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Abstract

A recommendation platform sequentially collects information about a new prod-

uct revealed from past consumer trials and uses it to better guide later consumers.

Because consumers do not internalize the value of information they bring to oth-

ers, their incentive for trying out the product can be socially insufficient. Given

such a challenge, I study how the platform can improve social welfare by designing

its recommendation policy. In a model with binary product quality and general

trial-generated signals, I find that the optimal design features a U-shaped sequence

of recommendation standards over the product’s life, and the optimal learning dy-

namic can involve temporary suspensions following negative consumer feedback

when the product is young. Various extensions and comparative statics regarding

the optimal recommendation standards are provided. My analysis also illustrates

the usefulness of a Lagrangian duality approach for dynamic information design.
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1 Introduction

Recommendation platforms are quite popular in our daily lives. For examples, people

rely on Goodreads for what to read, Netflix for what to watch, Yelp for where to eat

and TripAdvisor for where to travel.1 To provide better recommendations, a common

practice of these platforms is to induce a kind of social learning for new products. Namely,

they collect information generated from early consumers’ trials of a product (e.g., rating

and reviews), and use it to better guide the later consumers. In this process, however,

because individual consumers do not internalize the value of information they bring to

others, their incentive for trying out the new product can be insufficient. This handicaps

learning and can hinder the platforms from making better-informed recommendations.

I study how a platform facing the challenge above should design its dynamic rec-

ommendation policy, which can potentially “persuade” consumers towards more socially

desirable trials for a new product. In the main model, a sequence of short-lived consumers

arrive over the (finite) lifetime of a product with unknown quality, which can be either

high or low. Whenever a consumer consumes the product, a signal about its quality will

be generated and privately observed by the platform.2 Unlike some existing studies sur-

veyed later, I allow such consumption-generated signals to be general and non-conclusive.

In each period, based on the signals previously received, the platform can guide the cur-

rent consumer by providing a recommendation message. Knowing the message and her

own arrival time, the consumer then makes her consumption decision in a Bayes-rational

way. The platform’s design problem is to find a dynamic recommendation policy, to

which it can commit ex-ante, in order to maximize the total consumer surplus generated

on it.3

Notice that the platform’s recommendations play a dual-role – they both decide how

past information is used to guide the current consumer and decide whether new informa-

tion will be generated for later use.4 Ideally, the platform should recommend the product

for trial as long as this is socially desirable after taking into account the informational

value, even if consumption is suboptimal for the current consumer based on the current

information. With such a policy, however, the expected quality of some recommendations

may be too low for self-interested consumers to follow. An optimal policy therefore must

choose when to recommend socially desirable but individually suboptimal consumption

1For some non-commercial examples, consider FDA for drug uses and Medicare Advantage Star
Ratings for Medicare plan choices in the US.

2The platform also receives an initial piece of private signal about the product before any consumption,
which reflects its internal research or data about past performance of similar products.

3In an extension, I also allow the platform to be biased towards inducing more consumption.
4Technically, the design problem is a decentralized bandit problem, where a principle (platform) faces

a bandit process but cannot control it directly. Instead, the process is controlled by a sequence of short-
lived agents (consumers). The principle privately monitors the process and can influence the agents’
decisions only via providing information.
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most efficiently, subject to the requirement that the consumer in every period will be

willing to follow the recommendation.

The need to convince consumers to follow recommendations induces a sequence of

incentive-compatibility (abbr., IC) constraints – one for each period – in the dynamic

design problem, which makes it a constrained Markov decision process.5 Solving such

a problem is challenging because the standard dynamic programming technique cannot

directly handle those constraints. I hence adopt a Lagrangian duality approach. It allows

me to partially characterize the shadow values of those IC constraints and thereafter

convert the optimization into an unconstrained one. To the best of my knowledge, this

is the first paper solving a (non-degenerate) constrained Markov decision process that

naturally arises from a dynamic information design problem.

I show that the optimal design features a sequence of time-specific thresholds, which

generally vary in a U-shaped pattern over the product’s life. At any time, the platform

should recommend the product if its current belief of the product’s quality being high

is above the current threshold. Intuitively, this suggests that the platform should set a

time-varying recommendation standard, which first goes down and then goes up as the

product ages. Underlying this time-pattern is a tension between the platform’s desire

to create informational value for future consumers and its need to satisfy the current

consumer’s IC constraint. When the product is very young, the informational value

is high due to a long remaining product lifespan, but consumers are “skeptical” about

following recommendations because they know that even the platform has not acquired

much information about the product yet. This implies a binding IC constraint and

necessitates a picky censorship regarding when to recommend the product. As time

passes, consumers become easier to convince as they expect that the platform may have

gotten better informed by previous signals. The recommendation standard can hence be

lowered.6 This continues until the standard has become sufficiently low such that trials

with beliefs further below it are no longer worthwhile. Thereafter, the optimal threshold

will gradually go up because the informational value of consumption dwindles as the

product approaches its end of life.

The result above implies an interesting prediction about the optimal recommenda-

tion dynamic: it can feature temporary recommendation suspensions following negative

consumer feedback for young products. Specifically, following a negative feedback, the

platform’s belief of high quality can drop below the recommendation threshold, which

suspends recommendation and learning. However, if we are in the early phase of the prod-

uct’s life where the threshold is declining, the threshold can fall below the belief again

a few periods later, which restarts recommendation. In practice, it is well-documented

that temporary recommendation suspensions can be used for punishing misconduct of a

5See Altman (1999) for a textbook treatment to constrained Markov decision processes.
6See discussion about Figure 3 in Section 4.1 for a more concrete intuition behind this.
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product supplier.7 My finding here suggests another motivation for taking such actions,

which is to induce more efficient social learning about new products given the inadequacy

of individual consumers’ incentives.

My characterization of the optimal design also enables several comparative static

analyses. The first one considers how the design should be adjusted when consumption

becomes more likely to yield non-neutral signals about the product’s quality (e.g., due to

developments in feedback acquiring technologies). Using a coupling approach for compar-

ing stochastic processes, I show that the recommendation standards should be uniformly

lowered over the product’s life when this happens. The intuition is twofold. First, as trials

become more informative, the platform ideally wants to carry out more of them, which

motivates lower standards. Second, knowing information has been accrued at a faster

speed, the consumer in every period should be more willing to follow recommendation if

the threshold is unchanged, which makes it feasible to indeed lower the standards.

The second analysis incorporates random consumer arrivals. I find that if the platform

enjoys a thicker market where consumers arrive more frequently, the optimal policy should

feature lower recommendation standards over the product’s life. The intuition is again

twofold. First, with more consumers expected to come, the value of information at any

time is higher and the platform thus wants to induce more trials. Second, with a higher

consumer arrival frequency, the consumer in every period will expect the platform to have

acquired more signals ceteris paribus, which relaxes the IC constraints and leaves room

for implementing lower standards.

In the third analysis, I extend the model to accommodate biased platforms. Specifi-

cally, I assume that the platform can enjoy extra commission from consumption and wants

to maximize the sum of consumer surplus and its own commission. In this scenario, my

characterization of the optimal design easily extends, and comparative statics with re-

spect to the platform’s bias can be provided. I show that when the platform’s commission

increases, the optimal recommendation standard will generally remain unchanged in the

early periods of the product’s life, but will go deeper down after the original bottom before

bouncing back. Intuitively, when the platform becomes more biased, it wants to lower

the standards more, but this can be done if and only if the consumers’ IC constraints

have turned non-binding without the change.

I will relax the binary quality assumption in an appendix (Appendix A). Although a

full characterization for the optimal design is not available there, my duality approach

still helps to reveal certain properties of it. In particular, I show that the optimal pol-

icy generally features a partial-order monotone structure, which can be considered as

a generalization of the threshold structure. I will discuss implications of this result for

algorithmic recommendation design.

7For a list of real-world examples, see Table 1 in Liang et al. (2020).
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Related literature – My study is closely related to Kremer et al. (2014) and Che & Hörner

(2018), who also study the optimal recommendation design when early consumption yields

informational externality to later consumers.8 These papers have focused on special

classes of consumption-generated signals. Specifically, the main model in Kremer et al.

(2014) considers fully revealing signals, i.e., the underlying quality will be fully revealed

after a single trial. They thus focus on the decision problem about when to induce the

first trial based on the platform’s initial information.9 Che & Hörner (2018) considers a

Poisson learning environment with binary quality levels in continuous time. They assume

that at any time the platform has either received no news, or has received conclusive

news that fully reveals the product’s quality. The design problem then boils down into a

deterministic control problem about the recommendation intensity following the history

without any news arrival. Unlike these papers, my study accommodates general non-

conclusive signals. My characterization of the optimal design is thus about whether

to recommend the product in each period based on any current belief of the platform,

which goes beyond timing of the first trial or recommendation intensity without previous

news. This allows me to examine the dynamic pattern of time-varying recommendation

standards and necessitates the more general mathematical formulation. Moreover, the

general setting also enables my comparative static analyses, which have no counterparts

in the previous papers.

An extension in Kremer et al. (2014) and a strand of subsequent algorithm-oriented

research have studied environments more general than the main model of Kremer et al.

(2014), which do allow for non-conclusive consumption-generated signals (Papanastasiou

et al., 2018; Mansour et al., 2020).10 The goal of this literature is to propose algorithms

that can achieve better asymptotic performance as the number of consumers coming in

sequence goes to infinity, which is often measured by the decay rate of per-consumer wel-

fare loss compared to the full-information first-best benchmark. While such measurement

reflects an important aspect of the design’s performance, it ignores the early consumers’

potential loss from trying a low-quality product within any finite time horizon, and can be

insensitive to multiplicative changes in the total welfare loss.11 Hence, for the algorithms

proposed in this literature, little is known about their finite-horizon efficiency, and little

has been done to improve their non-asymptotic performance. My paper complements

8Lorecchio & Monte (2021) also considers a setting where the designer records previous agents’ feed-
backs to guide later agents’ decisions. However, their designer has state-independent payoff, rely on
restricted communication rules, and only focuses on the long-run stationary equilibrium, which makes
their paper distinct from mine.

9More precisely, the initial information in their paper is about an alternative consumption option,
which is always tried by the first consumer with its quality fully revealed since then.

10Also see, for examples, Bahar et al. (2015), Mansour et al. (2016), Chen et al. (2018), Immorlica et
al. (2019) and Bahar et al. (2021) for a variety of extensions.

11To see this, notice that an average loss function L(t) is considered to have the same decay rate in t
as αL(t) for any α > 0.
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the literature by solving the optimal design in a stylized setting with fixed time horizon,

which may serve as a performance benchmark for evaluating any algorithm and help to

inspire new algorithms with a non-asymptotic focus.12

Another growing literature also considers the optimal information provision by a plat-

form to a sequence of short-lived agents (Glazer et al., 2021; Komiyama & Noda, 2021;

Küçükgül et al., 2022). In these papers, the agents are either endowed with or are able

to acquire private signals, and a central task for the platform is to infer these private

signals from the agents’ decisions. These papers thus consider very different information

sources of the platform and explore design concerns distinct from mine.

More generally, my paper belongs to the broad literature on information design (Ka-

menica & Gentzkow, 2011; Rayo & Segal, 2010), and especially to studies on dynamic

designs (e.g., Ely, 2017; Renault et al., 2017; Smolin, 2021; Ely & Szydlowski, 2020; Ball,

2019; Orlov et al., 2020; Lorecchio, 2021). One difference between many of the studies

in this literature and mine is that I consider a designer whose private information flow

is controlled by the receivers’ decisions, rather than being exogenous. My analysis illus-

trates how such a setting naturally leads to a constrained Markov decision process after

simplification by the revelation principle of Myerson (1986),13 and how the Lagrangian

duality approach can be useful for solving it.14

The paper is organized as follows. Section 2 presents the main model. Section 3

derives the optimal design. Section 4 explores dynamic properties of the optimal design.

Section 5 considers comparative statics. Section 6 provides additional discussions. Section

7 concludes with some methodological remarks. Appendix A considers the extension with

general quality support. All proofs are provided in Appendix B.

2 The Main Model

I first describe the model, and then discuss several underlying assumptions in Section 2.2.

12Papanastasiou et al. (2018) does investigate finite-horizon design in a particular setting, but in
that setting the initial information is such that either no exploration can ever happen or consumer IC
constraints are never binding, which makes the optimal design obvious. They also propose to formulate
the designer’s problem as a constrained Markov decision process in a more general setting, but concluded
it to be computationally infeasible and did not derive analytical results from it except for giving a bound
on how many belief states need to involve randomization in an optimal design.

13I provide a more detailed remark on this in Section 7.
14Beutler & Ross (1985) and Beutler & Ross (1986) were the first to use a Lagrangian approach to

study constrained Markov decision processes. The method is subsequently developed and applied in
many mathematical and engineering papers (see, e.g., Section 1.2 of Altman (1999) for a brief survey).
These studies typically only involve a few aggregate constraints corresponding to different design criteria.
In contrast, my problem features one constraint for each period, which leads to a novel dynamic aspect
of the problem.
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2.1 The Setting and the Design Problem

The model features a platform, a sequence of short-lived Bayes-rational consumers and a

product. The product is launched in period 1 and will remain available for consumption

over T <∞ periods. In each period t = 1, ..., T , a consumer arrives at the platform and

decides whether to consume the product. I denote the consumer’s decision as at ∈ {0, 1}
with at = 1 meaning consumption occurs. Without consuming the product, the consumer

will receive her outside option, whose value is normalized to zero. If she consumes the

product, the consumer’s utility will be equal to θ̃, which is a random variable taking

values in {θL, θH}, with θL < 0 < θH . This θ̃ measures the underlying quality of the

product, which is fixed over time but initially unknown. I assume that the platform and

the consumers share a common prior p0 for θ = θH .

At the beginning of period 1, the platform receives a signal s0 about θ̃, which cap-

tures its internal research or private data on past performance of similar products. Sub-

sequently, an additional signal will be generated to the platform whenever a consumer

consumes the product. Let si denote the signal from the i’th consumption of the product.

Conditional on θ̃, I assume that s1, s2, ... are i.i.d. and are independent from s0.

In every period, the platform can compute its posterior belief about the product’s

quality based on previous signals. I use pt to denote the platform’s belief about θ̃ = θH at

the beginning of period t. Let µ1 denote the distribution of p1 = P(θ̃ = θH |s0); let G(·|·)
denote the transition kernel of belief reflecting Bayesian updating when consumption

occurs; let D(·|p) denote the Dirac measure at p. The process of (pt)
T
t=1 then follows the

following transition rule:

p1 ∼ µ1 (1)

pt+1|pt, at ∼ atG(·|pt) + (1− at)D(·|pt) (2)

Before the realization of s0, the platform can commit to an information transmission

policy that decides what message to convey to the coming consumer in each period based

on the information available at that time. I assume that the consumer can neither observe

previous messages, nor observe decisions of earlier consumers.15 She only observes her

arrival time and her own message, and then decides whether to consume the product.

The timeline of the environment is summarized as follows:

1. Before period 1, the platform (publicly) commits to an information transmission

policy, and the product’s quality θ̃ is secretly realized. Then, the platform privately

receives its initial signal s0 about θ̃.

2. In every period t = 1, ..., T , a consumer arrives and receives a message from the

15The model therefore mainly fits applications where the platform is using private recommendations
sent to each individual consumer instead of using public recommendations.
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platform, which is generated according to the information transmission policy. She

then decides whether to consume the product. If she is the n’th consumer who

consumes the product, signal sn will be generated to the platform. The economy

then enters into the next period.

The Designer’s Problem: I look for the information transmission policy that maxi-

mizes the total consumer surplus to be generated over the product’s life, i.e.,
∑T

t=1 E[atθ̃].16

By the revelation principle (Myerson, 1986), it suffices to consider incentive-compatible

recommendation policies, which just decide whether to recommend the product for con-

sumption in every period, subject to the requirement that a Bayes-rational consumer

will follow the recommendation. Since the belief pt summarizes all the payoff-relevant

information of the platform in period t, standard argument implies that we can further

focus on randomized Markov policies with respect to the process of (pt)
T
t=1.Formally,

a randomized Markov recommendation policy is a sequence of measurable mappings

ϕ := (ϕt : t = 1, ..., T ), where each ϕt : [0, 1] → [0, 1] decides the probability of rec-

ommending the product at time t given any pt ∈ [0, 1]. For the rest of the paper, by

“policy” I will be referring to a policy of this type.

I impose the following assumption on consumption-generated signals throughout:

Assumption 1. Assume the following:

(i) P(E[θ̃|s0] > 0) > 0;

(ii) For any i ≥ 0, we have P(si ∈ A|θ̃ = θL) < P(si ∈ A|θ̃ = θH) for some (measurable)

set A in the realization space of si;

(iii) For any i ≥ 0, we have P(si ∈ A|θ̃ = θL) > 0 ⇔ P(si ∈ A|θ̃ = θH) > 0 for any

(measurable) set A in the realization space of si.

Condition (i) implies that it is optimal for the first consumer to consume given some

realizations of the platform’s initial information.17 Without such a condition, the first

consumer will never want to consume the product, knowing which the second consumer

will never consume either. Induction then implies that no consumption can ever happen

under any design. Condition (i) rules out such a trivial scenario. Condition (ii) guarantees

that the signals are indeed informative about θ̃. Condition (iii) implies that no signal

realization can conclusively reveal the quality level. It helps to simplify the exposition of

certain proofs, but is not essential for results in the paper.

16In practice, the platform may want to maximize total consumer surplus for different reasons. For
example, it may be able to extract that surplus by charging a subscription fee. My analyses can also
accommodate biased platforms who wants to maximize the sum of consumer surplus and some extra
commission from consumption, which are considered in Section 5.3.

17To guarantee this, one may instead impose the slightly weaker condition P(E[θ̃|s0] ≥ 0) > 0. I
impose the stronger condition for a technical reason when deriving the duality result.
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2.2 Discussion on Model Assumptions

1. Consumer information on product launch time. An important assumption of

the model is that each consumer can observe when the product was launched. This

is reasonable for many products like books, TV-series, restaurants or hotels, which

typically have a public release or opening time. For some other products, however,

the consumer may only have a rough idea about their ages. In such a case, my design

setting can be considered as being robust to uncertainty about the consumer’s exact

information. Under the assumption that consumers can perfectly observe the product’s

launch time, the optimal design being derived will be incentive-compatible no matter

what information consumers actually have about the product’s age. It thus provides

the best guaranteed performance.

2. Information v.s. monetary incentive. The model assumes that the platform can-

not directly pay early consumers for trying out the new product. While it can work

well in some applications, the use of monetary incentive may be problematic in others.

In particular, if consumers are only attracted by the monetary incentive instead of

the product itself, they may pretend to consume the product and leave some artificial

feedback just to earn the money, especially when the product’s pecuniary price is zero

(e.g., digital contents on a subscribed platform).18 Moreover, monetary subsidy can

sometimes attract a biased pool of consumers, whose feedback can be unhelpful or

even misleading.19 I hence focus on the design of information instead of monetary

incentives in this paper.

3. Timing and consumer flow. A feature of the model is that consumer arrivals are

distributed evenly over time. Instead of treating this as a simplifying assumption, one

can understand it in terms of how the model times t = 1, 2, ... are defined. That is, the

model time flow is arranged so that the consumers will arrive evenly over time. This

implies that, for example, if consumers arrive more frequently in the first calendar

month after the product’s launch than in the second month, we should have denser

model periods in the first month than in the second month. In this way, the model

can capture product life-cycle with time-varying consumer flow flexibly.

18For example, one may play a movie at background without watching it, and then fabricate some
feedback to be paid. This kind of moral hazard problem makes it generally hard to buy information
directly with monetary payment.

19For example, if we subsidize for trying a fine-dining restaurant, we may attract someone who will
never eat there without the subsidy. Feedback from such consumers can be misleading as the product is
actually targeting someone else.
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3 Characterization for the Optimal Design

3.1 The Constrained Markov Decision Process

Let Φ denote the set of all (measurable) policies. Given any ϕ ∈ Φ, I use Pϕ to denote the

probability measure over events about
(
(at)

T
t=1, (pt)

T
t=1

)
provided that consumers follow

the recommendations, and use Eϕ to denote the corresponding expectation operator.

Then, the incentive-compatibility (IC) constraint for a time-t consumer can be written

as:

Pϕ(at = 1) > 0 ⇒ Eϕ[u(pt)|at = 1] ≥ 0 (3)

Pϕ(at = 0) > 0 ⇒ Eϕ[u(pt)|at = 0] ≤ 0 (4)

where u(p) := pθH + (1 − p)θL, i.e., the expected consumption utility given belief p.

These respectively guarantee that the consumer will follow the recommendation when the

product is recommended (at = 1) and when it is not (at = 0). Since one’s consumption

of the product generally benefits later consumers by yielding information, the designer

will never want to recommend at = 0 when consumption is optimal for the current

consumer. This implies that the second constraint above is non-restrictive for the designer

and can thus be omitted. For the first constraint, we can more compactly write it as

Eϕ[u(pt)|at = 1]Pϕ(at = 1) ≥ 0, which is equivalent to Eϕ[atu(pt)] ≥ 0. Notice Eϕ[atu(pt)]

is the expected surplus of the time-t consumer when she follows the recommendation

under ϕ. The designer’s problem can hence be formulated as:20

max
ϕ∈Φ

{ T∑
t=1

Eϕ[atu(pt)]
}

(5)

s.t. Eϕ[atu(pt)] ≥ 0 ∀t = 1, ..., T (6)

Due to the presence of the expectation operator, each constraint in (6) is not just

restricting the recommendation decision following a particular realization of pt, but in-

volves integration over the entire distribution of pt. Such an aggregated IC constraint

arises because the payoff-relevant process (pt)
T
t=1 is only observed by the platform but

not by the consumer, who therefore must integrate over the equilibrium distribution of pt

when computing her posterior belief given any recommendation message. The presence

of such constraints makes the problem a constrained Markov decision process, which can-

not be directly handled by dynamic programming with pt being the state variable. To

overcome this difficulty, I will provide a dual characterization in Section 3.2, which allows

20Papanastasiou et al. (2018) first proposed the constrained Markov decision process formulation for
this kind of design problem. However, they do not pursue much further analysis with it. See footnote 12
for details.
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me to partially reduce the problem into an unconstrained one.

The following lemma reveals the key properties of the belief process needed for later

analyses. In the statement of property (P5) below, p̄ is defined as the indifferent belief

for a consumer, i.e., u(p̄) = 0.

Lemma 1. The belief process (1) – (2) has the following properties:

(P1) G(·|p) as a measure-valued function of p is weakly continuous.

(P2)
∫
p′
u(p′)G(dp′|p) = u(p).

(P3) G(·|p) increases in p in terms of first-order stochastic dominance.

(P4) G
(
[0, p)|p

)
and G

(
(p, 1]|p

)
are strictly positive for any p ∈ (0, 1).

(P5) µ1

(
(p̄, 1]

)
> 0.

Property (P1) means that small changes in the prior can only lead to small changes

in the posterior, which is a technical result that guarantees the existence of the optimal

design. Property (P2) is implied by the standard law of iterated expectation. Property

(P3) is an inertia property of the belief process, which roughly says that a product

looking more promising today is also more likely to look promising tomorrow. It will be

important for showing the threshold structure of the optimal policy. Property (P4) is

directly implied by the assumption that signals are informative, which guarantees that

the belief process will not stay constant for sure following consumption. Property (P5)

is directly implied by Assumption 1(i), which allows consumption and learning to occur

with some probability in period 1. I note that these five properties are all one needs to

know about the belief process for later analyses, which abstract away from other details

of the learning process.

The following result guarantees the existence of optimal design.

Proposition 1. There exists an optimal solution to the designer’s problem (5) – (6).

3.2 The Dual Characterization

Given any vector of Lagrangian multipliers λ ∈ RT
+ associated to the IC constraints, I

define the Lagrangian function of the designer’s problem as:

L(ϕ;λ) =
T∑
t=1

Eϕ[(1 + λt)atu(pt)] (7)

Then, we have the following strong-duality result.

Lemma 2. Let w∗ denote the optimal value of the designer’s problem. Then,

w∗ = min
λ∈RT

+

sup
ϕ∈Φ

L(ϕ;λ) (8)
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where the minimum is achieved by some λ∗. Given any such λ∗, a policy ϕ∗ is optimal

for the designer’s problem if and only if:

(i) ϕ∗ ∈ argmaxϕ∈Φ L(ϕ;λ∗)
(ii) λ∗tEϕ∗ [atu(pt)] = 0, ∀t = 1, ..., T

(iii) Eϕ∗ [atu(pt)] ≥ 0, ∀t = 1, ..., T

To see how this result is helpful, notice that once we know a solution λ∗ to the

dual problem (8), which intuitively measures the “shadow values” of the IC constraints,

the lemma implies that any optimal policy must solve maxϕ∈Φ L(ϕ;λ∗), which is an un-

constrained problem. The optimal design can then be characterized by studying this

unconstrained problem with the standard dynamic programming approach.

The problem here, however, is that the value of λ∗ is not available. Generally, deriving

it requires one to either solve the min-max problem in (8) or solve the fixed-point problem

defined by conditions (i) – (iii) jointly for (λ∗, ϕ∗), both of which are difficult. Fortunately,

as I show below, a property of λ∗ can be directly derived from the dual problem, which

turns out to enable a sharp characterization for the optimal policy.

3.3 Main Structures of the Optimal Design

The following lemma is a key result derived from the dual problem (8).

Lemma 3. There exists λ∗ ∈ argminλ∈RT
+
supϕ∈Φ L(ϕ;λ) such that λ∗t ≥ λ∗t+1 for all

t = 1, ..., T − 1.

To see an intuition behind this result, assume that the dual problem has a unique

solution λ∗. As usual, we can interpret λ∗t as the shadow value of marginally relaxing

the time-t IC constraint for the designer’s problem. As time passes, two changes happen

in the designer’s problem. First, as information accumulates over time, we will be able

to make recommendation selections more wisely. This makes it possible to obey the

consumer’s IC constraint with less sacrifice of socially desirable consumption. Second,

as the remaining lifetime of the product gets shorter, the dynamic value from having

additional myopically suboptimal consumption drops. These both suggest that relaxing

later IC constraints is less helpful than relaxing the earlier ones. Hence, the associated

shadow values should decrease over time. While this argument is intuitive, formalizing

it can be difficult. I hence instead develop an “inter-change” argument for the lemma’s

proof. In particular, given any λ∗ solving the dual problem, I show that if two adjacent

components of it violate the time pattern, then interchanging them will lead to a new

solution to the dual problem. Starting with any solution to the dual problem, one can thus

construct a solution satisfying the time pattern by making such interchanges repeatedly.

An important implication of Lemma 3 is that the optimal design will generally feature

a two-phase structure. In the first phase, λ∗t > 0 and the IC constraints are thus binding;
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in the second phase, λ∗t = 0 and the IC constraints are thus essentially non-restrictive.21

As we will see later, this two-phase structure is critical in constructing the optimal design,

and has important implications on the dynamic pattern of optimal recommendations.

The time-pattern of λ∗ found in Lemma 3 also turns out to induce a simple solution

structure for the Lagrangian function optimization maxϕ∈Φ L(ϕ;λ∗). To state this result,

I define threshold policies as follows:

Definition 1. A time-t policy ϕt : [0, 1] → [0, 1] is called a threshold time-t policy if there

exists a threshold ηt ∈ [0, 1] such that p > ηt ⇒ ϕt(p) = 1 and p < ηt ⇒ ϕt(p) = 0. A

policy ϕ is called a threshold policy if ϕt is a threshold time-t policy for every t.

Namely, a threshold policy will recommend the product when the current belief of

θ̃ = θH is above a threshold, and will not recommend when the belief is below the

threshold. It can also involve randomization at the threshold. By applying backward

induction on the dynamic programming of maxϕ∈Φ L(ϕ;λ), I show the following result:

Lemma 4. Given any non-increasing sequence of multipliers (λt)
T
t=1, any solution to

maxϕ∈Φ L(ϕ;λ) is almost surely equivalent to a threshold policy. Moreover, pt > p̄ ⇒
at = 1 a.s. under such a policy.22

Together with Lemma 3 and the dual characterization for the optimal design, this

directly implies the threshold structure of the optimal design:

Proposition 2. Any optimal policy is almost surely equivalent to a threshold policy.

Moreover, pt > p̄⇒ at = 1 a.s. under it for any t.

I note that although threshold policies are practically appealing, their optimality is

not obvious in my setting. While the myopic value of consumption always increases in pt,

the dynamic informational value of it does not. Given the presence of IC constraints, even

measuring such dynamic value is not straightforward, as one not only needs to consider

the direct benefit to later consumers, but also needs to consider how better information

may help to relax the IC constraints of later consumers and thereby facilitate more infor-

mation generation from them. The duality approach I take partly resolves such difficulty

by characterizing the shadow values of those IC constraints. Given the monotonicity

property of (λ∗t )
T
t=1, I show that when pt is increased, the positive change in the myopic

value of consumption always dominates the potentially indeterminate change in the dy-

namic informational value measured in the continuation problem of maxϕ∈Φ L(ϕ;λ∗). The
21It is easy to see that the second phase includes at least the last period, since the optimal policy there

will be myopically optimal. The first phase is non-empty as long as the prior on θ̃ is not sufficiently
favorable to support first-best learning.

22By saying A ⇒ B almost surely (a.s.), I mean that the event in which A happens but B does not
happen is of zero probability.
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total value of consumption is thus always increasing in pt, which implies the threshold

structure of the optimal design.

Lemma 4 above also helps to characterize the dictator’s optimal policy, where by “dic-

tator” I mean a social planner who can dictate consumers’ decisions without obeying their

IC constraints. Notice that if λt = 0 for all t, the Lagrangian optimization maxϕ∈Φ L(ϕ;λ)
is reduced to the dictator’s problem. Lemma 4 then implies that the dictator’s problem

also features a threshold solution. This solution will be used in the construction of the

optimal design below.

3.4 The Optimal Policy

Notation: For any vector indexed by time, I will use subscription “≥ t” to indicate

the sub-vector corresponding to time no earlier than t. For example, ϕ≥t will denote the

continuation policy since time t. Notations like ϕ>t and ϕ<t are similarly defined.

Based on the two-phase structure of the optimal design implied by Lemma 3 and

the threshold structure stated in Proposition 2, one can explicitly construct the optimal

design using a forward induction algorithm. To do so, I define ϕd to be the “most conser-

vative” optimal policy for the dictator’s problem (i.e., the designer’s problem without IC

constraints), whose details are provided in Appendix B.5. When the dictator’s problem

admits multiple solutions, ϕd is the most conservative one in the sense that it always

breaks ties in favor of non-recommendation.

A candidate optimal threshold policy ϕo, together with a cutoff time point t̂, can be

inductively defined as follows.

Definition 2. A policy ϕo, a sequence of distributions (µo
t )

T
t=1 over [0, 1] and a time point

t̂ ∈ {1, ..., T} are defined with the following algorithm:

Start with t = 1 and define µo
1 = µ1.

� Step 1: If
∫
p
[ϕd

t (p)u(p)]µ
o
t (dp) ≥ 0, then end the algorithm while defining:

– t̂ = t;

– ϕo
≥t = ϕd

≥t;

– (µo
s)s>t to be the marginal distributions of (ps)s>t under ϕ

d
≥t given pt ∼ µo

t .

Otherwise, go to the next step.

� Step 2: Define ϕo
t to be a threshold time-t policy such that:23

(i) ϕo
t (p) = 1 for all p > p̄;

(ii)
∫
p
[ϕo

t (p)u(p)]µ
o
t (dp) = 0.

Also define µo
t+1 to be the distribution of pt+1 under ϕo

t given pt ∼ µo
t . Then go

back to step 1 with t replaced by t+ 1.

23See Appendix B.5.2 for details of the construction of ϕo
t .
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Figure 1: Two-Phase Structure of the Optimal Policy ϕo.

Intuitively, beginning with the initial period, the algorithm will progressively check in

every period t whether it is incentive-compatible to follow the dictator’s policy given ϕo
<t

previously determined, i.e., whether
∫
p
[ϕd

t (p)u(p)]µ
o
t (dp) ≥ 0. If so, the current period

will be marked as period t̂, and ϕo will be set to follow ϕd for all later periods; otherwise,

ϕo
t will be defined to have its threshold just high enough to satisfy the current consumer’s

IC constraint, which is what conditions (i) and (ii) in step 2 guarantee. The policy ϕo such

defined will be in accordance with the two-phase structure of the optimal design found

in Section 3.3, which is illustrated in Figure 1. In its early phase, the consumers’ IC

constraints will be binding and ϕo will be just “picky” enough to satisfy those constraints

as equalities. In the later phase, the IC constraints will become non-restrictive and ϕo

will follow the dictator’s unconstrained optimal policy. The cutoff time t̂ is when ϕo shifts

from the first phase to the second, after which it will follow ϕd.

The following proposition shows that ϕo is indeed an optimal policy and fully charac-

terizes any optimal design.

Proposition 3. Any policy ϕ∗ is optimal for the designer’s problem (5) – (6) if and only

if: (i) ϕ∗
<t̂

agrees with ϕo
<t̂

almost surely; (ii) given pt̂ ∼ µo
t̂
, ϕ∗

≥t̂
is incentive-compatible

and is optimal for the dictator’s continuation problem starting from time t̂. In particular,

ϕo is optimal.

The characterization in Proposition 3 makes it convenient to explore dynamic features

of the optimal design and study how it should be tailored to market details. I pursue

these in the following sections.

4 Dynamic Properties of the Optimal Design

4.1 Time Pattern of the Recommendation Standards

Threshold policies can be naturally interpreted as policies setting the minimum age-

specific standards for a product to qualify for recommendations. Given the dynamic

nature of the problem, it is conceivable that such a minimum standard should evolve

over the product’s life. I explore this time pattern below.

For the ease of exposition, I impose the following full-support and atomless assumption

on the belief process.
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Figure 2: The optimal threshold policy for a numerical example: T = 25, θL = −1,
θH = 1, p0 = 0.2, si|θ ∼ Normal(θ, σ2) with σ = 3 for all i ≥ 0.

Assumption 2. The signals (s0 and {si}i≥1) are such that the marginal distributions of

p1, ..., pT are atomless and have full support over (0, 1) under any policy.

The atomless assumption renders randomization at the threshold irrelevant, so we

can solely focus on the thresholds themselves. The full-support assumption guarantees

that any deviation in the recommendation threshold matters, which avoids the need to

discuss off-path indeterminacy of the optimal policy. Assumption 2 holds, in particular,

if the log-likelihood ratios of the signals s0, s1, ... are continuous random variables with

full support over R.24

Recall that t̂ is the first time when it is incentive-compatible for ϕo to follow the

dictator’s optimal policy. The following result characterizes the time pattern of the

optimal recommendation standards.

Proposition 4. Under Assumption 2, the thresholds (η∗t )
T
t=1 of any optimal threshold

policy satisfy: (a) η∗t−1 > η∗t for all t ≤ t̂−1; (b) η∗t < η∗t+1 for all t ≥ t̂. Moreover, η∗t ≤ p̄

for any t.

The proposition suggests that the optimal recommendation standard should first de-

crease and then increase over the product’s life, which corresponds to the two phases

with binding and non-binding IC constraints respectively. Figure 2 presents a numeri-

cal example. Underlying this result is a tension between the platform’s desire to create

dynamic informational value for future consumers and the need to fulfill the current con-

sumer’s IC constraint. In the early phase, the dynamic value is generally high since the

product has a long future to go, but consumers are more “skeptical” about following

24That is, for both i = 0 and i ≥ 1, si admits density functions fL
i and fH

i conditional on θ̃ = θL and

θ̃ = θH respectively such that log
( fH

i (si)

fL
i (si)

)
is a continuous random variable with full support over R.
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Figure 3: Explanation for decreasing recommendation thresholds before time t̂. The dots
represent possible realizations of pt or pt+1. The arrows indicate the evolution of these
beliefs. The blue bars represent the optimal recommendation thresholds.

recommendations because they know that even the platform has not acquired much in-

formation yet. This implies a binding IC constraint and necessitates a picky censorship

over the beliefs eligible for recommendations. As time proceeds, consumers become easier

to convince and the recommendation criterion can thus be relaxed. This continues until

the standard is already sufficiently low such that trials with beliefs further below it are

no longer worthwhile given the remaining time of the product. The IC constraint then

turns non-restrictive. Thereafter, the optimal design just follows the dictator’s optimal

policy, where the recommendation standard gradually goes up since the dynamic value

from myopically suboptimal consumption shrinks as the product approaches its end of

life.

Figure 3 explains why the optimal threshold drops before time t̂ more precisely. The

two dots on the left represent two possible realizations of pt, and the blue bar between

them represents the optimal threshold in period t. Since the green dot is above the thresh-

old, it is associated with a recommendation and will hence split in a mean-preserving

spread manner, which leads to realizations of pt+1 represented by the three new green

dots in period t + 1. This reflects the new information generated by consumption. The

black-dot belief in period t does not qualify for a recommendation and is thus carried

over into period t + 1. Now, suppose the designer keeps the threshold unchanged over

the two periods. Then in period t+ 1, the lower green dot (dot 4) will be excluded from

the recommendation region. Since belief evolves in a mean-preserving manner, the joint

belief of those green dots remaining in the recommendation region (i.e., dots 2 and 3) will

then be more favorable than their predecessor (dot 1). This implies that the consumer’s

IC constraint in period t+1 must turn slack. Intuitively, the better information in period

t + 1 would have induced a more favorable selection for the consumer if the threshold

were kept the same as before. This leaves room for the designer to also include the black

dot into the recommendation region. When t+1 < t̂, the designer indeed wants to do so

since my previous characterization has shown that the consumer’s IC constraint should
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Figure 4: A realized path of recommendations under the optimal design in the numerical
example of Figure 2. Blue bars represent the optimal thresholds. The crosses and circles
track the platform’s realized beliefs (pt)

T
t=1, where green circles mean that recommenda-

tion is made and red crosses mean the opposite.

keep binding before time t̂. This implies that the threshold in period t + 1 should be

lowered.

The U-shaped pattern of recommendation thresholds has interesting implications for

the optimal recommendation and learning dynamics, which I examine in the next sub-

section.

4.2 Optimal Recommendation Dynamic

Figure 4 demonstrates an example path of realized recommendations under the optimal

policy in the numerical example of Figure 2.25 The sequence of blue bars still represents

the optimal age-specific thresholds. The series of crosses and circles tracks a realized path

of (pt)
T
t=1, where green circles mean that the current belief is above the current threshold

and the product is hence recommended, while red crosses mean the opposite.

The figure highlights an interesting property of the optimal recommendation and

learning dynamic – recommendation and learning can be temporarily suspended following

negative feedback from the last consumption (e.g., the suspension in periods 3 - 4). Such

kind of suspension is beneficial because it allows us to support myopically suboptimal

exploration for products looking more promising at the same age (i.e., with a pt being

higher but still less than p̄) without violating the IC constraint. However, the suspension

may not need to last forever when further exploration is still socially desirable. As

soon as the threshold for recommendation drops below the current belief, trials for the

25The figure presents a case where recommendation is eventually abandoned, which is more likely to
happen when the product’s true quality is low. However, the property discussed below does not rely on
this.
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product should be resumed. Notice that such a restart of recommendations can only

happen in the early phase of the product’s life, where the IC constraints are binding and

the recommendation threshold decreases over time. If it were in the later phase, any

suspension of recommendation would be permanent.

The learning dynamic described above and the associated inefficiency interestingly

contrasts with those in the classic social learning literature.26 In those early models, any

stop of learning is permanent, and inefficiency arises because the stop is too early. Under

the optimal design in the current setting, in comparison, stops can be temporary, and

inefficiency can arise because these unwanted pauses slow down learning.27

In practice, temporary recommendation suspensions (or deprioritization) following

negative consumer feedback are often used for punishing misconduct of a product sup-

plier (e.g., a seller or content provider).28 My finding here suggests another motivation

for taking such actions, which is to induce social exploration on new products in a more

efficient way given the inadequacy of individual consumer’s incentive. Compared to those

used for punishing supplier misconduct, the temporary recommendation suspensions in

my model have two distinct features. First, they can happen following negative feed-

back regarding the product’s innate features instead of unsatisfactory behaviors of the

supplier. Second, they only happen for young products. Presuming that platforms in

practice are indeed trying to enhance social learning about new products by tailoring

their recommender systems, these may serve as concrete predictions of the model that

can be tested with real data on platform recommendations.

5 Comparative Statics and Extensions

In this section, I provide comparative statics about how the optimal recommendation

policy should be tailored to market details. When needed, the basic model will also be

extended in certain ways.

5.1 Information Generation Rate

In many applications, having someone trying out a product is not guaranteed to generate

meaningful information about the product’s quality. The consumer may not leave feed-

back, or may give a piece of feedback that is too cursory to be authenticated.29 These

26For classic papers on social experimentation, see, e.g., Bolton & Harris (1999) and Keller et al.
(2005). For papers on observational learning, see, e.g., Banerjee (1992) and Bikhchandani et al. (1992).

27Under the optimal design in my setting, permanent stop of learning needs not be inefficient. In
particular, any permanent stop happening in the later phase of the product’s life is actually efficient
because the thresholds there are the same as the dictator’s optimal ones.

28See, e.g., Table 1 in Liang et al. (2020) for a list of examples.
29In particular, platforms like Amazon or Yelp often rely on textual analysis to filter out fake reviews.

If a review is not material enough to pass such a test, it will be disregarded or attached with little weight
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will lead to little post-consumption information generation.

How should the optimal design be adjusted when consumption becomes more likely

to yield information due to, for example, better feedback elicitation design or improved

satisfaction measurement technologies? To study this, I introduce an information gen-

eration rate of consumption into the model. Specifically, I assume that following one’s

consumption, the signal si being generated will be a compounded signal. It has probabil-

ity α ∈ (0, 1) to be an informative signal and has probability 1− α to be uninformative,

and the platform can tell which type the signal is.30 Let GI(·|·) denote the transition ker-

nel for the platform’s belief following an informative signal. Given any α, the transition

kernel for pt following one’s consumption then becomes:

G(·|p) = αGI(·|p) + (1− α)D(·|p) (9)

The following proposition provides the comparative statics result with respect to the

information generation rate α. For simplicity, I still impose the full-support and atomless

assumption as in Section 4.1.

Proposition 5. Assume Assumption 2 holds.31 Given any α, let (η∗t (α))
T
t=1 denote the

thresholds of the optimal threshold policy. Then αa < αb ⇒ η∗t (αa) ≥ η∗t (αb)∀t, where the

inequality is strict for all t ∈ (1, T ).

The proposition suggests that if the information generation rate is improved, the opti-

mal recommendation standard should be lowered throughout the product’s life. Roughly

speaking, there are two forces behind this change. First, a higher α implies greater infor-

mational value from one’s consumption, which motivates more exploration. Second, with

a higher α, information from past consumption is accumulated at a faster rate even if the

thresholds remain the same as before. This enables better-informed recommendations

at any time, which makes consumers more willing to follow the recommendations ceteris

paribus. We thus have room to lower the recommendation standards without violating

the IC constraints. Together, these lead to looser recommendation criteria in the optimal

design.

The formal proof of the proposition is technically involved because it requires compar-

ing two controlled Markov processes corresponding to different α. Central to the proof is

a coupling argument, where I explicitly construct the belief processes under the optimal

designs corresponding to different α in the same probability space. This allows a direct

comparison between them. I refer interested readers to the proof of Observation 3 in

Appendix B.7.

in any recommendation algorithm. This is important to deter fake reviews.
30This compounded signal satisfies Assumption 1 as long as the informative component does.
31This holds, in particular, if the log-likelihood ratios of s0 and subsequent informative signals are

continuous random variables, and the log-likelihood ratio of s0 has full support over R.
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5.2 Consumer Arrival Frequency

In practice, different platforms and different products have different frequencies of poten-

tial customer arrivals. A platform with a larger user base is expected to have more visits

per unit of time than one with a smaller user base; a mass-market product is expected

to have greater potential customer flow than a niche product. How should the optimal

design be tailored to these market heterogeneity? To answer this question, I extend my

framework to accommodate random consumer arrivals below, and then examine how the

optimal design should depend on the arrival rate of consumers.

Formally, I modify the model in Section 2 by assuming that in every period a con-

sumer will arrive with probability ρ ∈ (0, 1). The arrivals are independent over time and

independent from other random objects in the model. Accordingly, I re-interpret at as

the consumption decision (or the platform’s recommendation) of an arriving consumer.

Then, a signal of quality will be generated following period t if and only if at = 1 and a

consumer does arrive in that period. The transition rule of the belief process (pt)
T
t=1 then

becomes:

pt+1|pt, at ∼ at
[
ρG(·|pt) + (1− ρ)D(·|pt)

]
+ (1− at)D(·|pt) (10)

Compared to the transition rule in (2), the change is that G(·|·) is now replaced by

ρG(·|·) + (1− ρ)D(·|·). This is the only change we have in the design environment.32

Because Lemma 1 still holds with G(·|·) replaced by ρG(·|·) + (1 − ρ)D(·|·), all of
my previous characterizations for the optimal design will remain valid. The following

proposition reveals how the consumer arrival frequency matters for the optimal design.

Proposition 6. Assume Assumption 2 holds.33 Given any arrival rate ρ, let (η∗t (ρ))
T
t=1

denote the thresholds of the optimal threshold policy. Then ρa < ρb ⇒ η∗t (ρa) ≥ η∗t (ρb)∀t,
where the inequality is strict for all t ∈ (1, T ).

The proposition suggests that when the platform faces a thicker market where con-

sumers arrive more frequently, the recommendation standards over the product’s life

should be lower. The intuition is again twofold. First, a higher arrival rate implies that

more consumers are likely to come in the future. This increases the informational value

of early consumption. Second, with a higher arrival rate, the platform will in expectation

have more consumption and hence more signals accumulated before any given period if

the standards are kept unchanged. This allows the platform to indeed implement lower

recommendation standards while obeying the IC constraints.

32Another change to the designer’s problem is that we should now replace u(·) in the designer’s objective
function (5) with ρu(·), which reflects the fact that a consumer arrives only with probability ρ. This
does not matter for the optimization, however, since it only rescales the objective function.

33This still holds, in particular, under the conditions in footnote 24, but now there is no need to require

log
( fH

i (si)

fL
i (si)

)
(i ≥ 1) to have full support over R.
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5.3 Platform Bias

In some applications, the platform may be inherently biased towards recommending the

product it carries instead of willing to maximize consumer surplus, especially when it

earns extra commission from consumption. My analysis can be easily extended to incor-

porate this interest conflict between the platform and consumers.

Formally, we can modify the main model by assuming that the platform will earn

commission β ≥ 0 whenever a consumer consumes the product, and it wants to maximize

the sum of its commission and consumer surplus. The platform’s problem then becomes:

max
ϕ∈Φ

{ T∑
t=1

Eϕ

[
at
(
u(pt) + β

)]}
(11)

s.t. Pϕ(at = 1) > 0 ⇒ Eϕ[u(pt)|at = 1] ≥ 0 (12)

Pϕ(at = 0) > 0 ⇒ Eϕ[u(pt)|at = 0] ≤ 0 (13)

As in the basic model, IC constraint (13) can be ignored because the platform prefers

consumption more than the consumers. Through the same argument as in Section 3.1,

the optimization can then be written as:

max
ϕ∈Φ

{ T∑
t=1

Eϕ

[
at
(
u(pt) + β

)]}
(14)

s.t. Eϕ[atu(pt)] ≥ 0 ∀t = 1, ..., T (15)

The only difference from the optimization in Section 3 is that we now have the β term

in the objective function measuring the platform’s bias. It is easy to check that all proofs

in Section 3 can be extended straightforwardly. Especially, the optimal policy will still be

characterized by Proposition 3, with ϕo being defined by the algorithm in Definition 2.

The analysis in Section 4 also remains qualitatively the same, which implies that the

optimal recommendation policy generally features U-shaped standards over time.

To see how β shapes the optimal design, notice that it affects the dictator’s optimal

solution ϕd. Intuitively, the larger is β, the more willing the dictator will be to recommend

the product and thus the lower thresholds ϕd will have. Since ϕd is a key ingredient in

constructing the optimal policy in Definition 2, β then influences the optimal design.

This is actually the only channel through which β matters. The following proposition

provides comparative statics with respect to changes in β.

Proposition 7. Assume Assumption 2 holds. For any β ≥ 0, let (η∗t (β))
T
t=1 denote the

thresholds of the optimal threshold policy, and let t̂(β) denote the cutoff time defined in

Definition 2. Then, given any βb > βa ≥ 0, we have:

(a) t̂(βb) ≥ t̂(βa)
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Figure 5: Optimal recommendation thresholds with β = 0 and β = 0.2 respectively, for
the numerical example in Figure 2.

(b) η∗t (βb) = η∗t (βa) for all t < t̂(βa)

(c) η∗t (βb) ≤ η∗t (βa) for all t ≥ t̂(βa), where the inequality holds strictly for all t > t̂(βa).

Figure 5 illustrates the proposition’s results. Following an increase in β, the opti-

mal thresholds will remain the same as before during the phase where the thresholds

were originally decreasing, but will then go deeper down after the original bottom and

thereafter remain lower than the original thresholds. Intuitively, after β increases, the

platform would like to set lower standards and thereby earn more commission. However,

during the initial periods (before period 10 in the figure), the consumer’s IC constraints

have already been binding. The platform can thus do nothing but keeping the original

standards. During the later periods, on the contrary, the consumers’ IC constraints were

originally slack. This enables the platform to implement lower standards.

6 Additional Discussion

6.1 Non-binary Quality Levels

One simplifying assumption in my main model is that the product’s quality can only

take binary values. As in many other studies on information design or social learning,

this allows one to represent the evolving belief with a single-dimensional variable, which

significantly eases the analysis.34

In Appendix A, I extend the model to allow general quality support. Although a full

characterization of the optimal design is not available, the duality approach does help to

extend certain structures of the optimal design to that general setting. In particular, I

show that the optimal design still features a two-phase structure implied by Lemma 3.

34See, e.g., section 2 in Hörner & Skrzypacz (2017) for papers on social experimentation.
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Moreover, the optimal policy should be more inclined to recommend the product when

the platform’s current belief about quality is higher in the likelihood-ratio order. This

extends the threshold structure to the case with multi-dimensional beliefs. I will discuss

how this result can be helpful for algorithmic recommendation design in the appendix.

6.2 Comparison to Previous Studies

As has been mentioned in the introduction, my study is closely related to Kremer et al.

(2014) and Che & Hörner (2018), who also study how platform recommendations can

improve social learning efficiency when early consumption produces information for later

consumers through the platform. Similar to my paper, they also reveal how past informa-

tion accrued to the platform enables it to persuade more consumers into socially desirable

explorations in the future. However, the three papers provide different characterizations

for the optimal design.

Because Kremer et al. (2014) assumes fully revealing consumption-generated signals,

their design is mainly about when to induce the first trial of the product.35 The main

result is that a product that looks better based on the platform’s initial information (in

its quality relative to an alternative option) should receive the first trial earlier. Che &

Hörner (2018) assumes that the platform learns from conclusive news that fully reveals the

product’s quality upon its arrival. The design in their paper is hence about “how much”

to recommend the product following the history without news arrival. They show that

myopically suboptimal recommendation, given no news arrival, should gain increasing

intensity as the product ages until being ceased at some point. In contrast, my study

accommodates general non-conclusive consumption-generated signals. My prediction of

the optimal design is therefore about whether to recommend the product in each period

based on any current belief of the platform. This allows me to interpret my results as

being about the time-varying recommendation standards. In particular, I have found that

the optimal design features threshold policies with respect to the evolving belief, and the

recommendation standard should vary in a U-shaped pattern as the product ages.36

Allowing non-conclusive signals also enables richer predictions about the optimal rec-

ommendation dynamic. In particular, the phenomenon of temporary recommendation

suspensions following negative consumer feedback in Section 4.2 cannot exist with con-

clusive signals, since conclusive negative feedback should stop recommendation forever.

Moreover, both of the previous papers suggest that exploration (i.e., myopically subopti-

mal trials) should stop after some middle age of the product. With general consumption-

generated signals, however, Proposition 4 implies that exploration can happen until the

35After the first trial, quality is fully revealed and recommendations should be myopically optimal.
36With binary product quality, the result in Kremer et al. (2014) can be considered as a special case

of mine.
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last period of the product’s life, although the belief region for exploration gradually

shrinks after some point.

Finally, my study has also provided several comparative statics regarding the optimal

recommendation standards in Section 5, which have no counterparts in the previous

papers.

7 Conclusion and Methodological Remarks

I have studied the optimal design of platform recommendations when early consumption

of a product yields informational externality to later consumers. The optimal design

is shown to feature threshold policies with the recommendation standard varying in a

U-shaped pattern over the product’s life. An interesting implication is that recommen-

dations can be temporarily suspended following negative feedback for young products.

My characterization also enables a couple of comparative statics. In particular, I have

shown that the recommendation standard should be lower throughout the product’s life

when consumption is more likely to generate informative feedback or when consumers

are arriving more frequently over time.

My model accommodates non-conclusive consumption-generated signals. Consequently,

compared to the existing literature, it requires a more general formulation of the designer’s

problem as a constrained Markov decision process. I argue that such a mathematical for-

mulation naturally arises in dynamic information design problems where the designer’s

private information flow is controlled by the receivers’ decisions. Specifically, if one fo-

cuses on direct mechanisms, then those design problems can be treated as Markov decision

processes where the designer decides the receivers’ actions and thereby controls his own

information flow subject to the receivers’ IC constraints. Since the receivers do not ob-

serve the designer’s information, their IC constraints need to involve taking expectations

over it. This then leads to the aggregated constraints that cannot be directly handled

in dynamic programming (like constraint (6)). I expect that such a formulation and

the Lagrangian duality approach I take can be generally useful for this kind of dynamic

information design problems.

A Non-binary Quality Levels

In this appendix, I extend the model to allow for non-binary product quality and gener-

alize certain characterizations of the optimal design.
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A.1 The General Setting

Consider the same setting as in Section 2.1 except that the support of θ̃ can be an arbitrary

set Θ ⊂ R now. I assume that the joint distribution of θ̃ and the signals (s0, s1, ...) is such

that the platform’s posterior belief is always within a family of distributions {Qz}z∈Z ,
where Z ⊂ Rn is a countable parameter set.37 I assume that {Qz}z∈Z admits density

functions {qz}z∈Z with respect to some common dominating measure over R, and qz(·) > 0

on Θ for all z ∈ Z. Moreover, I impose the following assumption:

Assumption A.1. Assume the following:

(i) P(E[θ̃|s0] > 0) > 0.

(ii) For any i ≥ 1, si takes values in some set S ⊂ R. Its distribution conditional on

θ̃ admits a conditional density function ℓ(·|·) (w.r.t. some dominating measure over R)
such that: ℓ(s|θ) > 0 for all s ∈ S and θ ∈ Θ; ℓ(·|θ) increases in θ in the likelihood-ratio

order.

Condition (i) plays the same role as its counterpart in Assumption 1. Condition

(ii) implies that higher realizations of si suggest that the product is more likely to be of

higher quality. This framework is general enough to incorporate many parametric learning

models with congruent prior and signals (e.g., the Beta-Binomial model). Moreover, it

accommodates any learning model with finite support of θ̃ that satisfies Assumption A.1.

Let zt ∈ Z denote the platform’s belief parameter at the beginning of period t. Since

zt (or Qzt) summarizes all information available to the platform at time t, we can focus

on (randomized) Markov recommendation policies w.r.t. (zt)
T
t=1. Formally, any policy

of this type is a sequence of measurable mappings ϕ := (ϕt : t = 1, ..., T ), where each

ϕt : Z → [0, 1] decides the probability of recommending the product at time t given any

belief parameter zt ∈ Z.

As in Section 5.2, I also allow i.i.d. random consumer arrivals and use ρ to denote the

arrival probability.

37I assume Z to be countable for simplicity, which avoids the need to discuss certain measurability
issues about the optimal policy.
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A.2 Characterizations

Following similar arguments as those in Section 3.1 and Section 5.2, the designer’s problem

can be formulated as follows:

max
ϕ∈Φ

{ T∑
t=1

Eϕ[atu(zt)]
}

s.t. Eϕ[atu(zt)] ≥ 0 ∀t = 1, ..., T

zt+1|zt, at ∼ at
[
ρG(·; zt) + (1− ρ)D(·; zt)

]
+ (1− at)D(·; zt)

z1 ∼ µ1

where u(zt) :=
∫
θ∈Θ θQzt(dθ) (i.e., the expected consumption surplus given belief Qzt),

G(·; ·) is the transition kernel for zt following one’s consumption, and µ1 is the distribution

of z1. Compared to the model with binary qualities, the process of (zt)
T
t=1 now replaces

the role of (pt)
T
t=1. I define the Lagrangian function L(ϕ;λ) and the dual problem similarly

as those in Section 3. The following lemma follows easily from my assumptions and the

definition of (zt)
T
t=1.

Lemma A.1. The belief (parameter) process has the following properties:

(P1’)
[
ρG(·; z)+ (1−ρ)D(·; z)

]
as a measure-valued function of z is weakly continuous.38

(P2’)
∫
z′
u(z′)

[
ρG(dz′; z) + (1− ρ)D(dz′; z)

]
= u(z).

(P5’) µ1

(
{z : u(z) > 0}

)
> 0.

These properties are the counterparts to properties (P1), (P2) and (P5) in Lemma 1.

Because Lemmas 2 and 3 in the main text only rely on these properties in Lemma 1, they

still hold in the current setting.39 In particular, we still have the following time pattern

of Lagrangian multipliers derived from the dual problem:

Lemma A.2. There exists λ∗ ∈ argminλ∈RT
+
supϕ∈Φ L(ϕ;λ) such that λ∗t ≥ λ∗t+1 for all

t = 1, ..., T − 1.

One particular implication of this lemma is that the multiplier will stay at zero once

dropping to it. As in the main model, this implies that any optimal design generally

features a two-phase structure. In the first phase, IC constraints are binding and hence

the recommendation policy is just picky enough for the consumers to follow; in the

second phase, the IC constraints become non-restrictive and the optimal design follows

the optimal continuation policy of the dictator.

While I cannot fully pin down the optimal design, the proposition below reveals an

important structure of it. Let ≥LR denote dominance in the likelihood-ratio order.

38This is trivially true since Z is countable.
39The proofs for them remain the same as before except that the role of (pt)

T
t=1 is now replaced by

(zt)
T
t=1.
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Proposition A.1. Assume the consumer arrival rate ρ ∈ (0, 1).40 Any optimal policy

is almost surely equivalent to some policy ϕ∗ such that for all t: if Qz′ ≥LR Qz and∫
θ
θdQz′(θ) >

∫
θ
θdQz(θ), then ϕ

∗
t (z) > 0 ⇒ ϕ∗

t (z
′) = 1.

Intuitively, the proposition roughly suggests that any optimal policy should be more

inclined to recommend the product when the current belief of quality is higher in the

likelihood-ratio order. This naturally extends the threshold structure of the optimal

design in my main model to the current setting, where the platform’s belief is in a multi-

dimensional space only endowed with a partial order.

Although the aforementioned property is intuitively appealing, it is actually violated

by many recommendation algorithms proposed in studies that only focus on the design’s

asymptotic performance. For example, the algorithm in Mansour et al. (2020) introduces

randomized exploration to fulfill the consumers’ IC constraints, which necessarily violates

the property.41 My result suggests that modifying their algorithm to be more consistent

with this property may help to improve the algorithm’s finite-horizon performance. This

may be an interesting topic for future algorithm-oriented research.

B Proofs

B.1 Proof for Lemma 1

Proof. Property (P2) is implied by the law of iterated expectation; property (P4) is obvi-

ous given Assumption 1(ii) (i.e., the signals are not completely uninformative); property

(P5) is directly implied by Assumption 1(i). I show (P1) and (P3) below.

Fix any i ≥ 1. Let S denote the signal realization space of si. Let fL(·) and fH(·)
denote si’s conditional density functions conditional on θ̃ = θL and θ̃ = θH respectively,

with respect to some dominating measure m over S. Without loss of generality, we

can choose m s.t. fL(s) and fH(s) are not both equal to zero m-a.s. Since I assume

no signal realization fully reveals the value of θ̃ (i.e., Assumption 1(iii)), we also have

fL(s) ̸= 0 ⇔ fH(s) ̸= 0 m-a.s. Thus fL(s) and fH(s) are non-zero m-a.s. Define the

log-likelihood ratio ℓi = log
(
fH(si)/fL(si)

)
, and let JL and JH denote its distribution

given θ̃ = θL and θ̃ = θH respectively.42

We have the following observation:

Claim (a). For any a, JH(a) =
∫
ℓ≤a

eℓdJL(ℓ).

40Although I conjecture that the result should also hold with ρ = 1, my current proof requires ρ < 1
to avoid some technical subtly.

41The algorithm in Mansour et al. (2020) is not Markovian. Hence, more precisely, it is the randomized
Markov policy outcome-equivalent to their algorithm that does not satisfy the property.

42Such log-likelihood ratio representation of a signal has been previously used in Smith & Tian (2018).
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Proof for Claim (a). The following equalities hold:∫
ℓ≤a

eℓdJL(ℓ)
1O
= E[1{ℓi≤a}e

ℓi |θ̃ = θL]
2O
= E

[
1{

log
fH (si)

fL(si)
≤a
}fH(si)
fL(si)

∣∣∣θ̃ = θL

]
3O
=

∫
1{

log
fH (s)

fL(s)
≤a
}fH(s)
fL(s)

fL(s)m(ds)
4O
=

∫
1{

log
fH (s)

fL(s)
≤a
}fH(s)m(ds)

5O
= E[1{ℓi≤a}|θ̃ = θH ]

6O
= JH(a)

where the first and the last equalities hold by the definitions of JL and JH respectively;

the second equality holds by the definition of ℓi; the third and the fifth equalities hold by

the definitions of fL and fH respectively; the fourth equality is a trivial identity. □

Now, given any prior belief p about θ̃ = θH , let p̃ denote the posterior belief given si.

Then by the Bayes rule we have: log p̃
1−p̃

= log p
1−p

+ ℓi. Let Pp denote the probability

measure given prior p. This then implies that

Pp(p̃ ≤ x) = Pp

(
ℓi ≤ log

x

1− x
− log

p

1− p

)
(B.1)

= pJH
(
log

x

1− x
− log

p

1− p

)
+ (1− p)JL

(
log

x

1− x
− log

p

1− p

)
(B.2)

=

∫
ℓ≤log x

1−x
−log p

1−p

[peℓ + (1− p)]dJL(ℓ) (B.3)

where the last equality holds by Claim (a) above. Now, pick any p∗ ∈ R and a sequence of

(pn)n → p∗. When expression (B.3) is continuous in x at x = x0 given p = p∗, obviously

we must have JL(ℓ) being continuous at ℓ = log x0

1−x0
− log p∗

1−p∗
, which further implies that

the expression (B.3) is continuous in p at p = p∗ given x = x0. Thus Pp∗(p̃ ≤ x) being

continuous in x at x = x0 implies Ppn(p̃ ≤ x0) → Pp∗(p̃ ≤ x0) as n → ∞. Therefore, the

distribution of p̃ given prior p is weakly continuous in p. This proves the weak continuity

condition for G(·|p) in (P1).

To check property (P3), we need the following observation:

Claim (b). For any a,
∫
ℓ≤a

eℓdJL(ℓ) ≤
∫
ℓ≤a

dJL(ℓ).

Proof for Claim (b). Notice by Claim (a) above, eℓdJL(ℓ) just equals to dJH(ℓ). We can

thus treat both eℓdJL(ℓ) and dJL(ℓ) as probability measures over R, with densities eℓ

and 1 respectively w.r.t. the dominating measure dJL(ℓ). Since eℓ is increasing in ℓ, we

then have eℓdJL(ℓ) dominating dJL(ℓ) in the likelihood-ratio order.43 This further implies

dominance in first-order stochastic dominance and thus
∫
ℓ≤a

eℓdJL(ℓ) ≤
∫
ℓ≤a

dJL(ℓ). □

43See, e.g., section 1.4 in Müller & Stoyan (2002) for an introduction to such order.
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Now, pick any pa and pb s.t. pa < pb, we have∫
ℓ≤log x

1−x
−log

pb
1−pb

[pbe
ℓ + (1− pb)]dJL(ℓ) ≤

∫
ℓ≤log x

1−x
−log pa

1−pa

[pbe
ℓ + (1− pb)]dJL(ℓ)

≤
∫
ℓ≤log x

1−x
−log pa

1−pa

[pae
ℓ + (1− pa)]dJL(ℓ)

where the second inequality holds due to Claim (b). Together with equations (B.1)–(B.3),

this implies that Pp(p̃ ≤ x) is weakly decreasing in p for any x. Thus we have the property

of (P3).

Q.E.D.

B.2 Proof for Proposition 1

Proof. The proof basically applies Lemma 1(iv) in Feinberg & Piunovskiy (2000) to my

setting. Specifically, define

V =
{
v ∈ RT+1 : ∃ϕ ∈ Φ s.t. vt = Eϕ[atu(pt)]∀t = 1, ...T and vT+1 =

T∑
t=1

Eϕ[atu(pt)]
}

Notice for each admissible policy ϕ, the first T arguments of the corresponding vector v are

the values of the IC constraints and the (T +1)’th argument of v is just the total surplus

in the designer’s objective. Lemma 1(iv) in Feinberg & Piunovskiy (2000) implies that

V is a compact set. This further implies that the set V ∩ {v ∈ RT+1 : vt ≥ 0 ∀t = 1, ...T}
is compact, and thus when we maximize over its (T + 1)’th dimension, the supremum is

achievable. By the definition of V , this is equivalent to that the designer’s problem has

its supremum achieved by some ϕ.

Now, it suffices to check that the four conditions of Lemma 1 in Feinberg & Piunovskiy

(2000) are indeed satisfied in my setting. Condition 1 holds because my state space [0, 1]

is closed, and the set of feasible actions A = {0, 1} is finite and does not vary in time and

state. Conditions 2 and 4 hold because the flow payoffs in my setting are bounded and

continuous in the pair of action and state, and is non-zero for only finitely many periods.

For Condition 3, we just need to show the transition probability aG(·|p) + (1− a)D(·|p)
is weakly-continuous in (a, p) ∈ {0, 1} × [0, 1]. With {0, 1} endowed with the discrete

topology, it suffices to check weak continuity in p when a = 1 and a = 0 separately. These

are respectively implied by the weak continuity of G(·|p) (Property (P1) in Lemma 1)

and D(·|p) in p.44

Q.E.D.

44To see D(·|p) is weakly-continuous in p, notice its cdf is just 1{x≥p}. Given any sequence (pn)n → p∗,
we have 1{x≥pn} → 1{x≥p∗} for any x ̸= p∗. The weak-continuity is thus implied (see, e.g., Section 3.2
in Durrett (2019) for conditions of weak-continuity).
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B.3 Proof for Lemma 2

Proof. To use the Lagrangian duality theorem, I first transform the designer’s problem

into a linear program. Throughout, I fix the initial belief state distribution µ1. Given

any policy ϕ ∈ Φ, let mϕ
t denote the distribution of (at, pt) under it.

45

Let M denote the set of all sequences of such distributions under some ϕ, i.e., M =

{(mϕ
t )

T
t=1 : ϕ ∈ Φ}. A (standard) characterization for this set is that (mt)

T
t=1 ∈ M if and

only if:

m1({0, 1} ×B) = µ1(B) (B.4)

mt+1({0, 1} ×B) =

∫
p∈[0,1]

∑
a∈{0,1}

[aG(B|p) + (1− a)D(B|p)]mt(a, dp)∀t = 1, ..., T − 1

(B.5)

for any B ∈ B[0,1] (Borel σ-field of [0, 1]). I use M̂ to denote the set of (mt)
T
t=1 satisfying

these conditions. The fact that M ⊂ M̂ is obvious since any (mϕ
t )

T
t=1 must be consistent

with µ1 and the transition probabilities, and thus satisfies (B.4) and (B.5).

To see M̂ ⊂ M, pick any (m∗
t )

T
t=1 ∈ M̂. Let ϕ∗ be a (randomized) Markov policy

such that ϕ∗
t is just the conditional probability mass function of at given pt under m

∗
t .

Formally, for any mt, treat mt(a, dp) (a = 1, 2) as a measure over [0, 1] s.t. mt(a,B) =

mt({a} × B), ∀B ∈ B[0,1]. Then ϕ∗ is defined as (an arbitrary version of) the Radon-

Nikodym derivative ofm∗
t (1, dp) w.r.t.m

∗
t (0, dp)+m

∗
t (1, dp). (Noticem

∗
t (0, dp)+m

∗
t (1, dp)

is just the marginal distribution of m∗
t over [0, 1] and the Radon-Nikodym derivative is

by definition measurable.) Then, we can show ϕ∗ implements (m∗
t )

T
t=1 by induction in t.

Let mϕ∗

t denote the joint distribution of (at, pt) under ϕ
∗ for any t. For t = 1, we have

for all B ∈ B[0,1]:

mϕ∗

1 ({1} ×B) =

∫
p∈B

ϕ∗
1(p)µ1(dp) =

∫
p∈B

ϕ∗
1(p)[m

∗
1(0, dp) +m∗

1(1, dp)]

=

∫
p∈B

m∗
1(1, dp) = m∗

1({1} ×B)

where the second equality holds by condition (B.4) and the third equality holds by the

definition of ϕ∗. Sincemϕ∗

1 ({1}×B)+mϕ∗

1 ({0}×B) = µ1(B) = m∗
1({1}×B)+m∗

1({0}×B),

we also have mϕ∗

1 ({0} ×B) = m∗
1({0} ×B). Thus mϕ∗

1 = m∗
1.

Now, assume mϕ∗

t = m∗
t and consider the result for t + 1. Because condition (B.5)

holds for m∗
t+1, we know that the marginal distribution over [0, 1] under m∗

t+1 given m
∗
t is

45As is standard, we can construct the underlying measurable space for the process as ({0, 1}× [0, 1])T

with the Borel σ-field, and treat the corresponding random variables as identity mappings ({0, 1} ×
[0, 1])T → ({0, 1} × [0, 1])T . Thus we can treat any distribution for those random variables equivalently
as a measure over the underlying measurable space, which is typically how I interpret those distributions.
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determined by the same rule as that determines the marginal distribution over [0, 1] under

mϕ∗

t+1 givenm
ϕ∗

t . Thusm∗
t = mϕ∗

t impliesm∗
t+1({0, 1}×B) = mϕ∗

t+1({0, 1}×B), ∀B ∈ B[0,1].

This further implies:

mϕ∗

t+1({1} ×B) =

∫
p∈B

ϕ∗
t+1(p)[m

ϕ∗

t+1(0, dp) +mϕ∗

t+1(1, dp)]

=

∫
p∈B

ϕ∗
t+1(p)[m

∗
t+1(0, dp) +m∗

t+1(1, dp)] = m∗
t+1({1} ×B)

where the second equality holds because the two measures are equal as mentioned right

above and the third equality holds by the definition of ϕ∗. Together with m∗
t+1({0, 1} ×

B) = mϕ∗

t+1({0, 1} × B), this also implies mϕ∗

t+1({0} × B) = m∗
t+1({0} × B). Therefore,

m∗
t+1 = mϕ∗

t+1. This completes the induction proof for showing that m∗ is implemented

with ϕ∗.

The above discussion has shown M = M̂. We can thus rewrite the designer’s problem

as

max
(mt)Tt=1∈M̂

{ T∑
t=1

[ ∫
p∈[0,1]

∑
a∈{0,1}

au(p)mt(a, dp)
]}

s.t.

∫
p∈[0,1]

∑
a∈{0,1}

au(p)mt(a, dp) ≥ 0 ∀t = 1, ..., T

Since conditions (B.4) and (B.5) are affine in (mt)
T
t=1, the set M̂ is a convex subset

of
{
signed Borel measures on {0, 1} × [0, 1]

}T
. The optimization above is thus a linear

program over this convex set M̂.

Let L̂((mt)
T
t=1;λ) :=

∑T
t=1(1+λt)

[ ∫
p∈[0,1]

∑
a∈{0,1} au(p)mt(a, dp)

]
, i.e., the Lagrangian

function associated to the linear program. Since u(·) is bounded by Lemma 1 and T <∞,

the optimal value w∗ is finite. Standard Lagrangian duality (e.g., Theorem 1 in Section

8.6 of Luenberger (1997)) then implies:46

w∗ = min
λ∈RT

+

sup
(mt)Tt=1∈M̂

L̂((mt)
T
t=1;λ)

where the minimum is achieved by some non-negative λ∗. Given any such λ∗, (m∗
t )

T
t=1 ∈

M̂ solves the linear program if and only if:

(i) (m∗
t )

T
t=1 ∈ argmax(mt)Tt=1∈M̂

L̂((mt)
T
t=1;λ

∗)

(ii) λ∗t
∫
p∈[0,1]

∑
a∈{0,1} au(p)m

∗
t (a, dp) = 0, ∀t = 1, ..., T

(iii)
∫
p∈[0,1]

∑
a∈{0,1} au(p)m

∗
t (a, dp) ≥ 0, ∀t = 1, ..., T

46Theorem 1 in Section 8.6 of Luenberger (1997) does not directly state the sufficiency of conditions
(i) – (iii) for optimality. However, this is obvious as those conditions together imply (m∗

t )
T
t=1 is feasible

and
∑T

t=1

[ ∫
p∈[0,1]

∑
a∈{0,1} au(p)m

∗
t (a, dp)

]
=

∑T
t=1(1 + λt)

[ ∫
p∈[0,1]

∑
a∈{0,1} au(p)m

∗
t (a, dp)

]
= w∗.
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To check the corresponding Slater’s condition, notice by properties (P2) and (P5) in

Lemma 1, the consumer’s surplus will be strictly positive at all t under the myopically

optimal policy, and thus all IC constraints can hold strictly.

Finally, notice M = M̂ just means that (mt)
T
t=1 ∈ M̂ if and only if it is induced

by some ϕ ∈ Φ. Thus the above results are equivalent to the statements in the lemma.

Q.E.D.

B.4 Analyses and Proofs for Section 3.3

B.4.1 Preliminaries

Towards using the duality result, I start with examining the Lagrangian function opti-

mization maxϕ∈Φ L(ϕ;λ) given any generic multiplier λ ∈ RT
+. For this unconstrained

Markov decision problem, let Vλ(·, t) be the value function at time t, which is inductively

defined with the Bellman equation:

Vλ(·, T + 1) ≡ 0 (B.6)

Vλ(p, t) = max
{
(1 + λt)u(p) +

∫
p′
Vλ(p

′, t+ 1)G(dp′|p), Vλ(p, t+ 1)
}
∀t = 1, ..., T

(B.7)

where the two arguments in the maximization correspond to the values with and without

time-t consumption of the product respectively. I define Hλ(p, t) to be the difference

between these two values, i.e.,

Hλ(p, t) := (1 + λt)u(p) +

∫
p′
Vλ(p

′, t+ 1)G(dp′|p)− Vλ(p, t+ 1) ∀t = 1, ..., T (B.8)

Intuitively, Vλ(p, t) is the continuation value for the Lagrangian optimization at time t

given pt = p; Hλ(p, t) measures the net benefit from inducing the time-t consumption

given pt = p. A preliminary result needed later is that Hλ(·, t) is continuous.

Lemma B.1. Hλ(·, t) is continuous for any t.

Proof. Since u(·) is continuous by definition, we just need to show Vλ(p, t + 1) and∫
p′
Vλ(p

′, t + 1)G(dp′|p) are continuous in p. When t = T , these hold by the defini-

tion of Vλ(·, T + 1). Given that they hold for time t, by the Bellman equation we know

Vλ(p, t) is also continuous in p. Furthermore, because G(dp′|p) is weakly continuous in p

and Vλ(p, t) is bounded due to the boundedness of u(·), this also implies the continuity

of
∫
p′
Vλ(p

′, t)G(dp′|p) in p.47 The proof is thus completed by (backward) induction in

t. Q.E.D.

47Pick any (pn)n → p∗, the weak continuity implies G(dp′|pn)
w→ G(dp′|p∗), which further implies∫

f(p′)G(dp′|pn) →
∫
f(p′)G(dp′|p∗) for any bounded and continuous function f .
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We have the standard dynamic programming result:

Lemma B.2. Given any multiplier λ and initial belief state distribution µ1, we have:

(a) maxϕ∈Φ L(ϕ;λ) =
∫
p
Vλ(p, 1)µ1(dp);

(b) A policy ϕλ ∈ argmaxϕ∈Φ L(ϕ;λ) if and only if Hλ(pt, t) > 0 ⇒ at = 1 and

Hλ(pt, t) < 0 ⇒ at = 0 almost surely under it.

Proof. Pick any ϕ ∈ Φ. Notice that by the definition of Vλ, we have

Vλ(pt, t) ≥ ϕt(pt)
[
(1 + λt)u(pt) +

∫
p′
Vλ(p

′, t+ 1)G(dp′|pt)
]
+
(
1− ϕt(pt)

)
Vλ(pt, t+ 1)

a.s.
= Eϕ[(1 + λt)atu(pt)|pt] + Eϕ[Vλ(pt+1, t+ 1)|pt] (B.9)

where the inequality holds as equality if and only if Hλ(pt, t) > 0 ⇒ ϕt(pt) = 1 and

Hλ(pt, t) < 0 ⇒ ϕt(pt) = 0.

Using this repeatedly, we have:∫
p

Vλ(p, 1)µ1(dp) = Eϕ[Vλ(p1, 1)] ≥ Eϕ[(1 + λ1)a1u(p1)] + Eϕ[Vλ(p2, 2)]

≥ Eϕ[(1 + λ1)a1u(p1)] + Eϕ[(1 + λ2)a2u(p2)] + Eϕ[Vλ(p3, 3)]

... ≥ Eϕ[(1 + λ1)a1u(p1)] + ...+ Eϕ[(1 + λT )aTu(pT )] + Eϕ[Vλ(pT+1, T + 1)]︸ ︷︷ ︸
=0

Notice the last line is just L(ϕ;λ). This shows
∫
p
Vλ(p, 1)µ1(dp) ≥ supϕ∈Φ L(ϕ;λ). More-

over, notice that all these inequalities hold as equalities if and only if the inequality in

(B.9) holds as equality for all t almost surely under ϕ. As is mentioned earlier, this is

equivalent to Hλ(pt, t) > 0 ⇒ ϕt(pt) = 1 and Hλ(pt, t) < 0 ⇒ ϕt(pt) = 0 almost surely

under ϕ. If there is indeed a measurable ϕ satisfying these properties, then we have∫
p
Vλ(p, 1)µ1(dp) = supϕ∈Φ L(ϕ;λ), the supremum is achieved by such policy, and any

other admissible policy is optimal if and only if it also satisfies these properties. There-

fore, to prove the lemma, it now suffices to show that there is indeed a measurable policy

satisfying Hλ(pt, t) > 0 ⇒ ϕt(pt) = 1 and Hλ(pt, t) < 0 ⇒ ϕt(pt) = 0 almost surely.

We can construct such policy by defining ϕt(p) = 1{Hλ(p,t)≥0}, where 1 is the indicator

function. It is indeed measurable since Hλ(·, t) is continuous by Lemma B.1. Q.E.D.

I now provide some basic properties for the value function Vλ.

Lemma B.3. Given any λ ∈ RT
+, we have: (a) Vλ(p, t) is (weakly) increasing in p; (b)∫

p′
Vλ(p

′, t)G(dp′|p) ≥ Vλ(p, t) for any pair of (p, t).

Proof. The results can be shown by backward induction in t using the Bellman equation.

Since Vλ(·, T + 1) ≡ 0, both properties hold trivially for t = T + 1.
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Now, assume property (a) holds for Vλ(·, t + 1). Then property (P3) in Lemma 1

implies that
∫
p′
Vλ(p

′, t + 1)G(dp′|p) increases in p. Together with the monotonicity of

u(·) and the fact that λt ≥ 0, we know the RHS of the Bellman equation (B.7) is increasing

in p. This shows property (a) also holds for Vλ(·, t) and concludes the proof for part (a).

For property (b), assuming it holds for all periods later than t, we need to show∫
p′
Vλ(p

′, t)G(dp′|p) ≥ Vλ(p, t). Substituting the Bellman equation in, we know this is

equivalent to:∫
p′
max

{
(1 + λt)u(p

′) +

∫
p′′
Vλ(p

′′, t+ 1)G(dp′′|p′), Vλ(p′, t+ 1)
}
G(dp′|p)

≥ max
{
(1 + λt)u(p) +

∫
p′
Vλ(p

′, t+ 1)G(dp′|p), Vλ(p, t+ 1)
}

It then suffices to check:∫
p′

(
(1 + λt)u(p

′) +

∫
p′′
Vλ(p

′′, t+ 1)G(dp′′|p′)
)
G(dp′|p)

≥ (1 + λt)u(p) +

∫
p′
Vλ(p

′, t+ 1)G(dp′|p)

and

∫
p′
Vλ(p

′, t+ 1)G(dp′|p) ≥ Vλ(p, t+ 1)

The second of these inequalities is directly implied by the induction hypothesis. To check

the first one, notice by property (P2) in Lemma 1, we have
∫
p′
(1 + λt)u(p

′)G(dp′|p) =

(1 + λt)u(p). Moreover, by the induction hypothesis we have
∫
p′′
Vλ(p

′′, t+ 1)G(dp′′|p′) ≥
Vλ(p

′, t + 1) for any p′, and thus
∫
p′

∫
p′′
Vλ(p

′′, t + 1)G(dp′′|p′)G(dp′|p) ≥
∫
p′
Vλ(p

′, t +

1)G(dp′|p). These together imply the first inequality above. Thus property (b) holds for

period t. This completes the proof by induction.

Q.E.D.

B.4.2 Proof for Lemma 3

Proof. Pick any λ′ ∈ RT
+ such that λ′τ < λ′τ+1 for some τ . Define λ′′ to be equal to λ′

except for the terms of time τ and τ +1, which are defined as: λ′′τ = λ′τ+1 and λ
′′
τ+1 = λ′τ .

The key to the proof is the following observation:

Claim. Let λ′ and λ′′ be defined as above. Then supϕ∈Φ L(ϕ;λ′) ≥ supϕ∈Φ L(ϕ;λ′′).

Proof for the Claim. Since λ′ and λ′′ agree for t < τ , any policy will lead to the same

flow payoffs for periods before τ for both L(ϕ;λ′) and L(ϕ;λ′′). It thus suffices to show

Vλ′(p, τ) ≥ Vλ′′(p, τ) given any p.

Since λ′ and λ′′ also agree for t ≥ τ + 2, we have Vλ′(·, τ + 2) = Vλ′′(·, τ + 2). I can

thus let V∗(·, τ +2) denote both of them, i.e., V∗(·, τ +2) := Vλ′(·, τ +2) (= Vλ′′(·, τ +2)).
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Also let (y1, y2) := (λ′τ , λ
′
τ+1). Then y1 < y2 and (λ′′τ , λ

′′
τ+1) = (y2, y1). By the Bellman

equation (B.7), we have:

Vλ′′(p, τ) = max
{
(1 + y2)u(p) +

∫
p′
Vλ′′(p′, τ + 1)G(dp′|p), Vλ′′(p, τ + 1)

}
(B.10)

Consider the following two cases:

� Case 1: the maximum in equation (B.10) is achieved with aτ = 0 (i.e., no consump-

tion).

In this case, we have:

Vλ′′(p, τ) =Vλ′′(p, τ + 1)

=max
{
(1 + y1)u(p) +

∫
p′
V∗(p

′, τ + 2)G(dp′|p), V∗(p, τ + 2)
}

≤max
{
(1 + y1)u(p) +

∫
p′
Vλ′(p′, τ + 1)G(dp′|p), Vλ′(p, τ + 1)

}
=Vλ′(p, τ)

where the second equality holds by the Bellman equation for Vλ′′(p, τ+1); the inequality

holds because the Bellman equation for Vλ′(p, τ+1) implies that V∗(p, τ+2) ≤ Vλ′(p, τ+

1) for any p; the last equality is just the Bellman equation for Vλ′(p, τ).

� Case 2: the maximum in equation (B.10) is achieved with aτ = 1.

In this case, we have:

Vλ′′(p, τ) =(1 + y2)u(p) +

∫
p′
Vλ′′(p′, τ + 1)G(dp′|p) (B.11)

=(1 + y1)u(p) +

∫
p′

[
(y2 − y1)u(p

′) + Vλ′′(p′, τ + 1)︸ ︷︷ ︸
=:M(p′)

]
G(dp′|p) (B.12)

where the second equality holds because u(p) =
∫
p′
u(p′)G(dp′|p) by property (P2) in

Lemma 1. Using the Bellman equation for Vλ′′(p′, τ + 1), we know the term M(p′)

satisfies:

M(p′) =(y2 − y1)u(p
′) + max

{
(1 + y1)u(p

′) +

∫
p′′
V∗(p

′′, τ + 2)G(dp′′|p′), V∗(p′, τ + 2)
}

=max
{
(1 + y2)u(p

′) +

∫
p′′
V∗(p

′′, τ + 2)G(dp′′|p′), V∗(p′, τ + 2) + (y2 − y1)u(p
′)
}

(B.13)

Now, consider properties of M(p′) in two different scenarios about p′:

– Scenario 1: u(p′) > 0.

Notice Lemma B.3(b) implies
∫
p′′
V∗(p

′′, τ + 2)G(dp′′|p′) ≥ V∗(p
′, τ + 2). When
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u(p′) > 0, we thus have (1+ y2)u(p
′) +

∫
p′′
V∗(p

′′, τ +2)G(dp′′|p′) ≥ V∗(p
′, τ +2)+

(y2 − y1)u(p
′). Therefore, (B.13) implies:

M(p′) = (1 + y2)u(p
′) +

∫
p′′
V∗(p

′′, τ + 2)G(dp′′|p′)

= max
{
(1 + y2)u(p

′) +

∫
p′′
V∗(p

′′, τ + 2)G(dp′′|p′), V∗(p′, τ + 2)
}

= Vλ′(p′, τ + 1)

where the second equality holds since
∫
p′′
V∗(p

′′, τ+2)G(dp′′|p′) ≥ V∗(p
′, τ+2) and

u(p′) > 0 imply (1 + y2)u(p
′) +

∫
p′′
V∗(p

′′, τ + 2)G(dp′′|p′) ≥ V∗(p
′, τ + 2).

– Scenario 2: u(p′) ≤ 0.

In this case, we have (y2 − y1)u(p
′) ≤ 0. (B.13) thus implies:

M(p′) ≤max
{
(1 + y2)u(p

′) +

∫
p′′
V∗(p

′′, τ + 2)G(dp′′|p′), V∗(p′, τ + 2)
}

= Vλ′(p′, τ + 1)

where the equality holds by the Bellman equation.

In both scenarios, we always have M(p′) ≤ Vλ′(p′, τ + 1). Together with inequality

(B.12), this implies that Vλ′′(p, τ) ≤ (1+ y1)u(p)+
∫
p′
Vλ′(p′, τ +1)G(dp′|p) ≤ Vλ′(p, τ),

where the second inequality is due to the Bellman equation for Vλ′(p, τ).

In sum, Vλ′′(p, τ) ≤ Vλ′(p, τ) in both cases, which completes the proof for the claim.

□

I now go back to the main proof for Lemma 3. Pick any λ0 ∈ argminλ∈RT
+
supϕ∈Φ L(ϕ;λ)

(whose existence is guaranteed by Lemma 2). If λ0t is already non-increasing in t, we are

done; if λ0t < λ0t+1 for some t, then the claim above implies that by interchanging terms

λ0t and λ
0
t+1, we will get a new multiplier still in argminλ∈RT

+
supϕ∈Φ L(ϕ;λ). By repeatedly

making such interchanges, we can then derive a multiplier λ∗ ∈ argminλ∈RT
+
supϕ∈Φ L(ϕ;λ)

such that λ∗t ≥ λ∗t+1, ∀t.48

48More specifically, starting with n = 0, we can run the following algorithm:
1. Let τn = inf{t : λn

t < λn
t+1}. If τn = +∞, end the algorithm and out-put λn; otherwise, go to the

next step.
2. Let s = max

{
0, sup{t < τn : λn

t ≥ λn
τn+1}

}
and define

λn+1
t =


λn
τn+1 if t = s+ 1;

λn
t−1 if t = s+ 2, ..., τn + 1;

λn
t elsewhere

Then, repeat the procedures with n replaced by n+ 1.
Intuitively, in step 2 of the algorithm we advance the first term in λn greater than its predecessor to an
earlier position such that the first τn + 1 terms will be in descending order. It is then easy to see that
this algorithm will end in finite time and the vector it delivers will be non-increasing over t. Moreover,
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Q.E.D.

B.4.3 Properties of Hλ

Next, I provide some properties of Hλ, which are key to the proof for Lemma 4.

Lemma B.4. Hλ satisfies the following properties:

(a) p > p̄⇒ Hλ(p, t) > 0, ∀t;
(b) If λt is non-increasing in t, then Hλ(p, t) is (weakly) increasing in p for any t;

(c) If λt is non-increasing in t, then for any x, y s.t. x < y and Hλ(y, t) ≤ 0, we have

Hλ(x, t) < Hλ(y, t) (thus Hλ(·, t) has at most one root);

(d) If λt = λt+1, then Hλ(p, t) ≤ 0 ⇒ Hλ(p, t+ 1) < 0.

Proof. Part (a): Because
∫
p′
Vλ(p

′, t+1)G(dp′|p)−Vλ(p, t+1) ≥ 0 according to Lemma B.3,

part (a) is directly implied by the definition of Hλ.

Part (b): I prove (b) by backward induction in t. By definition, Hλ(p, T ) = (1+λT )u(p)

is strictly increasing in p and thus the monotonicity property holds for Hλ(p, T ). Now,

assuming it holds for Hλ(p, t+ 1), I show it also holds for Hλ(p, t). Notice the following

equations hold:

Hλ(p, t) =(1 + λt)u(p) +

∫
p′
Vλ(p

′, t+ 1)G(dp′|p)− Vλ(p, t+ 1)

=(1 + λt)u(p) +

∫
p′

(
max{Hλ(p

′, t+ 1), 0}+ Vλ(p
′, t+ 2)

)
G(dp′|p)

−
(
max{Hλ(p, t+ 1), 0}+ Vλ(p, t+ 2)

)
=(1 + λt)u(p) +

∫
p′
Vλ(p

′, t+ 2)G(dp′|p)− Vλ(p, t+ 2)

+

∫
p′
max{Hλ(p

′, t+ 1), 0}G(dp′|p)−max{Hλ(p, t+ 1), 0}

=(1 + λt)u(p)− (1 + λt+1)u(p) +Hλ(p, t+ 1)

+

∫
p′
max{Hλ(p

′, t+ 1), 0}G(dp′|p)−max{Hλ(p, t+ 1), 0}

=(λt − λt+1)u(p) + min{Hλ(p, t+ 1), 0}+
∫
p′
max{Hλ(p

′, t+ 1), 0}G(dp′|p)

(B.14)

to derive λn+1 from λn in step 2, one can just interchange the (τn + 1)’th term with the τn’th term,
then interchange the (new) τn’th term with the (τn − 1)’th term,..., and finally interchange the (new)
(s + 2)’th term with the (s + 1)’th term. In each of these steps, we interchange two adjacent terms
with the latter greater than the former. By the claim proved above, this keeps each of the (interme-
diate) vector within argminλ∈RT

+
supϕ∈Φ L(ϕ;λ). Thus the multiplier we derive in the end remains in

argminλ∈RT
+
supϕ∈Φ L(ϕ;λ). This completes the proof.
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where the second equality holds because Vλ(p, t+1) = max{Hλ(p, t+1), 0}+Vλ(p, t+2)

according to the Bellman equation (B.7); the first and the fourth equalities are directly

implied by the definition of Hλ; the other two are trivial identities. Recall that: λt ≥ λt+1

by assumption; Hλ(p, t+1) weakly increases in p by the induction hypothesis; and G(·|p)
increases in first-order stochastic dominance in p by property (P3) of Lemma 1. These

imply that all of the three terms in the last expression are (weakly) increasing in p. Thus

Hλ(p, t) is (weakly) increasing in p. This completes the proof for (b).

Part (c): I still prove by induction. The result holds obviously for Hλ(p, T ) = (1 +

λT )u(p). Now, assuming it holds for period t + 1, I show it also holds for period t. In

particular, with any x < y in [0, 1], we want to show Hλ(y, t) ≤ 0 ⇒ Hλ(x, t) < Hλ(y, t).

Given result (b) and equation (B.14) derived above, Hλ(x, t) < Hλ(y, t) obviously holds

when λt > λt+1, since u(p) = θHp + θL(1 − p) is strictly increasing in p. It thus suffices

to assume λt = λt+1. In this case, I have the following observation:

Claim. If λt = λt+1 and Hλ(y, t) ≤ 0, then Hλ(y, t+ 1) ≤ 0.

Proof for the claim. Given λt = λt+1 and Hλ(y, t) ≤ 0, suppose Hλ(y, t + 1) > 0. Then

equation (B.14) implies that
∫
p′
max{Hλ(p

′, t + 1), 0}G(dp′|y) = Hλ(y, t) ≤ 0. However,

the belief process must have G
(
[y, 1]|y

)
> 0 (as is implied by property (P2) in Lemma 1).

Moreover, by the monotonicity of Hλ(·, t+1) proved in part (b), we know Hλ(p
′, t+1) ≥

Hλ(y, t + 1) for any p′ ≥ y. Together with the hypothesis Hλ(y, t + 1) > 0, these

then imply
∫
p′
max{Hλ(p

′, t + 1), 0}G(dp′|y) > 0, which contradicts with the previous

conclusion. Thus we must have Hλ(y, t+ 1) ≤ 0. □

Now, go back to the main proof for part (c). Notice when λt = λt+1 and Hλ(y, t) ≤ 0,

the following holds:

Hλ(y, t) = min{Hλ(y, t+ 1), 0}+
∫
p′
max{Hλ(p

′, t+ 1), 0}G(dp′|y)

= Hλ(y, t+ 1) +

∫
p′
max{Hλ(p

′, t+ 1), 0}G(dp′|y)

> Hλ(x, t+ 1) +

∫
p′
max{Hλ(p

′, t+ 1), 0}G(dp′|x) = Hλ(x, t)

The first equality is just by equation (B.14) with λt = λt+1. The second equality holds

because the claim proved above implies Hλ(y, t + 1) ≤ 0. The strict inequality holds

because: (i) Hλ(y, t+ 1) ≤ 0 further implies Hλ(x, t+ 1) < Hλ(y, t+ 1) by the induction

hypothesis; (ii) G(·|y) first order stochastic dominates G(·|x); and (iii) Hλ(·, t + 1) is

increasing by part (b). The last equality holds also because of equation (B.14) and the

fact that Hλ(x, t+ 1) < 0. This completes the proof by induction.
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Part (d): Suppose λt = λt+1, Hλ(p, t) ≤ 0, but Hλ(p, t + 1) ≥ 0. Equation B.14 would

imply

Hλ(p, t) =

∫
p′
max{Hλ(p

′, t+ 1), 0}G(dp′|p)

I now argue that the RHS above must be strictly positive. Notice Hλ(p, t) ≤ 0 obviously

imply p < 1. Property (P4) in Lemma 1 then implies that G((p, 1]|p) > 0. Moreover,

since Hλ(p, t + 1) ≥ 0, parts (b) and (c) proved earlier imply Hλ(p
′, t + 1) > 0 for any

p′ > p. These together imply
∫
p′
max{Hλ(p

′, t+1), 0}G(dp′|p) > 0. This contradicts with

Hλ(p, t) ≤ 0 given the equation above. Thus the result in part (d) holds.

Q.E.D.

B.4.4 Proof for Lemma 4

The proof for Lemma 4 easily follows from Lemma B.4.

Proof. For each t, I construct the threshold ηt as follows:

� Case 1: {p : Hλ(p, t) = 0} = ∅.
In this case, define ηt = inf{p : Hλ(p, t) > 0}.

� Case 2: {p : Hλ(p, t) = 0} ≠ ∅.
In this case, Lemma B.4(c) implies that {p : Hλ(p, t) = 0} contains a single element.

Define ηt to be this element.

By the monotonicity property of Hλ(·, t) in Lemma B.4(b), in both cases we have pt >

ηt ⇒ Hλ(pt, t) > 0 and pt < ηt ⇒ Hλ(pt, t) < 0. Together with Lemma B.2(b), this

implies that under any solution to maxϕ∈Φ L(ϕ;λ), we have pt > ηt ⇒ at = 1 a.s. and

pt < ηt ⇒ at = 0 a.s. Hence any solution is almost surely equivalent to a threshold policy

with thresholds being (ηt)
T
t=1.

Moreover, notice Lemma B.4(a) implies u(pt) > 0 ⇒ Hλ(pt, t) > 0. Together with

Lemma B.2(b), this then implies u(pt) > 0 ⇒ at = 1 a.s. under any optimal solution to

maxϕ∈Φ L(ϕ;λ).
Q.E.D.

B.5 Proofs for Section 3.4

B.5.1 Definition of ϕd

As is mentioned in the main text, I define ϕd as the “most conservative” optimal policy

for the dictator’s problem. Formally, for any t = 1, ..., T :

ϕd
t (p) :=

1 if H0(p, t) > 0;

0 otherwise
(B.15)
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where H0 is as defined in (B.8) in Appendix B.4 with λ = 0. By Lemma B.2, it is easy to

see that we not only have ϕd being optimal for the dictator’s problem, but also have ϕd
≥t to

be optimal for the dictator’s continuation problem starting from time t regardless of the

belief distribution at t. Moreover, ϕd (or ϕd
≥t) is conservative in the sense that it breaks

any tie in favor of non-recommendation (i.e., H0(p, t) = 0 ⇒ ϕd
t (p) = 0). This makes

it most favorable to the current consumer among all dictator’s optimal (continuation)

policies.

B.5.2 Details in the Construction of ϕo and a Uniqueness Property

I first construct a threshold time-t policy ϕo
t satisfying the requirements in step 2 of the

algorithm in Definition 2. Given µo
t , define the policy’s threshold as

ηot = inf{x ∈ [0, 1] :

∫
p>x

u(p)µo
t (dp) > 0}

and define the recommendation probability at the threshold as

ϕo
t (η

o
t ) = −

∫
p>ηot

u(p)µo
t (dp)

u(ηot )µ
o
t ({ηot })

When the denominator above is zero, I define ϕo
t (η

o
t ) = 0 for simplicity. Now, I check the

ϕo
t such defined indeed satisfies the desired properties.

Claim. ϕo
t above is well-defined and satisfies the properties in step 2 of the algorithm.

Proof. First notice properties (P2) and (P5) in Lemma 1 together imply µo
t ((p̄, 1]) > 0

and thus
∫
p>p̄

u(p)µo
t (dp) > 0. This implies ηot ≤ p̄ and thus the first property is satisfied.

Now, I argue that
∫
p>ηot

u(p)µo
t (dp) ≥ 0. To see this, notice by the definition of

ηot , there exists a sequence {xn} ↓ ηot such that
∫
p>xn

u(p)µo
t (dp) > 0 for all n. Since

1{p>xn} → 1{p>ηot } and u(·) is bounded, we must have
∫
p>ηot

u(p)µo
t (dp) ≥ 0 by the domi-

nated convergence theorem.

Next, I argue that
∫
p≥ηot

u(p)µo
t (dp) ≤ 0. As the algorithm has not been ended in

step 1, we must have
∫
p∈[0,1] u(p)µ

o
t (dp) < 0.49 Thus the argument is true when ηot = 0.

When ηot > 0, notice by the definition of ηot , there exists a sequence {xn} ↑ ηot such that∫
p>xn

u(p)µo
t (dp) ≤ 0 for all n. Since 1{p>xn} → 1{p≥ηot }, by the dominated convergence

theorem we then must have
∫
p≥ηot

u(p)µo
t (dp) ≤ 0.

Now, consider two cases:

� Case 1: µo
t ({ηot }) = 0. In this case, the above arguments imply

∫
p>ηot

u(p)µo
t (dp) = 0.

Therefore the second property is satisfied.

49Notice ϕd
t (p) = 1 for any p > p̄ by the definition of ϕd and Lemma B.4(a).
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� Case 2: µo
t ({ηot }) > 0. In this case, the above arguments imply

∫
p>ηot

u(p)µo
t (dp) ≥ 0

and
∫
p>ηot

u(p)µo
t (dp) + u(ηot )µ

o
t ({ηot }) ≤ 0. These imply 0 ≥

∫
p>ηot

u(p)µo
t (dp)

u(ηot )µ
o
t ({ηot })

≥
−1 whenever u(ηot )µ

o
t ({ηot }) ̸= 0. Thus ϕo

t (η
o
t ) defined above is a valid probabil-

ity. By the definition of ϕo
t (η

o
t ), we have

∫
p
ϕo
t (p)u(p)µ

o
t (dp) =

∫
p>ηot

u(p)µo
t (dp) +

ϕo
t (η

o
t )u(η

o
t )µ

o
t ({ηot }) = 0. Thus ϕo

t satisfies the second desired property.

Q.E.D.

Due to the possible existence of off-path belief states, there can also be other forms

of ϕt satisfying the desired properties in step 2 of the algorithm. However, the following

lemma implies that any such policy must µo
t -a.e. agree with ϕo

t .

Lemma B.5. Given any probability measure µ over [0, 1] such that µ((p̄, 1]) > 0,50 any

threshold time-t policies satisfying p > p̄⇒ ϕt(p) = 1 (µ-a.e. ) and
∫
p
ϕt(p)u(p)µ(dp) = 0

must agree µ-a.e.

Proof. For i = 1, 2, let ϕi
t be a threshold time-t policy with threshold ηit, which satisfies∫

p
ϕi
t(p)u(p)µ(dp) = 0 and p > p̄⇒ ϕi

t(p) = 1 (µ-a.e. ). Without loss of generality, assume

η1 ≤ η2. Notice under the assumption µ((p̄, 1]) > 0,
∫
p
ϕi
t(p)u(p)µ(dp) = 0 implies that

we must have ϕi
t(p) > 0 for some p with u(p) < 0. Thus the threshold structure implies

ϕi
t(p) = 1 for all p such that u(p) ≥ 0, which holds for both i = 1, 2. Then, notice we

have:

0 =

∫
p

ϕ1
t (p)u(p)µ(dp)−

∫
p

ϕ2
t (p)u(p)µ(dp) =

∫
p:u(p)<0

(
ϕ1
t (p)− ϕ2

t (p)
)
u(p)µ(dp)

If η1 < η2, then ϕ1
t (p) ≥ ϕ2

t (p) for all p because of the threshold structure. Supposing

the policies do not agree µ-a.e. , which can only happen when u(p) < 0, then ϕ1
t (p) > ϕ2

t (p)

for a positive µ-measure set of p with u(p) < 0. This implies that the last expression

above is strictly negative, which is a contradiction.

If η1 = η2 =: η, then the two policies can only differ at p = η with u(η) < 0.

Supposing they do not agree µ-a.e, we must have µ({η}) > 0 and ϕ1
t (η) ̸= ϕ2

t (η). These

imply that the last expression above equals to [ϕ1
t (η)− ϕ2

t (η)]u(η)µ({η}) ̸= 0, which is a

contradiction. Thus the policies must agree µ-a.e. Q.E.D.

B.5.3 Proof for Proposition 3 and Related Results

We need to first prove some properties of ϕd.

Lemma B.6. Set {p : ϕd
t (p) = 1} shrinks in set inclusion order as t increases.

50Notice properties (P2) and (P5) in Lemma 1 together imply that this holds for time-t belief distri-
bution µt under any policy.
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Proof. Since by construction ϕd
t (p) = 1 if and only if H0(p, t) > 0, the result is directly

implied by Lemma B.4(d) in Section B.4. Q.E.D.

This observation leads to the following result:

Lemma B.7. Given any time-t belief distribution µt, we have
∫
p
ϕd
t (p)u(p)µt(dp) ≤∫

p
ϕd
t+1(p)u(p)µt+1(dp), where µt+1 is the period t+1 belief distribution under ϕd

t given µt.

(That is, the consumer’s expected payoff is weakly higher in period t+ 1 than in period t

under ϕd.)

Proof. The result is proved by the following arguments:∫
p′
ϕd
t (p

′)u(p′)µt(dp
′)

=

∫
p

∫
p′
u(p′)ϕd

t+1(p
′)[ϕd

t (p)G(dp
′|p) + (1− ϕd

t (p))D(dp′|p)]µt(dp)

=

∫
p

∫
p′
u(p′)ϕd

t+1(p
′)G(dp′|p)ϕd

t (p)µt(dp) ≥
∫
p

u(p)ϕd
t (p)µt(dp)

The first equality holds by the transition rule for p. The second equality holds because

ϕd
t (p) = 0 ⇒ ϕd

t+1(p) = 0 by Lemma B.6, and thus
∫
p′
u(p′)ϕd

t+1(p
′)(1− ϕd

t (p))D(dp′|p) =
u(p)ϕd

t+1(p)(1− ϕd
t (p)) = 0. The last inequality holds because∫

p′
u(p′)ϕd

t+1(p
′)G(dp′|p) ≥

∫
p′
u(p′)G(dp′|p) = u(p), where the “≥” is due to u(p′) > 0 ⇒

ϕd
t+1(p

′) = 1 and the “=” is implied by property (P2) in Lemma 1.

Q.E.D.

To ease notation, let ICt denote the IC constraint for time-t consumer. Repeated use

of Lemma B.7 implies that given any µt, if ϕ
d
≥t satisfies ICt, then it satisfies all later IC’s.

We are now ready to prove the proposition.

Proof for Proposition 3. First consider the “only if” part. Let ϕopt be any optimal

policy for the designer and let µopt
t be the distribution of pt under it for any t. Due to

Proposition 2, I can assume ϕopt is a threshold policy without loss of generality. Let λ∗

be a Lagrangian multiplier solving the dual problem that is non-increasing over t (which

exists by Lemma 3). I first check condition (i):

Claim (a). ϕopt

<t̂
agrees with ϕo

<t̂
a.s.

Proof for Claim (a). I check by forward induction in t for t < t̂. For t = 1, t < t̂ implies

that ϕd
1 violates IC1 given the initial state distribution µ1. In this case, we must have

λ∗1 > 0 and thus IC1 is binding under ϕopt. (Suppose not. Then λ∗t = 0 for all t ≥ 1 since

it is non-increasing in t, and thus the Lagrangian problem maxL(ϕ;λ∗) would coincide

with the dictator’s problem. By Lemma 2, this implies that ϕopt must also solve the

dictator’s problem. However, by construction ϕd provides the highest time-1 expected
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consumer surplus given µ1 among all optimal policies for the dictator’s problem. Thus

when ϕd
1 violates IC1, so does ϕopt

1 , which is a contradiction.) Also notice the optimality

of ϕopt implies p > p̄ ⇒ ϕopt
1 (p) = 1 (µ1-a.e. ). Thus ϕopt

1 satisfies the properties of ϕo
1 in

step 2 of the algorithm. By Lemma B.5, we then must have ϕopt
1 and ϕo

1 agree µ1-a.e.

Now, assume ϕopt and ϕo agree a.s. for all periods before t and t < t̂. Then, they induce

the same distribution for pt, which is just µo
t constructed in the algorithm. I want to

show ϕopt must also satisfy p > p̄⇒ ϕopt
t (p) = 1 µo

t -a.s. and
∫
p
ϕopt
t (p)u(p)µo

t (dp) = 0. The

former is directly implied by the optimality of ϕopt. For the latter, notice t < t̂ implies that

ϕd violates ICt given pt ∼ µo
t . We then must have λ∗t > 0 and thus ICt is binding under

ϕopt. (Suppose not. Then λ∗t′ = 0 for all t′ ≥ t, and thus the continuation Lagrangian

problem starting with time t coincides with the corresponding dictator’s continuation

problem. The optimality of ϕopt then implies that ϕopt
≥t must be optimal for this dictator’s

continuation problem given pt ∼ µo
t . However, among all such policies, ϕd

≥t delivers the

highest time-t expected consumer surplus. Thus when ϕd
t violates ICt, so does ϕ

opt
t , which

is a contradiction.) Thus
∫
p
ϕopt
t (p)u(p)µo

t (dp) = 0. Again by Lemma B.5, we must have

ϕopt
t and ϕo

t agree µo
t -a.e. The proof is then completed by induction. □

Now, since ϕopt

<t̂
and ϕo

<t̂
agree almost surely, they lead to the same distribution for pt̂,

which is just µo
t̂
. Hence ϕopt

≥t̂
must satisfy all IC constraints after time t̂ given pt̂ ∼ µo

t̂
.

The following claim checks the rest of condition (ii) in the proposition.

Claim (b). ϕopt

≥t̂
is optimal for the dictator’s continuation problem since time t̂ given

pt̂ ∼ µo
t̂
.

Proof for Claim (b). By the definition of t̂, ϕd
t̂
satisfies ICt̂ given pt̂ ∼ µo

t̂
and thus ϕd

≥t̂

satisfies all later IC constraints by Lemma B.7 given pt̂ ∼ µo
t̂
. This implies that if we

deviate from ϕopt

≥t̂
to ϕd

≥t̂
since period t̂, no IC constraint will be violated. Also notice

such deviation can only improve the total surplus since ϕd
≥t̂

is optimal for the dictator’s

continuation problem, which is more relaxed than the original continuation problem. For

such a deviation to be unprofitable, we then need ϕopt

≥t̂
to achieve the same value as ϕd

≥t̂

for that continuation problem and thus ϕopt

≥t̂
is also optimal for it. □

Now, I turn to the “if” part. Given the existence of optimal policy (guaranteed by

Proposition 1), it suffices to see that all policies satisfying the two conditions (i) and (ii)

are feasible and yield the same total payoff for the designer. They generate the same

total payoff since: for periods before t̂, all such policies agree a.s. and lead to pt̂ ∼ µo
t̂
;

for periods t ≥ t̂, all such policies achieve the same total payoff as that under ϕd
≥t̂

given

pt̂ ∼ µo
t̂
. To show they are feasible, it suffices to check ϕo

<t̂
is feasible. This is true since

ϕo
<t̂

satisfies all IC constraints for t < t̂ as equalities by construction. This completes the

proof for the “if” part.
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Finally, notice by construction ϕo does satisfy conditions (i) and (ii). In particular,

Lemma B.7 implies that ϕd
≥t̂

satisfies all IC constraints after time t̂ given pt̂ ∼ µo
t̂
, which

implies the feasibility of ϕo following time t̂. Thus ϕo is optimal.

Q.E.D.

B.6 Proof for Proposition 4

Proof. Let ϕ∗ denote an optimal policy, let (η∗t )
T
t=1 denote its thresholds, and let µ∗

t

denote the distribution of pt under it. Notice that under the full support condition in

Assumption 2, Proposition 2 implies that we must have η∗t ≤ p̄ for all t. (Recall that

p̄ is the myopic threshold, i.e., u(p̄) = 0.) Moreover, under the atomless condition in

Assumption 2, randomization at the thresholds does not matter.

For part (a), I first show the following observation:

Claim. For any η ∈ (0, p̄], we have
∫
p≥η

[ ∫
p′≥η

u(p′)G(dp′|p)
]
µ∗
t (dp) >

∫
p≥η

u(p)µ∗
t (dp).

Proof for the claim. Given any η ∈ (0, p̄], recall that property (P4) in Lemma 1 implies

G([0, η)|η) > 0. By the weak continuity of G(·|p) on p (i.e., property (P1) in Lemma 1),

this further implies that there exists δ > 0 s.t. G([0, η)|p) > 0 ∀p ∈ [η, η + δ].51 Together

with the full support assumption on µ∗
t , we then have

∫
p≥η

G
(
[0, η)|p

)
µ∗
t (dp) > 0. Since

η ≤ p̄, u(p) < 0 for all p < η. Thus
∫
p≥η

∫
p′<η

u(p′)G(dp′|p)µ∗
t (dp) < 0. This then

implies
∫
p≥η

∫
p′≥η

u(p′)G(dp′|p)µ∗
t (dp) >

∫
p≥η

∫
p′
u(p′)G(dp′|p)µ∗

t (dp) =
∫
p≥η

u(p)µ∗
t (dp),

where the equality holds by property (P2) in Lemma 1. □

Now, I argue that the following holds given any t ≤ t̂− 2:∫
p≥η∗t

u(p)µ∗
t+1(dp)

=

∫
p

∫
p′≥η∗t

u(p′)
[
1{p≥η∗t }G(dp

′|p) + 1{p<η∗t }D(dp′|p)
]
µ∗
t (dp)

=

∫
p≥η∗t

[ ∫
p′≥η∗t

u(p′)G(dp′|p)
]
µ∗
t (dp) +

∫
p≥η∗t

1{p<η∗t }u(p)µ
∗
t (dp)

=

∫
p≥η∗t

[ ∫
p′≥η∗t

u(p′)G(dp′|p)
]
µ∗
t (dp)

>

∫
p≥η∗t

u(p)µ∗
t (dp) = 0

The first equality holds by the transition rule of pt; the second equality is trivial identity;

the third equality holds because the second term in line 3 is obviously zero; the last

expression equals to zero because the IC constraint is binding for any t < t̂ by Proposi-

tion 3. To see the inequality holds, notice that t ≤ t̂− 2 necessarily implies η∗t > 0, since

51See Theorem 3.2.11 in Durrett (2019) (equivalence between conditions (i) and (ii)).
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otherwise ϕd
t would be feasible at time t and the algorithm in Definition 2 would have

stopped in step 1 at time t. The desired inequality is then directly implied by the claim

proved above.

For part (b), notice under the atomless assumption in Assumption 2, Lemma B.4(c)

(see Appendix B.4) implies that H0(pt, t) is non-zero almost surely under any policy.

Lemma B.2(b) then implies that any optimal policy for the dictator must almost surely

agree with ϕd. By Proposition 3, this further implies that ϕ∗
≥t̂

must almost surely agree

with ϕd
≥t̂

(given pt ∼ µ∗
t̂
). Under the full support assumption in Assumption 2, this then

requires that ϕ∗
≥t̂

and ϕd
≥t̂

share the same thresholds. It thus suffices to prove the desired

property for ϕd.

Let (ηdt )
T
t=1 denote the sequence of thresholds of ϕd. Recall that ϕd

t (p) = 1{H0(p,t)>0}

(as is defined in Appendix B.5.1). By the continuity of H0(·, t) (Lemma B.1), we then

have H0(η
d
t , t) = 0 for any t.52 By Lemma B.4(d), this further implies H0(η

d
t , t+ 1) < 0.

Since H0(·, t + 1) is increasing (Lemma B.4(b)), we thus must have ηdt+1 > ηdt for any t.

This completes the proof for part (b).

Finally, η∗t ≤ p̄ for all t is directly implied by Proposition 2 under the full support

assumption in Assumption 2.

Q.E.D.

B.7 Proof for Proposition 5

The designer’s problem is formally written as:

max
ϕ∈Φ

{ T∑
t=1

Eϕ[atu(pt)]
}

s.t. Eϕ[atu(pt)] ≥ 0 ∀t = 1, ..., T

pt+1|pt, at ∼ at
[
αGI(·|pt) + (1− α)D(·|pt)

]
+ (1− at)D(·|pt)

p1 ∼ µ1

Pick αa and αb with αa < αb. Corresponding to these two information generation rates

respectively, let Ga and Gb be the transition kernels of pt following one’s consumption,

as is defined in equation (9); let V a
0 and V b

0 be the value functions for the dictator’s

problem (i.e., with λ = 0), as is defined in Section B.4; let Ha
0 and Hb

0 be the associated

H-functions (with λ = 0) as in equation (B.8); let t̂a and t̂b denote the critical time

points defined in Definition 2; let ϕa and ϕb be the optimal threshold policies and denote

their sequences of thresholds as (ηat )
T
t=1 and (ηbt )

T
t=1. I prove the proposition by showing

a sequence of observations below.

52Notice it is easy to see that H0(0, t) < 0 and H0(1, t) > 0.

46



Observation 1: ηaT = ηbT

This is obvious since at the last period the optimal threshold just equals to the myopically

optimal threshold.

Observation 2: ηat > ηbt for all t ∈ [t̂b, T ).

To show this observation, first notice that since higher α is beneficial, we have the fol-

lowing non-surprising result for V a
0 and V b

0 :

Claim (a). V b
0 (p, t) ≥ V a

0 (p, t) for any pair of (p, t).

Proof for Claim (a). I show by backward induction on t. For t = T + 1, the result holds

trivially. Assuming it holds for all t′ > t, I now consider time t.

By the Bellman equation, we have:

V b
0 (p, t)− V a

0 (p, t) =max
{
u(p) +

∫
p′
V b
0 (p

′, t+ 1)Gb(dp′|p), V b
0 (p, t+ 1)

}
−max

{
u(p) +

∫
p′
V a
0 (p

′, t+ 1)Ga(dp′|p), V a
0 (p, t+ 1)

}
By the induction hypothesis, we know V b

0 (p, t+1) ≥ V a
0 (p, t+1). It thus suffices to check∫

p′
V b
0 (p

′, t+ 1)Gb(dp′|p) ≥
∫
p′
V a
0 (p

′, t+ 1)Ga(dp′|p). Notice the following relations hold:∫
p′
V b
0 (p

′, t+ 1)Gb(dp′|p)−
∫
p′
V a
0 (p

′, t+ 1)Ga(dp′|p)

=αb

∫
p′
V b
0 (p

′, t+ 1)GI(dp′|p) + (1− αb)V
b
0 (p, t+ 1)

− αa

∫
p′
V a
0 (p

′, t+ 1)GI(dp′|p)− (1− αa)V
a
0 (p, t+ 1)

≥αa

∫
p′
V b
0 (p

′, t+ 1)GI(dp′|p) + (1− αa)V
b
0 (p, t+ 1)

− αa

∫
p′
V a
0 (p

′, t+ 1)GI(dp′|p)− (1− αa)V
a
0 (p, t+ 1)

where the equality is by the definition of Ga and Gb. To see the inequality holds, recall

that Lemma B.3(b) implies
∫
p′
V b
0 (p

′, t+1)Gb(dp′|p) ≥ V b
0 (p, t+1), which further implies∫

p′
V b
0 (p

′, t + 1)GI(dp′|p) ≥ V b
0 (p, t + 1) since Gb(·|p) is a weighted average of GI(·|p)

and D(·|p). The above inequality thus holds given αb > αa. Now, notice the induction

hypothesis implies that the last expression above is indeed non-negative. We thus have

the desired result. □

Next, we can show the following claim:

Claim (b). Hb
0(p, t) ≤ 0 ⇒ Ha

0(p, t) < 0 for all pairs of (p, t) with t < T .
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Proof for Claim (b). We can first proveHb
0(p, t) ≤ 0 ⇒ Ha

0(p, t) ≤ 0. To show this, notice

by Lemma B.4(d) we know that Hb
0(p, t) ≤ 0 implies Hb

0(p, t
′) < 0 for all t′ > t. With

α = αb, it is thus optimal for the dictator to stop recommendation from time t on given

pt = p, which leads to the optimal continuation value being zero. Hence V b
0 (p, t) = 0. By

Claim (a), this implies V a
0 (p, t) ≤ 0 and it is thus also optimal for the dictator to stop

recommendation at (p, t) given α = αa. This then implies Ha
0(p, t) ≤ 0.

Now, fix t < T . It suffices to rule out the possibility thatHb
0(p, t) ≤ 0 butHa

0(p, t) = 0.

Supposing we do have Hb
0(p, t) ≤ 0 and Ha

0(p, t) = 0, I will derive a contradiction below.

First, notice the following holds:

Hb
0(p, t) = u(p) +

∫
p′
V b
0 (p

′, t+ 1)[αbG
I(dp′|p) + (1− αb)D(dp′|p)]− V b

0 (p, t+ 1)

= u(p) + αb

∫
p′
V b
0 (p

′, t+ 1)GI(dp′|p)

The first equality holds by the definition of H0; the second equality holds because

Hb
0(p, t) ≤ 0 implies it’s optimal for the dictator to stop recommendation from time

t on given pt = p (as is mentioned earlier) and thus V b
0 (p, t+ 1) = 0.

The same argument also applies to Ha
0 . Thus H

a
0(p, t) = 0 implies Ha

0(p, t) = u(p) +

αa

∫
p′
V a
0 (p

′, t+ 1)GI(dp′|p).
Combining the above results, we then must have:

u(p) + αb

∫
p′
V b
0 (p

′, t+ 1)GI(dp′|p) ≤ 0 (B.16)

u(p) + αa

∫
p′
V a
0 (p

′, t+ 1)GI(dp′|p) = 0 (B.17)

Notice Hb
0(p, t) ≤ 0 ⇒ Hb

0(p, t + 1) < 0 (by Lemma B.4(d)), which further implies that

u(p) < 0.53 Equation (B.17) then implies αa

∫
p′
V a
0 (p

′, t+ 1)GI(dp′|p) > 0. Since αa < αb

and 0 ≤ V a
0 (·, ·) ≤ V b

0 (·, ·) (by Claim (a)), we then must have u(p) + αb

∫
p′
V b
0 (p

′, t +

1)GI(dp′|p) > u(p) + αa

∫
p′
V a
0 (p

′, t + 1)GI(dp′|p) = 0, which violates equation (B.16).

This contradiction implies that we cannot have Hb
0(p, t) ≤ 0 but Ha

0(p, t) = 0.

□

With Claim (b), we can now prove the desired observation that ηat > ηbt for all t ∈
[t̂b, T ). Fix t ∈ [t̂b, T ). By Proposition 3 we must have threshold ηbt to be optimal for the

dictator given α = αb. Under the full support condition in Assumption 2, this implies

that Hb
0(η

b
t , t) = 0.54 Claim (b) then implies Ha

0(η
b
t , t) < 0 and thus even the dictator’s

optimal threshold at time t given α = αa would be strictly greater than ηbt . Thus η
a
t > ηbt .

53If u(p) = 0, then recommending the product cannot harm and thus Hb
0(p, t+ 1) is at least zero.

54If not, then by the continuity of Hb
0 we must have Hb

0(·, t) to be strictly positive or strictly negative
over some neighborhood of ηbt , which implies ηbt to be a suboptimal threshold for the dictator.

48



This completes the proof for Observation 2.

If t̂b = 1, we are already done with proving the proposition. When t̂b > 1, it remains

to show Observation 3 below, which is the most central part of the proof.

Observation 3: When t̂b > 1, we have: ηa1 ≥ ηb1 and ηat > ηbt for all t ∈ (1, t̂b).

When t̂b > 1, we know the consumer’s IC constraint in period 1 is binding given the

period-1 threshold being ηb1. It is thus not incentive compatible to choose a period-1

threshold less than ηb1. We thus have ηa1 ≥ ηb1.

I now turn to prove ηat > ηbt for t ∈ (1, t̂b). This is done by constructing two belief

processes (pat )
T
t=1 and (pbt)

T
t=1 on the same probability space, where (pat )

T
t=1 follows the

transition rule under ϕa given α = αa and (pbt)
T
t=1 follows the transition rule under ϕb

given α = αb.

Specifically, fix a probability space on which a Markov process (xn)
∞
n=0 and a se-

quence of i.i.d. random variables (ξt)
∞
t=1 with ξt ∼ Uniform[0, 1] are defined. (xn)

∞
n=0 is

independent from (ξt)
∞
t=1 and satisfies:

x0 ∼ µ1

xn+1|xn ∼ GI(·|xn), ∀n

Intuitively, one can interpret xn as the value that the platform’s belief will take after

receiving the n’th informative signal from consumers; ξt will serve as a randomization

device deciding whether an informative signal will be generated after consumption at

time t. For any k ∈ {a, b}, I now define process (pkt )
T
t=1 together with an auxiliary process

(nk
t )

T
t=1 by the following rule:

nk
1 = 0; pk1 = x0 (B.18)

nk
t+1 = nk

t + 1{pkt>ηkt }1{ξt<αk}; pkt+1 = xnk
t+1

∀t (B.19)

Intuitively, given (αk, ϕ
k), nk

t tracks how many informative signals will have been recorded

at the beginning of time t. It is added by 1 after each period if and only if consumption

has been made in that period (i.e., pkt > ηkt ) and an informative signal has been generated

(which is assumed to happen when ξt < αk).
55 Given that nk

t informative signals have

been received, pkt just equals to xnk
t
, which reflects the posterior belief given those signals.

It is easy to check that (pkt )
τ
t=1 indeed satisfy the initial distribution and the transition

rule of the belief process under policy ϕk given response rate αk.

We can prove a couple of claims about the process of
(
(pat , p

b
t)
)T
t=1

constructed above.

55Under Assumption 2, what happens when pkt = ηkt does not matter since it has zero probability to
occur.
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Claim (d). Pick any τ ∈ (1, t̂b) and assume ηat ≥ ηbt for all t < τ . Then paτ < ηbτ ⇒ paτ =

pbτ .
Proof for Claim (d). First notice that by Proposition 4, we know ηbτ < mint<τ{ηbt}. This
implies that the process of

(
(pbt , n

b
t)
)τ
t=1

will stop once pbt hits into [0, ηbτ ] according to

transition rule (B.19).

Now, suppose paτ < ηbτ . Then we have xna
τ
< ηbτ . Since by assumption ηat ≥ ηbt for all

t < τ and αb > αa, it is easy to see that nb
τ ≥ na

τ for sure.56 This implies that there must

exist a time t′ ≤ τ such that nb
t′ = na

τ . At this time t′, we then have pbt′ = xna
τ
= paτ . Since

paτ < ηbτ , the process of (pbt)
τ
t=1 will stop there and thus pbτ = pbt′ = paτ . □

Claim (e). Pick any τ ∈ (1, t̂b). We have P(paτ > ηbτ > pbτ ) > 0.
Proof for Claim (e). First, I show that P(pa1 > ηbτ > pbτ ) > 0. Supposing not, since pa1 =

x0 = pb1, we then must have P(pb1 > ηbτ > pbτ ) = 0. This implies that pb1 > ηbτ ⇒ pbτ > ηbτ a.s.

Moreover, since (ηbt )
τ
t=1 is decreasing over time, pb1 ≤ ηbτ would imply pb1 ≤ mint≤τ{ηbt} and

thus pbτ = pb1 ≤ ηbτ . We therefore have pb1 > ηbτ ⇔ pbτ > ηbτ a.s. Given this, the following

must hold:

0 = E[u(pbτ )1{pbτ>ηbτ}] = E[u(pbτ )1{pb1>ηbτ}] = E
[
u(pb1)1{pb1>ηbτ}

]
= E

[
u(pb1)1{pb1>ηb1}

]
+ E

[
u(pb1)1{ηbτ<pb1<ηb1}

]
= E

[
u(pb1)1{ηbτ<pb1<ηb1}

]
< 0

which leads to a contradiction. The first equality above holds because the consumer’s

IC is binding at time τ under the scenario of (ϕb, αb) (since τ < t̂b); the second equality

holds because pb1 > ηbτ ⇔ pbτ > ηbτ a.s as is shown earlier; the third equality holds because

u(·) is affine and E[pbτ |pb1] = pb1; the fourth equality is trivial given ηbτ < ηb1; the fifth

equality holds because the consumer’s IC is binding in period 1 under the scenario of

(ϕb, αb) (since 1 < t̂b) and thus E
[
u(pb1)1{pb1>ηb1}

]
= 0; the last inequality holds because ηb1

is no greater than the myopic optimal threshold and P(ηbτ < pb1 < ηb1) > 0 under the full

support assumption (i.e., Assumption 2). The contradiction implies that we must have

P(pa1 > ηbτ > pbτ ) > 0.

Now, look into the event {pa1 > ηbτ > pbτ}. Notice that we can decompose it into:

{pa1 > ηbτ > pbτ} = ∪v∈{0,1}τ{pa1 > ηbτ > pbτ , (1{ξt<αb})
τ
t=1 = v}

Since the union is over finitely many sets, the fact that the LHS has positive probability

implies that for some v ∈ {0, 1}τ , we have P(pa1 > ηbτ > pbτ , (1{ξt<αb})
τ
t=1 = v) > 0.

Notice that given (1{ξt<αb})
τ
t=1 = v, whether or not pa1 > ηbτ > pbτ solely depends on the

realizations of (xn)
τ
n=1. Define

X := {(xn)τn=1 : p
a
1 > ηbτ > pbτ given (1{ξt<αb})

τ
t=1 = v}

56By construction, whenever nb
t = na

t , we have pbt = pat and hence na
t+1 = na

t + 1 ⇒ nb
t+1 = nb

t + 1.
Thus the sequence of (na

t )t can never surpass (nb
t)t.
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Then, the independence between (xn)
τ
n=1 and (ξt)

τ
t=1 implies P(pa1 > ηbτ > pbτ , (1{ξt<αb})

τ
t=1 =

v) = P
(
(xn)

τ
n=1 ∈ X

)
P((1{ξt<αb})

τ
t=1 = v). Thus we must have P

(
(xn)

τ
n=1 ∈ X

)
> 0.

Now, define Y = {(ξt)τt=1 : (1{ξt<αb})
τ
t=1 = v, ξt > αa∀t = 1, ..., τ}. Since αa < αb, we

obviously have P((ξt)τt=1 ∈ Y ) > 0. Together with P
(
(xn)

τ
n=1 ∈ X

)
> 0, we then have:

P
(
(xn)

τ
n=1 ∈ X, (ξt)

τ
t=1 ∈ Y

)
= P

(
(xn)

τ
n=1 ∈ X

)
P((ξt)τt=1 ∈ Y ) > 0

Notice that by the construction of sets X and Y , we know (xn)
τ
n=1 ∈ X and (ξt)

τ
t=1 ∈ Y

together imply paτ = pa1 (since all those ξt are greater than αa) and p
a
1 > ηbτ > pbτ . Therefore

we have P(paτ > ηbτ > pbτ ) > 0.

□

We are now ready to show ηat > ηbt for all t ∈ (1, t̂b). Since I have shown ηa1 ≥ ηb1, by

an easy induction argument, it suffices to show that ηat ≥ ηbt ∀t < τ ⇒ ηaτ > ηbτ for any

τ ∈ (1, t̂b).

Fix τ ∈ (1, t̂b) and assume ηat ≥ ηbt ∀t < τ . By using the results in Claims (d) and (e),

we can show:

E[u(pbτ )1{pbτ<ηbτ}] = E[u(pbτ )1{pbτ<ηbτ , p
a
τ<ηbτ}] + E[u(pbτ )1{pbτ<ηbτ≤paτ}]

< E[u(pbτ )1{pbτ<ηbτ , p
a
τ<ηbτ}] = E[u(paτ )1{paτ<ηbτ}]

The first equality is a trivial identity. To see the why the inequality holds, notice u(pbτ ) < 0

for any pbτ < ηbτ since ηbτ is no greater than the myopic optimal threshold. Together with

the fact that P(pbτ < ηbτ ≤ paτ ) > 0 (by Claim (e)), this implies E[u(pbτ )1{pbτ<ηbτ≤paτ}] < 0.

The last equality above holds because paτ < ηbτ ⇒ paτ = pbτ (by Claim (d)).

Notice E[u(paτ )] = E[u(p0)] = E[u(pbτ )] by the law of iterated expectation. Thus the

above result E[u(pbτ )1{pbτ<ηbτ}] < E[u(paτ )1{paτ<ηbτ}] implies E[u(pbτ )1{pbτ>ηbτ}] > E[u(paτ )1{paτ>ηbτ}].

Because E[u(pbτ )1{pbτ>ηbτ}] = 0 (since τ < t̂b and thus consumer’s IC must be binding at

time τ under the scenario of (ϕb, αb)), we then must have E[u(paτ )1{paτ>ηbτ}] < 0. This

implies that ηaτ must be strictly greater than ηbτ to obey consumer’s IC at time τ under

policy ϕa given α = αa. This completes the proof for ηat > ηbt for all t ∈ (1, t̂b).

B.8 Proof for Proposition 6

Proof. Based on my discussion in the main text, the designer’s problem is equivalent to:

max
ϕ∈Φ

{ T∑
t=1

Eϕ[atu(pt)]
}

s.t. Eϕ[atu(pt)] ≥ 0 ∀t = 1, ..., T

pt+1|pt, at ∼ at
[
ρG(·|pt) + (1− ρ)D(·|pt)

]
+ (1− at)D(·|pt), p1 ∼ µ1
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With ρ replaced by α and G replaced by GI , this is equivalent to the designer’s problem

studied in Appendix B.7. Thus the effect of an increment in ρ here is equivalent to the

effect of an increment in α there. The result is hence directly implied by Proposition 5.

Q.E.D.

B.9 Proof for Proposition 7

Proof. Given platform biases βa < βb, let V
a
0 and V b

0 denote the corresponding value

functions of the dictator’s problem (i.e., with λ = 0), as is defined in Section B.4; let Ha
0

and Hb
0 denote the associated H-functions (with λ = 0), i.e.,

Hk
0(p, t) := u(p) + βk +

∫
p′
V k
0 (p

′, t+ 1)G(dp′|p)− V k
0 (p, t+ 1), ∀t = 1, ..., T, ∀k = a, b

Also let (ηdt (βa))
T
t=1 and (ηdt (βb))

T
t=1 denote the corresponding optimal thresholds for the

dictator’s problem. Then it is easy to see that the results of Lemmas B.1 – B.4 (in

particular applied to the case with λ = 0) extend here. Moreover, the induction formula

(B.14) for H extends with the term u(p) replaced by u(p) + β, which when λ = 0 in

particular implies for k = a, b:

Hk
0(p, t) = min{Hk

0(p, t+ 1), 0}+
∫
p′
max{Hk

0(p
′, t+ 1), 0}G(dp′|p), ∀t < T (B.20)

We have the following observation:

Claim. ηdt (βa) > ηdt (βb) for all t.

Proof for the claim. Under the full support condition in Assumption 2, by the dynamic

programming result (Lemma B.2) it suffices to show Hb
0(p, t) > Ha

0(p, t)∀p for all t. This

can be proved by backward induction in t. When t = T , we have Hb
0(p, t) − Ha

0(p, t) =

βb−βa > 0 as desired. For any t < T , by the induction hypothesis we have Hb
0(p, t+1) >

Ha
0(p, t+ 1),∀p. Equation (B.20) then implies Hb

0(p, t) > Ha
0(p, t),∀p.57 □

The claim implies that the dictator’s optimal policy features lower standards when β

is larger. Thus the dictator’s optimal policy given β = βb becomes incentive compatible at

time t only if its counterpart given β = βa has become incentive compatible, which implies

t̂(βb) ≥ t̂(βa) by the construction of t̂ in Definition 2. This proves part (a). Also by the

construction of the optimal policy in Definition 2, we know that the optimal thresholds

before time t̂(βa) must be just high enough such that the consumer’s IC constraint is

57One can show the inequality is strict. When p is such that Hb
0(p, t+ 1) ≤ 0, we have min{Hb

0(p, t+
1), 0} > min{Ha

0(p, t+1), 0}. When p is such that Hb
0(p, t+1) > 0, we must have G({p′ : Hb

0(p
′, t+1) >

0}|p) > 0, and thus
∫
p′ max{Hb

0(p
′, t+ 1), 0}G(dp′|p) >

∫
p′ max{Ha

0(p
′, t+ 1), 0}G(dp′|p).
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satisfied as equality. Thus we have η∗t (βb) = η∗t (βa) for all t < t̂(βa). This proves part

(b).

To show part (c), first notice that when t ≥ t̂(βb), in both situations the optimal

policy will follow the dictator’s optimal policy. The fact that η∗t (βb) < η∗t (βa) is then

directly implied by the claim above. It thus suffices to assume t̂(βa) < t̂(βb) and prove

the result for t ∈
[
t̂(βa), t̂(βb)

)
. Notice that by Proposition 4, η∗t (βa) is strictly increasing

over t ∈
[
t̂(βa), t̂(βb)

)
, while η∗t (βb) is strictly decreasing over t ∈

[
t̂(βa), t̂(βb)

)
. It thus

suffices to show η∗t (βb) ≤ η∗t (βa) for t = t̂(βa). This is true because the assumption that

t̂(βa) < t̂(βb) implies that η∗
t̂(βa)

(βb) must be just high enough to satisfy the consumer’s IC

constraint (given the distribution of pt̂(βa)
, which is the same under the optimal policy in

both situations by part (b) already proved). Since ηt̂(βa)
= η∗

t̂(βa)
(βa) is already incentive

compatible, we cannot have η∗
t̂(βa)

(βb) > η∗
t̂(βa)

(βa). This concludes the proof for part

(c). Q.E.D.

B.10 Proof for Proposition A.1

In the following proof, I assume {Qz}z∈Z and the conditional distributions of si (i ≥ 1)

conditional on θ̃ are all continuous distributions, so the dominating measure for their

densities is chosen as the Lebesgue measure. In the general case, the proof remains

the same with Lebesgue measure replaced by proper dominating measures on R (e.g.,

counting measure for discrete distributions).

Proof. For any z ∈ Z and s ∈ S, I define ψ(z,s) as a probability density over R such that

ψ(z,s)(θ) =
qz(θ)ℓ(s|θ)∫
qz(θ)ℓ(s|θ)dθ

That is, ψ(z,s) is the density function of the posterior about θ̃ computed from Bayes rule

given prior Qz and consumption-generated signal realization s.

Claim (a). For any x, y ∈ Z and sa, sb ∈ S, we have Qy ≥LR Qx and sb ≥ sa together

imply ψ(y,sb) ≥LR ψ(x,sa).

Proof for Claim (a). Assume Qy ≥LR Qx and sb ≥ sa. By the definition of ψ, we have:

ψ(y,sb)(θ)

ψ(x,sa)(θ)
=
qy(θ)

qx(θ)
· ℓ(sb|θ)
ℓ(sa|θ)

Since Qy ≥LR Qx and ℓ(·|θ) increases in likelihood-ratio order in θ, both fractions on the

right-hand-side are increasing in θ. Thus ψ(y,sb) ≥LR ψ(x,sa). □

Now, I show the following observation:

Claim (b). Assume λt is non-increasing over t. Then, for any x, y ∈ Z, we have Qy ≥LR

Qx ⇒ Hλ(y, t) ≥ Hλ(x, t) for all t.
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Proof for Claim (b). I show by backward induction in t. The result holds with t = T

since Hλ(z, T ) = (1+λT )
∫
θdQz(θ). Now, assuming the result holds for all periods since

time t + 1, I show it for period t. Recall that equation (B.14) derived in Section B.4

implies

Hλ(z, t) =(λt − λt+1)u(z) + min{Hλ(z, t+ 1), 0}

+

∫
z′∈Z

max{Hλ(z
′, t+ 1), 0}[ρG(dz′; z) + (1− ρ)D(dz′; z)]

=(λt − λt+1)u(z) + ρmin{Hλ(z, t+ 1), 0}+ (1− ρ)Hλ(z, t+ 1)

+ ρ

∫
z′∈Z

max{Hλ(z
′, t+ 1), 0}G(dz′; z)

(Since we have random consumer arrivals with arrival rate ρ, the transition kernel G in

equation (B.14) is replaced with ρG+ (1− ρ)D.)

Pick any x, y ∈ Z s.t. Qy ≥LR Qx. We obviously have (λt−λt+1)u(y) ≥ (λt−λt+1)u(x)

given the assumption that λt is non-increasing in t. Moreover, the induction hypothesis

implies min{Hλ(y, t+1), 0} ≥ min{Hλ(x, t+1), 0} and (1−ρ)Hλ(y, t+1) ≥ (1−ρ)Hλ(x, t+

1). It then suffices to show
∫
z′∈Z max{Hλ(z

′, t + 1), 0}G(dz′; y) ≥
∫
z′∈Z max{Hλ(z

′, t +

1), 0}G(dz′;x) below.
Notice in the current setting, state z matters only through the belief it represents.

With slight abuse of notation, I write Hλ(qz, t+ 1) = Hλ(z, t+ 1). Then, we have:∫
z′∈Z

max{Hλ(z
′, t+ 1), 0}G(dz′; y) =

∫
θ

[ ∫
s

max{Hλ(ψ(y,s), t+ 1), 0}ℓ(s|θ)ds
]
qy(θ)dθ

≥
∫
θ

[ ∫
s

max{Hλ(ψ(x,s), t+ 1), 0}ℓ(s|θ)ds
]
qy(θ)dθ

≥
∫
θ

[ ∫
s

max{Hλ(ψ(x,s), t+ 1), 0}ℓ(s|θ)ds
]
qx(θ)dθ

=

∫
z′∈Z

max{Hλ(z
′, t+ 1), 0}G(dz′;x)

where the two equalities hold by the definition of ψ(z,s). The first inequality holds due to

the induction hypothesis and that Claim (a) above implies ψ(y,s) ≥LR ψ(x,s). To see the

second inequality, notice Claim (a) implies that ψ(x,s) increases in likelihood-ratio order

in s. Together with the induction hypothesis, this implies that max{Hλ(ψ(x,s), t + 1), 0}
increases in s, which further implies that

∫
s
max{Hλ(ψ(x,s), t+ 1), 0}ℓ(s|θ)ds increases in

θ since ℓ(·|θ) increases in likelihood-ratio order in θ. The inequality is hence implied by

qy ≥LR qx. □

Now, I slightly strengthen both the condition and the conclusion in Claim (b).

Claim (c). Assume λt is non-increasing over t. Then, for any x, y ∈ Z, we have Qy ≥LR

Qx and
∫
θ
θdQy(θ) >

∫
θ
θdQx(θ) together imply Hλ(y, t) > Hλ(x, t) for all t.
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Proof for Claim (c). I show by backward induction in t. The result holds with t = T

since Hλ(z, T ) = (1+λT )
∫
θdQz(θ). Now, assuming the result holds for all periods since

time t+1, I show it for period t. By the same argument as in the proof of Claim (b), we

have

Hλ(z, t) =(λt − λt+1)u(z) + ρmin{Hλ(z, t+ 1), 0}+ (1− ρ)Hλ(z, t+ 1)

+ ρ

∫
z′∈Z

max{Hλ(z
′, t+ 1), 0}G(dz′; z)

and that for any x and y satisfying the conditions in the claim: (i) (λt − λt+1)u(y) ≥
(λt−λt+1)u(x); (ii) min{Hλ(y, t+1), 0} ≥ min{Hλ(x, t+1), 0}; (iii)

∫
z′∈Z max{Hλ(z

′, t+

1), 0}G(dz′; y) ≥
∫
z′∈Z max{Hλ(z

′, t+1), 0}G(dz′;x). Moreover, the induction hypothesis

directly imply that (1 − ρ)Hλ(y, t + 1) > (1 − ρ)Hλ(x, t + 1) for ρ < 1. These together

imply Hλ(y, t) > Hλ(x, t) as is desired. □

Now, define functions Vλ and Hλ in the same way as in Appendix B.4, but with pt

replaced with zt. Then the dynamic programming result – Lemma B.2 – still applies to the

current setting, because its proof only relies on property (P1) in Lemma 1, which has its

counterpart in Lemma A.1. Given the result of Claim (c) and Lemma A.2, Lemma B.2(b)

implies that any solution to the Lagrangian optimization maxϕ L(ϕ;λ∗) (with λ∗ solves

the dual problem) is almost surely equivalent to some ϕ∗ satisfying the property specified

in Proposition A.1. The proposition hence holds by the duality result in Lemma 2.

Q.E.D.
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