. When

v < v0, we have Πt(v) > Π̂t(v) for any t and any v, except for ΠT (0) = Π̂T (0). Moreover,

Πt(v)− Π̂t(v) is single-peaked, achieving its maximum at v̂t (Corollary 3).
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Remark 8. The results of Corollary 1 and 2 are also illustrated in Figure 3. By comparing

Figure 3(a) and 3(b), first, we find that the optimal auction reserve prices for long-lived

bidders are greater than those of short-lived bidders in each period, i.e., rt > r̂t for t <

T and rT = r̂T for t = T . Specifically, the dotted areas in Figure 3(b) highlight the

discouragement effect (Corollary 1) that a seller with short-lived bidders is willing to accept

a lower reserve price and stop in each period. Second, conditional on searching, we find

that a seller with short-lived bidders will search more intensively than one with long-lived

bidders, i.e., m̂∗
t > m∗

t (v) if v < v̂t. The green slashed area in period T in Figure 3(b)

highlights the encouragement effect (Corollary 2) by showing that m̂∗
T = 2 > mT (v)

∗ = 1 for

v1T−1 < v < v̂T .

A Convergence Result

Theorems 1 and 2 give the optimal search rules and values for long and short-lived bidders.

When T → ∞, we will show that the difference between the two cases vanishes and both

converge to the stationary and finite horizon (SIH) sequential search problem.

We first consider the optimal search auction with short-lived bidders. Theorem 2 gives

that the optimal cutoff value for stopping limT→∞ v̂1 = v0. Therefore, when T → ∞, for any

finite t, the optimal cutoff values v̂t = v0, and the optimal sample size, from (17),

m̂∗
t = 1(0 ≤ v < v0),

that is, one-by-one sequential search is optimal. The optimal search profit is hence

Π̂t(v) = max{v, v0}.

We next consider the optimal search auction with long-lived bidders. When T → ∞,

(11) gives limT→∞ Gt+1 = 0 and hence the optimal search profit with long-lived bidders is

Πt(v) = max{v, v0},

and it is achieved by one-by-one sequential search. Therefore, when T → ∞, both cases

converge to the optimal search rule and profits of SIH search problems.
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6 Efficient Search Auctions

In many situations, the objective of a seller is not to maximize profit but social welfare. This

section turns to the efficient search for bidders by a deadline, where a seller’s objective is to

maximize the expected welfare, which is the expected product value of the winning bidder

net of gross search costs. Now the seller cares about a bidder’s product value x rather than

the revenue v = ψ(x) she can secure from a truthful bidder.

We will derive the efficient search rules and values for both long and short-lived bidders.

Similarly, the efficient mechanisms can be implemented by a sequence of second-price auc-

tions with appropriately selected reserve prices and sampling rules. We will show that an

optimal search auction is featured by over-searching in both cases of long and short-lived

bidders, in terms of either higher cutoff values for stopping or greater sample sizes than those

in an efficient search auction. Therefore, the inefficiency of an optimal search auction can

stem from its inefficient search rule.

Long-lived Bidders

When the seller’s objective is to maximize welfare, she cares about the winning bidder’s

product value rather than the product revenue. Let x be the fallback product value at the

beginning of period t, i.e., the highest product value revealed by the Nt−1 bidders, andWt(x)

be the net search welfare achieved by following an efficient search rule from period t on.10

Similar to (6), the Bellman equation for an efficient search problem is as follows

Wt(x) = max

{
x,max

m∈N0

{EWt+1 (max {x,Xm})−mc}
}
, (20)

where Xm is the highest product value from a sample of m bidders, with WT+1(x) = x. We

define the expected search welfare of inviting m bidders in period t by

Ut(m;x) := EWt+1 (max {x,Xm}) , (21)

10We use x to denote the fallback product value in order to differentiate it from v for the revenue-
maximizing seller.
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Figure 4: Efficient search rule me
t(x) in Example 4

1
0

0.05

0.1

0.15

0.2

0.25

c = 0.16

x0

me
1 = 1 me

1 = 0

x

MU1

MU1(m = 0;x)
MU1(m = 1;x)
MU1(m = 2;x)

(a) Period 1

1
0

0.05

0.1

0.15

0.2

0.25

c = 0.16

x12 x0

me
2 = 2 me

2 = 1 me
2 = 0

x

MU2

MU2(m = 0;x)
MU2(m = 1;x)
MU2(m = 2;x)

(b) Period 2

Note. c = 0.16, F (x) = x1(0 ≤ x ≤ 1), and T = 2. In period 1, the efficient sample
size is me

1(x) = 1(x < x0), where x0 = 0.4343. In period 2, the efficient sample size is
me

2(x) = 1(x < x12) + 1(x < x0), where x12 ≈ 0.1204.

and the marginal search welfare MUt(m;x) := Ut(m + 1; x) − Ut(m;x). It’s obvious that

MUt(m;x) is strictly decreasing in m and converges to 0 when m → ∞, and is strictly

decreasing in x. Let me
t(x) denote the efficient sample size in period t that maximizes the

expected net search welfare Ut(m;x)−mc, and we have

me
t(x) = min {m ∈ N0 :MUt(m;x) ≤ c} . (22)

As before, for each 0 ≤ m < me
t(0), there exists a unique cutoff product value xmt that solves

MUt(m;x) = c. Moreover, the cutoff x0t for stopping is constant for all t ≤ T , and hence,

we denote x0 = x0t which is the unique solution to

MUT (0;x
0) =

∫ x̄

x0
(1− F (z))dz = c. (23)

Similarly, we have the following efficient search rule and net welfare for long-lived bidders.
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Proposition 1 (Efficient Search for Long-lived Bidders). Let x be the seller’s fallback product

value at the beginning of period t. The efficient sample size me
t (x) is given by

me
t (x) = min{m ∈ N0 :MUt(m;x) ≤ c}, (24)

where the marginal search welfare MUt(m;x) is recursively determined by

MUt(m;x) =

∫ x̄

x

F (z)m(1− F (z))
∏
τ≥t+1

F (z)m
e
τ (z)dz, (25)

and it is efficient to stop if me
t (x) = 0. The maximum net search welfare Wt(x) is

Wt(x) = Emax{x,Xe
t } = xFt(x) +

∫ x̄

x

zdFt, (26)

where Xe
t is the continuation net welfare achieved by following the efficient search mechanism

from period t on, and its distribution function Ft(x) is recursively defined by

Ft(x) = F (x)m
e
t(x)Ft+1(x) =

∏
τ≥t

F (x)m
e
τ (x). (27)

Remark 9. The property of MUt(m;x) guarantees that, for each m = 0, 1, . . . ,me
t (0) − 1,

there exists a unique cutoff product value xmt that solves MUt(m;x) = c. When x ≥ x0t ,

me
t (x) = 0 and it is efficient to stop. As before, we can show x0t = x0 for all t = 1, · · · , T ,

and therefore, there is a time-invariant cutoff product value for efficient stopping. Similar

to (12), we provide the following explicit expression of me
t (x) in period t:

me
t (x) =

me
t (0)∑
m=1

1(x < xm−1
t ) =



0 if x ≥ x0

1 if x1t ≤ x < x0

2 if x2t ≤ x < x1t
...

me
t (0) if x < x

me
t (0)−1

t .

(28)

Remark 10. The maximum welfare with long-lived bidders, as specified in Proposition 1, can

be obtained by a sequence of second-price auctions with reserve prices {ret}Tt=1 and sampling

rules {me
t (x)}Tt=1. Again, for long-lived bidders, a key feature of the efficient search auction

is that the efficient reserve prices are time-invariant throughout all the periods t < T and

drops to 0 in the last period T . To be specific,

ret =

{
x0 if t < T

0 if t = T.
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Example 4 below shows how to construct an efficient search auction using the results of

Proposition 1. Particularly, we are interested in comparing the stopping cutoffs and sampling

rules between the two cases of optimal and efficient search for long-lived bidders.

Example 4 (Efficient search auction for long-lived bidders). Consider Example 1 again, yet

we now examine an efficient, not an optimal, search auction for long-lived bidders.

� In the last period t = 2, the marginal search welfare is

MU2(m;x) =

∫ 1

x

F (z)m(1− F (z))dz =
1 + (1 +m)xm+2 − (m+ 2)xm+1

(m+ 1)(m+ 2)
,

which is plotted in Figure 4(b). As MU2(2; 0) = 1/16 < c, the efficient sample size can

not be greater than 2. For m = 0, 1, solving MR2(m;x) = c gives the cutoff values

x0 = x02 ≈ 0.4343 and x12 ≈ 0.1204. From (24), the efficient sample size is

me
2(x) = 1(x < x12) + 1(x < x0). (29)

We have F2(x) = F (x)m
e
2(x), and the maximum net welfare in period t = 2 is

W2(x) = Emax{x,Xe
2} = xF2(x) +

∫ x̄

x

zdF2. (30)

� In the first period t = 1, the marginal search welfare is

MU1(m;x) =

∫ 1

x

F (z)m(1− F (z))F2(z)dz,

which is illustrated in Figure 4(a). It’s interesting to observe that, for and x ≥ x0,

MU2(m,x) = MU1(m,x) for any m, and therefore, there is a time-invariant cutoff

x0 for efficient stopping. If x < x0, the positive sample size in period t = 2, e.g.,

me
2(x) ≥ 1, decreases the marginal search welfare in period 1 as F2(x) < 1, and hence,

MU1(m,x) < MU2(m,x). AsMU1(1; 0) =
∫ x12
0
z3(1−z)dz+

∫ x0
x12
z2(1−z)dz+

∫ 1

x0
z(1−

z)dz ≈ 0.1428 < c, the efficient sample size in period t = 1 is at most 1, and

me
1(x) = 1(x < x0).
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Given me
1(x) and m

e
2(x), the continuation net search welfare Xe

1 has the distribution

F1(x) = F (x)m
e
1(x)+m

e
2(x) =


F (x)3 if x < x12
F (x)2 if x12 ≤ x < x0

F (x)0 = 1 if x ≥ x0.

The maximum net search welfare at the beginning of period t = 1 is

W1(0) = Emax{0, Xe
1} =

∫ 1

0

zdF1 = x0 −
∫ x0

x12

F (z)2dz −
∫ x12

0

F (z)3dz ≈ 0.4075.

The maximum net search welfare can be obtained by the following sequential second-price

auction. At the beginning of period t = 1, as the fallback value 0 < x0, the seller invites

one bidder (bidder 1) and runs a second-price auction with a reserve price x0. Bidder 1 will

bid truthfully. If the bidder’s bid is greater than 0 < x0 ≈ 0.4343, the seller then allocates

the product to him at the price x0. Otherwise, the seller moves to period t = 2 with the

following sampling rule:

� invite two more bidders if bidder 1’s bid is lower than x12 ≈ 0.1204;

� invite one more bidder if bidder 1’s bid is between x0 ≈ 0.4343 and x12 ≈ 0.1204.

In period 2, the seller runs a standard second-price auction with a reserve price 0.

Short-lived Bidders

Similar to Theorem 2, we can derive the efficient search rule and welfare for short-lived

bidders. Let x̂t, m̂
e
t and Ŵt(x) respectively denote the cutoff value for efficient stopping, the

efficient sample size, and the maximum net search welfare in the case of short-lived bidders.

Proposition 2 below gives the results.

Proposition 2 (Efficient Search for Short-lived Bidders). Let x be the seller’s fallback prod-

uct value at the beginning of period t ≤ T . It is efficient for the seller to stop in period t if

and only if x ≥ x̂t, where the cutoff value x̂t is recursively determined by

x̂t = WT (x̂t+1) = WT (WT (x̂t+2)) = · · · = WT ◦ · · · ◦WT︸ ︷︷ ︸
T−t times

(x̂T ) = WT ◦ · · · ◦WT︸ ︷︷ ︸
T−t+1 times

(0). (31)
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Moreover, x̂t+1 < x̂t < x0 and limT→∞ x̂1 = x̂. The efficient sample sizes m̂e
t (x) is given by

m̂e
t (x) = me

T (x̂t+1)1(x < x̂t), (32)

and m̂e
t (x) is increasing over time, i.e., m̂e

t ≤ m̂e
t+1. The maximum net search welfare is

Ŵt(x) = max{x, x̂t}. (33)

Example 5 derives the efficient search auction with short-lived bidders. We are interested

in comparing the efficient search rules across different cases, i.e., between short and long-lived

bidders, and between efficient and optimal searches.

Example 5 (Efficient search auction with short-lived bidders). Let us reconsider Example

4, yet now with short-lived bidders. Again we solve the problem by backward induction.

� At the beginning of the last period t = 2, if the seller continues to search, she will

choose a sample size m̂e
2 = me

2(0) = 2 as given in Example 4 and the continuation net

search welfare is x̂2 = W2(0) ≈ 0.3467 from (30). The maximum net search welfare at

the beginning of period t = 2 is hence Ŵ2(x) = max{x, x̂2}.

� At the beginning of period t = 1, if the seller continues to search, she will choose

a sample size m̂e
1 = me

2(x̂2) = 1, and the continuation net search welfare is x̂1 =

W2(x̂2) ≈ 0.4001 again from (30). The maximum net search welfare at the beginning

of period t = 1 is hence Ŵ1(0) = max{0, x̂1}.

The efficient mechanisms can be implemented by the following sequential second-price auc-

tion. At the beginning of period t = 1, as the fallback value 0 is smaller than x̂1 ≈ 0.4001,

the seller then invites m̂e
1 = 1 bidder (bidder 1) and runs a second-price auction with a

reserve price x̂2 ≈ 0.3467. If the bid is higher than x̂2, the seller then allocates the product

to bidder 1 at the price x̂2. Otherwise, the seller continues to invite m̂e
2 = 2 bidders in period

t = 2 and run a second-price auction with a zero reserve price.

31



Optimal vs. Efficient Search Auctions

The optimal search rules are different from the efficient ones, in both cases of long and

short-lived bidders. Particularly, in terms of product value, we can show that the optimal

cutoff value for stopping is higher than the efficient one, and therefore, there would be

over-searching in an optimal search auction. This result echoes the similar result in static

auctions, where the product value associated with the optimal reserve, i.e., ψ−1(0), is greater

than one with the efficient reserve, i.e., 0. Our results then extend the static result to the

more general case of sequential search auctions with a deadline.

Corollary 4 states that, for long-lived bidders, the cutoff product value for optimal stop-

ping is higher than that for efficient stopping. As a results, a profit-maximizing seller would

over search bidders than a welfare-maximizing seller.

Corollary 4. For long-lived bidders, the cutoff product value for optimal stopping is greater

than that for efficient stopping, i.e., v0 > ψ(x0).

For short-lived bidders, we have the similar result that the optimal sample size in period

t is greater than the efficient one, if their continuation search values are equal. Therefore,

the over-searching result for an optimal search auction also holds for short-lived bidders.

Corollary 5. For short-lived bidders, the optimal sample size in period t is greater than the

efficient one, i.e., m̂∗
t ≥ m̂e

t , if their continuation search values are equal in the sense that

v̂t+1 = ψ(x̂t+1).

7 Conclusions

This article studies a seller’s optimal search for strategic bidders by a deadline. The setting

encompasses many real-world problems, such as M&A selling processes, government pro-

curements, multi-round recruiting campaigns, online search for price quotes, and so on. We

propose a tractable model to analyse this category of problems, and fully characterize the

optimal search rules in both cases of long-lived and short-lived bidders.
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We show that the optimal mechanisms can be implemented by a sequence of second-price

auctions with properly selected reserve prices and sampling rules. For long-lived bidders, it

is optimal to set a constant reserve price throughout all the periods t < T but lower it to

the optimal reserve price for static auctions in the last period T . The optimal sample size

is increasing over time and decreasing in the seller’s fallback revenue ceteris paribus. As the

realizations of bidder values are random, the sequence of optimal sample sizes is a random

process. For short-lived bidders, the sequence of optimal reserve prices is decreasing, and

that of optimal sample sizes is increasing over time. Both sequences are deterministic and

pre-determined, which is different from long-lived bidders.

We provide some comparative results between long and short-lived bidders. First, the

optimal reserve price is lower for short-lived bidders than for long-lived bidders. Therefore,

a seller with short-lived bidders is more likely to stop by accepting a lower reserve price, and

we call this discouragement effect of short-lived bidders. Second, conditional on searching, a

seller with short-lived bidders will search more intensively than one with long-lived bidders,

and we term this encouragement effect of short-lived bidders.

We further study the efficient search for bidders, where the seller maximizes the expected

product value of the winning bidder net of gross search costs. The efficient search auctions

that implement the efficient mechanisms are qualitatively similar to the optimal ones, yet

with different reserve prices and quantitatively differentiated sampling rules. We demonstrate

that an optimal search auction is featured by over-searching in the sense of a higher reserve

price or a larger search intensity than an efficient search auction. Therefore, the inefficiency

of an optimal search auction may stem from its inefficient search rule.

This article makes important contributions to the literature on search mechanisms. The

existent literature has mostly focused on the search for long-lived bidders without a time

constraint and also largely neglected the case of short-lived bidders. This article introduces a

finite deadline to a search mechanism and examines both cases of long and short-lived bidders.

More importantly, the results can be applied to a large variety of real-world problems where

a decision-maker searches for strategic agents with a deadline.
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Appendix: Omitted Proofs

Proof of Lemma 1. It follows from (7) that

MRt(m; v) = EΠt+1

(
max

{
v, V m+1

})
− EΠt+1 (max {v, V m}).

Noting that V ’s are independent draws, we have max{v, V m+1} = max{v,max{V m, V }} =

max{max{v, V m}, V }. As Πt+1 is strictly increasing, we have

Πt+1 (max{max{v, V m}, V })− Πt+1 (max {v, V m})

=

{
Πt+1(V )− Πt+1(max{v, V m}) if V ≥ max{v, V m}
0 if V < max{v, V m}.

As a result, an alternative expression of the marginal revenue is

MRt(m; v) = Emax{Πt+1(V )− Πt+1(max{v, V m}), 0},

which directly implies the results (i)-(iii) in the Lemma.

Proof of Theorem 1. Assume MRT (0, 0) > c, otherwise the problem becomes trivial as the

seller never invites any bidder. Let π∗
t (v) := maxm∈N0{Rt(m; v)− cm}. We prove the results

by backward induction.

Step 1: For the last period T , substituting ΠT+1(v) = v into (7), the expected revenue is

RT (m; v) = Emax {v, V m} = v +

∫ v̄

v

(1−G(z)m)dz, (34)

and MRT (m; v) =
∫ v̄
v
G(z)m(1−G(z))dz. Let v0 ≡ v0T , which is the unique value satisfying

MRT (0, v
0) =

∫ v̄
v0
(1 − G(z))dz = c. We have 0 < v0 < v̄ as MRT (0, v̄) < c < MRT (0, 0).

As π∗
T (v) is a contraction on [0, v0],11 there exists a unique fixed point on [0, v0] such that

11For any 0 ≤ v < v′ ≤ v0 < v̄,

π∗
T (v

′)− π∗
T (v) = RT (m

∗
T (v

′); v′)− cm∗
T (v

′)− [RT (m
∗
T (v); v)− cm∗

T (v)]

≤ RT (m
∗
T (v

′); v′)− cm∗
T (v

′)− [RT (m
∗
T (v

′); v)− cm∗
T (v

′)]

= RT (m
∗
T (v

′); v′)−RT (m
∗
T (v

′); v)

=

∫ v′

v

G(z)m
∗
T (v′)dz ≤ G(v′)m

∗
T (v′) ≤ G(v0) < 1.
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π∗
T (v) = v due to the Banach fixed point theorem.12 In fact, this fixed point is v0 as

m∗
T (v) = 0 for v ≥ v0, and π∗

T (v) = v. Therefore, the optimal search profit in period T is

ΠT (v) = max{v, π∗
T (v)} =

{
v if v ∈ [v0, v̄]

π∗
T (v) = RT (m

∗
T (v); v)− cm∗

T (v) if v ∈ [0, v0),

which is obtained by the optimal search rule described in (8).

We next show that ΠT (v) is convex and can be represented as (10). First, as ∂RT (m; v)/∂v =

G(v)m is increasing in v, RT (m; v) − cm is convex in v for any given m; and π∗
T (v), as the

maximum of a family of convex functions, is hence also convex in v.13 Second, the optimal

profit ΠT (v) is the maximum of two convex functions. It is then convex and absolutely

continuous, and its derivative Π′
T (v) is defined almost everywhere.14 As such, ΠT (v) can be

represented by a definite integral of its derivative,15 i.e.,

ΠT (v) = ΠT (v̄)−
∫ v̄

v

Π′
T (z)dz = v̄ −

∫ v̄

v

Π′
T (z)dz,

where we apply ΠT (v̄) = v̄. As ∂RT (m; v)/∂v = G(v)m, applying envelop theorem gives16

Π′
T (v) =

{
1 if v ∈ [v0, v̄]

G(v)m
∗
T (v) if v ∈ [0, v0),

which is equivalent to GT (v) as given in (11). The optimal search profit ΠT (v) is then

represented by (10). Note that GT (x) = Π′
T (x) is increasing in x as ΠT (x) is convex.

Step 2: For t < T , as an induction hypothesis, assume

Πt+1(v) = v̄ −
∫ v̄

v

Gt+1(z)dz, (35)

where Gt+1(v) is given by (11) and is increasing in x. Integrating by parts then gives

Rt(m; v) = EΠt+1(max{v, Vm})

= Πt+1(v)G(v)
m +

∫ v̄

v

Πt+1(z)dG(z)
m

12See Ok (2007, p.176).
13See Aliprantis and Border (2006, p.187).
14See Varberg and Roberts (1973, p.4,5) and Royden and Fitzpatrick (2010, p.124,131,132).
15See Royden and Fitzpatrick (2010, p.125).
16See Simon and Blume (1994, Theorem 19.4).
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= v̄ −
∫ v̄

v

G(z)mGt+1(z)dz,

and MRt(m; v) =
∫ v̄
v
G(z)m(1 − G(z))Gt+1(z)dz. At the cutoff revenue v0, we still have

MRt(0; v
0) = c as Gt+1(v) = 1 for v ≥ v0. Again, π∗

t (v) is a contraction on [0, v0], on which

v0 is the unique fixed point. Therefore, for t < T , the optimal search profit is

Πt(v) = max{v, π∗
t (v)} =

{
v if v ∈ [v0, v̄]

π∗
t (v) = Rt+1(m

∗
t (v); v)− cm∗

t (v) if v ∈ [0, v0),

which is obtained by the optimal search rule described in (8).

Next, we have ∂Rt+1(m; v)/∂v = G(v)mGt+1(v), which is increasing in v. As in Step 1,

Rt+1(m; v) − cm is convex in v for any given m, and hence π∗
t (v) is also convex in v. The

optimal profit Πt(v), as the maximum of two convex functions, is convex and absolutely

continuous. Hence, its derivative Π′
t(v) is defined almost everywhere and Πt(v) can be

represented by

Πt(v) = Πt(v̄)−
∫ v̄

v

Π′
t(z)dz = v̄ −

∫ v̄

v

Π′
t(z)dz,

where we apply Πt(v̄) = v̄. As ∂Rt+1(m; v)/∂v = G(v)mGt+1(v), envelop theorem yields

Π′
t(v) =

{
1 if v ∈ [v0, v̄]

G(v)m
∗
t (v)Gt+1(v) if v ∈ [0, v0),

which is equivalent to Gt(v) given in (11).

Proof of Theorem 2. We solve the search problem (15) by backward induction. For t ≤ T ,

define

v̂t := max
m∈N0

{
EΠ̂t+1 (max{0, V m})−mc

}
, (36)

which is the continuation search profit of following an optimal search rule from period t on,

and v̂T+1 ≡ 0. Substituting (36) into (15) then gives (18), i.e., Π̂t(v) = max{v, v̂t}. It’s clear

that the seller stops searching in period t if and only if v ≥ v̂t.

Starting from the last period T , substituting Π̂T+1(v) = v into (36) gives

v̂T = max
m∈N0

{Emax{0, V m} −mc} = ΠT (0) = ΠT (v̂T+1) > 0,
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where we apply v̂T+1 = 0. The strict inequality is from the fact that, for v ∈ [0, v0),

v < ΠT (v) < v0 (Remark 3). It then confirms (16) and that v0 > v̂t > v̂t+1 for t = T .

Suppose the induction hypotheses hold for periods t+ 1, · · · , T . In period t, we have

v̂t = max
m∈N0

{
EΠ̂t+1 (max{0, V m})−mc

}
= max

m∈N0

{Emax{v̂t+1, V
m} −mc} = ΠT (v̂t+1),

where the second equality is from (18) and the fact that v̂t+1 > 0, e.g.,

Π̂t+1 (max{0, V m}) = max {max{0, V m}, v̂t+1} = max {v̂t+1, V
m} .

Again v̂t+1 < v̂t < v0, and the induction hypotheses hold for any period t ≤ T . Furthermore,

by monotone convergence theorem and that ΠT (v
0) = v0, we have limT→∞ v̂1 = v0.

We next solve for the optimal sample size m̂∗
t when the seller continues to search. Simi-

larly, for the payoff function on the RHS of (36), we define the search revenue

R̂t(m; v) := EΠ̂t+1(max{0, V m}) = RT (m, v̂t+1).

The maximizer m̂∗
t is then given by

m̂∗
t = min {m ∈ N0 :MRT (m, v̂t+1) ≤ c} = m∗

T (v̂t+1).

As v̂t > v̂t+1, we have m∗
T (v̂t) ≤ m∗

T (v̂t+1), which implies that m̂∗
t ≤ m̂∗

t+1.

Proof of Corollary 1. The proof is already given in the proof of Theorem 2.

Proof of Corollary 2. When v < v̂t, it is optimal to search in both cases of short and long-

lived bidders. The result is then clear by comparing Theorem 1 and Theorem 2.

Proof of Corollary 3. i) It is easy to show that ΠT (v) ≥ Π̂T (v). Then the result Πt(v) ≥

Π̂t(v) can be recursively derived from the last period T , using the Bellman equations of

(6) and (15) and that Πt+1(v) ≥ Π̂t+1(v). ii) Note that Π̂t(v) = max{v, v̂t} by (18), and

Πt(v) = Emax{v, V ∗
t } where V ∗

t has the distribution Gt(v) =
∏

τ≥tG(v)
m∗

τ (v) by (11). The

single-peak result then comes from comparing the slopes of Π̂t(v) and Πt(v).
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Proof of Proposition 1. Let w∗
t (x) := maxm∈N0{Ut(m;x) − cm}. We prove the results by

backward induction.

Step 1: Let t = T . Substituting WT+1(x) = x into (21), the expected search welfare is

UT (m;x) = Emax {x,Xm} = x+

∫ x̄

x

(1− F (z)m)dz,

and MUT (m;x) =
∫ x̄
x
F (z)m(1 − F (z))dz. Denote x0 < x̄ the unique value satisfying

MUt(0;x
0) =

∫ x̄
x0
(1 − F (z))dz = c. Note w∗

T (x) is a contraction on [0, x0], and there is

a unique fixed point on [0, x0] such that w∗
T (x) = x. In fact this fixed point is x0, as

me
T (x) = 0 for z ≥ x0 and w∗

t (x) = x. Therefore, the net search welfare function is

WT (x) = max{x,w∗
T (x)} =

{
x if x ∈ [x0, x̄],

w∗
T (x) = UT (m

e
T (x);x)− cme

T (x) if x ∈ [0, x0),

which is obtained by the efficient search rule described in (24).

We next show thatWT (x) is convex and can be represented as (26). First, as ∂UT (m;x)/∂x =

F (x)m is increasing in x, UT (m;x) is convex in x for any given m. w∗
T (x), as the maximum

of a family of convex functions, is hence convex in x. Second, the net search welfareWT (x) is

the maximum of two convex functions. It is then convex and absolutely continuous, and its

derivative W ′
T (x) is defined almost everywhere, and WT (x) can be represented by a definite

integral of its derivative, i.e.,

WT (x) = WT (x̄)−
∫ x̄

x

W ′
T (z)dz = x̄−

∫ v̄

v

Π′
T (z)dz,

where we apply WT (x̄) = x̄. As ∂wT (m;x)/∂x = F (x)m, applying envelop theorem gives

W ′
T (x) =

{
1 if x ∈ [x0, x̄],

F (x)m
e
T (x) if x ∈ [0, x0),

which is equivalent to FT (x) as given in (27). The net search welfare WT (x) is then repre-

sented by (26). Note that FT (x) = W ′
T (x) is increasing in x as WT (x) is convex.

Step 2: For t < T , as an induction hypothesis, assume

Wt+1(x) = x̄−
∫ x̄

x

Ft+1(z)dz,
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where Ft+1(z) is given by (27) and is increasing in x. Integrating by parts then gives

Ut(m;x) = x̄−
∫ x̄

x

F (z)mFt+1(z)dz,

and MUt(m;x) =
∫ x̄
x
F (z)m(1 − F (z))Ft+1(z)dz. For the cutoff value x0, we still have

MUt(0;x
0) = c as Ft+1(z) = 1 for x ≥ x0. Again, x0 is the unique fixed point on [0, x0] such

that w∗
t (x

0) = x0. Therefore, for t < T , the net search welfare is

Wt(x) = max{x,w∗
t (x)} =

{
x if x ∈ [x0, x̄],

w∗
t (x) = Ut(m

e
t(x);x)− cme

t(x) if x ∈ [0, x0),

which is obtained by the efficient search rule described in (24).

Next, ∂Ut(m;x)/∂x = F (x)mFt+1(x), which is increasing in x. As in Step 1, wt(m;x) is

convex in x for any given m, and hence w∗
t (x) is also convex in x. The search value Wt(x),

as the maximum of two convex functions, is convex and absolutely continuous. Hence, its

derivative W ′
t(x) is defined almost everywhere and Wt(x) can be represented by

Wt(x) = Wt(x̄)−
∫ x̄

x

W ′
t(z)dz = x̄−

∫ x̄

x

W ′
t(z)dz,

where we apply Wt(x̄) = x̄. As ∂wt(m;x)/∂x = F (x)mFt+1(x), envelop theorem yields

W ′
t(x) =

{
1 if x ∈ [x0, x̄],

F (x)mt(x)Ft+1(x) if x ∈ [0, x0),

which is equivalent to Ft(x) given in (27).

Proof of Proposition 2. The proof is analogous to that of Theorem 2 and Proposition 1, and

is hence omitted here.

Proof of Corollary 4. v0 and x0 are given by
∫ v̄
v0
[1 − G(z)]dz =

∫ x̄
x0
[1 − F (z)]dz = c, where

v̄ = x̄. Suppose v0 ≤ ψ(x0). We then have∫ v̄

v0
[1−G(z)]dz ≥

∫ x̄

ψ(x0)

[1−G(z)]dz =

∫ x̄

ψ(x0)

[1− F (ψ−1(z))]dz

=

∫ x̄

x0
[1− F (x)]ψ′(x)dx >

∫ x̄

x0
[1− F (x)]dx,

where we replace z = ψ(x) and the last inequality is from the fact that ψ′(x) > 1, which

results in a contradiction. It then must be that v0 > ψ(x0).
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Proof of Corollary 5. We know that the optimal and efficient sample sizes are given by

m̂∗
t = min {m ∈ N0 :MRT (m, v̂t+1) ≤ c} and m̂e

t = min {m ∈ N0 :MUT (m, x̂t+1) ≤ c} ,

respectively. To prove that m̂∗
t ≥ m̂e

t when v̂t+1 = ψ(x̂t+1), it suffices to show that

MRT (m, v̂t+1) ≥MUT (m, x̂t+1). We have

MRT (m, v̂t+1) =

∫ v̄

v̂t+1

G(z)m(1−G(z))dz =

∫ x̄

ψ(x̂t+1)

G(z)m(1−G(z))dz

=

∫ x̄

x̂t+1

F (x)m(1− F (x))ψ′(x)dx ≥MUT (m; x̂t+1),

where we substitute z = ψ(x) and the last inequality is from the fact that ψ′(x) > 1.
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