
A General Theory of Holdouts*

Click Here for Latest Draft

Xiaobo Yu†

July 30, 2024

Abstract

This paper presents a unified framework for analyzing the holdout problem, a
pervasive economic phenomenon in which value creation is hindered by the incen-
tive to free-ride on other agents’ participation. My framework nests many classic
applications, such as takeovers and debt restructuring, and highlights the role of the
commitment power: The holdout problem can be resolved using contingent contracts
with commitment, e.g., by a unanimity rule if the principal can commit to calling off
the deal when anyone holds out. In contrast, a lack of commitment substantially alters
the optimal offers depending on the payoff sensitivities of the existing contracts, which
explains the absence of the unanimity rule despite its efficacy, and cross-sectional het-
erogeneity in offers. (E.g., senior debt used in debt restructuring but not in takeovers.)
Furthermore, I show that stronger partial commitment can backfire via renegotiation,
exacerbating the holdout problem. This non-monotonicity reconciles contradictory
empirical findings on the use of CACs in the sovereign debt market and sheds light on
various policies. Lastly, the paper shows stronger investor protection could facilitate
instead of hinder restructuring under limited commitment. JEL codes: G34, G38, C78,
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[The] effectiveness [of punishment] is seen as
resulting from its inevitability.

Michel Foucault, Discipline and Punish

1 Introduction

Holdout problems are pervasive. They occur whenever a socially beneficial transaction
fails because one of the parties in the transaction free-rides on the participation of
the other parties, holding out, hoping to obtain a larger individual payoff later on. 1
Sovereign debt renegotiations, corporate debt restructuring, and corporate takeovers
are some of the situations in which one party proposes new contracts in exchange for
old ones held by dispersed agents, and holdout problems arise. The social costs of
these problems can be quite sizeable. For instance, in the recent Argentinian sovereign
debt restructuring, Elliot Management and five other funds held out on the Argentinian
government’s proposal to restructure its debt after the country defaulted on its $132
billion debt in 2001, preventing it from accessing world financial markets for fifteen
years. 2,

3 It has cost Argentina an estimated 30% loss in the equity value of all the
Argentine firms listed in the US (Hébert and Schreger, 2017).

Theoretically, holdout problems are somewhat surprising. The reason is that a
proposal requiring unanimous consent by all parties in the transaction is enough to
address the holdout problem. It eliminates the incentive of any party to free ride by
rendering the decision of each pivotal.4 This easy fix to the holdout problem, unanimity,
has almost never been observed except in land assembly.5 Instead, we see different

1Inconsequential to my purpose, Miceli (2011) distinguishes holdout problems from free-riding problems
as demand vs. supply side. I use them interchangeably: A “free-riding problem” is an ontological description
of the underlying incentive, whereas a “holdout problem” is a phenomenological account of the symptoms.

2The six funds were Aurelius, Bracebridge Capital, Davidson Kempner, EM Ltd. (A hedge fund held by
Kenneth Dart, who was dubbed “el enemigo número uno de Argentina”), Montreux Partners, and NML
Capital, an off-shore unit of Elliott.

3Argentina’s exclusion from the international capital market is largely attributed to the lawsuits with the
holdout creditors and the legal risk associated (Schumacher et al., 2021). On the other hand, it is argued
that the exclusion lasted for 15 years because Argentina “had the economic and political resources to fight
distressed debt fund” and had “no urgency to access the international credit market.” (Guzman, 2020, p.733)

4Indeed, Grossman and Hart (1980, fn 3, p.43) argues unanimity is impractical because the holdout
would anticipate a secret payment from the raider to bribe him into the offer and there might be sleeping
investors. Now, the best-price rule (Exchange Act Rule 10d-10, see 17 CFR § 240.14d-10) forbids such bribes
and holdouts are usually financial experts in these high stake transactions so a similar idea of making them
pivotal by deploying contingency should address the issue were it the only concern.

5In certain jurisdictions such as Pennsylvania, Maine, and some European regions, the raider, whenever
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solutions to the same holdout problem being used. For instance, the Argentinian
government settled on a cash payment of $4.65 billion with the holdouts. AMC
Entertainment, the world’s largest movie theater chain, restructured its dispersedly-
held bonds and solved the holdout problem by using high-priority debt, reducing its
outstanding debt by over $500 million.6 In contrast, Elon Musk took over Twitter with
an all-cash offer. None of these solutions requires unanimity!

Why do they forgo unanimity? Why do we see different solutions to problems with
the same economic structures? Why was cash used in the Twitter takeover and senior
debt in the AMC debt restructuring?

Overview In this paper, I offer a general theory of holdouts that explains the observed
variation in the solutions to the holdout problem and the absence of unanimity rules.
This general framework nests classic models such as takeovers (Grossman and Hart,
1980), corporate debt restructuring (Gertner and Scharfstein, 1991), bond buybacks
(Bulow et al., 1988) and the leverage ratchet effect (Admati et al., 2018). The model
features a principal and multiple agents with contractual claims on an underlying
asset.7 There are gains from the trade (i.e., asset value appreciation) if the principal can
exchange outstanding claims for new ones, but agents may want to free-ride on others’
participation and hold out. The principal can exert punishment to discourage holdouts
but cannot credibly commit to the punishment she proposed. The novel insight on how
variation in the set of initial contracts affects the principal’s credibility to commit gives
rise to the observed heterogeneous solutions to the holdout problem.

In the model, the contracts held by agents have payoffs that are jointly determined i)
by the value of the underlying asset and ii) by the contractual holding structure, that
is, who holds what contracts. The principal has a residual claim on the asset, and it
affects her incentive to propose the new contracts. Each agent’s payoff from the new
contract can depend on his decision to accept or reject the principal’s proposal, as
well as the asset value and remaining initial contracts. I make two assumptions. First,
reaching a controlling stake, is required by the mandatory bid rule to proceed with 100% of the shareholders
before she can allocate assets away from or losses to the acquired firm, as a protection for the minority
shareholders. See Burkart and Panunzi (2003) and Betton et al. (2008).

6In AMC’s case, the creditors received secured second-lien notes in exchange for their unsecured senior
subordinated notes, and the holdouts, which previously had seniority in-between, were promoted to first-lien.

7In the Argentinian case, the agents are creditors, the asset is Argentina’s tax revenue, and the contracts
are the general-obligation government bonds issued under New York law. The principal is the Argentinian
government, who would like to commit to never making a second offer so as to discourage holdouts.

3



there is a collective action problem: Each agent accepts the offer or holds out without
coordinating with the others. Second, the payoffs of the initial set of contracts held by
the holdouts are affected by the new set of contracts, for example, when some agents
are granted seniority at the expense of others. The principal aims to design a new set
of contracts that all agents accept.8 The holdout problem impedes it as one agent can
increase his payoff by refusing the principal’s offer when the rest of the agents accept
theirs. This free-rider problem restricts the set of contracts the principal can offer.

This participation constraint alone is not hard to satisfy, but on top of it, there is
another constraint: The principal cannot commit to implementing the proposal she has
offered when any agent holds out. For instance, the principal may have embedded a
punishment mechanism in her proposal to deter holdouts. The problem of commitment
arises if the principal does not find it optimal to implement the punishment once the
deviation has occurred. The principal would like to commit to not renegotiating with
any agent, deviating or not, because renegotiation undermines the credibility of the
punishment. She cannot, and that further restricts the set of feasible contracts.

Full-Commitment Benchmark The full-commitment case is a useful benchmark for
contrasting solutions. If the principal can commit, then the holdout problem can be
solved. The reason is that she can always offer each agent a contract that awards
him slightly more than what the initial contract would yield absent the asset value
enhancement, but only if the new contracts are unanimously agreed upon by all agents.
The reason, as mentioned, is that unanimity renders each agent pivotal. In this case,
the principal can always extract the full surplus associated with the value enhancement
of the underlying asset.9 As long as the principal can commit to punishing holdouts,
she will require unanimity no matter the setting, be it a take-over or debt restructuring.
It obviously does not explain the observed cross-sectional heterogeneity in contracts.

8Note this is not the unanimity rule, which requires the threat of calling off the entire transaction when
anyone holds out. Here, the principal may nevertheless continue the deal when someone holds out.

9In fact, she can extract not just the surplus but the full value of the asset. She does this by using a
contingent contract that resembles “consent payment” in practice, giving the tendering agents a penny and
nothing to the holdouts. A consent payment “effectively bribes bondholders to vote in favor of a restructuring,
thereby trapping them in a prisoner’s dilemma.” (Donaldson et al., 2022, p.2) It survived judiciary scrutiny
in the US and is also ruled legal by the English High Court in Azevedo v. Imcopa (2012), provided that it is i)
openly disclosed, ii) offered to all creditors, and iii) on an equal basis.
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Result 1 on Initial Contracts Heterogeneity in outcomes arises once I relax the
principal’s commitment to punishing holdouts. To see this, let us look at two canonical
examples. Consider first a corporate debt restructuring in which the agents’ initial
contracts are debt contracts. The principal (the firm in distress) can dilute the payoff of
the holdouts by granting priority to the tendering agents (creditors). This is a credible
threat as the dilution only hurts the holdouts, not the principal herself: She would only
get paid after the holdouts are paid in full. Indeed, this is the solution suggested by the
literature (e.g., Gertner and Scharfstein, 1991) and used in practice. Consider next a
takeover by a raider in which all agents have equity claims. Now, by granting priority,
the principal (the raider) would hurt herself with dilution because she has the same
priority as the holdouts, and therefore, she would have an incentive to renegotiate any
punishment away. The optimal solution turns out to be offering cash, which involves
no punishment, albeit at a premium, because the agents need to be compensated for
the rent they would obtain if they were to hold out when the rest of the agents tender.

Intuitively, the principal needs to offer a new contract with a credible punishment
to deter holdouts, but the punishment is credible insofar as it does not hurt the
principal herself, which depends on the payoff sensitivity of the holdout’s initial
contract. Punishing the holdouts requires diluting the payoff of their initial contract.
The punishment is credible if the dilution is fully borne by the holdout (e.g., debt in
default). The credibility problem arises when the dilution is also partially borne by the
principal. Specifically, I show this occurs whenever the payoff of the holdout’s initial
contract moves less than one-to-one with the underlying value (i.e., a payoff sensitivity
smaller than one).

This result explains the heterogeneity of solutions across applications and the
absence of more sophisticated contractual solutions in takeovers. Unlike corporate debt
restructuring, where over 66% of exchange offers involve offering seniority (Bratton
and Levitin, 2018), in takeovers, the dominant forms of offers are cash or the acquirers’
stocks.10 Malmendier et al. (2016) find that more than 92% of the successful takeovers
use cash or stock offers with an equal split and pay an average premium of about 50%
(Also see Betton et al., 2008). My model rationalizes these findings: Dilution is credible
in corporate debt restructuring but not in takeovers, as it also hurts the raider. The

10Stock offers are often used in the presence of financial constraints or relative overvaluation (See Rhodes-
Kropf and Viswanathan, 2004). In my framework, there is no distinction between acquirer equity and cash
offers, as both are non-contingent on the target asset value and capital structure.
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optimal tool in takeovers is simply cash.

Result 2 on Commitment Unsurprisingly, a lack of commitment makes holdout
problems harder to solve. There are various policy proposals to strengthen the
principal’s commitment to punishing holdouts, for example, the introduction of
Collective Action Clauses (CACs). A CAC allows the sovereign principal to implement
a restructuring using a (super-)majority vote11 and limits the dissenting creditors’
ability to initiate litigations. Full commitment is always optimal: If not, the principal
could simply commit to whatever she would do with limited commitment. A naïve
generalization would be that higher commitment helps. However, I show it is not
always the case: Higher partial commitment can backfire, hindering restructuring.

The reason is that, whereas higher commitment allows the principal to impose more
stringent punishment on the holdouts (a direct effect), it also allows the principal to
obtain a higher value from renegotiation following a rejection, making the principal
more likely to renegotiate, and lowering the punishment that can be credibly imposed
on the holdouts (an indirect effect). This indirect effect can outweigh the direct effect,
leading to a lower value to the principal, especially when the principal starts with a
low level of commitment: Renegotiation is more likely when the commitment is low.
This force gives rise to a non-monotone effect of commitment and alerts policymakers
that gradual increases in commitment could exacerbate holdout problems.

This result resonates with evidence that policies increasing commitment can either
alleviate or exacerbate holdout problems. Indeed, there are seemingly contradictory
findings about CACs. Almeida (2020) suggests that the introduction of CACs would
give the sovereign too much commitment12 to punishing the holdouts ex post, leading to
a higher borrow cost ex ante. However, Chung and Papaioannou (2021) finds it actually
lowers the borrowing cost. The difference is that the latter looks at a partial inclusion of
CACs, a small increase in commitment, while the former looks at a full inclusion. The
contradictory findings are reconciled in my model: A small increase in commitment
can make restructuring harder. Also consistent with this result, Carletti et al. (2021)
finds the mandatory replacement of unanimity with supermajority voting lowers the

11Generally speaking, there are two main types of CACs: Single-limp and multi-limp, most commonly,
two-limb. A single-limp CAC requires an aggregated vote across all series of bonds, and the restructuring
plan has to reach supermajority approval, while a two-limb CAC would require the plan to get a majority
approval within each class of bonds. For more details, see Gelpern and Heller (2016) and Fang et al. (2021).

12Their original phrase is that it weakens the sovereign’s commitment to fulfilling the debt service.
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yields of the sovereign bonds, whereas Donaldson et al. (2022) finds making one class
of bonds easier to restructure increases the yields. Similarly, in takeovers, Chen et al.
(2022) finds that the inclusion of a bidder termination clause, which slightly strengthens
the raider’s commitment to calling off the deal,13 increases the offer premium, making
takeovers more costly.

Extension on Property Rights The solutions to the holdout problems, by and large,
are achieved by deploying dilution: the principal designs new contracts to exert a
contractual externality on the holdouts off path, reducing the value of the existing ones
and thus the incentive to hold out. There are cases where agents’ interests or claims are
protected by property rights, which cannot be diluted by contractual externalities,14
e.g., houses in land assembly and debt secured by collateral.

Usually, property rights protections are perceived to exacerbate the holdout prob-
lems.15 This is true under full commitment: Each agent needs to be compensated more
in order for him to tender since the value protected by property rights cannot be diluted
by new contracts. However, when the commitment is limited, the relationship can
be overturned: Stronger property rights protection also makes renegotiation harder
for the principal. Indeed, the incentive to renegotiate is reduced when the principal’s
benefit from renegotiation is reduced, which is the case when agents’ rights are well
protected in renegotiation. This allows the principal to commit to imposing stronger
punishment initially, which, on the contrary, facilitates restructuring.

Contribution The general framework nests classic works on the holdout problems,
such as Grossman and Hart (1980), Bulow et al. (1988) and Gertner and Scharfstein
(1991), by including arbitrary existing contracts, and goes beyond in two dimensions:
A more general contracting space and a flexible commitment assumption. Without
the ad-hoc restriction on the contracting space, the holdout problem no longer exists
since the contracts can be contingent upon everyone’s action and make them pivotal.

13The bidders would nevertheless have the fiduciary or regulatory rights to termination even without the
provisions.

14I adopt the notions of contractual rights and property rights as defined in Ayotte and Bolton (2011) that
contractual right is a right against the contracting party whereas property right against everyone.

15For example, Demiroglu and James (2015) finds that loans held more by collateralized loan obligations
(CLOs) exhibit greater holdout problems and are more difficult to restructure. Holland (2022) shows using
survey data in Colombia that greater property rights protection exacerbates holdout problems in real estate
development.
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Limited commitment is often allowed in the sovereign debt literature, usually to debt
repayment and new borrowing, but they typically do not consider optimal contracting.
For example, Pitchford and Wright (2012) looks at the delay caused by the negotiation
with a cash settlement. The main insight of the paper on how optimal exchange offers
depend on the interaction of commitment and existing contracts’ payoff sensitivity
can only be obtained when all three elements are considered. Notably, Segal (1999)
also provides a general framework for contracting with externalities, but he mainly
considers optimal allocation given the externalities, while designing externalities is
part of the principal’s problem in this paper. Most analysis in his paper only concerns
non-contingent transfers, except in the general commitment mechanism section, in
which the optimality of unanimity is identified. He also alludes to the inefficiency
of limited commitment and shows how it compares with the commitment case with
non-contingent transfers16 but leaves the contractual design in the face of the limited
commitment to future research, and that’s my focus.

Readers should be alerted that the abovementioned solutions are private solutions
that the principal devises to overcome agents’ incentive to hold out given the institutional
constraints. The optimal institution design needs to have more elements to be in
the objective: For example, it has to balance the ex-ante financing and the ex-post
restructuring, which could either conflict with (Bolton and Jeanne, 2007, 2009) or
complement (Donaldson et al., 2020) each other. The paper nevertheless provides a
broader picture for the ex-post consideration.

In what follows, in Section 2, I lay out the model setting, provide two simplifying
results, and show how this framework nests classic applications. In Section 3, I show
the existence of the holdout problem with a non-contingent contract and an extreme
gauging result that solves all holdout problems when the principal has full commitment.
Section 4 relaxes the commitment assumption and introduces the notion of credible
contracts. There, I show how commitment and the initial contracts interact: Holdout
problems can be solved for some initial contracts but not for others; and the commitment
has a non-monotone effect. Section 5 extends the analysis to the case when initial
contracts are not fully dilutable, and I show that counterintuitively, higher protections

16The notion of limited commitment assumed is that the principal cannot commit in public offers but
can commit in subsequent private renegotiation. This corresponds to the strong credibility I develop later
in Section 4.1. I also relax it and consider the case when the principal cannot commit even in subsequent
renegotiation.
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of the agents can alleviate the holdout problem. Section 6 provides the theoretical
underpinnings of the notion of credibility and unifies the concepts used throughout.
Section 7 surveys the literature, and Section 8 discusses various model assumptions,
renegotiation protocols, and empirical relevance.

2 Model Setup

2.1 Baseline Setup

Agents, Asset, and Actions. There are 𝑁 agents (A𝑖), indexed by 𝑖 ∈ 𝒩 := {1, 2, ..., 𝑁}
and one principal (P). Each agent is endowed with a security, a claim on an asset whose
value is endogenous. P can enhance the asset value by restructuring the claims, and
she17 does so via an exchange offer: The principal proposes new securities in exchange
for the existing ones, and each agent independently chooses to accept his offer or hold
out.

Let 𝑣(ℎ) be the value of the asset as a function of the holdout profile ℎ = (ℎ1, ℎ2, ..., ℎ𝑁)⊤

where ℎ𝑖 ∈ 𝐻𝑖 is the holdout decision chosen by A𝑖 in the set 𝐻𝑖 ⊂ [0, 1] specified by P.
A𝑖 accepts a fraction 1 − ℎ𝑖 of the new offer and sticks to a fraction ℎ𝑖 of his original
contract.18 I require ℎ𝑖 = 1 to be in the choice set, i.e., {1} ⊂ 𝐻𝑖 , for all 𝑖, so that all
agents are able to hold out entirely. In addition, we say the exchange offer admits no
rationing if {0} ⊂ 𝐻𝑖 for all 𝑖. That is, all agents are able to exchange the entirety of
their claims. Without loss of generality, I assume that the exchange offer admits no
rationing since the firm could offer any agent the same contract as his old one. I use
𝑒𝑖 = (0, 0, . . . , 1, . . . , 0)⊤ ∈ R𝑁 to denote the unit vector of length 𝑁 whose 𝑖th element
is 1 and all other elements are 0.

I assume 𝑣(ℎ) is a weakly decreasing function of ℎ: 𝑣(ℎ𝑎) ≤ 𝑣(ℎ𝑏) if and only if
ℎ𝑎 ≥ ℎ𝑏 , 19,

20 or equivalently ℎ𝑎
𝑖
≥ ℎ𝑏

𝑖
for all 𝑖, with equality if and only if ℎ𝑎 = ℎ𝑏 . This

17Throughout, the principal is referred to as “she” and the agents as “he”.
18It may not be feasible for ℎ𝑖 to be non-integers. For example, a house might not be divisible in the land

acquisition case.
19For example, projects that naturally require unanimous consent can be encoded as a step function

𝑣(ℎ) = 𝑣0 + Δ𝑣1{ℎ=0}, and similarly for other thresholds. Note this is different from using a unanimity or
majority rule by the principal. I discuss the microfoundations of this assumption in Section 8.1.

20Also notice that since 𝑣(·) is only weakly decreasing, it may not necessarily be optimal for everyone to
tender. Indeed, having everyone tender is optimal in the full-commitment case as shown in Proposition 18,
and also in the limited-commitment case with additional regularity conditions. I will on the implementation
of ℎ = 0 for expositonal purpose.
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assumption is intuitive: Houlding out destroys the asset value. The value of the asset
decreases as more agents hold out. In the baseline model, I assume the asset value 𝑣(ℎ)
is a deterministic function of the holdout profile ℎ, but the analysis could be extended
to the case of random functions and write 𝑣(ℎ)(𝜔) for the explicit dependence on the
state 𝜔. For example, a firm may still have uncertain cash flow after a restructuring and
end up in bankruptcy as in Donaldson et al. (2020).

Payoffs Let 𝑅𝑂(𝑤, ℎ) : R+ × [0, 1]𝑁 → R𝑁+ , be a function that maps what can be
distributed to initial security holders 𝑤 and the agents’ holdout profile ℎ to payoffs,
given the 𝑂riginal securities held by the agents. Notice that potentially, 𝑤 ≠ 𝑣. For
instance, it may be the case that the amount to be distributed to initial claimants is
only 𝑤 = 𝑣 − 𝑥, with 𝑥 > 0 being the value of the asset that accrues to new claims
created in the restructuring. The function 𝑅𝑂(·, ·) encodes both the original set of
claims as well as the underlying system of conflict resolution among securities, such
as a bankruptcy code. We write 𝑅𝑂

𝑖
(𝑤, ℎ) as the 𝑖th entry in that vector and assume

that payoffs are, trivially, feasible, that is, ℎ · 𝑅𝑂(𝑤, ℎ) :=
∑𝑁
𝑖=1 ℎ𝑖 𝑅

𝑂
𝑖
(𝑤, ℎ) ≤ 𝑤 for all

𝑤 and non-negative, 𝑅𝑂
𝑖
(𝑤, ℎ) ≥ 0, for all 𝑤 and 𝑖. Finally, the payoff of the principal,21

whose index is 0, is written as

𝑅𝑂0 (𝑤, ℎ) := 𝑤 −
𝑁∑
𝑖=1

ℎ𝑖 𝑅
𝑂
𝑖 (𝑤, ℎ). (1)

The function 𝑅𝑂(·, ·) does not capture the effect on payoffs resulting from the new
securities offered by the principal, only the payoffs associated with the original securities.
I denote by 𝑅(𝑣, ℎ) : R+ × [0, 1]𝑁 → R𝑁+ the payoffs of the new securities. Since the
payoffs to the old securities are affected by the new ones, which are not encoded in 𝑅𝑂 ,
we use �̃�𝑂(𝑣, ℎ) to represent the payoffs to the initial securities when the asset value
is 𝑣. Clearly, 𝑅𝑂(·, ·), 𝑅(·, ·), and �̃�𝑂(·, ·) are not independent of each other, and their
relation will be explained further below in Section 2.2.

21The principal need not have an explicit claim on the asset as his identity as the residual claimant is
determined by the contractual relationship with the agents. I will, possibly interchangeably, use the more
vague term “contracts” to capture this idea.
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Renegotiation The principal cannot commit to not renegotiating his initial exchange
offer (more details in Section 4). The focus on renegotiation proof exchange offers allows
me to use the same notation ℎ for the renegotiated outcome. Finally, the principal can
always call off the deal; in this case, the payoffs are simply evaluated at ℎ = 1.

Cost The principal faces a random cost 𝑐, whose value is realized before announcing
the exchange offer but incurred only if the plan is carried out, that is, ℎ ≠ 1. It could be
interpreted as the outside option of the principal or the cost of carrying out the plan
(e.g., investment, attorney fees, etc). Thus, the principal is willing to carry out the plan
if and only if her benefit from the plan, (1), exceeds the cost, 𝑐. Throughout, I assume
the cost is small, 𝑐 < 𝑣(0) − 𝑣(1), so it is always socially efficient to carry out the deal.
The randomness of this cost is not essential for the analysis but captures unobserved
heterogeneity that can potentially be important to explain the variation in outcomes in
otherwise similar situations.

Exchange Offers To summarize, in the spirit of the revelation principle, I formalize
the notion of exchange offers as follows:

Definition 1 (Direct Exchange Offer). A direct exchange offer is a tuple (𝐻, ℎ, 𝑅, �̃�𝑂) where

• 𝐻 =
𝑁∏
𝑖=1
𝐻𝑖 is the product space of A𝑖’s action space 𝐻𝑖 such that {0, 1} ⊂ 𝐻𝑖 ⊂ [0, 1];

• ℎ = (ℎ1, ℎ2, . . . , ℎ𝑁) ∈ 𝐻 is the (recommended) holdout profile of the agents;

• 𝑅 is a mapping from R+ × 𝐻 to R𝑁 where the 𝑖th element 𝑅𝑖(𝑣, ℎ) determines the unit
payoff of A𝑖’s new contract given the asset value is 𝑣 and the holdout profile ℎ;

• �̃�𝑂 is a mapping from R+ × 𝐻 to R𝑁+1
+ where the 𝑖th element �̃�𝑂

𝑖
(𝑣, ℎ) determines the

unit payoff of A𝑖’s old contract (or principal’s if 𝑖 = 0) given the asset value is 𝑣 and the
holdout profile ℎ

such that

• the allocation is feasible:

𝑁∑
𝑖=0

ℎ𝑖 �̃�
𝑂
𝑖 (𝑣, ℎ) +

𝑁∑
𝑖=1

(1 − ℎ𝑖)𝑅𝑖(𝑣, ℎ) = 𝑣 (2)
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• the action ℎ𝑖 is incentive compatible:

ℎ𝑖 ∈ arg max
ℎ′
𝑖
∈𝐻𝑖

𝑢𝑖(ℎ′𝑖 |ℎ−𝑖 , 𝑅, �̃�
𝑂) (3)

where
𝑢𝑖(ℎ𝑖 |ℎ−𝑖 , 𝑅, �̃�𝑂) := (1 − ℎ𝑖)𝑅𝑖(𝑣, ℎ) + ℎ𝑖 �̃�𝑂𝑖 (𝑣, ℎ) (4)

is A𝑖’s payoff given the action profile ℎ = (ℎ−𝑖 , ℎ𝑖) and the corresponding project value 𝑣.

The use of the word “recommended” might surprise the reader: Why would the
principal recommend a holdout profile as part of the exchange offer? As others before in
the mechanism design literature (e.g., Myerson, 1983), I allow the principal to provide a
public coordination device by recommending an action profile to overcome the concern
of multiple equilibria outside those proposed by the principal.

Principal’s original problem (OP) The principal aims to design an exchange offer
(𝐻, ℎ, 𝑅, �̃�𝑂) in exchange for the old contract. I consider first the case of full commitment.
In this case, the constrained optimization problem of the principal is

max
𝐻,ℎ,𝑅,�̃�𝑂

𝑣(ℎ) −
𝑁∑
𝑖=1

(1 − ℎ𝑖) · 𝑅𝑖(𝑣(ℎ), ℎ) −
𝑁∑
𝑖=1

ℎ𝑖 · �̃�𝑂𝑖 (𝑣(ℎ), ℎ) (OP)

such that the action is incentive compatible

ℎ𝑖 ∈ arg max
ℎ′
𝑖
∈𝐻𝑖

𝑢𝑖(ℎ𝑖 |ℎ−𝑖 , 𝑅, �̃�𝑂) ∀𝑖 ∈ 𝒩 . (5)

To understand the principal’s payoff, it is helpful to consider the situation where
some agents tender fully, whereas others hold out. The principal’s payoff is the value
of the asset given the profile ℎ, minus the payoff that accrues to the tendering agents,
𝑅𝑖 (𝑣(ℎ), ℎ), minus what accrues to holdouts �̃�𝑂

𝑖
(𝑣(ℎ), ℎ), which is a function of the old

contracts.
In the absence of commitment, the principal is subject to an additional credibility

constraint. This case is investigated in Section 4.
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2.2 Simplified Problem (SP) of the Principal

The generality of the proposed framework makes it difficult to characterize the problem,
but it can be simplified as follows. First, I impose a condition that the principal cannot
alter the existing contractual relationship among securities using the new securities
proposed in the exchange offer. In other words, the relative payment to two holdouts
has to stay the same. For instance, the principal may want to write a contract with a
tendering agent by which the priority structure between two non-tendering agents
is flipped. The assumption, which I refer to as weak consistency, excludes this type of
exchange offers. Second, without loss of generality, it is enough for the principal to
focus on exchange offers in which all agents tender. Formal statememt can be found in
Section A.1 and A.2 in the appendix.

Start with weak consistency. It is defined as follows.

Definition 2 (Weak Consistency). An exchange offer is weakly consistent if the payoff to
non-tendering agents, �̃�𝑂 , equals the payoff of the original securities evaluated at the asset value
minus the part that accrues to tendering agents. That is, if 𝑥 :=

∑𝑁
𝑖=1(1 − ℎ𝑖)𝑅𝑖(𝑣, ℎ), is the

part of the value of the asset that accrues to tendering agents, then

�̃�𝑂𝑖 (𝑣, ℎ) = 𝑅𝑂𝑖 (𝑣 − 𝑥, ℎ) ∀𝑖 = 0, 1, .., 𝑁. (6)

Weak consistency22 captures the intuition that the principal can create externalities
on the holdouts by diluting them through new contracts, but the dilution cannot be
selective. In particular, she cannot make an exchange offer that dilutes holdouts without,
as the residual claimant, diluting herself.23

22This is a weaker version of the consistency axiom widely used in the study of bankruptcy problems in
the cooperative game theory literature, e.g., in Aumann and Maschler (1985) and Moulin (2000). It has also
been used in the study of multilateral bargaining games as in, for example, Lensberg (1988) and Krishna
and Serrano (1996). The difference between the consistency axiom and weak consistency is that consistency
requires this condition to hold for any subset of the securities, while I only require it to hold between the new
and old contracts. Informally, given an allocation rule 𝑅𝑂(·, ·, ·) is a map from the set of 𝑁 agents 𝒩 , the total
value available 𝑣 > 0, and a vector of claims d ∈ R𝑁+ , to an allocation vector 𝑅𝑂(𝒩 , 𝑣, d) ∈ R𝑁+ where agent
A𝑖 receives 𝑅𝑂

𝑖
(𝒩 , 𝑣, d), the rule is consistent if, for any subset 𝒩0 ⊂ 𝒩 , the allocation among the agents in

the subset is identical to the original allocation as long as the total resource available is the total resource
allocated to 𝒩0 under the original allocation and the agents in the subset 𝒩0 have the exactly same claim
d|𝒩0 . Or in formula, 𝑅𝑂(𝒩0 , 𝑣 −

∑
𝑗∉𝒩0 𝑅

𝑂
𝑗
(𝒩 , 𝑣, d), d|𝒩0) = 𝑅𝑂(𝒩 , 𝑣, d)|𝒩0 . Thomson (1990) and Maschler

(1990) have a comprehensive survey on this topic.
23An implication of weak consistency is that the principal cannot divert values to herself, for instance, by

issuing new super-senior debt to herself. In practice, there are situations where the principal can effectively
divert value to herself with the help of a third party. In Müller and Panunzi (2004), they described a procedure
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As for the second simplification that it is enough for the principal to focus on exchange
offers in which all agents tender, it builds on a simple idea: If it is optimal for an agent
to retain a fraction or the entirety of the initial security for a given exchange offer, the
principal could equivalently offer the claim the agent has in his hand post-restructuring.
This way, the agent would at least find it equally optimal to accept the entire exchange
offer. There might be two technical issues: i) With the new offers, there might be actions
that are not initially available; ii) The asset value is higher when the agent accepts, so
the outside option is more valuable. I address them in Section A.2 in the appendix.

Lastly, with some abuse of notation, I write the payoff associated with the new
exchange offer and the original contract as

𝑅𝑖(ℎ𝑖 |ℎ−𝑖) :=𝑅𝑖(𝑣(ℎ−𝑖 , ℎ𝑖), (ℎ−𝑖 , ℎ𝑖)) (7)

𝑅𝑂𝑖 (ℎ𝑖 |ℎ−𝑖 , 𝑅) :=𝑅𝑂𝑖
©«𝑣(ℎ−𝑖 , ℎ𝑖) −

𝑁∑
𝑗=1

(1 − ℎ 𝑗) · 𝑅 𝑗(𝑣(ℎ−𝑖 , ℎ𝑖), (ℎ−𝑖 , ℎ𝑖)), (ℎ−𝑖 , ℎ𝑖)ª®¬ (8)

to highlight the incentives and actions of a particular agent. We write the total payoff
of agent A𝑖 as

𝑢𝑖(ℎ𝑖 |ℎ−𝑖 , 𝑅) := ℎ𝑖𝑅
𝑂
𝑖 (ℎ𝑖 |ℎ−𝑖 , 𝑅) + (1 − ℎ𝑖)𝑅𝑖(ℎ𝑖 |ℎ−𝑖) (9)

and the principal’s value at ℎ from an exchange offer 𝑅 as

𝐽(ℎ |𝑅) := 𝑣(ℎ) −
𝑁∑
𝑖=1

𝑢𝑖(ℎ𝑖 |ℎ𝑖−, 𝑅). (10)

Thus, using Proposition 18 in the Appendix, we can simplify the principal’s problem to

max
𝑅

𝐽(0|𝑅) s.t. 𝑅𝑖(0|0−𝑖) ≥ 𝑅𝑂𝑖 (1|0−𝑖 , 𝑅) ∀𝑖 ∈ 𝒩 . (SP)

Below, I consider the case in which the principal lacks commitment, and thus, an
additional credibility constraint enters into the optimization problem.
called bootstrap acquisition where the acquirer could use the target as the collateral to raise senior debt
from a third-party lender and pocket in the proceeds from borrowing. As they analyzed, doing so could
appropriate value from the existing shareholders and facilitate the takeover. The legality of this practice is
challenged but not overturned.

14



2.3 Mapping to Classic Papers

The framework advanced here incorporates many classic papers in the literature.
Specifically, I show how to map these papers onto my framework using the functions
𝑣(·), 𝑅𝑖(·, ·) and 𝑅𝑂

𝑖
(·, ·).24 The results in these papers are shown to be special cases of

my model (mostly under full commitment).

Takeover via Public Tender Offer à la Grossman and Hart (1980). They model the
situation where a raider (the principal) can improve the value of a firm after acquiring
a controlling stake in the firm through a public tender offer, i.e., by offering a price
to each shareholder to purchase his shares. The firm value is 𝑣0 if the takeover fails,
and 𝑣0 + Δ𝑣 if it succeeds, which occurs when more than a fraction of ℎ̄ of shares are
tendered, i.e., ℎ⊤1 ≥ ℎ̄ and if the raider pays a private cost 𝑐. The raider is plagued
with the holdout problem as the shareholder who does not tender benefits from the
value improvement once the firm is acquired and thus will demand a price equal to the
post-takeover value, leaving little-to-no surplus to the raider.

In my framework, the value creation function takes the form of a step function
𝑣(ℎ) = 𝑣0 + Δ𝑣1ℎ⊤1< ℎ̄ . Each existing contract has a payoff 𝑅𝑂

𝑖
(𝑣(ℎ), ℎ) = 𝑣(ℎ)−𝑑

𝑁 where 𝑑
is the dilution factor considered in Grossman and Hart (1980), the value of the asset
that the raider can extract after raider obtains control.

The cash offer 𝑡𝑖 unconditional on getting control would be a flat payoff function
which only depends on the action of A𝑖 : 𝑅𝑖(𝑣(ℎ), ℎ) = 𝑡𝑖1ℎ𝑖=0. For any agent A𝑖, he
decides not to hold out if 𝑅𝑖(𝑣(0), 0) ≥ 𝑅𝑂

𝑖
(𝑣(𝑒𝑖), 𝑒𝑖) which implies for an offer to be

incentive compatible, it must exceed the outside option 𝑡𝑖 ≥ 𝑡∗
𝑖

:= 𝑣(𝑒𝑖)−𝑑
𝑁 = 𝑅𝑂

𝑖
(𝑣(𝑒𝑖), 𝑒𝑖)

and the principal implements this action with cost 𝑐 if and only if 𝑣(0) − ∑𝑁
𝑖=1 𝑡

∗
𝑖
≥ 𝑐.

The condition cannot hold when there’s no dilution, and the cost is positive, which is
the holdout problem they identified.

Bond Buyback Boondoggle à la Bulow et al. (1988) and Leverage Ratchet Effect à la
Admati et al. (2018). In this example, I illustrate the common friction that underlies

24Most papers here have a continuum of agents for computational tractability. I show their finite-agent
counterpart using my notations as well as their continuous limit, if possible. The continuous limit is not
immediately obtained by taking the limit 𝑁 → ∞ because the asset value 𝑣 depends on the exact action of
each contract holder, and each agent has a claim on it. To circumvent this, I normalize the contract of each
agent by 𝑁 whenever possible, e.g., with debt or equity claims.

15



the bond buyback boondoggle analyzed in Bulow et al. (1988), and a more recent
leverage ratchet effect illustrated in the dynamic model in Admati et al. (2018) with
modified notations. In both models, the firm offers cash to buy back existing debts
held by external creditors, but creditors who do not sell their debt also benefit from the
deleveraging and are not willing to sell unless they are compensated at the post-buyback
price. Another manifestation of the holdout problem!

The debtor (principal) has a project that generates a random payoff 𝑋 following a
distribution 𝐹, independent of the outstanding debts. There are 𝑁 creditors (agents):
Each owns a debt contract with face value 𝐷

𝑁 . All the debts are of the same seniority.
The principal also has a wealth𝑊(1), i.e., internal cash reserve, but only a fraction � of
the project return and wealth is pledgeable to the creditors. And the cost of buying
back 𝑁 − ℎ⊤1 shares of debts is 𝑇(ℎ). I let𝑊(ℎ) =𝑊(1)−𝑇(ℎ) be the remaining internal
wealth after implementing action ℎ.

So, using my notation, the project value takes a separable form of the action profile
ℎ and the underlying state 𝜔: 𝑣(ℎ)(𝜔) =𝑊(ℎ) + 𝑋(𝜔) with the expected value being
E[𝑣(ℎ)] =𝑊(ℎ) + E[𝑋] =𝑊(ℎ) +

∫ ∞
0 𝑥d𝐹(𝑥).

Since 𝑋 is just a random variable here, I drop the explicit dependence on 𝜔 whenever
no confusion arises. The default threshold �̂� is given by �(𝑋 +𝑊(ℎ)) ≤ ℎ⊤1

𝑁 𝐷 =⇒
𝑋 ≤ �̂� := ℎ⊤1𝐷

�𝑁 −𝑊(ℎ). So the payoff to each existing contract owned by agent A𝑖 is

𝑅𝑂𝑖 (𝑣(ℎ)(𝜔), ℎ) =
1
ℎ⊤1

min
{
�(𝑋 +𝑊(ℎ)), ℎ

⊤1

𝑁
𝐷

}
= min

{
�
𝑣(ℎ)(𝜔)
ℎ⊤1

,
𝐷

𝑁

}
(11)

with the expected value being E[𝑅𝑂
𝑖
(𝑣(ℎ), ℎ)] = E

[
min

{
� 𝑣(ℎ)
ℎ⊤1

, 𝐷𝑁

}]
.

Since creditors only recover a fraction of asset value in default, each of them benefits
from less default resulting from deleveraging. Buying back external debt has two
effects: it reduces cash reserve and lowers the creditors’ payoff; it also lowers the total
debt outstanding. Thus, the creditors’ recovery since default is less likely. Their main
result is a condition under which bond buyback is not beneficial for the principal
because of the free-riding effects. I derive this condition in the continuous limit and its
finite-agent counterpart in section A.3.
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Distressed Debt Restructuring à la Gertner and Scharfstein (1991). A firm with
dispersed creditors in distress often offers debt exchange to its creditors. It’s the same as
the bond buyback model, except that new debts are offered instead of cash. The firm is
impeded by the same holdout problem: Creditors who do not accept the exchange offer
also benefit from deleveraging. But the problem can sometimes be solved when debt
is offered. Gertner and Scharfstein (1991) considers many different cases of existing
debt structure and offer types, but I will focus on the comparison between offering pari
passu debt vs. senior debt. It’s also used to demonstrate that the two-period model
here can incorporate a more dynamic structure.

The firm has existing debt𝐷, a fraction 𝑞 of which is due at date 1, and date-1 interim
cash 𝑌. The principal needs investment 𝐼 to continue the project, and a random cash
flow 𝑋 ∼ 𝐹 will be realized if the project is continued. For simplicity, I will omit the
bank debt in Gertner and Scharfstein (1991) and only focus on the public bonds. I also
focus on the case when there is no interim shortage of cash as in their propositions 1-3,
i.e., 𝑌 > 𝐼 + 𝑞𝐷.

Each agent has short-term 𝑞𝐷

𝑁 debt due at the interim date and (1−𝑞)𝐷
𝑁 due at date 2.

In the “no-cash-shortage” case, the project is always implemented, so the value creation
function is 𝑣(ℎ)(𝜔) = 𝑋(𝜔) + 𝑌 − 𝐼, and the payoff of each original contract is

𝑅𝑂𝑖 (𝑣, ℎ) =
𝑞𝐷

𝑁
+ 1
ℎ⊤1

min
{
𝑣 − ℎ⊤1

𝑁
𝑞𝐷, (1 − 𝑞) ℎ

⊤1

𝑁
𝐷

}
(12)

= min
{

1
ℎ⊤1

𝑣,
1
𝑁
𝐷

}
,∀𝑖 = 1, 2, ..., 𝑁 ,∀𝑣 > 𝑞𝐷 (13)

The payoff of the new contracts depends on what’s being offered. In the section A.4, we
derive that for the pari-passu debt and senior debt. When pari-passu long-term debt is
offered, it has effectively lower priority than the holdouts, as the short-term debt held
by the holdouts is repaid firm, so the firm has to offer more long-term debt than 1-to-1;
in contrast, when long-term senior debt is offered, it’s paid after the short-term debt,
but ahead of the long-term part of the debt held by the holdouts. So, the principal can
offer to implement the exchange at a ratio smaller than 1:1.
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3 Optimal Exchange Offer with Full Commitment

In this section, I provide two benchmark results. First, I show that holdout problems
occur whenever the principal is only allowed to offer non-contingent contracts (i.e.,
cash), and the cost of implementing the exchange offer 𝑐 is not too small.25 Second, if,
instead, the contracts are fully contingent, the principal can uniquely implement an
equilibrium that extracts the full value of the assets.

3.1 Optimal Non-Contingent Exchange Offers

Suppose first that the principal can only offer cash. A cash offer is a one-shot payment
𝑡𝑖(ℎ𝑖) to agent 𝑖, which is only a function of the agent’s decision to tender ℎ𝑖 = 0,
independent of 𝑣 and of ℎ−𝑖 .26 These cash transfers can only come from the principal’s
equilibrium allocation plus her initial wealth 𝑊 , if any. Notice that this implicitly
assumes perfect capital markets. For instance, if the exchange offer includes some cash
transfers, then the principal is able to borrow 𝐹 from an outside lender27 and commit to
repaying. Alternative assumptions are discussed in Section C.

The following assumption restricts the analysis to the interesting cases.

Assumption A1 (Moderate Cost). The cost is neither too small nor too large

𝑣(0) > 𝑐 > 𝑣(0) −
𝑁∑
𝑖=1

𝑅𝑂𝑖 (𝑣(𝑒𝑖), 𝑒𝑖). (A1)

The first inequality is there to guarantee that it is socially efficient to implement ℎ = 0.
The second inequality says if the principal has to give each agent what they obtain

25Of course, since whether the holdout problem occurs depends on the type of new contracts offered, it
may not be limited to cash offers. For example, Gertner and Scharfstein (1991) and Donaldson et al. (2020)
illustrate that the holdout problem also arises with pari-passu debt offering. But in most studies, a cash-like
payoff is considered, e.g., in takeover (Grossman and Hart, 1980; Bagnoli and Lipman, 1989; Holmström and
Nalebuff, 1992) and bond buyback (Bulow et al., 1988; Admati et al., 2018).

26A subtlety here is that with cash offers, the equivalence result in Proposition 18 in the Appendix does not
necessarily carry over, especially with linear pricing.

27In the bulk of our analysis, we will not tap into the deal’s financing issue, as most contracts are written
as a claim to the asset value. The exception is using cash to pay the existing contract holder ex ante. We
introduce financing only in an artificial manner, using safe debt, to enable the principal to pay agents ex
ante. There is no financing friction, so the failure of the exchange offer is not due to financial constraints. A
more serious discussion of how financing friction impedes takeovers can be found in Burkart et al. (2014). Of
course, alternatively, I could simplify the issue by assuming that the cash is paid ex post or that the principal
has a deep pocket. In either case, no financing arises. The modeling choice has no material effect on the
equilibrium, and I extend the model setup to incorporate all the scenarios.
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under the old contract if they hold out, she would not want to initiate the exchange
offer;28 Otherwise, the holdout problem does not occur.

Then, if ℎ = 0 is to be implemented via a cash transfer, it must be the case that

1. Each A𝑖 is paid at least as much as what he would otherwise get by holding out

𝑡𝑖(0) ≥ 𝑅𝑂𝑖 (𝑣(𝑒𝑖), 𝑒𝑖) ,∀𝑖 ∈ 𝒩 (14)

2. Total payment can be financed via the internal cash𝑊 and borrowing 𝐹 from an
external financier

𝑁∑
𝑗=1

𝑡 𝑗(0) ≤ 𝐹 +𝑊, (15)

where

𝐹 ≤ 𝑅𝑂0 (𝑣(0), 0) + ©«𝐹 +𝑊 −
𝑁∑
𝑗=1

𝑡 𝑗(0)ª®¬ . (16)

That is, 𝐹 is safe debt. Notice then that the principal’s payments are only restricted
by his initial wealth,𝑊 , and the value of the asset under the exchange offer and
not by any financial friction.29

Armed with these, the next proposition shows the condition under which the holdout
problem arises.

Proposition 1. The necessary and sufficient condition for the existence of a cash exchange offer
that implements ℎ = 0 is

𝑊 + 𝑣(0) ≥
𝑁∑
𝑖=1

𝑅𝑂𝑖 (𝑣(𝑒𝑖), 𝑒𝑖). (17)

Moreover, the principal is willing to implement the exchange offer if and only if

𝑣(0) −
𝑁∑
𝑖=1

𝑅𝑂𝑖 (𝑣(𝑒𝑖), 𝑒𝑖) ≥ 𝑐. (18)

28Notice that the RHS of inequality (A1) could be negative, for instance, when outstanding claims are debt
(See Example 3.1). In this case, the holdout problems occur even if there’s no cost. When the outstanding
claims are equity, it is always non-negative and it converges to zero when the number of agents goes to
infinity, and a single holdout doesn’t affect the asset value.

29This can be easily seen by using equation (1) and rewriting equation (16) as
∑𝑁
𝑗=1 𝑡 𝑗(0) ≤ 𝑣(0) +𝑊 . Finally,

throughout, and without any loss of generality, I have assumed that the interest rate is zero.
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The next Corollary is now immediate.

Corollary 1 (Holdouts with cash offers). Under Assumption A1, the first best ℎ = 0 cannot
be implemented via an exchange offer with only non-contingent contracts, i.e., paying cash.

The corollary simply states that under Assumption A1 Moderate Cost the classic
holdout problem occurs: A simple cash transfer is not enough to compensate each
agent for his reservation value under the deviation, 𝑅𝑂

𝑖
(𝑣(𝑒𝑖), 𝑒𝑖). The key force in a

typical holdout problem is that the incentive compatibility constraint of any single agent
becomes more difficult to satisfy as more of the rest of the agents tender.30 Effectively,
the principal has to pay agent A𝑖 𝑅

𝑂
𝑖
(𝑣(𝑒𝑖), 𝑒𝑖) rather than 𝑅𝑂

𝑖
(𝑣(1), 1), which is the value

of agent 𝑖’s original claim. The reason is that the asset value 𝑣 increases as more people
tender, and more of the value of the asset accrues to holdouts.

This makes addressing the holdout problem using cash prohibitively costly, and an
efficient value enhancement cannot be obtained.

Example 3.1. Suppose a situation with 3 creditors, each with an outstanding debt claim with
a face value of 𝐷𝑖 = 6. Assume that the asset value is 𝑣(ℎ) = 9 + ∑

𝑖 (1 − ℎ𝑖). Each creditor
would be paid 9/3 = 3 without asset value improvement and up to (9 + 3)/3 = 4 when all
of them tender. If the principal can renegotiate with all creditors collectively, then she could
offer any price between 3 and 4 to each claimant and the first best obtains. Next, consider the
situation in which this collective negotiation is not feasible. In this case, if all but one agent
tender, the holdout could get paid in full, i.e., 6 out of the asset value 11, and this leaves the
principal a residual value of 5, which allows her to pay each tendering agent at most 2.5, which
is worse than their initial value. Of course, each agent thinks of himself as the marginal holdout
and demands 6; thus, the holdout problem cannot be solved with a simple cash offering.31

The intuition for this is straightforward. As the number of agents who tender increases, it
becomes increasingly more difficult to get other agents to tender. There are two forces at work
that induce a form of strategic substitutability amongst agents. First, the asset value is higher
when more agents tender; and second, there are few competing claims on the asset. To see this, if
three agents hold out, each holdout will get 3 out of the asset value 9, but when two agents hold
out, each gets 5 out of the asset value 10. The value of the outside options grows even faster than

30The argument alludes to the slightly more restrictive assumption A2 that the original securities are
increasing in the underlying value. But for the Proposition 1 per se, it holds even without this assumption.

31Note the RHS of the Equation (A1) is 12 − 6 × 3 = −6, so a positive cost is not needed to generate the
holdout problem.
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the asset value growth as more agents tender. □

3.2 Optimal Contingent Exchange Offers

Consider now a richer contracting space: The principal can offer contingent contracts,
i.e., contracts whose payoffs depend on both the asset value and the decision of each
agent to tender or not, which indirectly depends on the type of contracts other agents
end up with, whether the original contract or a new one under the exchange offer. In
this case, the principal will not only solve the holdout problem, but she will also be
able to extract the full value of the asset and implement it as a unique equilibrium.

To see this, start by recalling the definition of unique implementation of Segal (2003)
and Halac et al. (2020).

Definition 3 (Unique Implementation). The principal can uniquely implement an action
profile ℎ and guarantee herself a value 𝑤 i) if there exists a consistent exchange offer (𝐻, ℎ, 𝑅)
such that ℎ is an equilibrium in the subgame played by the agents and ii) for any � > 0, there
exists a consistent exchange offer (𝐻� , ℎ, 𝑅�) such that ℎ is the unique equilibrium in the
subgame, in which the principal obtains a payoff of at least 𝑤 − �.

Introducing this perturbation � is purely technical as the set of exchange offers that
admits a unique equilibrium is not necessarily closed.32 With this definition at hand, I
derive

Proposition 2 (Extreme Gauging). With fully contingent contracts, the principal can
uniquely implement the action profile ℎ = 0 and guarantees herself a value of 𝑣(0).

To get the gist of the proof, notice the IC facing an agent is that the on-path payoff
from tendering must be greater than the off-path payoff from holding out

𝑅𝑖(𝑣(0), 0) ≥ 𝑅𝑂𝑖
©«𝑣(𝑒𝑖) −

∑
𝑗≠𝑖

𝑅 𝑗(𝑣(𝑒𝑖), 𝑒𝑖), 𝑒𝑖ª®¬ . (19)

In the off-path payoff, which is the right-hand side of (19) (the constraint in problem
(SP)), the total payment to all other agents

∑
𝑗≠𝑖 𝑅 𝑗(𝑣(𝑒𝑖), 𝑒𝑖) “dilutes” the value that

A𝑖 is able to claim. Notice that, in principle, the principal can commit to paying the
32For a more detailed discussion, see Section 4 in Segal (2003) (and footnote 9 in particular).
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tendering agents more, up to the full value of the asset 𝑣(𝑒𝑖), as a punishment for the
holdout. The equilibrium will thus feature the principal offering an arbitrarily small
fraction of the asset to each agent. If any one agent deviates and holds out, she will then
distribute the entirety of the asset to the tendering agents. This occurs off-equilibrium
path. It is here the ability of the principal to commit matters. The reason is that when
the principal assigns the entirety of the asset to tendering agents, she also dilutes her
claim. Instead, in the absence of commitment, the principal will have an incentive to
renegotiate, rendering this exchange offer non-credible. It is in this case that I turn to
next.

4 Optimal Exchange Offer with Limited Commitment

What happens them when the pincipal cannot commit to punish holdouts off-
equilibrium path? In this case, the principal may be tempted to renegotiate with
holdouts. Specifying the exact sequence of renegotiation might be convoluted as it
might involve infinite rounds of bargaining and an agreement may never be achieved
as shown in Anderlini and Felli (2001). Clearly, absent private information, if the
principal finds ex post optimal to do something else, she could have already anticipated
it and written it in the original contract. Thus, instead of looking for what happens in
renegotiation, I look for contracts that are renegotiation-proof: the principal prefers
just executing the original contracts even if an agent deviates. This strictly shrinks the
space of contracts the principal can propose initially and rules out some non-credible
threats that the principal might want to renegotiate away.

Before introducing a formal definition of credibility it is helpful to add some
additional notation as well as making some standard assumptions that will simplify
the presentation of the results below. First, let the set of incentive compatible contracts
at ℎ be given by

ℐ(ℎ) :=
{
𝑅 : [𝑣, �̄�] × 𝐻 → [0, �̄�𝑁]

��� ℎ𝑖 ∈ arg max
ℎ′
𝑖
∈𝐻𝑖

𝑢𝑖(ℎ′𝑖 |ℎ−𝑖 , 𝑅) ∀𝑖 ∈ 𝒩
}
. (20)

Second, I impose two regularity conditions on the existing contracts:

Assumption A2 (Increasing and 1-Lipschtiz). The collective payoff to the agents who do not
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tender at ℎ

ℎ · 𝑅𝑂(·, ℎ) =
𝑁∑
𝑖=1

ℎ𝑖𝑅
𝑂
𝑖 (·, ℎ) (21)

is increasing and 1-Lipschitz for all ℎ.

This assumption is commonly used in the security design literature.33 This condition
says that the original contracts have an increasing and continuous payoff under any
holdout profile ℎ. Moreover, the payoff function has a slope weakly less than 1. That is,
whenever the underlying increases by one dollar, the incremental payoff to the existing
contracts cannot exceed one dollar. Most commonly seen contracts, such as equity, debt,
and call options, satisfy this condition.

Credibility issues arise arises only when agents deviate. Throughout, I consider
only unilateral deviations. A profile ℎ̂ is a unilateral deviation of ℎ if and only if
ℎ̂ = ℎ + 𝑒𝑖 or ℎ̂ = ℎ − 𝑒𝑖 for some 𝑖, which is equivalent to | | ℎ̂ − ℎ | | = 1. I use
ℬ(ℎ) = { ℎ̂ ∈ {0, 1}𝑁 : | | ℎ̂ − ℎ | | = 1} to denote the unit “ball” around ℎ.

Lastly, I introduce the language of 𝛿-domination, which characterizes the principal’s
incentive to deviate, that is, whether to carry out the exchange offer 𝑅 or to propose a
different exchange offer �̃� at a certain holdout profile ℎ.

Definition 4 (𝛿-domination). A contract 𝑅 weakly 𝛿-dominates another contract �̃� (𝑅 ⪰𝛿 �̃�)
at ℎ, for a number 𝛿 ∈ [0, 1], if 𝐽(ℎ |𝑅) ≥ 𝛿𝐽(ℎ |�̃�).

There are two possible interpretations of the parameter 𝛿. First, 𝛿 can be thought
of as a delay cost equivalent to a discount rate as in Rubinstein and Wolinsky (1992)
and DeMarzo and Fishman (2007). Second, it can also be interpreted as the exogenous
probability that the contract is voided and the principal is allowed to re-propose a new
offer as in Crawford (1982) and Dovis and Kirpalani (2021).34 Either way, 𝛿 parametrizes
the principal’s lack of commitment: The higher it is the lower her ability to commit.

33For example, in the definition of feasible contracts in DeMarzo et al. (2005), they require the payoff to
each party to be increasing, which implies 1-Lipschitz continuity.

34To see this explicitly, let �̂� be the discount rate instead, and the principal is allowed to delay the payoff
and re-propose a new contract �̃� with some exogenous probability 𝑝, then the current proposed contract is
preferred if 𝐽(ℎ |𝑅) ≥ (1 − 𝑝)�̂�𝐽(ℎ |𝑅) + �̂�𝑝𝐽(ℎ |�̃�).

Rearranging the terms, the current proposed contract 𝑅 𝛿-dominates contract �̃� at ℎ for 𝛿 =
�̂�𝑝

1−(1−𝑝)�̂� ,

which is a strictly increasing in 𝑝 for all �̂� ∈ (0, 1) since 𝜕
𝜕𝑝

�̂�𝑝

1−(1−𝑝)�̂� =
�̂�(1−�̂�)

(1−(1−𝑝)�̂�)2 > 0∀�̂� ∈ (0, 1). Thus, for a

fixed �̂�, a higher probability of renegotiation corresponds to a higher 𝛿.
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Notice that when 𝛿 = 0 we are back to the full commitment case, whereas when
𝛿 = 1, the principal can essentially renegotiate at no additional cost. For most of the
analysis, I will focus on the lowest-commitment case 𝛿 = 1 and omit 𝛿 if it equals to
one whenever no confusion arises. I also drop “weakly” or “at ℎ” whenever there’s no
confusion.

4.1 Strongly Credible Contracts

4.1.1 Strongly Credible Contracts and the Principal’s Problem

I introduce two definitions of credibility. I introduce first what I refer to as Strongly
Credible Contracts and later, in section 4.2, a weaker definition I refer to as just Credible
Contracts. Strong credibility illustrates in a simple manner how the lack of commitment
interacted with the set of initial securities, producing a variety of solutions to the
holdout problem. Instead, Credible Contracts illustrate why more commitment is not
always good for the principal. It is important to emphasize that strong credibility is
not needed to show the two main results: Credibility is enough, and strong credibility
is introduced just for clarity, tractability and intuition. Finally, all strongly credible
contracts are also credible contracts.

Definition 5 (Strong 𝛿-credibility). A contract 𝑅 : [𝑣, �̄�] × 𝐻 → [0, �̄�𝑁] is strongly
𝛿-credible at ℎ if

(a) It is incentive compatible at ℎ, that is, it belongs to ℐ (ℎ) (see expression (20) above).

(b) Upon any unilateral deviation ℎ̂, it weakly 𝛿-dominates any incentive compatible contracts
�̃� at ℎ̂ for the principal.

Condition (a) means intuitively that Strongly Credible Contracts must be incentive
compatible. Condition (b) means that even when one agent deviates, the principal will
find in her interest “to stick with” the initial offer 𝑅 rather than any other incentive
compatible contract �̃�. I denote the set of strongly 𝛿-credible contracts by

𝒮𝛿(ℎ) =
{
𝑅 ∈ ℐ(ℎ) : 𝑅 ⪰𝛿 �̃� at ℎ̂ ∀�̃� ∈ ℐ(ℎ̂) ∀ℎ̂ ∈ ℬ(ℎ)

}
. (22)

Again, I drop 𝛿 and simply call it a strongly credible contract when 𝛿 equals 1.
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The principal’s value function on the set 𝒮𝛿(ℎ) is defined by35

𝐽(ℎ |𝒮𝛿(ℎ)) := sup
𝑅∈𝒮𝛿(ℎ)

𝐽(ℎ |𝑅). (23)

Notice that𝒮𝛿(ℎ) ⊂ ℐ(ℎ), so the problem is more restrictive than the full-commitment
case, on account of the principal’s credibility constraint (see (SP) in section 2.2).

4.1.2 Commitment and diversity of exchange offers: Characterization

To characterize the solution to the principal’s problem in (23),36 I first show that it
can be equivalently expressed using a single-dimensional optimization problem: The
principal wants to minimize the total payoff to all agents upon the deviation of a single
holdout while maximizing the possible punishment to the holdout. Then, as a second
step, I show that the extent to which the punishment can be credibly increased depends
on the shape of the holdout’s payoff (this is Lemma 1 below). This, coupled with
Lemma 2 on the disagreement point in renegotiation, gives rise to the diversity of
exchange offers in Proposition 3. It is in Lemma 2 that Strong Credibility is used.

Consider then the deviation of agent A𝑖 . The principal wants to find the least costly
way to punish him. She does so by imposing a penalty of 𝑥 that accrues in turn to
the tendering agents. The principal wants to minimize the total payment to all agents,
tendering or not. Thus, she solves for

inf
𝑥≥0

𝑥 + 𝑅𝑂𝑖 (𝑣(𝑒𝑖) − 𝑥, 𝑒𝑖) , (24)

where 𝑥 =
∑
𝑗≠𝑖 �̃� 𝑗(𝑣(𝑒𝑖), 𝑒𝑖) is the punishment to A𝑖 under �̃�.

The optimization problem in (24) illustrates the principal’s trade-off: A larger
punishment 𝑥 would lower the payment to the holdout A𝑖 , but it would also directly
increase the payoff to the tendering agents. This can potentially lower the principal’s
payoff (recall that this is 𝑣(𝑒𝑖) minus the expression (24) at the optimum; see (10)). With

35The notation 𝐽(ℎ |𝑅) in (10) can be seen as a special case of this definition, where the set is a singleton.
36Note that while it is convenient to look at the implementation of ℎ = 0, the Proposition 18 in the Appendix

does not guarantee renegotiation-proofness. It is also optimal under some additional mild conditions on 𝑅𝑂
and 𝑣, so for expositional purposes, I will focus on the implementation of ℎ = 0.
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some abuse of notation define

𝑓 (·) := 𝑅𝑂𝑖 (·, 𝑒𝑖) .

Then the following lemma illustrates the relation between the shape of the payoff of
agents A𝑖’s initial contract and the range of punishments that do not hurt the principal
by lowering her payoff.

Lemma 1. Suppose 𝑓 (·) is a weakly increasing 1-Lipschitz function37 and 𝑎 is a positive
number. The solution to the following problem

min
𝑥∈[0,𝑎]

𝑔(𝑥) := 𝑥 + 𝑓 (𝑎 − 𝑥) (25)

is obtained at 𝑥 = 0 and the minimum value is 𝑓 (𝑎). Moreover, if 𝑓 (·) has a left derivative
𝑓 ′(𝑎) < 1, the solution is unique. Otherwise, any 𝑥 ∈ [0, �̄�], where �̄� = inf{𝑥 : 𝑓 ′(𝑎 − 𝑥) < 1},
solves the problem and any 𝑥 > �̄� does not.

Lemma 1 says that there is no punishment that does not lower the principal’s payoff
whenever the (left) slope of the holdout’s payoff is strictly smaller than 1. In this case,
lowering the punishment always increases the principal’s payoff. The relation between
the shape of the payoff of the agents’ initial contract and the principal’s problems of
commitment is now apparent: The principal’s commitment to punishing will not be
credible whenever the slope of the holdout’s initial contract has a slope strictly less
than one.

The next Lemma characterizes the maximum payoff the principal can obtain under
the deviation. Given that the principal can only renegotiate with the tendering agents

37To see how this Lipschitz condition affects the optimization problem, let’s heuristically discuss what
happens without it. Since 𝑓 (·) is a weakly increasing function, it has, at most, a zero-measure set of
discontinuous points and is differentiable almost everywhere. It only admits jump discontinuities by
Lebesgue’s Theorem, which also stipulates the non-differentiable points are either discontinuous, vertical
tangent points or kinky points. The optimal solution cannot be just to the right of a jump point. Otherwise,
the principal can reduce the total payment by increasing 𝑥 by a small 𝜖 and reduce the objective by a lot. The
same argument implies it cannot be at a vertical tangent point. So, any interior solution must either satisfy
the first-order condition or be at a kinky point. When the first condition is satisfied, it means 1 = 𝑓 ′(𝑎 − 𝑥),
i.e., any small increase or decrease in 𝑥 would just be offset by the response in 𝑓 (𝑎 − 𝑥). Put another way, in
the context of the model, the claims of the holdouts resemble debt locally at the optimal punishment. Finally,
let’s discuss the kinky point. One could increase 𝑥 without violating any constraints at the optimum. This
implies the function 𝑥 + 𝑓 (𝑎 − 𝑥) must have a non-negative right derivative at the optimum �̄�, i.e., 𝑓 (·) has a
left derivative weakly smaller than one at 𝑎 − �̄�. To focus on the interesting case and avoid tedious technical
discussions on the unrealistic cases, we assume 1-Lipschitz.
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and not with the holdout, the best she can do is to offer nothing to the tendering agents
(recall that, under strong credibility, she can commit in subsequent renegotiations) and
obtain what is left of the asset after the holdout has been paid given his initial contract.

Lemma 2. Under Assumption A2, the highest payoff the principal can obtain at the deviating
profile 𝑒𝑖 with an IC contract �̃� ∈ ℐ(𝑒𝑖) is

𝑣(𝑒𝑖) − 𝑅𝑂𝑖 (𝑣(𝑒𝑖), 𝑒𝑖). (26)

Does Lemma 2 say that there is no credible dilution under the deviation? No. As
shown in Lemma 1, this will depend on the shape of the payoff of the holdout’s original
contract. The next proposition brings together both lemmata to show the conditions
under which punishments are credible and how they affect the principal’s exchange
offer.

Proposition 3. When 𝑁 ≥ 2, under Assumption A2, the principal cannot obtain a strictly
higher value at ℎ = 0 with a strongly credible contingent contract than offering cash if and only
if for all 𝑖 ∈ 𝒩

𝜕

𝜕𝑤
𝑅𝑂𝑖 (𝑤, 𝑒𝑖)

���
𝑤↑𝑣(𝑒𝑖)

< 1. (27)

where ↑ indicates the limit from the left.38 Consequently, if this condition is satisfied, holdout
problems cannot be solved with any strongly credible contingent offers under Assumption A1.

Recall that in the full commitment case and under assumption A1, Corollary 1 shows
that cash can never implement the first best. However the principal is not restricted
to cash. If she can propose any exchange offer, she can extract the full value of the
asset from the agents. Proposition 3 says instead that if she cannot commit, she may
be unable to do better than cash, even when she can use any arbitrary exchange offer.
This occurs whenever condition (27) is met. The next section illustrates two practical
examples of when the principal can and cannot do better than cash.

I refer throughout to the derivative in (27) as agent A𝑖 payoff sensitivity of the original
contract at 𝑣(𝑒𝑖) or payoff sensitivity for short. Similarly, we speak of the principal’s
payoff sensitivity, which is

1 − 𝜕

𝜕𝑤
𝑅𝑂𝑖 (𝑤, 𝑒𝑖)

���
𝑤↑𝑣(𝑒𝑖)

(28)

38Since 𝑅𝑂
𝑖
(·, 𝑒𝑖) is only meaningful on [0, 𝑣(𝑒𝑖)] and punishment usually reduces the value, we only look

at the left derivatives. It always exists given continuity at 𝑣(𝑒𝑖).
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given that the principal is the residual claimant.

4.1.3 Commitment and the diversity of exchange offers: Examples

Consider two canonical examples. In a restructuring case, the agents’ contract is debt.
In a takeover case, the agents’ initial contract is the equity of the target. Consider debt
contracts first. The payoff sensitivity of the debt contract is one if the company is in
default, in which case the value of the debt of the holdout moves one to one with the
value of the asset (recall that we are only considering bilateral deviations). It is zero if
it’s not getting paid at all or if it’s already getting paid in full. As for equity, the payoff
sensitivity is one only if the holdout owns the entire equity stake after all debt and
other senior claims have been paid in full. It’s zero when the company cannot repay its
maturing debt, and it is strictly between zero and one if there are other equity holders.
It is because these contracts have different payoff sensitivities that they induce, in turn,
different problems of commitment for the principal, which in turn result in different
solutions to the holdout problem in debt restructuring or takeovers. The following
corollary now follows immediately from Proposition 3.

Corollary 2. When each agent’s initial contract is debt, the principal can obtain a higher value
than offering cash using a contingent contract; when his initial contract is equity, no contingent
contracts give a higher value to the principal than simply offering cash.

Since it’s simply an application of the Proposition 3 and is of empirical interest in
itself, we lay out the proofs directly in the following examples.

Example 1: Debt. Let’s consider the case when the holdout A𝑖 has debt 𝐷𝑖 ≥ 0. His
payoff is

𝑅𝑂𝑖 (𝑤, 𝑒𝑖) =

𝑤 if 𝑤 < 𝐷𝑖

𝐷𝑖 otherwise
(29)

The maximum credible threat is

𝑥𝑖 = inf
{
𝑥 ≥ 0 : 𝜕

𝜕𝑤
𝑅𝑂𝑖 (𝑣(𝑒𝑖) − 𝑥, 𝑒𝑖) < 1

}
=


0 if 𝑣(𝑒𝑖) > 𝐷𝑖

𝑣(𝑒𝑖) otherwise
(30)
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The next proposition shows how the different size of the agents’ claims changes the
nature of the holdout problem when the principal cannot commit not to renegotiate
with the holdouts.

Proposition 4. When existing securities are debt contracts 𝐷 = {𝐷𝑖}𝑖 , the principal’s value
function is

𝐽(0) = 𝑣(0) −
𝑁∑
𝑖=1

𝐷𝑖1𝐷𝑖<𝑣(𝑒𝑖) (31)

under the strong 𝛿-credibility constraint.

The comparison with the case of full commitment illustrates the mechanism at
work. Under full commitment, the principal will extract the full value of the asset: The
principal can always punish the holdout by transferring the full value of the asset to
the tendering agents. Instead, with limited commitment, the principal cannot credibly
commit to punishing the holdout when doing so results in a lower payoff for the
principal herself. This occurs whenever the holdout has a “small” debt claim on the
asset, 𝐷𝑖 < 𝑣(𝑒𝑖). In this case, given that the holdout gets paid in full,39 any punishment
can only be at the expense of the principal, and thus the commitment problem arises.
Indeed, as shown in (28), the payoff sensitivity of the principal is one: Any punishment
results in a one-to-one drop in the value of her payoff. As a result of this commitment
problem, the principal’s payoff is reduced precisely by the quantity

∑𝑁
𝑖=1 𝐷𝑖1𝐷𝑖<𝑣(𝑒𝑖). If,

instead, the holdout is a “large” debt holder, 𝐷𝑖 > 𝑣(𝑒𝑖), he will not be paid off in full
(his payoff sensitivity is one). Now, the principal can credibly commit to punishing him
precisely because her payoff is not affected by the punishment (the payoff sensitivity of
the principal in (28) is 0).

The comparison illustrates the different treatments of bank debts versus public bonds
in a typical restructuring evidenced in, say, James (1995). Small creditors (bondholders)
often have stronger incentives to hold out and are more difficult to punish, so they
typically receive preferential treatment, whereas large creditors (banks) internalize
their pivotality and can be more credibly punished, so they often make a compromise.

39To see why, remember that the principal wants to punish the holdout, but the only way to punish the
holdout is to give more values to the tendering agents. However, doing so is even more costly given the
1-Lipschitz condition of the holdout’s payoff. In addition, the principal is committed in renegotiation, so she
can use the extreme gauging technique as in 2 and pay the tendering agents nothing. This is relaxed in the
next section when we use a weaker requirement for credibility. Indeed, the principal may not need to pay a
small creditor in full even if she can under the weaker credibility constraint.
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Earlier work explains the difference by focusing on the pivotality of large vs small
creditors but this paper shows the ability to punish is also a key determinant.

Example 2: Equity. Suppose now that the holdout A𝑖 has an equity claim of share
𝛼𝑖 < 1. His payoff function is

𝑅𝑂𝑖 (𝑤, 𝑒𝑖) = 𝛼𝑖𝑤 (32)

and thus, the maximum possible punishment is

𝑥𝑖 = inf
{
𝑥 ≥ 0 : 𝜕

𝜕𝑤
𝑅𝑂𝑖 (𝑣(𝑒𝑖) − 𝑥, 𝑒𝑖) < 1

}
= 0 (33)

No punishment is strongly credible! Indeed, in this case, any punishment for the
holdout would result in a loss for the principal. The reason is that punishing the
holdout reduces his payoff only by 𝛼𝑖 < 1 whereas the payoff of the principal is instead
reduced by 1− 𝛼𝑖 > 0 (see (28)). Therefore, the principal always wants to renegotiate in
the presence of holdouts. Thus, a contingent offer cannot be better than using only cash.
This rationalizes the absence of senior debt offering in takeovers despite the persistent
high premium attached to many of them:40 Contingent contracts cannot do better than
cash.

The next result illustrates how the principal’s payoff varies with commitment under
strong credibility when agents are endowed with equity.

Proposition 5. When existing securities are equities 𝛼 = {𝛼𝑖}𝑖 , the principal’s value function
on the set of strongly 𝛿-credible contracts is

𝐽(0) = 𝑣(0) − 𝛿
𝑁∑
𝑖=1

𝛼𝑖𝑣(𝑒𝑖) (34)

which is higher when the commitment is higher (𝛿 is smaller).

Start with the full commitment case, 𝛿 = 0. In this case, the principal can extract the
full value of the asset (see Proposition 2). Consider now the case of no commitment at
all, 𝛿 = 1. Then the principal has to give the holdout the share of the asset that he owns
under the deviation, 𝛼𝑖𝑣(𝑒𝑖). Anywhere in between, the principal is able to capture 1− 𝛿

40Malmendier et al. (2016) finds that more 92% successful takeovers offer non-contingent contracts such as
cash or the stock of the acquirer firm, with an average premium of 46.24%.
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of the value of the agent’s share of the asset. The reason discounting matters is because
in effect, the more the principal cares about the future, which is when renegotiation
occurs, the less she is commited to the present exchange offer. As a result the exchange
offer today needs to leave more to the agents the more the principal cares about the
next round of renegotiation.

In fact the result that the payoff of the principal is decreasing in 𝛿 is more general
than Proposition 5 may suggest. Under strong credibility we can show the following

Proposition 6. The principal’s value function 𝐽(0) on the set of strongly 𝛿-credible contracts is
weakly decreasing in 𝛿 for any existing contracts 𝑅𝑂 .

It is only “weakly decreasing” since in some cases, as when agents are endowed
with debt, the value function is a constant function of 𝛿 as in Proposition 4.

A feature of the notion of strong credibility is that it assumes that the principal
has little commitment in the initial proposal but is able to commit to the alternative
proposal in the renegotiation stage. Empirically, it may be plausible to assume that the
laws governing the on-path negotiation and off-path renegotiation are different or that
the principal may only be able to propose exchange offers during an exclusive window,
as under the US bankruptcy code. Or renegotiation is in private as in Segal (1999).41
Still, in cases such as sovereign debt restructuring, the ability of the principal to commit
is the same irrespective of the renegotiation stage. In the next section, I consider a
definition of credibility that considers this weaker form of credibility.

4.2 Credibility: A recursive definition

4.2.1 Credible Contracts: Existence and Uniqueness

In this section, I refine the notion of a credible contract to be such that the principal can
propose some alternative contracts to replace the initially proposed one, but only if
they are also credible. Its rationale and connection to the literature are discussed in
Section 8.2. I begin by modifying the previously defined notion of strongly credible
contracts as follows.

41Slightly differently, Segal (1999) assumes the principal cannot commit in the public offer, but when she
deviates to privately renegotiate with a single agent, she can commit. Secrecy is not the main concern, as
private renegotiation can be anticipated absent private information. The key difference is that the principal
only wants to renegotiate the offer after some agents hold out in my model. I cannot preclude the incentive
for her to deviate to a bilateral negotiation with a single agent: She always wants to do so given her ability to
create super seniority at the expense of others. But this is usually forbidden by law.
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Definition 6 (𝛿-Credible Contracts). A contract 𝑅 is a 𝛿-credible contract for some 𝛿 ∈ [0, 1]
at an action profile ℎ if and only if

(a) it is incentive compatible for the agents at the action profile ℎ, and

(b) at any unilateral deviation profile ℎ̂, it weakly 𝛿-dominates all 𝛿-credible contracts at ℎ̂

Similarly, 𝒞𝛿(ℎ), the set of 𝛿-credible contracts at ℎ, can be denoted by

𝒞𝛿(ℎ) =
{
𝑅 ∈ ℐ(ℎ) : 𝑅 ⪰𝛿 �̃� at ℎ̂ ∀ �̃� ∈ 𝒞𝛿(ℎ̂) ∀ ℎ̂ ∈ ℬ(ℎ)

}
. (35)

To understand 𝛿−credibility, the comparison between 𝒞𝛿(ℎ) and 𝒮𝛿(ℎ), the set of
strongly credible contracts (see expression (22)), is helpful. In the set of strongly credible
contracts, we considered renegotiation offers that are only incentive compatible, that
is, �̃� ∈ ℐ(ℎ). Now, instead, the renegotiation offers have to be incentive compatible
and, roughly, “credible going forward.” Notice then that the set of strongly credible
contracts is contained in the set of 𝛿−credible contracts, that is, 𝑆𝛿(ℎ) ⊂ 𝒞𝛿(ℎ).

The set of 𝛿−credible contracts is defined recursively, and thus, issues of existence
and uniqueness need to be addressed before continuing with the characterization of
the problem. The next proposition establishes the existence and uniqueness of 𝒞𝛿(ℎ).

Proposition 7 (Existence and Uniqueness). The set of 𝛿−credible contracts {𝒞(ℎ)}ℎ exists,
it is non-empty and unique.

A general characterization of 𝛿−credible contracts is postponed until section 4.2.3.
An important result is that 𝛿−credibility introduces an interesting non-monotonicity in
the payoff the principal as a function of the degree of commitment, 𝛿. The intuition for
this important result can be readily grasped in an example.

4.2.2 Credible Contracts: A Numerical Example

Proposition 6 showed that under strong credibility, the payoff of the principal is
monotone in 𝛿: “More” commitment (lower 𝛿) always increases her payoff. Instead,
under 𝛿−credibility, this result does not hold. The intuition is as follows. When the
ability of the principal to commit improves, there are two effects operating in different
directions. First, fixing renegotiation incentives “tomorrow,” stronger commitment
improves the payoff of the principal today. But, of course, tomorrow is not fixed:
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Stronger commitment also improves the principal’s position in renegotiation tomorrow,
which increases her payoff then, making her more likely to renegotiate tomorrow. This,
in turn, makes her less committed to punishing the holdout today. Depending on
which of these two effects dominates, more commitment can increase or decrease the
principal’s payoff.

To illustrate this non-monotonicity, consider a three-agent case, all endowed with
equity claims. Let the equity share of A𝑖 be 𝛼𝑖 = 1/3 for 𝑖 ∈ {1, 2, 3}. The asset value is
8 if all of the agents tender, 7 if one agent holds out, and 6 if two agents hold out. The
asset value is normalized to 0 when all of them hold out.

We calculate the principal’s value when she has a discount factor of 𝛿 using backward
induction. Consider first the situation in which two agents, say A1 and A2, already
held out. I assert that the principal can credibly give 6(1 − 𝛿) to the tendering agent A3:
The principal doesn’t need to give anything to A3 to tender because A3 obtains nothing
when he holds out, but the principal can still give him some value 𝑥3 as a punishment
on A1 and A2, say, through senior debt, without hurting herself. Why? The principal
obtains 1

3 × (6 − 0) × 𝛿 if she renegotiates and offers 0 to A3. (Recall that no punishment
is always optimal given the 1-Lipschitz condition.) Without renegotiation, she would
obtain 1

3(6 − 𝑥3). Comparing the payoff in the two scenarios, the principal is not willing
to negotiate if 𝑥3 ≤ �̄�3 := 6(1 − 𝛿). By symmetry, this is the maximum punishment the
principal can impose on any two holdouts, and each holdout obtains 1

3 × (6 − �̄�3) = 2𝛿.
Now consider the case when only one agent, say A1, holds out. The principal has to

give A2 and A3 at least 2𝛿 each. Suppose the principal initially promised to give A2

and A3 a total value of 𝑥 > 4𝛿. By renegotiating, she obtains a value 2
3 × 𝛿 × (7 − 2𝛿 × 2).

Without renegotiation, she obtains a value 2
3(7 − 𝑥). Comparing the two scenarios, the

principal would not renegotiate if 𝑥 ≤ 7 − 7𝛿 + 4𝛿2 ≡ (1 − 𝛿) × 7 + 𝛿 × 2 × 2𝛿. And
the holdout would obtain a value of 1

3(7 − (7 − 7𝛿 + 4𝛿2)) = 1
3(7𝛿 − 4𝛿2). Therefore,

the principal can initially promise only to pay each agent 1
3(7𝛿 − 4𝛿2) since this is the

maximum payoff they each would obtain were they to hold out. The principal’s value
is thus

8 − 3 × 1
3(7𝛿 − 4𝛿2) = 8 − 7𝛿 + 4𝛿2. (36)

I plot this function in Figure 1. Notice that it is non-monotone: The principal’s value is
decreasing in commitment (increasing in 𝛿) when 𝛿 > 7/8.
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Figure 1: Principal’s value function 𝐽(0) = 𝑣(0) − 𝛿𝑣1 + 2
3𝛿

2𝑣2 when 𝑣(0) = 8, 𝑣1 = 7, 𝑣2 = 6

4.2.3 Credible Contracts: General Characterization

I derive, along with the proof of the existence and uniqueness, a recursive characteriza-
tion of the solutions using the principal’s value function and the maximum possible
punishment. The challenge with directly solving the problem is that the dimensionality
of the contracting space is too large. This problem can be overcome by reducing
the problem into a single-dimensional optimization problem, the maximum possible
punishment on each holdout profile ℎ.

Proposition 8. The pair of vectors {𝐽∗(ℎ), �̄�𝛿(ℎ)}ℎ∈{0,1}𝑁 is the pair of the principal’s value
function 𝐽∗ and the maximum punishment �̄�𝛿 at each node ℎ if and only if they satisfy the
following recursive relation

𝐽∗(ℎ) = 𝑣(ℎ) − 𝑥(ℎ) −
∑
𝑗∉�(ℎ)

𝑅𝑂𝑗
(
𝑣(ℎ) − 𝑥(ℎ), ℎ

)
(37)

where
𝑥(ℎ) :=

∑
𝑖∈�(ℎ)

𝑅𝑂𝑖

(
𝑣(ℎ + 𝑒𝑖) − �̄�𝛿(ℎ + 𝑒𝑖), ℎ + 𝑒𝑖

)
(38)

is the minimum punishment to implement ℎ, and

�̄�𝛿(ℎ) = max{𝑥 ∈ [0, 𝑣(ℎ)] : ℎ · 𝑅𝑂(𝑣(ℎ) − 𝑥, ℎ) + 𝑥 = 𝑣(ℎ) − 𝛿𝐽∗(ℎ)} (39)
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with the initial condition �̄�(1) = 0.

The general characterization allows me to explicitly solve the case of the takeover
for any number of agents. I first present a recursive characterization of the amount
of credible punishment the principal can impose on each action profile. Then, I will
provide a closed-form solution to this recursive equation, which provides an explicit
formula for the amount of punishment that is credible using a contingent contract.

Lemma 3. When {𝑅𝑂
𝑖
}𝑖 are equity contracts, i.e., 𝑅𝑂

𝑖
(𝑣, ℎ) = 𝛼𝑖𝑣 for all ℎ, the maximum

possible punishment on the action profile ℎ satisfies the recursive relation

�̄�𝛿(ℎ) = (1 − 𝛿)𝑣(ℎ) + 𝛿
∑
𝑖∈�(ℎ)

𝛼𝑖(𝑣(ℎ + 𝑒𝑖) − �̄�𝛿(ℎ + 𝑒𝑖)) ∀ℎ ≠ 1 (40)

with the initial condition �̄�𝛿(1) = 0 if either
∑𝑁
𝑖=1 𝛼𝑖 = 1 or 𝑣(1) = 0.

The maximum possible punishment the principal can credibly impose at ℎ, i.e., �̄�𝛿(ℎ),
is a convex combination of the payoff she can credibly give to the tendering agents at ℎ
and the total asset value, weighted by the discount rate.

(a) The first term (1 − 𝛿)𝑣(ℎ) is the deadweight loss due to renegotiation: the size of
the pie shrinks by (1 − 𝛿)𝑣(ℎ) whenever she wants to renegotiate, so she could
impose at least that much to the holdout by paying the tendering agents.

(b) The second term is the sum of the discounted payoff to each tendering agent, which
is as much as his holdout payoff. Since the principal has to pay at least what each
tendering agent would receive if he holds out, she is not willing to renegotiate with
them if the promised value is less than the discounted value of what the principal
would otherwise have to pay each.

The initial condition says no punishment is feasible when everyone holds out if i) all
agents hold all equity or if ii) there are some agents outside the game, but the asset
value is zero. Otherwise, if there’s some third-party agent who holds a fraction of the
firm and the asset is not worthless, then the principal is able to create some punishment
when all agents hold out by diverting some asset value to this third-party agent.

When 𝛿 = 1, i.e., the principal has the least commitment and can renegotiate at
no additional cost, for each of the tendering agents, the maximum payoff that can be
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credibly promised to him is his contractual payoff from the asset value available to him
when he deviates: 𝑣(ℎ + 𝑒𝑖) − �̄�𝛿(ℎ + 𝑒𝑖),

The lemma gives a hint on the alternating structure of the punishment: A severer
punishment upon further deviation would reduce the maximum credible punishment
on path because each tendering agent A𝑖, if otherwise holding out, would receive a
lower payoff due to a higher threat. This makes promising a higher payoff to A𝑖 at ℎ
less credible as the principal has a higher incentive to renegotiate. On the contrary, a
higher asset value 𝑣(ℎ + 𝑒𝑖) on deviation profile ℎ + 𝑒𝑖 would increase the maximum
punishment at ℎ as the tendering agents would get more if they hold out and hence
must be compensated more at ℎ.

Proposition 9. For equity contracts, the maximum possible punishment on action profile ℎ
takes the following alternating multi-linear form

�̄�(ℎ) = (1 − 𝛿)𝑣(ℎ) +
|�(ℎ)|∑
𝑘=1

(−𝛿)𝑘+1

(|�(ℎ)| − 𝑘)!
∑

𝜎∈Σ(�(ℎ))

(
𝑘∏
𝑠=1

𝛼𝜎(𝑠)

)
𝑣

(
ℎ +

𝑘∑
𝑠=1

𝑒𝜎(𝑠)

)
(41)

where �(ℎ) = {𝑖 : ℎ𝑖 = 0} is the set of tendering agents and Σ(�(ℎ)) is the set of all the
permutations on �(ℎ). The highest payoff the principal can credibly obtain at 0 is

𝐽(0) = 𝑣(0) +
𝑁∑
𝑘=1

(−𝛿)𝑘
(𝑁 − 𝑘)!

∑
𝜎∈Σ(𝒩)

(
𝑘∏
𝑠=1

𝛼𝜎(𝑠)

)
𝑣

(
𝑘∑
𝑠=1

𝑒𝜎(𝑠)

)
. (42)

This result shows how contractual structure and the asset value at each 𝑘-step
deviation profile ℎ +∑𝑘

𝑠=1 𝑒𝜎(𝑠) affects the maximum possible credible punishment at
ℎ. The first component (−𝛿)𝑘+1 captures the alternating structure. Since we only to
count the 𝑘-step deviation path from ℎ once, the sum over all the permutations on �(ℎ)
over-count the number of paths since it also includes all the paths further deviating
from the 𝑘-step deviation profile, and the term 1

(|�(ℎ)|−𝑘)! is used to offset the repeated
counting.42

I also derive the more complicated 𝛿-credible contracts when debts are outstanding
in Section D.1, which exhibits discontinuity and non-responsiveness. The special

42This is similar to the factorial in the Shapley value where all possible paths of length 𝑁 are summed over.
Differently, here we sum over all possible paths of length 𝑁 − 𝑘 starting at a particular node with 𝑘 tendering
agents.
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case illustrates even the non-monotonicity also depends crucially on the set of initial
contracts.

5 Property Rights

5.1 Modeling Property Rights

The previous analysis assumes the dilutability of all existing contracts. In reality,
property rights protection43 insulates them from being diluted: Secured debts are
protected by the property rights of the collateral from subordination.44 Holdout in
the land acquisition can nevertheless stick to the value of his house if he does not
accept the offer.45 Contractual rights provide protection against the contracting party
(the principal), whereas property rights also provide protection against everyone
else (Ayotte and Bolton, 2011). This section aims to answer how the ability to solve
holdout problems is affected by property rights protection. It turns out that with
limited commitment, higher investor protection could lead to an easier resolution of
the holdout problem.

To capture property rights protection, in each agent A𝑖’s payoff, there is now
an additional term 𝜋𝑖 ≥ 0, called “property value”, if he holds out. This term is
independent of other agents’ action and does not come from the value creation of the
project.46 That is, the utility at ℎ, when the value distributed among holdouts is 𝑣 − 𝑥,

43I do not discuss the optimal allocation of property rights here. Readers can resort to Segal and Whinston
(2013) for reference.

44Secured interest, though, can be diluted in DIP financing, for example, via uptier transactions. It is usually
subject to court scrutiny, and obtaining the approval is hard, though not impossible. In the milestone case
LCM XXII Ltd. v. Serta Simmons Bedding, LLC, the debtor issued two tranches senior to its existing first-lien
debts and the court confirmed its legality.

45There are subtle differences between the two types of property rights: In the latter case, the “house” is
destroyed once the land owner accepts the offer, and the surplus is generated by allowing the developer
to utilize a bigger chunk of the land; In the former, the “collateral” is released once the secured creditor
accepts the offer. (Whether the new offer is secured by collateral doesn’t matter since the value distribution is
immediate.) However, they can be unified in modeling by viewing the unencumbered collateral as the value
created from the exchange offer instead of the value of the old collateral. I will treat the properties as if they
are “houses” in the general definition and show that it can include “collaterals” by normalizing the asset
value.

46By assuming this, I exclude another layer of coordination problem when the property is owned collectively
among the agents; or more complicated cases where a piece of collateral has multiple liens over it. Moreover,
this formulation may not cover other types of investor protections that are state-contingent. For example,
creditors insured by credit default swaps would get the additional payment only when the borrower defaults.
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is 𝑅𝑂
𝑖
(𝑣 − 𝑥, ℎ) + 𝜋𝑖 .47 And consequently the problem to implement ℎ can be written as

max
𝑅(·,·)

𝑣(ℎ) −
𝑁∑
𝑖=1

(1 − ℎ𝑖)𝑅𝑖(𝑣(ℎ), ℎ) −
𝑁∑
𝑖=1

ℎ𝑖 𝑅
𝑂
𝑖

(
𝑣(ℎ) −

𝑁∑
𝑖=1

(1 − ℎ𝑖)𝑅𝑖(𝑣(ℎ), ℎ), ℎ
)

(43)

subject to the agents’ IC constraints

ℎ𝑖 ∈ arg max
ℎ′
𝑖
∈𝐻𝑖

(1 − ℎ′𝑖)𝑅(𝑣(ℎ−𝑖 , ℎ
′
𝑖), (ℎ−𝑖 , ℎ

′
𝑖)) (44)

+ℎ′𝑖

[
𝑅𝑂𝑖

(
𝑣(ℎ−𝑖 , ℎ′𝑖) −

𝑁∑
𝑖=1

(1 − ℎ′𝑖)𝑅𝑖(𝑣(ℎ−𝑖 , ℎ
′
𝑖), (ℎ−𝑖 , ℎ

′
𝑖)), (ℎ−𝑖 , ℎ

′
𝑖)
)
+ 𝜋𝑖

]
∀𝑖

(45)

and the credibility constraints 𝑅 ∈ 𝒞𝛿(ℎ).48
We assume accepting the offer is always efficient even taking the properties that are

destroyed into consideration:49

Assumption A3 (Monotonicity with property rights). 𝑣(ℎ−𝑖 , 0) > 𝑣(ℎ−𝑖 , 1) + 𝜋𝑖 for all
ℎ−𝑖 for all 𝑖 ∈ 𝒩 .

The main result of this section is to show that higher property rights protection always
makes restructuring harder under full commitment, but it can make restructuring easier
under limited commitment. Nonetheless, for commonly used securities such as debt
and equities, a small increase in protection always leads to a more difficult situation.

First, it’s worth noticing the simplification result in Proposition 18 no longer holds as
the property rights cannot be diluted by contractual externalities, and thus Proposition 2
would not hold. But the principal is still extremely powerful by deploying contingency:
She can extract all the value unprotected by the property rights by creating contractual
externalities. Thus, higher property rights protection hinders restructuring.

Proposition 10. With full commitment, greater property rights protection exacerbates the
47Note if the property is a collateral and the value goes back to the firm when the creditor accepts the offer

and is available to be paid to other agents, we could define an alternative value �̃�(ℎ) := 𝑣(ℎ) + (1 − ℎ𝑖)𝜋𝑖 and
replace the occurrence of 𝑣 by �̃� in the formulation of the problem. We model this way because the notation
is simpler.

48The definition of the credible contracts is the same except the additional term 𝜋𝑖 in the agent’s payoff of
holding out in the set of incentive compatible contracts. The existence and uniqueness of credible contracts
with property rights protection can be proved similarly to Proposition 7 mutatis mutandis.

49Note if we use the other notation as in footnote 47, this is simply monotonicity of �̃�: �̃�(ℎ−𝑖 , 0) > �̃�(ℎ−𝑖 , 1).
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holdout problem. More specifically, the principal’s value at 0 is

𝐽(0) = 𝑣(0) −
𝑁∑
𝑖=1

𝜋𝑖 (46)

which is always decreasing in 𝜋𝑖 for all 𝑖.

Intuition is simple: The principal only needs to compensate each claim holder
the amount of the property; the remaining claims can be diluted by the contractual
externalities. Thus, more protection implies more compensation for the existing contract
holder and lower value for the principal.

5.2 Greater Protection Facilities Restructuring: A Negative Example

I first construct an example showing that a higher property right protection could
increase the principal’s value, facilitating restructuring.

Let there be 3 agents, each with a property value 𝜋𝑖 and a claim that resembles a
“kinked equity” (or debt if 𝛽𝑖 = 0)

𝑅𝑂𝑖 (𝑣, ℎ) = 𝛼𝑖𝑣 + (𝛽𝑖 − 𝛼𝑖)(𝑣 − �̂�𝑖)1𝑣≥�̂�𝑖 ∀ℎ : 𝑖 ∉ �(ℎ) (47)

for some parameters {𝛼𝑖 , 𝛽𝑖 ,𝜋𝑖 , �̂�𝑖}𝑖 . I find a set of parameters such that greater property
rights protection facilitates restructuring in the next proposition.

Proposition 11. There exists a set of initial contracts such that a locally small increase in
property rights protection facilitates restructuring. In particular, let �̂�1 = �̂�3 = 1, �̂�2 = 98/100,
𝜋1 = 𝜋2 = 1/100 and 𝜋3 = 99/100, 𝛼2 = 7/10, 𝛼1 = 𝛼3 = 1/10, 𝛽1 = 𝛽2 = 1/10, 𝛽3 = 7/10.
Let 𝑣(·) be such that 𝑣(1) = 0, 𝑣(0) = 3, 𝑣(𝑒𝑖) = 2, 𝑣(1 − 𝑒𝑖) = 1 for all 𝑖. The principal’s value
function 𝐽(0) is increasing in 𝜋1 at the parameters specified above.

This example shows how property rights protection could facilitate the restructuring
by giving the principal less bargaining power in renegotiation and, thus, more commit-
ment to the punishment. The protection still undermines the principal’s bargaining
power initially, so the compensation off-path must exceed this direct effect. For this to
be the case, the structure has to be made asymmetric as it’s restricted by the 1-Lipschitz
continuity. In my example, 𝑅𝑂2 (resp. 𝑅𝑂3 ) has a large payoff sensitivity when the
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Figure 2: Example of Property Rights Facilitating Restructuring: Initial Contracts with Kinks

asset value accrues to the holdout is small (resp. large). When A2 holds out, since
𝜋3 is large, a one-dollar increase in 𝜋1 would reduce A2’s payoff by 𝛼2, i.e., the payoff
sensitivity evaluated at point 𝐴. This is multiplied by a discount factor 1− 𝛼3, reflecting
the renegotiation when A3 also holds out. Similarly, when A3 holds out, a one-dollar
increase in 𝜋1 would reduce A3’s payoff by 𝛽3(1− 𝛽2) since it is evaluated at the point 𝐵.

Despite the quirky example I show above, when the existing securities are the
more commonly seen contracts, such as debts or equities, a locally small increase in
property rights protection usually exacerbates the holdout problem even in the limited
commitment case. Indeed, for equity holdouts, this is even true for large increases in
property rights while for debt, it can be reversed.

5.3 Effect of Property Rights with Equity Holdouts

In contrast, when existing contracts are equities, no matter the structure, a higher
property rights protection never leads to an easier resolution of the holdout problem.

Proposition 12 (Property rights hinder equity restructruring). For any equity contracts
{𝛼𝑖}𝑖 , the prinicpal’s value 𝐽(0) under 𝛿-credibility for any 𝛿 ∈ (0, 1] is decreasing in 𝜋𝑖 for all
𝑖 ∈ 𝒩 .

The result says that in spite of the countervailing forces that greater property rights
protection bolsters her commitment, this indirect force will nonetheless not exceed the
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direct force that makes restructuring harder. The reason is that each indirect effect is
weighted by the equity payoff sensitivities {𝛼𝑖}𝑖 which also sum up to less than one off
path.

To see the force more clearly, let’s look at a specific example. Let the existing contracts
be equities 𝛼 = {𝛼𝑖}3

𝑖=1 such that ⟨𝛼, 1⟩ = 1. And to simplify the exposition, I assume
𝛿 = 1, 𝑣(1) = 0. The property values are 𝜋𝑖 ≥ 0.

Example 5.1 (Property rights hinder equity restructuring: 3-agent example). With limited
commitment, the value function of the principal at 0 with equities outstanding is decreasing in
each 𝜋𝑖 ,

𝜕

𝜕𝜋𝑖
𝐽(0) = − ©«1 −

∑
𝑗≠𝑖

𝛼𝑖(1 − 𝛼𝑘)ª®¬ < 0 for 𝑘 ≠ 𝑗 , 𝑖 ∀𝑖. (48)

The closed-form solution for the sensitivity of the principal’s value to property rights
protection illustrates the trade-off of the two forces. The direct effect is a one-to-one
reduction in P’s value and the indirect effect is summarized in the other term. This
renegotiation channel is shadowed when equities are in place because higher protection
of A1 also makes punishing A2 easier, but only at a rate smaller than 1: It is the equity
sensitivity to the asset, 𝛼2. Similarly, the effect of punishing A3 is also dampened by
the equity sensitivity 𝛼3. Since the sum of all equity shares adds up to 1, the indirect
effect is always smaller than one.

5.4 Effect of Property Rights with Debt Holdouts

The effect of property rights is more nuanced when existing securities are debt contracts.
For any locally small increase in property rights protection, it always makes restructuring
harder, but when the increase is large, it could backfire. I show the two effects in the
next two propositions.

Proposition 13 (Property rights generically hinder debt restructruring). For any debts
contracts {𝐷𝑖}𝑖 , the prinicpal’s value 𝐽(0) under 𝛿-credibility for any 𝛿 ∈ (0, 1] is generically
locally decreasing in 𝜋𝑖 for all 𝑖. That is,

d𝐽(0)
d𝜋𝑖

< 0 (49)
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at any differentiable points.

When creditors are protected by property rights, the force that makes renegotiation
harder for the principal does not get transmitted to the initial bargaining due to the fact
that a holdout creditor is either repaid in full or not at all. Thus, the effect of a small
change in the protection that increases the punishment does not get transmitted from
the off path renegotiation since the maximum credible punishment has a discontinuity
and is flat in each region. Notice, however, that this effect only applies to a small
increase in 𝜋𝑖 away from the boundary.

Now, I show that when the existing contracts are debt, a non-locally-small increase
in property rights protection could indeed facilitate debt restructuring. Let there be
two agents: agent A𝑖 has a debt value of 𝐷𝑖 = 1 for all 𝑖 ∈ {1, 2}. The asset value is
𝑣(1) = 0, 𝑣(𝑒𝑖) = 2 for all 𝑖 and 𝑣(0) = 3. And for simplicity, we assume 𝛿 = 1. For the
property value, we focus on the region where 𝜋𝑖 ∈ [1/2, 3/2] for all 𝑖.

Proposition 14. With limited commitment, the principal’s value in the 2-creditor example is

𝐽(0) = 𝑣(0) −
2∑
𝑖=1

[
𝐷𝑖1{𝑣(𝑒𝑖)≥𝜋𝑗+𝐷𝑖} + 𝜋𝑖

]
(50)

Given the parameters above, the principal’s value increases when the property rights of A𝑗

increases from any value 𝜋 𝑗 ∈ (1/2, 1) to any 𝜋 𝑗 + Δ𝜋 𝑗 ∈ (1, 3/2).

This result says the effect is different when a change in property rights is large
enough to “switch the regime”. When 𝜋 𝑗 is small, the principal needs to pay A𝑖 in full
if he holds out because she cannot credibly pay more to A𝑗 to punish A𝑖 . But when
𝜋 𝑗 is slightly larger, above the threshold, she can more credibly pay A𝑗 to punish A𝑖,
which reduces her initial compensation to A𝑖 .

These results echo the finding that higher creditor protection could facilitate or
hinder restructuring in Donaldson et al. (2020). Both non-monotonicity stems from the
principal’s lack of commitment: She cannot commit to a renegotiation policy here and
to a bankruptcy filing policy in theirs. Here, higher property rights protection of the
creditors has a direct effect of making the restructuring harder but an indirect effect of
making the principal more credible when punishing other creditors. In theirs, a more
creditor-friendly policy has a direct effect of making priority more attractive but an
indirect effect of making a bankruptcy filing less likely, reducing the appeal of priority.
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6 Unifiying Notions of Credibility

So far I have introduced the concepts of strongly 𝛿-credible contracts 𝒮𝛿(ℎ) and 𝛿-
credible contracts 𝒞𝛿(ℎ) and it’s straightforward that 𝒞𝛿(ℎ) ⫋ 𝒮𝛿(ℎ). Clearly, when
𝛿 = 0, they coincide in the degenerate case – full commitment. Yet, it is not very clear
what the relationship between the two concepts is as the set 𝒞𝛿(ℎ) is much smaller than
𝒮𝛿(ℎ). In this section, I introduce an intermediate notion, 𝑘-step 𝛿-credible contracts, to
unify the two notions, which capture the case when the principal is committed after 𝑘
rounds of (re)negotiations. I will show that our recursive definition of the 𝛿-credibility
is the limiting case of this intermediate credibility notion when 𝑘 is sufficiently large.

Definition 7 (𝑘-step 𝛿-Credible Contracts). A contract 𝑅 is a 𝑘-step 𝛿-credible contract for
some 𝛿 ∈ [0, 1] at an action profile ℎ if and only if i) it is incentive compatible for the agents
at the action profile ℎ and ii) at any unilateral deviation profile ℎ̂, it weakly 𝛿-dominates all
(𝑘−1)-step 𝛿-credible contracts at ℎ̂. The 0-step 𝛿-credible contract is simply the set of incentive
compatible contracts at ℎ.

Formally, 𝒞𝛿
𝑘
(ℎ), the set of 𝑘-step 𝛿-credible contracts at ℎ, is given by

𝒞𝛿
𝑘
(ℎ) =

{
𝑅 ∈ ℐ(ℎ) : 𝑅 ⪰𝛿 �̃� at ℎ̂ ∀�̃� ∈ 𝒞𝛿

𝑘−1(ℎ̂) ∀ℎ̂ ∈ ℬ(ℎ)
}

∀ 𝑘 = 1, 2, · · · (51)

with the initial condition 𝒞𝛿
0 (ℎ) = ℐ(ℎ).

It’s direct from the definition that the strongly 𝛿-credible contracts are simply the
1-step 𝛿-credible contracts, i.e., 𝒮𝛿(ℎ) = 𝒞𝛿

0 (ℎ). To link it to the recursively defined
𝛿-credible contracts 𝒞𝛿(ℎ), we want to look at the case when 𝑘 approaches infinity.
Unfortunately, the sequence 𝒞𝛿(ℎ) is not always a monotone sequence, which makes
the characterization a little bit harder. But nevertheless it has the following oscillating
structuring.

Lemma 4. The even subsequence of {𝒞𝛿
𝑘
(ℎ)}𝑘 is weakly decreasing and the odd subsequence is

weakly increasing. That is,

𝒞𝛿
2𝑘(ℎ) ⊂ 𝒞𝛿

2𝑘−2(ℎ) and 𝒞𝛿
2𝑘−1(ℎ) ⊂ 𝒞𝛿

2𝑘+1(ℎ) ∀ℎ ∀𝑘 = 1, 2, 3, · · · (52)
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This allows us to obtain the limits of the two subsequences

lim
𝑘→∞

𝒞𝛿
2𝑘+1(ℎ) =

⋃
𝑘≥1

𝒞𝛿
2𝑘+1 and lim

𝑘→∞
𝒞𝛿

2𝑘(ℎ) =
⋂
𝑘≥1

𝒞𝛿
2𝑘 . (53)

Moreover, the two subsequences are “separated.”

Lemma 5. The odd subsequence never exceeds the even subsequence. That is,

𝒞𝛿
2𝑘+1(ℎ) ⊂ 𝒞𝛿

2𝑘(ℎ) ∀ℎ ∀ 𝑘 = 1, 2, 3, · · · (54)

And as a corollary, lim𝑘→∞ 𝒞𝛿
2𝑘+1(ℎ) ⊂ lim𝑘→∞ 𝒞𝛿

2𝑘(ℎ).

Now let’s introduce the standard definition of limsup and liminf.

lim sup
𝑘→∞

𝒞𝛿
𝑘
(ℎ) :=

⋂
𝑘≥1

⋃
𝑗≥𝑘

𝒞𝛿
𝑗 (ℎ) and lim inf

𝑘→∞
𝒞𝛿
𝑘
(ℎ) :=

⋃
𝑘≥1

⋂
𝑗≥𝑘

𝒞𝛿
𝑗 (ℎ) (55)

And by definition lim inf𝑘→∞ 𝒞𝛿
𝑘
⊂ lim sup𝑘→∞ 𝒞𝛿

𝑘
. Using de Morgan’s Law and the

two lemmata above, I can write them as

lim sup
𝑘→∞

𝒞𝛿
𝑘
(ℎ) =

(
lim
𝑘→∞

𝒞𝛿
2𝑘(ℎ)

) ⋃ (
lim
𝑘→∞

𝒞𝛿
2𝑘+1(ℎ)

)
= lim

𝑘→∞
𝒞𝛿

2𝑘(ℎ) (56)

lim inf
𝑘→∞

𝒞𝛿
𝑘
(ℎ) =

(
lim
𝑘→∞

𝒞𝛿
2𝑘(ℎ)

) ⋂ (
lim
𝑘→∞

𝒞𝛿
2𝑘+1(ℎ)

)
= lim

𝑘→∞
𝒞𝛿

2𝑘+1(ℎ). (57)

This allows us to show that 𝒞𝛿(ℎ) is the limiting case of the 𝑘-step 𝛿-credible contracts.

Proposition 15. The recursively defined 𝒞𝛿(ℎ) in Definition 6 satisfies

lim inf
𝑘→∞

𝒞𝛿
𝑘
(ℎ) ⊂ 𝒞𝛿(ℎ) ⊂ lim sup

𝑘→∞
𝒞𝛿
𝑘
(ℎ) ∀ℎ (58)

This result suggests that the recursively defined credibility is the limiting case when
the number of rounds of negotiations in which the principal cannot commit goes
to infinity. In particular, when the lim inf𝑘→∞ 𝒞𝛿

𝑘
(ℎ) = lim sup𝑘→∞ 𝒞𝛿

𝑘
(ℎ), the limit is

well-defined and we have lim𝑘→∞ 𝒞𝛿
𝑘
(ℎ) = 𝒞𝛿(ℎ). But in general, the liminf and limsup

are not identical.
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Proposition 16. There exists a set of initial contracts 𝑅𝑂 such that lim inf𝑘→∞ 𝒞𝛿
𝑘
(ℎ) ⫋

lim sup𝑘→∞ 𝒞𝛿
𝑘
(ℎ) for some ℎ.

This result shows that the limit of 𝒞𝛿
𝑘
(ℎ) does not always exist as 𝑘 approaches

infinity, and the bounds above cannot be made tighter.

7 Literature

The paper speaks to a large body of holdout problems in practice. Specific problems
have been extensively studied, but most of them restrict their attention to specific
contractual forms of existing and newly offered contracts and usually do not emphasize
the commitment issue. Grossman and Hart (1980) is probably the first to study the
holdout problem in the takeover case where a raider offers cash to buy equity shares
from a continuum of shareholders. The holdout problem exists in this context because
the atomic shareholders do not internalize the externality created by its free-riding.
This assumption was relaxed by Holmström and Nalebuff (1992) and Bagnoli and
Lipman (1988), who paid more attention to non-atomic shareholders in mixed strategy,
trying to solve the holdout situation. Other papers also try to solve the problems by
relaxing some constraints in the original setting. Shleifer and Vishny (1986) consider
the case with a large shareholder and show it significantly alters the outcome because
the large shareholder can split the gain from the takeover between its own shares and
the raider’s. But it only works because commitment is implicitly assumed. Burkart et al.
(2014) studies how legal protection affects the bidding strategy in takeovers. Burkart
and Lee (2022) compares free-riding à la Jensen–Meckling in activism vs. free-riding à
la Grossman–Hart in takeovers. Gertner and Scharfstein (1991), Bernardo and Talley
(1996) and Donaldson et al. (2020) study the holdout problem in the corporate debt
restructuring. They demonstrate that offering priority in exchange offers via senior
debt could offset the incentive to free-ride as priority dilutes existing creditors’ payoff.
However, the value priority is endogenously dependent on the probability and recovery
in bankruptcy. Thus, to facilitate restructuring, the firm might distort the investment
policy. Sovereign restructuring differs from corporate as there’s no formal seniority
structure, and there is s a greater commitment issue.50 Bulow et al. (1988); Bulow

50Here, I omit many macro models on sovereign debt that do not address the holdout problem.
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and Rogoff (1989) study the limit of sovereign bond buyback using cash due to the
holdout problems. Kletzer (2003) finds that in a dynamic setting, the principal benefits
from a collective action clause as it facilitates bargaining, while a unanimity rule leads
to a war of attrition and inefficient outcomes. The difference is that each individual
lender can propose to the borrower in their model. Pitchford and Wright (2012) also
studies the case when a sovereign can renegotiate with each creditor one by one and
has no commitment. Bolton and Scharfstein (1996); Bolton and Jeanne (2007, 2009)
discuss the ex-ante vs. ex-post trade-off of making some classes of bonds difficult to
restructure. Haldane et al. (2005) and Weinschelbaum and Wynne (2005) also study the
holdout problems and the use of CACs. Grossman et al. (2019), Sarkar (2017), Kominers
and Weyl (2011, 2012), Miceli and Segerson (2012) study the holdout issues in land
acquisition and development. The paper differs from them in that we tend to look at a
more abstract setting, allowing for heterogeneity in both the investor composition and
contractual forms.

The paper falls broadly in the literature of mechanism design with limited commit-
ment, with two notable distinctions. Most papers study the limited commitment of
the principal in mechanism design, such as Bester and Strausz (2000, 2001),Bisin and
Rampini (2006) and Doval and Skreta (2022), focus on the issue of information leakage:
The principal cannot commit not to use the information the agents reported, and hence
the revelation principle might no longer hold when the principal lacks commitment.
The literature has assured the audience there is a class of canonical mechanisms that
are easy to formulate and rich enough to be payoff- or outcome-equivalent to any
mechanisms. This paper studies the complete information environment but with
endogenous outside options. Another difference is that most mechanism design papers
either have private information or moral hazard but usually do not have existing
contracts as an outside option with endogenous values, except for the literature on
type-dependent outside options.

The existence of contracts as an outside option is a feature in the literature on the
dissolution of a partnership, for example, Cramton et al. (1987), McAfee (1992), Fieseler
et al. (2003), Moldovanu (2002), Jehiel and Pauzner (2006), de Frutos and Kittsteiner
(2008), Figueroa and Skreta (2012), Loertscher and Wasser (2019). Typically, they discuss
the reallocation of the ownership with transfers when each agent has a private value of
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the asset. Differently from mine, they usually only consider equity contracts in place51;
there’s also no notion of value enhancement and hence no holdout problem. They
find the initial endowment matters for the dissolution, while my results emphasize the
importance of the contractual forms.

The paper solves a mechanism design problem with an endogenous outside option.
One strand of the literature focused mostly on the case where the value of the outside
option depends on the agents types.52 In mine, the value of the outside depends on the
action of other agents and the principal’s offer. A similar case is considered in Halac
et al. (2020) where an entrepreneur seeks to raise capital from heterogeneous agents,
and each agent’s participation has an externality on others. Their main focus is unique
implementation, and they restrict their attention to a return schedule instead of more
general contracts. Endogenous outside options are also common in the mechanism
design problem with ratification and veto constraints,53 where a status quo game is
played when any agent vetoes the mechanism. A veto could create an externality by
signaling agents’ types and affect the beliefs in the status quo game, while in this paper,
the externality is created by the new contracts the principal could propose. Similar
consideration also emerges in the contracting with externality literature.54 Segal (1999)
considered many applications, as in this paper, but he models the commitment by
assuming the principal has no incentive to deviates to private bilateral offers which she
can commit. Moreover, the role of existing contracts is under-explored since he takes
the preference for the actions as primitive.

The paper contributes to the theory of credible mechanisms and their implementation,
particularly using a negotiation-proof contract. However, the notion of credibility is
adapted to the holdout setting. The closest notion is Farrell and Maskin (1989) in which
they consider a repeated game, and for an equilibrium to be credible, its continuation
equilibrium must also be credible. So, it cannot involve punishment with Pareto-
dominated equilibrium since otherwise the agents cannot commit not to renegotiate to
a better continuation equilibrium. They provide a notion of weakly renegotiation-proof
(WRP) equilibrium by requiring any continuation equilibrium not dominated by others

51Since they usually do not have uncertainty, equity is not different from debt or other contracts.
52For instance, Lewis and Sappington (1989), Jullien (2000), Figueroa and Skreta (2009), Liu (2016), and

Sun et al. (2018).
53Several related papers include Cramton and Palfrey (1995), Compte and Jehiel (2009), Dequiedt (2006),Laf-

font and Martimort (2000), Jackson and Wilkie (2005)
54To name a few, Jehiel et al. (1996), Segal (1999), Segal (2003), Segal and Whinston (2003), Gomes (2005).
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and of a strong renegotiation-proof equilibrium (SRP) requiring none of its continuation
equilibrium to be strictly dominated by a WRP. This is similar but not identical to
mine in two aspects: in theirs, the stage game is one shot, and players choose actions
simultaneously, while in mine, the principal moves first. This leaves essentially one
value for the principal as she would choose the equilibrium with the highest value.
Also, the equilibrium definition is not recursive as they only require SRP not to be
dominated by WRP. Parallel work by Bernheim and Ray (1989) tries to formalize the
idea a WRP equilibrium must be undominated by another WRP in continuation, which
they call internal consistency, and discuss some conceptual difficulty that arises in the
infinite horizon: the set of internally consistent equilibrium is interdependent and not
necessarily unique. They further add the external consistency requirement that players do
not choose WRPs that are dominated by another at the beginning, which, unfortunately,
may not exist. Ray (1994) modifies the requirement and obtains a truth internally
consistent renegotiation-proof equilibrium. Both issues do not exist in my model as,
despite the fact that the renegotiation can take infinite rounds, the specific structure in
the holdout problem makes it effectively finite. Rubinstein and Wolinsky (1992) also a
similar renegotiation-proof contracting problem in the bilateral trading setting with
unverifiable information where the key is for both parties to report their true values
willingly. Despite the big difference in the setting, they obtain a similar result to mine:
The only renegotiation-proof contract is a state non-contingent when assuming a costless
renegotiation is feasible whenever the outcome is inefficient. They also show the set of
renegotiation-proof contracts is larger when they introduce time and discounting in the
renegotiation process, similar to my requirement of 𝛿-dominance. Bergin and MacLeod
(1993) considers a recursive definition but uses an axiomatic approach. Strulovici (2017)
and Evans and Reiche (2015) study the renegotiation-proof contracts in the incomplete
information setting. Strulovici (2022) provides a characterization in continuous time
with persistent states. Chakravorty et al. (2006) consider the same problem when the
planner may not want to go through the mechanism for some disequilibrium play in
the setting of social choice. Different from this paper, they define a notion of credibility
by requiring it to be a “best response” for some preference profile in support of the
prior beliefs. They obtain some negative results and show they persist even when they
adopt a weaker notion of credibility by requiring it to be consistent with the prior about
social utility function instead of social choice correspondence. A notion similar to them
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is studied in the auction setting by Akbarpour and Li (2020) where the auctioneer can
safely deviate when the deviation can be perceived as if it’s consistent with another
agent’s type profile. And they require that a credible auction cannot have such a safe
deviation. Shavell and Spier (2002) studied the cases when the principal can neither
commit to the punishment when the agent complies nor not to punish the agent when
he defies. They show that the equilibrium outcome differs greatly in the infinite horizon
setting from the finite horizon. In finance, DeMarzo and Sannikov (2006); DeMarzo and
Fishman (2007); DeMarzo et al. (2012) discuss the optimal renegotiation-proof contracts
in a continuous-time framework.

The extreme gauging result in the full-commitment benchmark echos the classic
result in Crémer and McLean (1988) and McAfee and Reny (1992) that a principal
could extract full surplus when the agents’ type are slightly correlated. Segal (1999)
also derived the unanimity result under commitment. Both this paper and theirs
achieve incentive compatibility by imposing severe, possibly non-credible, punishment
off-path. Heifetz and Neeman (2006) and Chen and Xiong (2013) study the genericity
and robustness of full-rent extraction results for general mechanisms.

The non-monotonicity result that higher commitment doesn’t always lead to a
higher payoff also appears in other contexts. Kovrĳnykh (2013) derives a similar
non-monotonic effect of commitment in lending contracts. The key intuition is similar:
“just as commitment increases the lender’s payoff in an optimal equilibrium, it increases
his payoff from the most profitable deviation.”(Kovrĳnykh, 2013, p.2850) However, she
mainly focuses on bilateral bargaining and renegotiation, while mine is multilateral.
She models repeated interaction, while mine is essentially static but with the possibility
of entering a multi-period renegotiation in case of a deviation. In hers, the contract is
void with some exogenous probability, while in mine, the renegotiation of the current
contract is endogenously determined by the principal’s payoff from continuing the
proposal upon deviation. In Donaldson et al. (2020a,b), they proxy commitment with
pledgeability (Proposition 1) and collateralizability (Proposition 4) and show that both
might lead to lower ex-ante payoff: higher pledgeability might hurt borrowers due to
excessive power to dilute initial creditor at the interim financing stage, leading to the
impossibility of lending ex ante; higher collateralizability could harm borrowers by
over-collateralization, which leads to impossible interim financing.
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8 Discussions

8.1 Discussions of Assumptions

Asset Value Microfoundation The paper assumes the asset value is decreasing in the
holdout profile but is silent about why. I present several canonic ways of microfounding
this assumption here, based on agency theory, costly default, and liquidity injection.

Imagine first the case of takeovers where each initial shareholder has a share of 𝛼𝑖 .
After acquiring the firm, the raider could exert an effort 𝑒 ∈ R+ to improve the asset
value from 1 to 𝑒, which incurs a quadratic cost 𝑒2. Given the holdout profile ℎ, the
raider has a fraction 1− ℎ⊤𝛼, and he optimally chooses the effort to maximize his payoff
from his equity shares, i.e.,

max
𝑒

(1 − ℎ⊤𝛼)𝑒 − 𝑒2. (59)

The optimal effort and the corresponding asset value is 𝑣(ℎ) = 𝑒∗ = 1−ℎ⊤𝛼, a decreasing
function of ℎ as I assumed earlier.

Imagine a different case of debt restructuring where each creditor A𝑖 holds a debt
with a face value of𝐷𝑖 . There is an underlying asset whose value 𝑒 follows a distribution
𝐺, independent of the capital structure. There is a chance for the firm to file bankruptcy,
which destroys a fraction 1−� of the asset value, but the firm is able to obtain a fraction
𝛽 of the remaining asset value. So the firm files if and only if

�𝛽𝑒 ≥ 𝑒 − ℎ⊤𝐷 =⇒ 𝑒 ≤ 1
1 − �𝛽

ℎ⊤𝐷 (60)

The expected value before the underlying asset value realization is thus

𝑣(ℎ) = E[𝑒] −
∫ (1−�𝛽)ℎ⊤D

0
�𝑣d𝐺(𝑣). (61)

This function is more complicated and non-linear but is also a decreasing function of ℎ.
In a DIP financing scenario, the firm offers securities to existing creditors in exchange

for liquidity injection. Let 𝑙𝑖 be the liquidity the A𝑖 injects into the firm and l =

(𝑙1, · · · , 𝑙𝑁); then the asset value would be

𝑣(ℎ) = 𝑣(0) + (1 − ℎ)⊤l (62)
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which is a linear decreasing function of ℎ.

Security Design and 1-Lipschitz Continuity This paper considers a large set of
feasible contracts, which is typical in the security design literature. One restrictive
assumption I put is the 1-Lipschitz continuity of the existing contracts. This is closely
related to the literature on security design, for example, DeMarzo et al. (2005), which
considers the case where a group of bidders can each offer an arbitrary security in
an auction. This paper differs in several dimensions: Firstly, here, the contracts are
offered by one principal, not multiple agents; Secondly, the agents are endowed with
contracts instead of nothing. As a result, there has to be a system of contracts in and
out of equilibrium instead of just a bilateral contract. I implicitly assume there’s a
bankruptcy system that resolves the conflicts among contracts. Lastly, they require
the newly offered contracts to be increasing and 1-Lipschitz55 while I require it to be
satisfied by the existing contracts. One can view the primitive contracts in my paper as
the solution to a security design problem in theirs.

Some contracts that allow additional contingency may fail 1-Lipschitz Continuity.
For instance, the Additional Layer 1 (AT1) bondholders are completely wiped out56 in
the Credit Suisse crisis57 and these CoCo bonds are not captured by this assumption.
Nevertheless, there is also no need to restructure AT1 bonds as they are wiped out in
default anyway, so the generality of the model is not hurt much. Indeed, relaxing this
1-Lipschitz continuity would lead to peculiar situations in which a stronger punishment
is more credible. When the existing contract holders have a region where the payoff
slope is strictly larger than one or has a jump discontinuity, the payoff slope of the
principal58 would inevitably be negative. Thus, a stronger punishment rewards the
principal instead of hurting herself, while the agents are hurt more severely. Therefore,
relaxing this assumption only makes restructuring easier to solve, leaving little bite to
credibility.

55This is a different way to formulate the feasible securities in DeMarzo et al. (2005), which requires both
contracting parties to have an increasing payoff, which implies 1-Lipschitz continuity.

56It’s a type of contingent convertibles, commonly known as “CoCo” bond, that can be converted into
equity or completely wiped out upon certain triggers, e.g., when the Common Equity Tier 1 (CET1) falls
below a certain threshold.

57See https://www.reuters.com/markets/why-markets-are-uproar-over-risky-bank-bond-known
-at1-2023-03-24/ for a discussion of this event.

58The shape of the contracts given to the tendered agents do not matter here because the total payment to
them, i.e., the punishment, is the exogenous variable.
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Contractual Interdependence and Consistency In the restructuring, new contracts
are written to replace the old ones, and off path they coexist. Therefore, the general
framework must formulate the new contracts’ interaction with the old. The challenge
is augmented by allowing an arbitrarily large contract space.59

It’s obvious how the value of a senior debt would affect a junior one, but less so for
other general contracts. The principal could write contradictory terms60 in the newly
issued securities. The effect of the new contracts on the old has to be restricted in a
meaningful way. In particular, it seems a minimal requirement for the new contracts to
respect the internal consistency of the old ones, not altering the relative distribution
(i.e., “priorities”) among them. To formulate it, I defined a notion of weak consistency.
This is a notion weaker than the consistency considered in the cooperative game theory
literature (Aumann and Maschler, 1985; Moulin, 2000) as it is only required between
the new and old sets of contracts, not among themselves.

An origin of the inconsistency comes from contractual incompleteness: the old
contracts cannot enumerate all possible ways the new contracts can affect them. But the
intrinsic inconsistency among contracts is not only due to the incompleteness: Even if
the future states are perfectly foreseeable and there is no cost of writing or reading long,
convoluted contractual terms, a set of contracts still cannot necessarily fully specify the
payoff of each agent. For example, suppose there’s a contract A, which specifies that
the payoff to its holder would be one dollar more than what a contract B, either already
existing or to be written, gives to its holder. However, B also specifies that the payoff
would be one dollar more than whatever contract A gives its holder. No matter how
the allocation is, both contracts cannot be satisfied simultaneously.

One way to solve this problem is to specify the set of allowed dependence, such as
using Gödel code in Peters and Szentes (2012), which leads to a much smaller space
of contracts. Here, we do not explicitly model allowed contracts; Instead, we assume
that the contracts need not be consistent literally and that an exogenous rule exists,
encoded in 𝑅𝑂 and in 𝑅, to resolve the conflicts among themselves. This is similar to
the convention of looking at the allocations and payoffs in mechanism design. And
the only requirement that needs to be explicitly put is between the sets of old and new

59A large contractual space is not necessarily a desired property: Other than the issue considered here, it
also allows too many possible deviations as articulated in Brzustowski et al. (2023).

60For example, P promises to A1 that he would be paid one dollar more than A2 and also to A2 that he
would be paid one dollar more than A1.
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contracts.

Deadweight Loss In the model, we do not explicitly allow the principal to create
deadweight loss, that is, burning money, as a way to create punishment. This could be
easily incorporated by introducing an additional fictive agent, A𝑁+1, Mr. Deadweight-
Loss. He has an outside option of 0, i.e., 𝑅𝑂

𝑁+1(𝑣, (ℎ, 1)) = 0, and the principal can
implement the unanimity by threatening to allocate the entire asset value to Mr.
Deadweight-Loss. I.e., 𝑅𝑁+1(𝑣, (ℎ, 0)) = 𝑣 whenever ℎ ≠ 0. Despite being mechanical,
the IC for Mr. Deadweight-Loss is superficially satisfied. The credibility constraint will
also be the same as any other agent: It is equally painful for the principal to allocate
asset value to Mr. Deadweight-Loss as to any other tendering agents. So, the main
insight on how initial contracts limit credible punishment is preserved with or without
deadweight loss.

Dependence of Value on Contractual Forms Another caveat in this framework is
that the asset value is only a function of the asset value but not of the contract form.
This simplification captures most papers of interest, such as Grossman and Hart (1980),
Bulow et al. (1988), and Gertner and Scharfstein (1991), but not every other paper. In
Donaldson et al. (2020), they study the exchange offers where the principal offers senior
debt for junior, and the asset value is a direct function of the contractual forms: A
higher face value of debt increases the probability of bankruptcy filing ex post, and
hence the deadweight loss.

But this is not too much of a concern with the help of Mr. Deadweight-Loss. We
can view the value 𝑣(ℎ) here as the highest asset value obtained with a contract that
implements ℎ when the value depends on the contract form. For any other contract
that leads to a lower asset value, we can equivalently model it as a combination of the
original contract and an allocation to Mr. Deadweight-Loss. The only possible concern
is that allocating value to Mr. Deadweight-Loss is a decision while the dependence of
value on the contract form is exogenously given, so the former might not be credible.
But this does not impose a challenge either, as using a different contract that implements
ℎ but leads to a lower asset value is also voluntary and is subject, to the same extent, to
the credibility constraint as allocating value to Mr. Deadweight-Loss.
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Types of Externality In this paper, I focus on the design of externality. I want to
distinguish two types of externalities here: Contractual externality refers to the case
where the payoffs of some securities can be affected by others. For example, junior
debts get diluted by senior. And the extent to which the dilution affects the existing
contract holder depends on the new contracts. On the contrary, there are property rights
unaffected by contractual externalities. For example, the oil company that wants to
acquire a block of land can affect the land owners by reducing their available amenities
if they hold out, but the owners can nevertheless stick to their own houses, which the
oil company cannot feasibly dilute. In debt restructuring, the secured debt holders’
interest is protected by the underlying collateral, which, according to Ayotte and Bolton
(2011), is a right against all other parties instead of the counter-party in the contract.
However, they can nonetheless be affected by physical externality. In the oil drilling
case, the ability to drill through the adjacent land, whose owners sold to the drilling
company, exhibits such a physical externality that contracts cannot directly alter.

However, readers could interpret the discussion on the design of contractual exter-
nalities as answers to institutional questions on how laws as social contracts affect the
reallocation of interest when the physical externality is present. For example, one can
interpret model implication on how the law should split the proceeds of the oil drilled
from a common pool as a social contract design that affects the dilutability of these
protections, and similarly, whether secured debt should be diluted by super-senior
debts in DIP financing or debt exchange offers.

Existing Securities and Ex Ante Contracting The paper assumes the existing secu-
rities are exogenously given and uses them as primitives to characterize the optimal
exchange offers. I do not discuss the optimality of the existing contracts since it would
unnecessarily complicate the model and divert the attention away from the focus of the
paper. There is a large strand of literature studying the optimal design of securities, but
often, they do not yield the optimal outcomes in reality: The real-world securities may
not come from an optimal design; instead, it’s the accumulation of multiple issuances
over time; The errors in the calibration could lead to substantial ex-post suboptimality in
practice (e.g., Piskorski and Seru, 2018); Not all future contingencies, for example, Covid
shock, can be captured by ex-ante design. The reality also calls for a necessity for the
interim discussion as debt restructurings and takeovers do occur, and the literature has
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overlooked why ex-ante optimal design does not preclude ex-post complication. Lastly,
a better understanding would help us enormously to understand the optimal design
ex ante. Typically, this requires modeling the friction in the initial stage: Generally,
there is a trade-off between ex-ante debt capacity and ex-post efficiency (e.g., Bolton
and Jeanne, 2007, 2009); However, Donaldson et al. (2020) shows that the ex-ante
optimal policy could coincide with the ex-post optimal policy because an efficient
restructuring also benefits the creditors. Moreover, the optimal ex ante contracts may
involve renegotiation on path as in Watson et al. (2020) and Kostadinov (2021).

Binding Voting Mechanisms One crucial restriction the model assumes is that no
agents are subject to a binding decision made by the majority or supermajority, which is
the essence of the holdout problems. This, in many ways, reflects the reality: Typically,
such non-consensual decisions are illegal in the US legal environment as they violate the
Trust Indenture Actio 316 (b). For takeovers, even though such binding decisions can be
made by the board or via the shareholders’ voting, the dissenting shareholders still have
the option to litigate against the board in violation of their fiduciary duty. In sovereign
debt markets, there use of the collective action clauses does not always solve the issue.
It is not obvious whether such provisions are desirable as they might infringe on the
rights of some minorities when there is substantial heterogeneity among the agents.
The sovereign world started with a two-limbed procedure: only allowing binding
decisions within each class of the bonds, and they failed to address the holdout issues. A
sweeping one-limbed aggregation mechanism could help to facilitate cramming down
the dissenting shareholders but faces a bigger risk of being abused. For example, the
Pacman strategy and redesignation61 has been used to achieve a coercive restructuring
in practice.

8.2 Discussion of Renegotiation Protocol

A Naïve Formulation A natural response for the principal without commitment to
a handful of holdouts would be to advance as if no holdout occurs, i.e., do off path
whatever she has promised on path. For instance, in the example of the unanimity
rule in takeovers, the principal promises to buy each share at a price of 𝑃 if and only

61See https://theemergingfrontier.com/home/re-designing-pacman and the article on Financial
Times https://www.ft.com/content/2b523aa2-402e-4060-8461-969a2132c483.
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if everyone tenders. Upon seeing any holdouts, she may choose to continue buying
the tendering shares at the initially proposed price of 𝑃. (Note: This is not what was
promised initially. What was promised initially was not to buy any shares at all if
anyone held out.) But such an idea does not generalize as i) this may not always be
feasible: As the total size of the pie is smaller when one agent holds out, the principal
may not be able to afford the off-path compensation on path; Also, ii) even though the
initial offering is incentive compatible for the agents on path, it may no longer be so off
path when other agent deviates and iii) there is no guarantee whether this is optimal
for the principal. Therefore, we cannot just naïvely assume that off path, the principal
offers exactly what she promised on path. Instead, the principal is “free” to propose
some other offers. Even if the principal continues to do what she promised on path, it
should be understood as the optimal alternative offer the principal can devise.

Sequential Renegotiation An alternative way to model multilateral bargaining is to
specify a sequential protocol. There are multiple ways to specify an extensive game in
which bargaining or renegotiation occurs sequentially: i) Shaked’s unanimity game,
where players propose in order, and any players can veto. The problem with this is
that it has many perfect equilibria, and any feasible agreement can be implemented; ii)
Legislative Bargaining models where proposers are randomly selected and a binding
decision can be confirmed by a less-than-unanimous consent. This approach is plagued
with impossibility results like the Condorcet paradox and that the majority core can
be empty (Eraslan and Evdokimov, 2019); iii) The exit games considered in Lensberg
(1988) where any agent satisfied with his share can leave the bargaining table. This
approach requires the consistency axiom I employed in this paper. Krishna and Serrano
(1996) showed that the equivalence between Nash’s axiomatic solution and Rubinstein’s
alternating bargaining model extends to the multilateral case given this consistency
axiom.

Given the empirical observations that in the holdout problems, there is usually a
single entity with the exclusive right to propose and the theoretical consideration that
dynamic games either cannot provide a sharp prediction or are equivalent to a static
axiomatic one, I adopt the static approach with a possible dynamic game embedded in
the credibility condition for simplicity.

The reduced form renegotiation protocol I employed in Definition 6 is similar to the
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one considered in Stole and Zwiebel (1996): A principal negotiates with a group of
agents, and the negotiation outcome between the principal and any agent depends
on the potential subsequent renegotiation outcome between the principal and the
remaining agents, and recursively so. The differences, though, are that i) Stole and
Zwiebel (1996) does not have contracts in place, and the principal is only allowed to
offer cash payment, i.e., non-contingent contracts; ii) They do allocate some bargaining
power to the agents; iii) I also consider an additional agent joining the bargaining
table as a trivial deviation; iv) not only the payoff of the principal but also that of the
agent depends on the subsequent renegotiation in mine. In spite of the differences,
if the existing contracts’ payoffs are independent of the asset value (equivalent to
agents’ outside option in their model) and if the principal is only allowed to offer
non-contingent contracts, the result would be largely the same. Their solution resembles
the well-known Shapley value in cooperative games.

Bargaining Power In the paper, I only allow the principal to propose, and as a
consequence, she has the so-called “formateur advantage” in political science.62 This
assumption is made to contrast the limited commitment case: Even if only the principal
can propose, lack of commitment can fully undermine her ability to restructure the
existing contracts, as I show in Proposition 3. As a result, she does not have full
bargaining power due to limited commitment, even when agents cannot propose
counteroffers.

Regenotiation-Proofness In order to define renegotiation-proof contracts, we need to
specify what contracts are reasonable deviations to consider in renegotiation. There is
no standard notion of renegotiation-proofness. The most commonly used notion is the
two-sided renegotiation-proofness: That is, the principal cannot propose an alternative
contract that Pareto dominates the current one, i.e., nobody objects to the alternative
offer, and some agent or the principal is strictly better off under this new hypothetical
offer. This is only feasible when the principal can bring the holdouts back to the table
to increase the size of the pie. But such a requirement would be too strong as it can be
difficult to achieve in reality for various reasons. For example, i) the holdouts typically

62This is different from the usual “take-it-or-leave-it” offer, which gives the proposer “full bargaining
power” to extract all the surplus because commitment is implied in the “take-it-or-leave-it” offer.
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are tough to handle, and they usually are not negotiated away, and ii) some laws may
prohibit preferential treatment of the holdouts. E.g., in takeovers, the best-price rule,
or sometimes called all-holders rule or Rule 14D-10.63 Moreover, Anderlini and Felli
(2001) points out that an agreement may never be reached if there is a possibility of
renegotiating out of the inefficient punishment. Therefore, I confine the alternative
proposals to the contracts that are incentive compatible with the deviation profile, i.e.,
that the tendering agents still have an incentive to tender under the potential alternative
proposal, and the holdouts are not enticed to tender.

Put differently, similar to Hart and Tirole (1988); Hart (1995) I am implicitly assuming
that the principal can unilaterally renege on the proposed offer whenever any agents
deviate, and no agent can hold her accountable. Otherwise, the principal can credibly
threaten to give the entire firm to a tendering agent, and this agent would block
any alternative offer. In this regard, the full-value extraction in Proposition 2 would
be credible if we were to impose this stronger condition. The reader can view this
renegotiation as if the principal calls off the entire deal and re-proposes an entirely
new deal to the tendering agents so that the old proposal doesn’t constrain her. This
differs from the two-sided renegotiation-proofness because the principal can create no
deadweight loss. If the deadweight loss can be explicitly created, then the principal
could implement the threat initially by destroying the value to punish the holdout
instead of giving the value to some agents, and then no agent would want to block a
renegotiation that makes them better off. In this sense, it’s more similar in spirit to
the reconsideration-proofness in Kocherlakota (1996) or revision-proofness in Asheim
(1997).

Off-Path Belief Empirical facts aside, there is also a long-standing theoretical com-
plication of specifying off-path belief in renegotiation. After observing an off-path
behavior, i.e., a hold-out, if the principal proposes the exact same offer, would it be
accepted by everyone? If so, why would the holdout reject it the first time but accept
it the second time? This is a classic backward induction paradox in game theory and in
philosophy. Binmore (2007) offers a nice discussion of many attempts to reconcile it.

63This is Code of Federal Regulations §240.14d-10, which can be traced back to the 1968 Williams
Act Betton et al. (2008). See https://www.law.cornell.edu/cfr/text/17/240.14d-10. SEC also
provides a detailed discussion of this rule and possible exemptions in 17 CFR PARTS 200 and 240. See
https://www.sec.gov/rules/final/2006/34-54684.pdf
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The latest development to my knowledge is to Asheim and Brunnschweiler (2023), who
propose an epistemic foundation using non-Archimedean probabilities. In bargaining,
a workaround is to introduce an additional restriction that one agent cannot agree to
an offer that he has rejected before as in Fershtman and Seidmann (1993).

One classic rationale to the puzzle is to approximate it with an environment of
multiple types, as in Kreps et al. (1982). Suppose there is a small probability that
the agent is irrational and always holds out with a small probability.64 Rejection of
an incentive-compatible offer sends signals about the type of holdouts, and all other
players update their preference in the subsequent renegotiation. Equilibrium in such a
dynamic game would converge to my reduced-form game in the baseline model. The
literature on ratification and mechanism design with veto constraints (e.g., Cramton
and Palfrey, 1995) generally takes this signaling game approach.

Notion of Credibility The notion of credible contracts borrows a lot of insights from
the literature on credible equilibria in dynamic games. The closet solution concept
is internally renegotiation-proof equilibrium sets in Ray (1994) in the context of infinitely
repeated games: The set of renegotiation-payoff is required to coincide with the set of all
payoffs that can be supported as equilibria by all continuation payoffs that are restricted
to be renegotiation-proof. This is a natural extension of the corresponding concept in
the finite horizon and sorts out the technical difficulty in several previously developed
notions of Weakly/Strongly Renegotiation-Proof Equilibrium in Farrell and Maskin (1989),
which are not fully recursive, Strong Perfect Equilibrium in Rubinstein (1980), which
sometimes fails to exist, and Internal/External/Minimal/Simple Consistency in Bernheim
and Ray (1989), which could rule out some attractive and not rule out some unattractive
equilibria. Pearce (1987) proposes another version of renegotiation-proofness that
captures the intertemporal consistency for the infinitely repeated games. Despite the
fact that our game is one-shot, there might be infinitely repeated negotiations. Other
related notions include Simple/Optimal Penal Code in Abreu (1988), Recursive Efficiency in
Bergin and MacLeod (1993) in the setting of repeated games. Pearce (1991) provides a
survey. Kletzer and Wright (2000) and Bulow and Rogoff (1989) consider a repeated
lending, borrowing, and recontracting model where the sovereign can repeatedly

64Note this is very different from a trembling-hand argument. If the mistake is caused by a trembling hand,
the principal will offer the same contracts.
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renegotiate with the lender using the Rubinstein bargaining protocol, which doesn’t
work in our multilateral setting.

I do not explicitly model the form of renegotiation but take a reduced-form approach
as in Maskin and Moore (1999) except that here the renegotiation outcome is endogenous.
The reader can think of it as an extensive-form game where the principal can propose a
new contract to replace old ones whenever there’s a deviation.

Costly Renegotiation The possibility of renegotiation generally limits the set of
implementable outcomes, but not always. Evans (2012) finds that if renegotiation
involves a small cost, then any Pareto-efficient, bounded social choice function can be
implemented in SPNE. When the outcome is inefficient, contracting parties may want
to renegotiate out of it. But they would not want to do so if renegotiation itself is a
punishment. Anderlini and Felli (2001) points out that when renegotiation involves a
cost, it is possible that the unique equilibrium is one in which an agreement is never
reached unless an inefficient punishment cannot be renegotiated out of. Rubinstein
and Wolinsky (1992) shows that if the renegotiation involves a delay, then the set
of implementable outcomes is generally larger. However, the exact knowledge of
time preference may not play a role. This paper confirms the general insight that
more costly renegotiation reduces the incentive to renegotiation and can allow the
principal to implement a better outcome but also points out that the effect can be
locally non-monotone. In addition, Proposition 22 also documents an irrelevance of
renegotiation cost and the discontinuity in the discount rate similar to Rubinstein and
Wolinsky (1992, Corollary on p.611).

Role of Discounting One way I interpret the parameter 𝛿 is the principal’s discount
factor, a proxy for commitment. One would naturally expect the discount factor of the
agents would have the opposite effect. But the role of discounting can be quite nuanced
here: Intuitively, if the agents are more impatient, then they are more willing to accept
the offer the principal proposed since the delay caused by holdout and renegotiation is
costly. And it gives the principal advantages in bargaining, which probably alleviates
the holdout problem. In the extreme case, if the agents have a discount rate of zero, they
would accept any offer instead of entering renegotiation because the discounted payoff
from holding out is zero. However, the holdout problem can also be easier to solve for
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an impatient principal: She can stick to some punishment that hurts herself instead of
renegotiation since renegotiation also destroys some value for her. In either case, the
incentive to renegotiate is diminished by impatience, and it benefits the principal.

Moreover, one may suspect that if the agents, or both parties, have a discount factor
of zero, the game should revert to the static setting plagued by the holdout problem.
This is not necessarily the case! Even though a discount factor of zero makes future
payoff irrelevant, it gives the principal a credible threat to destroy the value through
renegotiation, which may not be available in the static setting. Put differently, a holdout
receives the payoff from the existing claims in the static setting; in contrast, a holdout
receives nothing if he holds out when the discount factor is zero, and the principal can
commit to renegotiation.

Renegotiation with Tendering Agents In the potential renegotiation and the formal
definition of credibility in Section 4, the renegotiation protocol I laid out on possible
punishments via “dilution” is effectively a renegotiation with the tendering agents
instead of with the holdouts. It’s meant to capture the principal’s lack of commitment
to the punishment.65

Empirically, holdouts are usually not easily renegotiated away and they extract
significant value from sticking to their initial contracts. As mentioned above, holdouts
in Greek debt restructuring are paid in full. In Elliott Associates, L.P. v. Banco de la Nacion
and The Republic of Peru, the holdout creditor purchased bonds with a total face value of
21 million for 11 million and received 58 million in settlement for the principal and
accrued interests (Alfaro and Vogel, 2006). Moreover, renegotiation with the holdouts
could be illegal. In applications like takeovers, providing additional compensation to
the holdouts would violate the best-price rule (Exchange Act Rule 10d-10, see 17 CFR §
240.14d-10 - Equal treatment of security holders.). Therefore, we focus on renegotiating
the deal with the tendering agents instead of with the holdouts.

Would renegotiation with the holdouts alter the outcome? Unlikely, under the
recursively defined credibility. Since no new information is present, the renegotiation
would not be very different from the initial offer: The principal could offer whatever
she would be willing to offer in renegotiation. And indeed, how credibly the principal
can punish the holdout is determined by the renegotiation with the tendering agents,

65There is a deeper theoretical issue which I will discuss in Section 4.
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not with the holdout. Thus, whether we allow for an explicit renegotation with the
holdout would not alter the outcome too much.

Side Contracting In the model, we do not allow collusion among agents. One
might worry that agents may engage in side contracting to undermine the principal’s
punishment. This is an intentional choice, as the essence of the holdout problems lies in
the lack of coordination. The holdout problem would vanish if agents could coordinate.
But there are obstacles to it. Asymmetric information and a lack of commitment to
fulfill the side contracts could all lead to the failure of a coalition. There is a huge
literature in IO on why cartels fail. In general, side contracting does not always lead to
efficient outcomes, even for the agents. The inefficiency arises from the side contracting
stage and is analyzed more generally in Jackson and Wilkie (2005).

8.3 Discussions of Empirical Relevance

Existent Policies and Relevance of the Holdout Problems Despite many attempts
to solve the holdout problems at the institutional level, they remain of first-order
concern in all aspects of the economy. In the sovereign bond restructuring case, the
IMF proposed adding Collective Action Clauses (CACs) to the new issuance. It has
been proven effective in solving the holdout problems within series but not across
series (Gelpern and Heller, 2016; Fang et al., 2021). Also, there is a bulk of existing
sovereign debts without it. Squeeze-out procedures are adopted for takeovers in both
the US and EU, which allow the acquirer to gain the full stake of the target when she
obtains a majority stake, thus “squeezing out” the holdouts. But the legitimacy has
been contested and the holdout can resort to legal remedies such as “action of avoidance”
and “price fairness”.66 Similarly, the once-popular two-tier tender offer67 also received
great legal challenges. Moreover, the possibility of litigation also restores the incentive
to hold out. In urban development, eminent domain, which allows the government
to expropriate private property for public use, plays a major role in solving holdout

66See more discussion in Yarrow (1985), Müller and Panunzi (2004), Broere and Christmann (2021) and
Burkart and Lee (2022).

67A two-tier tender offer typically offers a high price to purchase shares until the raider obtains a controlling
stake and purchases the remaining shares at a lower price. A similar practice is a partial tender offer where
the raider only buys a fraction of outstanding shares. Both create a coercive force for the shareholders to
tender. The main form of tender offers now are any-and-all, where the bidder promises to buy any shares of
the target firm.
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problems but is still controversial and incites a constitutional debate related to the
Takings Clauses of the Fifth Amendment,68 whether a private party can benefit from
the infringement of property rights after the Supreme Court extended its use to private
companies in Kelo v. New London (Miceli and Sirmans, 2007). In other jurisdictions, for
example, in Colombia, where the legal system follows a civil law tradition, Holland
(2022) documented strong property rights protection worsens the holdout problems
and curbs city development. In land acquisition for oil drilling, the “rule of capture”
allows the oil drilling companies to acquire the land adjacent to the holdout block and
utilize the oil extracted from a common pool, weakening the bargaining power of the
holdout and strengthening the tendering land owners. Yet, the adoption of these legal
theories varies across states. For example, in Texas, the land owner has a possessory
interest in the substances beneath the land. In Geo Viking, Inc. v. Tex-Lee Operating
CO, the Supreme Court of Texas has ruled a fracture across the property line, as a
result of fracking, a subsurface trespass (Kramer and Anderson, 2005). Therefore, a
better understanding of the holdout problem and its private solutions would still have
first-order relevance in the current state.

Empricial Relevance of Limited Commitment The key assumption, limited com-
mitment, is reflected in a multitude of empirical evidence. It’s well-documented
that sovereigns lack the commitment to debt repayment, new debt issuance, and, in
particular, to the negotiated outcome due to both the doctrine of sovereign immunity
and the lack of a statutory regime. For example, Argentina filed with the SEC not to
pay anything to the holdout creditors in 2004 and passed the Lock Law not to reopen
a new exchange offer in 2005. Yet, Congress suspended the Lock Law in 2009, and
the government offered a new exchange offer in 2010. In the Greek debt crisis, Greece
opted to pay 435 million euros ($552 million) to the holdout creditors in full in order
not to trigger the cross-default clauses and be dragged into litigation, even though it
announced in the earlier exchange offer that the holdout would not get anything. Mean-
while, the majority (97%) of the tendering creditors only received cents on the euro.69
Pitchford and Wright (2012) build a dynamic bargaining model on the idea of lack of

68The Takings Clause of the Fifth Amendment to the United States Constitution says, “Nor shall private
property be taken for public use, without just compensation.”

69See https://www.reuters.com/article/us-greece-bond/in-about-face-greece-pays-bond-swa
p-holdouts-idUSBRE84E0MY20120515
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commitment to illustrate the delay in the restructuring. Yet, in theirs, renegotiation and
settlement occur one by one, and this lack of commitment to the renegotiated outcome
is modeled through the sequential rationality of the offers. In mine, it’s modeled as
the renegotiation-proofness in the collective bargaining process when agents deviate.
Despite the relevance of commitment in the holdout problems, many papers on holdout
problems assume full commitment. In Shleifer and Vishny (1986), they show a large
shareholder who is able to commit to “return all shares tendered to their owners” if the
threshold is not met,70 solves the holdout problem. Similar assumptions are also made
in Hirshleifer and Titman (1990). Thus, understanding the role of limited commitment
is crucial in understanding holdout problems.

Legal Environment for Certain Solutions One may wonder if the solutions I men-
tioned earlier, e.g., the unanimity rule and the consent-payment-like contracts in
Proposition 2, are feasible in the current legal environment. Right now, there do not
seem to be any laws prohibiting the use of unanimity. In takeovers, typically, the
acceptance of the tendered shares is “contingent on the delivery of a certain number of
shares” (Cohen, 1990, p.116), which can be set to 100%.71 Indeed, it’s already suggested
in the optimal threshold result in Holmström and Nalebuff (1992). In addition, despite
that the bidder has an obligation to complete the deal (Afsharipour, 2010), the raider
could nonetheless include a bidder termination provision72 which gives the raider a real
option to terminate the transaction at a fee to implement the unanimity rule. But we
rarely see them being used in practice — indeed, even the bidder termination provisions
are only included about 20% to 30% of the time (Chen et al., 2022).

In the extreme gauging result, the principal needs to pay the tendering agents a
lot when someone holds out. One practical concern is that it would be considered
“fraudulent conveyance” when the firm pays certain creditors too much to avoid paying

70They also discuss the credibility issue but about the out-of-equilibrium beliefs.
71Grossman and Hart (1980) argues the absence of unanimity is due to the sleepy investor problem. We

are not particularly concerned with the issue of inability to find all the agents as most takeover offers are
widely publicized (Cohen, 1990) and in other cases, for example, in sovereign debt restructuring, the holdouts
are usually big well-known players, such as hedge funds (known as vulture funds), e.g., Elliot Investment
Management in the sovereign debt restructuring of Argentina, Peru, Panama; Oppenheimer, Franklin, and
Aurelius Capital Management in Puerto Rico’s debt crisis; Dart Management in the sovereign debt crisis of
Brazil, Argentina, and Greece.

72The bidder also has a fiduciary termination right, which allows the raider to terminate when itself
receives a takeover offer, and a regulatory termination trigger when it fails to pass the antitrust review, both
without recourse.
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other known creditors (See 11 U.S. Code § 548). But this only applies i) when there is
an imminent bankruptcy and ii) if the payments exceed the face value of the liabilities,
not market value. Since in bankruptcy, the firm’s asset is not enough to pay off all
creditors in full; it is also unlikely to exceed the total debt of the tendering creditors
when one holds out. It’s generally not a concern in practice for distressed exchange
offers. Moreover, this notion is only defined for debt, not other contracts.

Another concern is whether such offers would violate certain covenants, such as
the pari-passu clause and fair-dealing/good-faith provisions. Pari-passu clauses are
unlikely to be violated as the offers the principal proposed here is symmetric: The
allocation is only asymmetric after some creditors reject the offer, which is the case
for any other offers. Traditionally, the clause is also interpreted in a very narrow
sense: Ratable payment, prior to an innovative reading by the Brussels Court of Appeal
in Elliott Associates, L.P. v. Banco de la Nacion that prevented Chase Manhattan from
facilitating the interest payment of Peru’s Brady bond.

Typically, in a sophisticated court like the New York court, the judge would interpret
any arrangement consistent with the text of the contracts as good faith, even when it
looks exploitative to outsiders.73

Dilutability of Existing Securities It’s also implicitly assumed in the baseline model
that all the existing securities are dilutable, e.g., via senior debt. One might argue this is
not feasible when the existing contracts are secured by collateral (e.g., secured corporate
debt), or when there’s no de jure seniority structure, for example, in sovereign debt. For
the former, secured debt can sometimes be diluted in bankruptcy through priming lien,
typically in Debtor-In-Possession (DIP) financing to raise new liquidity under Section
364(d). It’s a lien on the pre-petition collateral that is senior to all existing liens, and
the DIP lenders would be paid ahead of other creditors secured by the same collateral.
Moreover, the firm in bankruptcy is also allowed to use roll-up provisions to draw
the DIP financing to repay some of the creditors’ (usually DIP lenders’) pre-petition
indebtedness, converting these debts to post-petition supersenior debt.74 For the latter,
despite the lack of a formal bankruptcy regime, sovereign debts issued under foreign

73I would particularly thank Professor Edward Morrison for informing me of the general knowledge of the
law. Any misinterpretation is on me.

74Up-tier exchanges and drop-down transactions are also similar tools commonly used in DIP financing to
gain priority.
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law sometimes have priority under the judge’s discretion. In the Elliot Management
vs. Argentina, the Southern District of New York court judge Thomas Griesa issued
an injunction preventing the Bank of New York Melon from forwarding the payment
to the restructured creditors before paying the holdouts. This injunction would also
prevent payment to the creditors or the underwriter in case of any new borrowing,
creating a de facto seniority of the holdout’s debt. Currently, New York is considering
a bill to rule with sovereign,75 which effectively lowers the seniority of the holdouts’
debt. Even absent foreign law, Bolton and Jeanne (2009) pointed out the possibility of
diluting debts that are easy to restructure, such as bank loans, with debt difficult to
restructure, e.g., bonds. And Schlegl et al. (2019) finds sovereigns implement a de facto
seniority by selectively defaulting on certain creditors. Chatterjee and Eyigungor (2015)
proposes a modified Absolute Priority Rule in the spirit of Bolton and Skeel Jr (2004).

8.4 Discussion on Optimality of Non-contingent Contracts

In Proposition 3, Condition (27) only depends on the shape of the existing bilateral
contracts between principal and agent. Neither the underlying bankruptcy rules
that address the conflicts among different agents nor any new contracts that can be
potentially written have any bearing on this condition.

The power of a contingent contract can be undermined so much by the principal’s
lack of commitment because she has a very large contracting space: It makes her
powerful when she has full commitment but powerless when she doesn’t. This effect
of large contracting space echoes the theme in Brzustowski et al. (2023), in which
they show the Coase Conjecture no longer holds when the monopolist can offer more
complicated contracts. A principal with limited commitment could benefit from a
smaller set of contracts because it restricts her possible deviations ex post and commits
her to the initially proposed contracts. This highlights the importance of relaxing the
ad-hoc restriction on the available set of contracts that the literature has assumed when
working with limited commitment.

This result is also reminiscent of the result in Rubinstein and Wolinsky (1992) that, in
a bilateral trading setting, the only renegotiation-proof implementable price function is
not state-contingent when the authors impose a strong requirement that the buyer and

75The Assembly Bill A2970 can be found here https://www.nysenate.gov/legislation/bills/2023/
A2970, and it has received a strong rebuttal from Credit Roundtable, ICMA, IIF, ICI, ACLI, LICONY.

66

https://www.nysenate.gov/legislation/bills/2023/A2970
https://www.nysenate.gov/legislation/bills/2023/A2970
https://cdn.ymaws.com/thecreditroundtable.org/resource/resmgr/initiatives/230515_ny_state_assembly_crt.pdf
https://www.icmagroup.org/assets/documents/Resources/Opposition-to-NY-State-on-Sov.-Debt-5-22-23-Final-230523.pdf


the seller can costlessly renegotiate to an efficient outcome ex post. The irrelevance of
the bankruptcy system might seem plausible at first glance. After all, we are considering
the case when only one agent holds out. However, as we show in the next section, the
bankruptcy rule would matter when we calibrate the notion of credibility.

In a different setting, Segal and Whinston (2002) also discusses the optimality of non-
contingent contracts. The paper mainly addresses the issue of holdup problems when
nonverifiability is the main concern. Non-contingent contracts are usually optimal
except when it’s either too blunt to prescribe all actions or insufficient to provide
incentives for actions. Differently, in this paper, non-contingent contracts are optimal
only when all contingent contracts involve non-credible punishment and credibility
is not an issue in their bilateral setting: One party always gains when the other party
loses.

8.5 Discussion on Non-monotonicity of Commitment

Backfiring in renegotiation is a recurrent theme in repeated games. For example, Pearce
(1987) also identifies the similar two forces that when players place more weight on the
future, it facilitates cooperation because the present gains from contemplated deviation
are less important, but the benefit from cooperation also erodes the “deterrence power”
available. As a manifestation, Kovrĳnykh (2013) also obtains a non-monotonicity result
with two players and repeated interactions. But this paper looks at a non-repeated
game, and the non-monotonicity would not arise if there were only two agents.

From the analysis in Section 4.2.2, we can also see that non-monotonicity would
not arise when only two agents exist. With only two agents A𝑖 and A𝑗 , when one,
say A𝑖 , deviates, the maximum possible punishment that can be imposed on A𝑖

is the equilibrium payment to A𝑗 , which is zero, given that he would get nothing
if he also deviates. Thus, the principal cannot credibly punish A𝑖 by allocating
more value to A𝑗 , and the only credible punishment comes from the loss due to
discounting, i.e., �̄�𝛿(𝑒𝑖) = (1 − 𝛿)𝑣(𝑒𝑖). Thus the value of the principal on path is
𝐽(0) = 𝑣(0) − 𝛿𝛼𝑖𝑣(𝑒𝑖) − 𝛿𝛼 𝑗𝑣(𝑒 𝑗), which is decreasing in 𝛿. It doesn’t have non-
monotonicity because there’s no non-trivial punishment to the second deviator, and
the non-monotonicity relies on the renegotiation outcome in the second renegotiation,
which determines the credible punishment in the first. This provides a sharp contrast
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to Kovrĳnykh (2013) and other papers in the repeated setting.

9 Conclusion

Economic transactions that take the form of exchange offers are plagued with holdout
problems, a phenomenon in which the incentive to free-ride on other agents impedes
efficient actions. The holdout problem is pervasive in all aspects of the economy, like
takeover, debt restructuring, etc.

Despite being studied for over four decades, it hasn’t been widely acknowledged that
a meaningful discussion of the holdout problems requires relaxing both the contracting
space and the commitment assumption. It is generally understood that the lack of
commitment makes solving the holdout problem harder, but the extent to which it
has caused the problem has remained a question. Similarly, studying the general
mechanism without allowing for limited commitment was unfruitful: The holdout
problem is too easy to solve when commitment is not a problem.

The paper looks into the role of commitment in the holdout problems and uncovers
two effects: First, it will interact with the shape of the initial set of contracts and
determine the credibility of the punishment mechanism and, thus, the optimal exchange
offer; second, the commitment has a non-monotone effect through the renegotiation
channel.

With full commitment, the holdout problem can be easily solved using a contingent
contract that requires unanimous consent. But with limited commitment, the contin-
gency is undermined: When the existing contracts are equity-like, they cannot do any
better than a non-contingent contract like cash. The model explains why senior debts,
so dominantly used in debt restructuring, are not seen in the takeover.

Moreover, the paper identifies the non-monotonic role of commitment: a small
increase in the commitment could make the principal more profitable from renegoti-
ation and harder to commit not to renegotiate, which limits the maximum credible
punishment the principal can impose on the holdouts and undermines the exchange
offer, exacerbating the holdout problem. This finding reconciles many contradictory
evidence in the literature regarding the effects of the collective action clause.

Lastly, following the intuition in this renegotiation channel, greater investor pro-
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tection through property rights or anti-dilution clauses may not necessarily hinder
restructuring: They make the principal’s benefit from renegotiation lower and, hence,
more committed to the punishment.
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A Proofs for Section 2 (Model Setup)

A.1 Simplication due to Weak Consistency

This weak consistency assumption allows us to write the contractual design problem in
a separable form.

Proposition 17 (Separation). Under Weak Consistency (Definition 2), we can rewrite the
original design problem as

max
ℎ,𝑅(·,·)

𝑅𝑂0
©«𝑣(ℎ) −

𝑁∑
𝑗=1

(1 − ℎ 𝑗)𝑅 𝑗(𝑣(ℎ), ℎ), ℎª®¬ (63)

under the agents’ IC condition

ℎ𝑖 ∈ arg max
ℎ′
𝑖
∈𝐻𝑖

(1 − ℎ′𝑖)𝑅𝑖(𝑣(ℎ−𝑖 , ℎ
′
𝑖), (ℎ−𝑖 , ℎ

′
𝑖)) (64)

+ℎ′𝑖𝑅
𝑂
𝑖

©«𝑣(ℎ−𝑖 , ℎ′𝑖) −
𝑁∑
𝑗=1

(1 − ℎ 𝑗)𝑅 𝑗(𝑣(ℎ−𝑖 , ℎ′𝑖), (ℎ−𝑖 , ℎ
′
𝑖)), (ℎ−𝑖 , ℎ

′
𝑖)
ª®¬ ∀𝑖 (65)

Proof. To prove this statement, we only need to show that for any 𝑅 and �̃�𝑂 satisfying
weak consistency (Definition 2), it can be written in a separate form as in the statement.
First, under the weak consistency, the payoff to the existing contract when A𝑖 chooses
ℎ′
𝑖
is

�̃�𝑂𝑖 (𝑣(ℎ−𝑖 , ℎ
′
𝑖), (ℎ−𝑖 , ℎ

′
𝑖)) = 𝑅𝑂𝑖

©«𝑣((ℎ−𝑖 , ℎ′𝑖)) −
𝑁∑
𝑗=1

(1 − ℎ 𝑗) · 𝑅 𝑗(𝑣(ℎ−𝑖 , ℎ′𝑖), (ℎ−𝑖 , ℎ
′
𝑖)), (ℎ−𝑖 , ℎ

′
𝑖)
ª®¬ .

(66)
Substituting it to equation (5), we obtain equation (64), so the two ICs coincide. We
also need to show that the objective function is identical: again, substituting it to
equation (70) and expanding it, we have

𝑣(ℎ) −
𝑁∑
𝑖=1

(1 − ℎ𝑖) · 𝑅𝑖(𝑣(ℎ), ℎ) −
𝑁∑
𝑖=1

ℎ𝑖 · 𝑅𝑂𝑖
©«𝑣(ℎ) −

𝑁∑
𝑗=1

(1 − ℎ 𝑗) · 𝑅 𝑗(𝑣(ℎ), ℎ), ℎª®¬ (67)
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which by definition is the same as equation (63).
Thus, the two problems are equivalent.

□

One thing to clarify is that the formulation does not mean the new contracts 𝑅 have
priorities over the existing contracts 𝑅𝑂 since they could be zero for the realized value 𝑣.
But this is also more than a notational asymmetry between old and new contracts: The
new contract could determine the division of asset value between old and new. There
is amount to assuming all old contracts are dilutable by new ones, but not necessarily
diluted. I relax this implicit assumption in Section 5.

This proposition allows us to define a simpler concept of exchange offers

Definition 8 (Consistent Exchange Offer). A consistent exchange offer is a tuple(𝐻, ℎ, 𝑅)
where

• 𝐻 =
𝑁∏
𝑖=1
𝐻𝑖 is the product space of A𝑖’s action space 𝐻𝑖 such that {0, 1} ⊂ 𝐻𝑖 ⊂ [0, 1];

• ℎ = (ℎ1, ℎ2, . . . , ℎ𝑁) ∈ 𝐻 is the (recommended) action profile of the agents;

• 𝑅 is a mapping from R+ × 𝐻 to R𝑁+ where the 𝑖th element 𝑅𝑖(𝑣, ℎ) determines the unit
payoff of A𝑖’s new contract given the asset value is 𝑣 and the holdout profile ℎ;

such that

• the allocation is feasible:

𝑁∑
𝑖=0

ℎ𝑖 𝑅
𝑂
𝑖 (𝑣 − 𝑥, ℎ) +

𝑁∑
𝑖=1

(1 − ℎ𝑖)𝑅𝑖(𝑣, ℎ) = 𝑣 (68)

where 𝑥 =
∑𝑁
𝑖=1(1 − ℎ𝑖)𝑅(𝑣, ℎ);

• the action ℎ𝑖 is incentive compatible:

ℎ𝑖 ∈ arg max
ℎ′
𝑖
∈𝐻𝑖

𝑢𝑖(ℎ′𝑖 |ℎ−𝑖 , 𝑅) (69)

where
𝑢𝑖(ℎ𝑖 |ℎ−𝑖 , 𝑅) := (1 − ℎ𝑖)𝑅𝑖(𝑣, ℎ) + ℎ𝑖 𝑅𝑂𝑖 (𝑣 − 𝑥, ℎ) (70)

is A𝑖’s payoff given the action profile ℎ = (ℎ−𝑖 , ℎ𝑖) and the corresponding project value 𝑣.
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It’s clear that from the assumption that 𝑣(ℎ) is decreasing in ℎ and that 𝑐 < 𝑣(0)−𝑣(1),
the first best is to implement ℎ = 0. It is implementable if all agents can coordinate: As
per the Coase Theorem, the positive surplus can be split by bilateral bargaining.

A.2 Simplication from Equivalence Exchange Offers

The next result further simplifies the analysis, saying that it is without loss of generality
to look at the implementation of ℎ = 0, i.e., the equilibrium where everyone tenders.
One may argue that it might not be ideal to implement 0 when it’s too costly to hold in
an additional agent, which only slightly improves the asset value. This will not be the
case here as the principal can offer the exact same contract as what the agent initially
has, and the agent would weakly prefer to exchange. Indeed, the principal would never
find it optimal to do so because there are cheaper ways of implementing an exchange
offer, as we will show below.

Proposition 18 (Equivalence). For any consistent exchange offer (𝐻, ℎ∗, 𝑅) such that ℎ∗ ≠ 0

is implementable for the principal, there exists an alternative consistent exchange offer, with the
same action space 𝐻, in which ℎ = 0 is implementable, and the principal obtains the same payoff
as under the original exchange offer.

Proof. For a given exchange offer (𝐻, ℎ∗, 𝑅) that is incentive compatible, we construct a
new exchange offer (𝐻, 0, �̂�) such that is also incentive compatible. Since the relevant
payoff is only “around” the equilibrium payoff, i.e., 0−𝑖 × 𝐻𝑖 , we only need to specify
the payoff on these action profiles.

For the payoff on path, let

�̂�𝑖(𝑣(0), 0) = (1 − ℎ𝑖)𝑅𝑖(𝑣(ℎ∗), ℎ∗) + ℎ𝑖 𝑅𝑂𝑖 (ℎ
∗
𝑖 |ℎ

∗
−𝑖 , 𝑅) +

𝑣(0) − 𝑣(h∗)
𝑁

. (71)

Let’s check that the principal obtains the same payoff. Under the new exchange offer,
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the principal’s payoff is

𝑣(0) −
𝑁∑
𝑖=1

�̂�𝑖(𝑣(0), 0) = 𝑣(0) −
𝑁∑
𝑖=1

[
(1 − ℎ𝑖)𝑅𝑖(𝑣(ℎ∗), ℎ∗) + ℎ𝑖 𝑅𝑂𝑖 (ℎ

∗
𝑖 |ℎ

∗
−𝑖 , 𝑅) +

𝑣(0) − 𝑣(ℎ∗)
𝑁

]
(72)

= 𝑣(ℎ∗) −
𝑁∑
𝑖=1

[
(1 − ℎ𝑖)𝑅𝑖(𝑣(ℎ∗), ℎ∗) + ℎ𝑖 𝑅𝑂𝑖 (ℎ

∗
𝑖 |ℎ

∗
−𝑖 , 𝑅)

]
(73)

which is the principal’s payoff under (𝐻, ℎ∗, 𝑅). So this suggests it is feasible on path
and that the principal obtains exactly the same payoff.

Now we proceed to specify the off-path payoffs and show it’s feasible and incentive
compatible.

For agent A𝑖 let

�̂�𝑖(𝑣(0−𝑖 , ℎ𝑖), (0−𝑖 , ℎ𝑖)) =

(1 − ℎ𝑖)𝑅𝑖(𝑣(ℎ∗), ℎ∗) + ℎ𝑖 𝑅𝑂𝑖 (ℎ

∗
𝑖
|ℎ∗−𝑖 , 𝑅) +

𝑣(0)−𝑣(h∗)
𝑁 if ℎ𝑖 = 0

0 otherwise
(74)

and

�̂� 𝑗(𝑣(0−𝑖 , ℎ𝑖), (0−𝑖 , ℎ𝑖)) =

(1 − ℎ∗

𝑗
)𝑅 𝑗(𝑣(ℎ∗), ℎ∗) + ℎ 𝑗 𝑅𝑂𝑗 (𝑣(ℎ∗) − 𝑥(ℎ∗;𝑅), ℎ∗) +

𝑣(0)−𝑣(ℎ∗)
𝑁 if ℎ𝑖 = 0

𝑣(0∗−𝑖 ,ℎ𝑖)
𝑁−1 otherwise

(75)
where

𝑥(ℎ∗ |𝑅) =
𝑁∑
𝑖=1

ℎ∗𝑖𝑅𝑖(𝑣(ℎ
∗), ℎ∗) (76)

It is easy to see that the new contract is feasible: when ℎ𝑖 = 0, the payoff coincides
with the on-path payoff specified; when ℎ𝑖 ≠ 0, the total payoff is the total asset value
available 𝑣(0∗−𝑖 , ℎ𝑖). Also, since deviation leads to zero payoff, every agent has an
incentive to play 0 whenever others do. Thus, this new exchange offer is incentive
compatible and delivers exactly the same payoff to the principal.

□

The proof builds on a simple idea: If it is optimal for an agent to retain some of its
original shares, then the principal could simply offer the existing contracts through
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the new contracts. However, the complication comes from our setting that the asset
value depends on the actions but not the form of the new contracts. Thus, the asset
value is artificially inflated76 when offering the existing contracts through new contracts.
This formulation makes the holdout problem more acute: If the principal offers the
same value to each tendering agent, the value of the outside option is higher due to the
inflated asset value, so the IC may no longer hold. We solve this issue by giving away
the artificially inflated asset value to the agents through the new contracts. Moreover,
even if the value that can be distributed to the holders of initial contracts is made the
same, the holdout might obtain a higher value through the initial contracts, as fewer
agents hold initial contracts. This problem can also be handled by allocating more
value to the contracts.

A.3 Derivation of the Bond Buyback Model

Continuous Limit Their main result is a characterization when buying back debt is
beneficial to the principal in the limit 𝑁 → +∞. Since the existing contracts are fully
symmetric, we can use 𝐻 = ℎ⊤1/𝑁 to denote the fraction of debts that hold out as the
state variable in lieu of ℎ. Using the new state variable 𝐻, the value of the aggregate
debt is

E[min{�𝑣(𝐻), 𝐻𝐷}] =
∫ �̂�

0
�(𝑥 +𝑊(𝐻))d𝐹(𝑥) + 𝐻𝐷(1 − 𝐹(�̂�)) (77)

where �̂� = 𝐻𝐷/� −𝑊(𝐻) is the default threshold.77 And the marginal value of the
debt is78

d
d𝐻E[min{�𝑣(𝐻), 𝐻𝐷}] = �𝑊 ′(𝐻)𝐹(�̂�) + 𝐷(1 − 𝐹(�̂�)) (78)

where the second term is the repayment when the firm is not in default, and the first
term accounts for the effect on the internal cash reserve through the transaction.

To retire a fraction d𝐻 of the total debt 𝐷, the creditors must be compensated at least
76This formulation also encompasses the more realistic case when the asset value is not enhanced when

the exact same contract is offered.
77Firm defaults whenever �(𝑋 +𝑊(𝐻)) < 𝐻𝐷.
78Using Leibniz rule, the derivative of the debt value is �𝑊′(𝐻)𝐹(�̂�) + �(�̂� +𝑊(𝐻))d�̂�

d𝐻 𝑓 (�̂�) + 𝐷(1 −
𝐹(�̂�)) − 𝐻𝐷 𝑓 (�̂�)d�̂�

d𝐻 where the second and the fourth term cancels out at �̂�.
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the average debt value. Equating it to the marginal cost yields

E[min{�𝑣(𝐻), 𝐻𝐷}]
𝐻𝐷

𝐷d𝐻 =𝑊 ′(𝐻)d𝐻 =⇒ 𝑊 ′(𝐻) = 𝐻−1E[min{�𝑣(𝐻), 𝐻𝐷}] (79)

The total value accrued to the principal is the difference between the asset value and
the debt value

E[𝑣(𝐻)] − E[min{�𝐻−1𝑣(𝐻), 𝐻𝐷}]. (80)

whose first order derivative w.r.t. 𝐻 is

𝑊 ′(𝐻) − d
d𝐻E[min{�𝑣(𝐻), 𝐻𝐷}] = (1 − �𝐹(�̂�))𝑊 ′(𝐻) − 𝐷(1 − 𝐹(�̂�)) (81)

which is positive (i.e., retiring debt hurts the principal) if and only if

1 − �𝐹(�̂�) ≥ 𝐻𝐷

E[min{�𝑣(𝐻), 𝐻𝐷}](1 − 𝐹(�̂�)) (82)

after substituting the expression from equation (79). This is analogous to Equation (6)
in . When this condition holds, the principal benefits from increasing the leverage as
the cost of default is also borne by the creditors, and she has no incentive to deleverage,
which generates the ratchet effect.

Finite Agent Now, let’s try to derive the finite-agent counterpart. Since all agents are
symmetric, I let ℎ𝑘 = (1, . . . , 1, 0, . . . , 0) be the vector whose first 𝑘 elements are ones
and the rest zero. The number of holdouts is (ℎ𝑘)⊤1 = 𝑘. Under action profile ℎ𝑘 , the
aggregate debt value is

E[min{�𝑣(ℎ𝑘), 𝑘𝐷/𝑁}] =
∫ �̂� 𝑘

0
�(𝑥 +𝑊(ℎ𝑘))d𝐹(𝑥) + 𝑘𝐷

𝑁
(1 − 𝐹(�̂� 𝑘)) (83)
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where �̂� 𝑘 = 𝑘𝐷
𝑁� −𝑊(ℎ𝑘) is the default threshold when 𝑘 creditors hold out. Using

integration by parts and substituting the value of �̂� 𝑘 , we can write the debt value as

E[min{�𝑣(ℎ𝑘), 𝑘𝐷/𝑁}] = �𝐹(�̂� 𝑘)�̂� 𝑘 − �

∫ �̂� 𝑘

0
𝐹(𝑥)d𝑥 + �𝑊(ℎ𝑘)𝐹(�̂� 𝑘) + 𝑘𝐷

𝑁
(1 − 𝐹(�̂� 𝑘))

(84)

=
𝑘𝐷

𝑁
− �

∫ �̂� 𝑘

0
𝐹(𝑥)d𝑥 (85)

And the change in the total debt value when one additional creditor holds out is

E[min{�𝑣(ℎ𝑘+1), (𝑘 + 1)𝐷/𝑁}] − E[min{�𝑣(ℎ𝑘), 𝑘𝐷/𝑁}] = 𝐷

𝑁
+ �

∫ �̂� 𝑘

�̂� 𝑘+1
𝐹(𝑥)d𝑥 (86)

To retire the debt from an additional agent, the debtor has to pay out the average
debt value from the internal cash reserve, and thus, the internal cash reserve changes
by

𝑊(ℎ𝑘+1) −𝑊(ℎ𝑘) = 1
𝑘
E[min{�𝑣(ℎ𝑘), 𝑘𝐷/𝑁}] = 𝐷

𝑁
− �
𝑘

∫ �̂� 𝑘

0
𝐹(𝑥)d𝑥 (87)

The value to the principal at ℎ𝑘 is

E[𝑣(ℎ𝑘)] − E[min{�𝑣(ℎ𝑘), 𝑘𝐷/𝑁}] (88)

The change in the principal’s value from ℎ𝑘+1 to ℎ𝑘 , if we write completely analogously,
is

𝑊(ℎ𝑘+1) −𝑊(ℎ𝑘) −
{
E[min{�𝑣(ℎ𝑘+1), (𝑘 + 1)𝐷/𝑁}] − E[min{�𝑣(ℎ𝑘), 𝑘𝐷/𝑁}]

}
(89)

=𝑊(ℎ𝑘+1) −𝑊(ℎ𝑘) −
[∫ �̂� 𝑘+1

0
�𝑥d𝐹(𝑥) + �𝑊(ℎ𝑘+1)𝐹(�̂� 𝑘+1) + (𝑘 + 1)𝐷

𝑁
(1 − 𝐹(�̂� 𝑘+1))

(90)
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−
(∫ �̂� 𝑘

0
�𝑥d𝐹(𝑥) + �𝑊(ℎ𝑘)𝐹(�̂� 𝑘) + 𝑘𝐷

𝑁
(1 − 𝐹(�̂� 𝑘))

)]
(91)

=(1 − �𝐹(�̂� 𝑘+1))𝑊(ℎ𝑘+1) − (1 − �𝐹(�̂� 𝑘))𝑊(ℎ𝑘) +
∫ �̂� 𝑘

�̂� 𝑘+1
�𝑥d𝐹(𝑥) (92)

+ 𝑘𝐷

𝑁
(1 − 𝐹(�̂� 𝑘)) − (𝑘 + 1)𝐷

𝑁
(1 − 𝐹(�̂� 𝑘+1)) (93)

=(1 − �𝐹(�̂� 𝑘))[𝑊(ℎ𝑘+1) −𝑊(ℎ𝑘)] + �(𝐹(�̂� 𝑘) − 𝐹(�̂� 𝑘+1))𝑊(ℎ𝑘+1) (94)

+
∫ �̂� 𝑘

�̂� 𝑘+1
�𝑥d𝐹(𝑥) − 𝐷

𝑁
(1 − 𝐹(�̂� 𝑘)) − (𝑘 + 1)𝐷

𝑁
(𝐹(�̂� 𝑘) − 𝐹(�̂� 𝑘+1)) (95)

=(1 − �𝐹(�̂� 𝑘))1
𝑘
E[min{�𝑣(ℎ𝑘), 𝑘𝐷/𝑁}] − 𝐷

𝑁
(1 − 𝐹(�̂� 𝑘)) (96)

+
∫ �̂� 𝑘

�̂� 𝑘+1
�

(
𝑥 +𝑊(ℎ𝑘+1) − (𝑘 + 1)𝐷

𝑁

)
d𝐹(𝑥) (97)

which is positive if

1−�𝐹(�̂� 𝑘) ≥ 𝑘𝐷(1 − 𝐹(�̂� 𝑘))
𝑁E[min{�𝑣(ℎ𝑘), 𝑘𝐷/𝑁}]

+
𝑘
∫ �̂� 𝑘+1

�̂� 𝑘 �
(
𝑥 +𝑊(ℎ𝑘+1) − (𝑘+1)𝐷

𝑁

)
d𝐹(𝑥)

E[min{�𝑣(ℎ𝑘), 𝑘𝐷/𝑁}]
. (98)

This is still the same as in , but we have one additional term which vanishes in the
continuous limit. Since𝑋 𝑘 is increasing in 𝑘,79 this term is negative, as 𝑥+𝑊(ℎ𝑘+1− (𝑘+1𝐷)

𝑁 )
is zero when evaluated at 𝑥 = �̂� 𝑘+1. So, the condition is easier to satisfy, as a non-atomic
agent partially takes into consideration his own externality.

Alternatively, we could provide a simpler characterization

𝑊(ℎ𝑘+1) −𝑊(ℎ𝑘) −
{
E[min{�𝑣(ℎ𝑘+1), (𝑘 + 1)𝐷/𝑁}] − E[min{�𝑣(ℎ𝑘), 𝑘𝐷/𝑁}]

}
(99)

=

(
𝐷

𝑁
− �
𝑘

∫ �̂� 𝑘

0
𝐹(𝑥)d𝑥

)
−

(
𝐷

𝑁
− �

∫ �̂� 𝑘+1

�̂� 𝑘

𝐹(𝑥)d(𝑥)
)

(100)

=�

∫ �̂� 𝑘+1

0
𝐹(𝑥)d𝑥 − 𝑘 + 1

𝑘
�

∫ �̂� 𝑘

0
𝐹(𝑥)d𝑥 (101)

79To see this, notice �̂� 𝑘+1 − �̂� 𝑘 = 𝐷
𝑁� − (𝑊(ℎ𝑘+1 −𝑊(ℎ𝑘)) but the second term is smaller than 𝐷

𝑁
by

equation (87) while the firm term is larger then 𝐷
𝑁

as � < 1. This simply says that the default threshold is
higher when there are more debts outstanding, even when internal cash is used to repurchase debt.
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which is positive if

𝑘

𝑘 + 1 >
𝑘𝐷/𝑁 − E[min{�𝑣(ℎ𝑘), 𝑘𝐷/𝑁}]

(𝑘 + 1)𝐷/𝑁 − E[min{�𝑣(ℎ𝑘+1), (𝑘 + 1)𝐷/𝑁}]
(102)

having used that the integration of the CDF multiplied by � is the difference between
the nominal value of the debt and the market value of the debt

�

∫ �̂� 𝑘

0
𝐹(𝑥)d𝑥 =

𝑘𝐷

𝑁
− E[min{�𝑣(ℎ𝑘), 𝑘𝐷/𝑁}]. (103)

The characterization is only available in the finite-agent case as both sides of the
inequality approach one in the continuous limit.

A.4 Derivation of the Debt Exchange Model

Hypothetically, we assume a fraction 𝛽 of the short-term debt holders accept the ex-
change offer and, for simplicity, assume 𝛽𝑁 is an integer. Let ℎ(1−𝛽)𝑁 = (1, ..., 1, , 0, ..., 0)
be the action profile where the first (1 − 𝛽)𝑁 agents hold out.

Pari-passu Debt Exchange If the principal offer long-term debt 𝑝𝐷/𝑁 in exchange
for the existing short-term debt 𝑞𝐷 and long-term debt (1 − 𝑞)𝐷/𝑁 , and at any profile
ℎ, the debt due at the interim date is ℎ⊤1 · 𝑞𝐷/𝑁 and will be paid off first. The total
amount of debt outstanding at date 2 is (1 − 𝑞)ℎ⊤1𝐷/𝑁 + 𝑝𝐷(𝑁 − ℎ⊤1)/𝑁 .

The value of the new contract is thus

𝑅𝑖(𝑣, ℎ) =
𝑝𝐷/𝑁

(1 − 𝑞)ℎ⊤1𝐷/𝑁 + 𝑝𝐷(𝑁 − ℎ⊤1)/𝑁 (104)

min{𝑣 − ℎ⊤1 · 𝑞𝐷/𝑁, (1 − 𝑞)ℎ⊤1𝐷/𝑁 + 𝑝𝐷(𝑁 − ℎ⊤1)/𝑁} (105)

= min
{

𝑝𝐷/𝑁 (𝑣 − ℎ⊤1 · 𝑞𝐷/𝑁)
(1 − 𝑞)ℎ⊤1𝐷/𝑁 + 𝑝𝐷(𝑁 − ℎ⊤1)/𝑁 , 𝑝𝐷/𝑁

}
∀𝑖 : ℎ𝑖 = 0, (106)

In particular, under the action profile ℎ(1−𝛽)𝑁 , using (ℎ(1−𝛽)𝑁)⊤1 = (1 − 𝛽)𝑁

𝑅𝑖(𝑣, ℎ(1−𝛽)𝑁) =
1
𝑁

min
{
𝑝 (𝑣 − (1 − 𝛽)𝑞𝐷)
(1 − 𝑞)(1 − 𝛽) + 𝑝𝛽 , 𝑝𝐷

}
,∀𝑖 > (1 − 𝛽)𝑁 (107)
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and the total payment to the tendered creditors is

𝑥 =

𝑁∑
𝑖=1

(1 − ℎ𝑖)𝑅𝑖(𝑣, ℎ(1−𝛽)𝑁) = min
{
𝛽𝑝 (𝑣 − (1 − 𝛽)𝑞𝐷)
(1 − 𝑞)(1 − 𝛽) + 𝑝𝛽 , 𝛽𝑝𝐷

}
(108)

The payoff of the holdouts under the action profile ℎ(1−𝛽)𝑁 is thus80

𝑅𝑂𝑖 (𝑣 − 𝑥, ℎ
(1−𝛽)𝑁) = min

{
1

(1 − 𝛽)𝑁

[
𝑣 − min

{
𝛽𝑝 (𝑣 − (1 − 𝛽)𝑞𝐷)
(1 − 𝑞)(1 − 𝛽) + 𝑝𝛽 , 𝛽𝑝𝐷

}]
,
𝐷

𝑁

}
(109)

=
1
𝑁

min
{

1
1 − 𝛽

max
{ (1 − 𝑞)(1 − 𝛽)
(1 − 𝑞)(1 − 𝛽) + 𝑝𝛽𝑣 +

𝛽𝑝 (1 − 𝛽)𝑞𝐷
(1 − 𝑞)(1 − 𝛽) + 𝑝𝛽 , 𝑣 − 𝛽𝑝𝐷

}
, 𝐷

}
(110)

Note, it is equivalent to separate the payoff into the short-term part and the long-term
part, i.e.,

min
{

1
(1 − 𝛽)𝑁

[
(𝑣 − (1 − 𝛽)𝑞𝐷) − min

{
𝛽𝑝 (𝑣 − (1 − 𝛽)𝑞𝐷)
(1 − 𝑞)(1 − 𝛽) + 𝑝𝛽 , 𝛽𝑝𝐷

}]
,
(1 − 𝑞)𝐷

𝑁

}
+ 𝑞𝐷

𝑁
.

(111)
At 𝑝 = 1, the payoff to the new and old contracts can be simplified to

𝑅𝑖(𝑣, ℎ(1−𝛽)𝑁) =
1
𝑁

min
{
𝑣 − (1 − 𝛽)𝑞𝐷

(1 − 𝑞)(1 − 𝛽) + 𝛽
, 𝐷

}
(112)

𝑅𝑂𝑖 (𝑣 − 𝑥, ℎ
(1−𝛽)𝑁) = 1

𝑁
min

{
1

1 − 𝛽
max

{ (1 − 𝑞)(1 − 𝛽)
(1 − 𝑞)(1 − 𝛽) + 𝛽

𝑣 + 𝛽(1 − 𝛽)𝑞𝐷
(1 − 𝑞)(1 − 𝛽) + 𝛽

, 𝑣 − 𝛽𝐷

}
, 𝐷

}
(113)

80Technically, we should evaluate the outside option at the action profile ℎ(1−𝛽)𝑁+1, but the difference is
small when 𝑁 is large, and it complicates the analysis as we see in the bond buyback example. So I omit that
difference to reproduce the result in and then comment on the case when the difference exists.

89



Notice whenever 1
(1−𝑞)(1−𝛽)+𝛽 (𝑣 − (1 − 𝛽)𝑞𝐷) < 𝐷, we have 𝑣 < 𝐷 and therefore81

𝑅𝑂𝑖 (𝑣 − 𝑥, ℎ
(1−𝛽)𝑁) = 1

𝑁
min

{
1 − 𝑞

(1 − 𝑞)(1 − 𝛽) + 𝛽
𝑣 + 𝛽

(1 − 𝑞)(1 − 𝛽) + 𝛽
𝑞𝐷, 𝐷

}
,∀𝑣 < 𝐷

(114)

and taking the difference between the two terms in the min function in 𝑅𝑂
𝑖
(𝑣−𝑥, ℎ(1−𝛽)𝑁)

and 𝑅𝑖(𝑣, ℎ(1−𝛽)𝑁)[
1 − 𝑞

(1 − 𝑞)(1 − 𝛽) + 𝛽
𝑣 + 𝛽

(1 − 𝑞)(1 − 𝛽) + 𝛽
𝑞𝐷

]
− (𝑣 − (1 − 𝛽)𝑞𝐷)
(1 − 𝑞)(1 − 𝛽) + 𝛽

=
𝑞(𝐷 − 𝑣)

1 − 𝑞(1 − 𝛽) > 0

(115)
So, the payoff to the holdouts is always higher than the tendering agents

𝑅𝑂𝑖 (𝑣 − 𝑥, ℎ
(1−𝛽)𝑁) ≥ 𝑅𝑖(𝑣, ℎ(1−𝛽)𝑁) (116)

with the inequality being strict when 𝑣 < 𝐷. This is equivalent to Proposition 1 in
when 𝑁 approaches infinity.82

It will turn out that holding out is not always optimal when 𝑁 is finite. For the
comparison when 𝑁 is finite, I need to compare the payoff of accepting at ℎ(1−𝛽)𝑁 with
that of holding out at ℎ(1−𝛽)𝑁+1. When 𝑣 > 𝐷,

𝑅𝑖(𝑣, ℎ(1−𝛽)𝑁) =
𝐷

𝑁
= 𝑅𝑂𝑖 (𝑣 − 𝑥, ℎ

(1−𝛽)𝑁+1) (117)

81The difference of the two terms inside the max function in𝑅𝑂
𝑖
(𝑣−𝑥, ℎ(1−𝛽)𝑁 ) is (1−𝑞)(1−𝛽)

(1−𝑞)(1−𝛽)+𝛽 𝑣+
𝛽(1−𝛽)𝑞𝐷

(1−𝑞)(1−𝛽)+𝛽−

(𝑣 − 𝛽𝐷) = 𝛽(𝐷−𝑣)
1−𝑞(1−𝛽) > 0.

82Ideally, we want to compare the payoff of the tendering with 𝛽 to the holdout with 𝛽 − 1
𝑁

, but the
difference diminishes as 𝑁 approaches infinity.
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but when 𝑣 < 𝐷, comparing the payoffs between tendering and holdout yields

𝑁(𝑅𝑂𝑖 (𝑣 − 𝑥, ℎ
(1−𝛽)𝑁 + 1) − 𝑅𝑖(𝑣, ℎ(1−𝛽)𝑁)) (118)

=

[
1 − 𝑞

(1 − 𝑞)(1 − 𝛽 + 1/𝑁) + 𝛽 − 1/𝑁 𝑣 +
𝛽 − 1/𝑁

(1 − 𝑞)(1 − 𝛽 + 1/𝑁) + 𝛽 − 1/𝑁 𝑞𝐷
]

(119)

−
[

1
(1 − 𝑞)(1 − 𝛽) + 𝛽

(𝑣 − (1 − 𝛽)𝑞𝐷)
]

(120)

=
𝑞(𝐷 − 𝑣)

1 − 𝑞(1 − 𝛽) ×
𝑁 − 1 − (1 − 𝛽)𝑁𝑞
𝑁 − 𝑞 − (1 − 𝛽)𝑁𝑞 (121)

which is positive whenever 𝑁 > 1
1−𝑞(1−𝛽) or 𝑁 <

𝑞

1−𝑞(1−𝛽) . When 𝑁 goes to infinity, the
condition is satisfied, so we obtain the same result. But when the number of agents
is finite, in particular, 𝑞

1−𝑞(1−𝛽) ≤ 𝑁 ≤ 1
1−𝑞(1−𝛽) , holding out may not be optimal as the

agent bears his own externality. But the second half of the quality puts a lower bound
on the number of agents holding out: at least a fraction 1− 𝛽 > 1

𝑞
𝑁−1
𝑁 of the agents hold

out.

Senior Debt Exchange In contrast, if the principal offers long-term senior debt 𝑝𝐷/𝑁
in exchange for the short-term debt 𝑞𝐷 and long-term debt (1 − 𝑞)𝐷/𝑁), the holdouts’
short-term debts totaling ℎ⊤1 · 𝑞𝐷/𝑁 are paid-off, and the total amount of senior debt
outstanding is 𝑝𝐷(𝑁 − ℎ⊤1). The payoff to the new contract, i.e., each senior debt
contract, is thus

𝑅𝑖(𝑣, ℎ) =
𝑝𝐷

𝑝𝐷(𝑁 − ℎ⊤1) min{𝑣 − ℎ⊤1 · 𝑞𝐷/𝑁, 𝑝𝐷(𝑁 − ℎ⊤1)/𝑁} (122)

=min
{

1
𝑁 − ℎ⊤1(𝑣 − ℎ

⊤
1 · 𝑞𝐷/𝑁), 𝑝𝐷

𝑁

}
(123)

Using (ℎ(1−𝛽)𝑁)⊤1 = (1 − 𝛽)𝑁

𝑅𝑖(𝑣, ℎ(1−𝛽)𝑁) = min
{

1
𝛽𝑁

(𝑣 − (1 − 𝛽)𝑞𝐷), 𝑝𝐷
𝑁

}
(124)
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and the total payment to the senior debts is

𝑥 = min {𝑣 − (1 − 𝛽)𝑞𝐷, 𝛽𝑝𝐷} (125)

while that to each holdout is83

𝑅𝑂𝑖 (𝑣 − 𝑥, ℎ
(1−𝛽)𝑁) = min

{
1

(1 − 𝛽)𝑁 [𝑣 − min {𝑣 − (1 − 𝛽)𝑞𝐷, 𝛽𝑝𝐷}] , 1
𝑁
𝐷

}
(126)

= min
{
max

{
𝑞𝐷

𝑁
,
𝑣 − 𝛽𝑝𝐷

(1 − 𝛽)𝑁

}
,
𝐷

𝑁

}
(127)

At 𝑝 = 1, the payoffs to the new and old contracts are

𝑅𝑖(𝑣, ℎ(1−𝛽)𝑁) =
1
𝑁

min
{

1
𝛽
(𝑣 − (1 − 𝛽)𝑞𝐷), 𝐷

}
(128)

𝑅𝑂𝑖 (𝑣 − 𝑥, ℎ
(1−𝛽)𝑁) = 1

𝑁
min

{
max

{
𝑞𝐷,

𝑣 − 𝛽𝐷

1 − 𝛽

}
, 𝐷

}
(129)

Whenever 1
𝛽 (𝑣 − (1 − 𝛽)𝑞𝐷) < 𝐷, we have 𝑣 < (𝑞 + 𝛽 − 𝛽𝑞)𝐷, and therefore 𝑞𝐷 >

𝑣−𝛽𝐷
1−𝛽 .

Hence

𝑅𝑂𝑖 (𝑣 − 𝑥, ℎ
(1−𝛽)𝑁) = 1

𝑁
min{𝑞𝐷, 𝐷} = 𝑞𝐷

𝑁
<
𝑣 − (1 − 𝛽)𝑞𝐷

𝛽𝑁
,∀𝑣 < (𝑞 + 𝛽− 𝛽𝑞)𝐷 (130)

So we have
𝑅𝑖(𝑣, ℎ(1−𝛽)𝑁) ≥ 𝑅𝑂𝑖 (𝑣 − 𝑥, ℎ

(1−𝛽)𝑁),∀𝑣 (131)

which the inequality being strict when 𝑣 < (𝑞 + 𝛽 − 𝑞𝛽)𝐷. So it’s feasible to implement
an exchange offer with senior debt, and we confirm Proposition 2 in as 𝑁 approaches
infinity.

Moreover, as

𝑅𝑂𝑖 (𝑣 − 𝑥, ℎ
(1−𝛽)𝑁+1) = 𝑞𝐷

𝑁 + 1 <
𝑞𝐷

𝑁
<
𝑣 − (1 − 𝛽)𝑞𝐷

𝛽𝑁
(132)

the incentive to hold out is even weaker when 𝑁 is finite.
83Again, we should more pedantically single out the short-term payment and the expression would be the

same.
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B Proofs for Section 3 (Optimal Exchange Offer with Full
Commitment)

Proposition 1. The necessary and sufficient condition for the existence of a cash exchange offer
that implements ℎ = 0 is

𝑊 + 𝑣(0) ≥
𝑁∑
𝑖=1

𝑅𝑂𝑖 (𝑣(𝑒𝑖), 𝑒𝑖). (17)

Moreover, the principal is willing to implement the exchange offer if and only if

𝑣(0) −
𝑁∑
𝑖=1

𝑅𝑂𝑖 (𝑣(𝑒𝑖), 𝑒𝑖) ≥ 𝑐. (18)

Proof. First, I will show the condition (17) is necessary. Suppose an exchange offer {𝑡𝑖}𝑖
exists. And we denote the sum 𝑇 =

∑𝑁
𝑖=1 𝑡𝑖(0). Simplifying the conditions (16), we

obtain
𝑇 ≤ 𝑅𝑂0 (𝑣(0), 0) +𝑊 ≤ 𝑣(0) +𝑊 (133)

which is independent of 𝐹. It says that the borrowing is unconstrained as long as the
principal is solvent. Plug in the definition of 𝑇 and the individual IC of the agents (14),
and I obtain the condition (17) in the proposition.

To see why it is sufficient, let’s construct an exchange offer as follows

𝑡𝑖(ℎ𝑖) =

𝑅𝑂
𝑖
(𝑣(𝑒𝑖), 𝑒𝑖) if ℎ𝑖 = 0

0 otherwise
(134)

and the principal borrows

𝐹 = max

{
0,

𝑁∑
𝑖=1

𝑅𝑂𝑖 (𝑣(𝑒𝑖), 𝑒𝑖) −𝑊
}
. (135)

It is easy to verify that all the constraints are satisfied when the inequality (17) holds.
With the cost 𝑐, the principal can guarantee his own wealth𝑊 without implementing
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the exchange offer. And the payoff to the principal, if the offer is implemented, is

𝑊 + 𝑣(0) −
𝑁∑
𝑖=1

𝑅𝑂𝑖 (𝑣(𝑒𝑖), 𝑒𝑖) − 𝑐. (136)

Comparing the two scenarios, we obtain the condition in the proposition. □

C Alternative Assumptions for Non-contingent Exchange
Offers

C.1 Optimal non-contingent offers with access to externally raised
funds

To implement the outcome ℎ = 0 when the agent has access to the funds raised, the set
of necessary conditions is that

• Tendering is better off than holding out for A𝑖

𝑡𝑖(0) ≥ 𝑅𝑂𝑖
©«𝑣(𝑒𝑖) + 𝐹 +𝑊 −

𝑁∑
𝑗=1, 𝑗≠𝑖

𝑡 𝑗(0), 𝑒𝑖ª®¬ ,∀𝑖 ∈ 𝒩 (137)

• The total payment can be financed by new borrowing and internal wealth

𝑁∑
𝑗=1

𝑡 𝑗(0) ≤ 𝐹 +𝑊 (138)

• The principal has enough residual claims to payoff the debt

𝐹 ≤ 𝑅𝑂0
©«𝑣(0) + 𝐹 +𝑊 −

𝑁∑
𝑗=1

𝑡 𝑗(0), 0ª®¬ (139)

The main difference is that inside 𝑅𝑂
𝑖
(·, 𝑒𝑖), the total amount of assets that can be

distributed to A𝑖 has an additional non-negative term 𝐹 +𝑊 − ∑𝑁
𝑗=1, 𝑗≠𝑖 𝑡 𝑗(0) which

strengthen the incentive to holdout.
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Proposition 19. Suppose all bilateral contracts are non-decreasing, i.e, the function 𝑅𝑂
𝑖
(·, 𝑒𝑖) is

non-decreasing for all 𝑖. Let 𝑡∗
𝑖
= inf{𝑡 : 𝑡 ≥ 𝑅𝑂

𝑖
(𝑣(𝑒𝑖) + 𝑡 , 𝑒𝑖)}, then a necessary and sufficient

condition for the existence of a cash exchange offer that implements ℎ = 0 is

𝑊 + 𝑣(0) ≥
𝑁∑
𝑖=1

𝑡∗𝑖 . (140)

Moreover,
∑𝑁
𝑖=1 𝑡

∗
𝑖

is the minimum cost of all feasible cash transfers when𝑊 ≤ ∑𝑁
𝑖=1 𝑡

∗
𝑖
.

Proof. In what follows, we first prove a lemma describing the property of 𝑡∗
𝑖

defined;
then we show the condition is necessary. After that, we show it’s also sufficient in two
cases depending on the relative magnitude of𝑊 and

∑𝑁
𝑖=1 𝑡

∗
𝑖
.

Lemma 6. If 𝑓 (·) is a weakly increasing function, then inf{𝑡 : 𝑡 ≥ 𝑓 (𝑥+𝑡)} is weakly increasing
in 𝑥.

Proof. We prove it by contradiction. Suppose that the statement is not true, i.e., there
exists 𝑥1 < 𝑥2 but

𝑡2 := inf{𝑡 : 𝑡 ≥ 𝑓 (𝑥2 + 𝑡)} < 𝑡1 := inf{𝑡 : 𝑡 ≥ 𝑓 (𝑥1 + 𝑡)} (141)

By the definition of 𝑡2, for any � > 0, there exists 𝑡′ ≤ 𝑡2 + � such that 𝑡′ ∈ {𝑡 : 𝑡 ≥
𝑓 (𝑥2 + 𝑡)}. Thus we have

𝑡′ ≥ 𝑓 (𝑥2 + 𝑡′) ≥ 𝑓 (𝑥1 + 𝑡′) (142)

where the first inequality comes from that 𝑡′ ∈ {𝑡 : 𝑡 ≥ 𝑓 (𝑥2 + 𝑡)}, and the second from
the weak monotonicity of 𝑓 and that 𝑥2 > 𝑥1. This implies that 𝑡′ ∈ {𝑡 : 𝑡 ≥ 𝑓 (𝑥1 + 𝑡)},
i.e., 𝑡′ ≥ 𝑡1. Since this holds true for any � > 0, it must be that 𝑡2 ≥ 𝑡1, contradicting the
assumption that 𝑡2 < 𝑡1. Thus, it must be true that 𝑓 is weakly increasing in 𝑥. □

We now show that the condition is necessary. Suppose an exchange offer {𝑡𝑖(·)}𝑖
exists and we let 𝑇 =

∑𝑁
𝑗=1 𝑡 𝑗(0). By the definition of 𝑅𝑂0 , the break-even condition (139)

could be written as

𝐹 ≤ 𝑅𝑂0
©«𝑣(0) + 𝐹 +𝑊 −

𝑁∑
𝑗=1

𝑡 𝑗(0), 0ª®¬ = 𝑣(0) + 𝐹 +𝑊 − 𝑇 − 0 ⇔𝑊 + 𝑣(0) ≥ 𝑇 (143)
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which says that financing is possible as long as the principal is solvent. This condition
already resembles the condition in our proposition, except that we have to put a bound
on 𝑇.

We can rewrite the individual IC (137) as

𝑡𝑖(0) ≥ 𝑅𝑂𝑖 (𝑣(𝑒𝑖) + 𝐹 +𝑊 − 𝑇 + 𝑡𝑖(0), 𝑒𝑖) ,∀𝑖 ∈ 𝒩 (144)

and from the feasibility condition (138), we know the slack 𝐹+𝑊 −𝑇 is weakly positive.
And from Lemma 6, the lowest possible 𝑡𝑖(0) is increasing in 𝐹 +𝑊 − 𝑇. (Note, 𝑇
includes 𝑡𝑖(0) but it doesn’t affect the reasoning below.) Therefore, a lower bound
of the minimum transfer needed to hold in each existing contract holder is given by
𝑡∗
𝑖
= inf{𝑡 : 𝑡 ≥ 𝑅𝑂

𝑖
(𝑣(𝑒𝑖) + 𝑡 , 𝑒𝑖)}. I.e., any offer must be satisfied 𝑡𝑖(0) ≥ 𝑡∗

𝑖
and a fortiori

𝑇 ≥ ∑𝑁
𝑖=1 𝑡

∗
𝑖
. Thus, we conclude

𝑊 + 𝑣(0) ≥
𝑁∑
𝑖=1

𝑡∗𝑖 . (145)

is a necessary condition of the existence of a cash exchange offer with borrowing.
Now we proceed to prove that this condition is also sufficient when𝑊 ≤ ∑𝑁

𝑖=1 𝑡
∗
𝑖

by
constructing a cash exchange offer that satisfies all the conditions (137), (138) and (139).
Consider the following transfer

𝑡𝑖(ℎ𝑖) =

𝑡∗
𝑖

if ℎ𝑖 = 0

0 otherwise
(146)

and the principal borrows the minimum 𝐹 :=
∑𝑁
𝑖=1 𝑡

∗
𝑖
−𝑊 to finance the cash offer .

Clearly, the condition (138) is satisfied by the choice of 𝐹, and condition (139) is satisfied
given the condition in the proposition. We only need to prove the IC (inequality 137) is
satisfied. Plugging in the definition of {𝑡∗

𝑗
} 𝑗∈𝒩 and 𝐹, the player 𝑖 deviate, he would get

𝑅𝑂
𝑖

(
𝑣(𝑒𝑖) + 𝐹 +𝑊 −∑

𝑗≠𝑖 𝑡
∗
𝑗
, 𝑒𝑖

)
= 𝑅𝑂

𝑖
(𝑣(𝑒𝑖) + 𝑡∗𝑖 , 𝑒𝑖) ≤ 𝑡∗

𝑖
which confirms the IC.

It is easy to see that this is the minimum cost exchange offer as any offer 𝑡𝑖 made to
agent 𝑖 must be higher than 𝑡∗

𝑖
in equilibrium. Thus

∑𝑁
𝑖=1 𝑡

∗
𝑖

achieves the lowest possible
cost.
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When𝑊 >
∑𝑁
𝑖=1 𝑡

∗
𝑖
, an exchange offer exists if the following system of inequalities

has a solution 
𝑡𝑖 ≥ 𝑅𝑂

𝑖
(𝑣(𝑒) +𝑊 − 𝑇 + 𝑡𝑖 , 𝑒𝑖),∀𝑖 ∈ 𝒩

𝑇 =
∑𝑁
𝑖=1 𝑡𝑖

. (147)

Let Δ = 𝑊 − 𝑇 and define 𝑡∗𝛿
𝑖

:= inf{𝑡 : 𝑡 ≥ 𝑅𝑂
𝑖
(𝑣(𝑒) + Δ + 𝑡𝑖 , 𝑒𝑖)}, the system of the

inequalities has a solution if and only if the equation

𝑁∑
𝑖=1

𝑡∗𝛿𝑖 =𝑊 − Δ (148)

has a solution. Notice that the LHS is weakly increasing in Δ by Lemma 6 while the
RHS is decreasing in Δ. At Δ = 0 the RHS is smaller than the RHS by the case condition
𝑊 >

∑𝑁
𝑖=1 𝑡

∗
𝑖
, and the RHS is zero at Δ =𝑊 ; Therefore, there must exist an Δ∗ ∈ (0,𝑊)

that solves the equation. We can similarly verify that the transfer

𝑡𝑖(ℎ𝑖) =

𝑡∗
𝑖
(Δ∗) if ℎ𝑖 = 0

0 otherwise
(149)

with borrowing 𝐹 = 0 constitute a cash exchange offer, which satisfies all the conditions
(137), (138) and (139). The fact that Δ∗ ∈ (0,𝑊) indicates that the principal will have to
pay more than

∑𝑁
𝑖=1 𝑡

∗
𝑖

but not her entire internal wealth𝑊 .
□

When the existing contracts have recourse to the assets, then any payment to other
agents through borrowing will have a “dilution” effect: if the principal increases the
payment to one agent, the RHS of Equation (137) would be lower, reducing the payoff
from holding out. Of course, one might suspect that the principal would also need to
borrow more to implement the repayment so that 𝐹 is also higher. But it is never in the
principal’s interest to do so. In the proof, we show that the optimal non-contingent
offer can be described by a fixed-point equation, with the optimal borrowing being just
to borrow enough to implement the exchange offers.

Example C.1 (Debt). Suppose the existing contracts are debts. Each agent has an outstanding
debt 𝐷𝑖 .
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𝑡

𝑅𝑂
𝑖 𝑡

𝑣(𝑒𝑖)

max{𝐷𝑖 , 𝑣(𝑒𝑖) + 𝑡}

𝑡∗
𝑖
= 𝐷𝑖

𝐷𝑖

Figure 3: Agents with Debts 𝐷𝑖 : 𝑅𝑂𝑖 (𝑣(𝑒𝑖) + 𝑡𝑖(0), 𝑒𝑖) = max{𝐷𝑖 , 𝑣(𝑒𝑖) + 𝑡𝑖(0)}

This example shows that when the existing contracts are debts, the only possible
situation in which a cash exchange is feasible is to pay off the debt of the existing
contracts.

Example C.2 (Equity). Now suppose every existing contract holder has an equity claim 𝛼𝑖 .

𝑡

𝑅𝑂
𝑖 𝑡

𝑣(𝑒𝑖)

𝑡∗
𝑖
= 𝛼

1−𝛼𝑣(𝑒𝑖)

𝛼
1−𝛼𝑣(𝑒𝑖)

Figure 4: Agent with Equity 𝛼𝑖 : 𝑅𝑂𝑖 (𝑣(𝑒𝑖) + 𝑡𝑖(0), 𝑒𝑖) = 𝛼(𝑣(𝑒𝑖) + 𝑡)

In contrast, the equity holder would have levered equity: he needs to be compensated
by more than his share of the asset when he holdouts because the ex-ante borrowing
increases the value of assets that he has recourse to.
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Proposition 20 (Asymmetry). Suppose the value creation is the same when each of the
shareholders holds outs, i.e., 𝑣(𝑒𝑖) = 𝑣1∀𝑖 ∈ 𝒩 . Then the cost of a cash exchange offer is larger
when the holdings are more asymmetric. That is, if we let compare two sequences of shareholders
𝛼 = (𝛼1, ..., 𝛼𝑁) and �̂� = (�̂�1, ..., �̂�𝑁) such that there exist 𝑖 , 𝑗 ∈ 𝒩

|𝛼𝑖 − 𝛼 𝑗 | > |�̂�𝑖 − �̂� 𝑗 | and 𝛼𝑘 ≠ �̂�𝑘∀𝑘 ≠ 𝑖 , 𝑗 , (150)

then the cost of the exchange offer is higher with the holding profile 𝛼 than �̂�.

Proof. We define 𝐴 =
∑𝑁
𝑖=1

𝛼𝑖
1−𝛼𝑖 . First, we will show 𝐴 is higher when 𝛼 is more

asymmetric, i.e., it is higher under 𝛼 and �̂�. And then, we will show the cost higher in
both the sufficient-internal-cash region and insufficient-internal-cash region.

Let
∑
𝑘≠𝑖 , 𝑗 𝛼𝑘 = 𝐾 and 𝛼𝑖 = 𝑎, and hence 𝛼 𝑗 = 1 − 𝐾 − 𝑎. Therefore

𝐴 =
∑
𝑘≠𝑖 , 𝑗

𝛼𝑘
1 − 𝛼𝑘

+ 𝛼𝑖
1 − 𝛼𝑖

+
𝛼 𝑗

1 − 𝛼 𝑗
=

∑
𝑘≠𝑖 , 𝑗

𝛼𝑘
1 − 𝛼𝑘

+ 𝑎

1 − 𝑎 + 1 − 𝐾 − 𝑎
1 − (1 − 𝐾 − 𝑎) (151)

Taking the derivative w.r.t. 𝑎, we have the first order derivative

1
(1 − 𝑎)2 − 1

(𝐾 + 𝑎)2 (152)

which is positive when 1−𝐾
2 < 𝑎 < 1 − 𝐾 and negative when 0 < 𝑎 < 1−𝐾

2 . When
|𝛼𝑖 − 𝛼 𝑗 | > |𝛼𝑖 − 𝛼 𝑗 | and 𝛼𝑖 + 𝛼 𝑗 = 𝛼𝑖 + 𝛼 𝑗 |, it must be the case that min{𝛼𝑖 , 𝛼 𝑗} <

min{�̂�𝑖 , �̂� 𝑗} and therefore a lower 𝐴 when the shareholder structure is 𝛼 than �̂�.
When the internal cash is insufficient, the total cost is directly given by 𝐴𝑣1, so it

is increasing in 𝐴. In the sufficient-cash region, for any slack Δ, the minimum cash
needed to hold in the last shareholder is given by

𝑡𝑖 = 𝛼𝑖(𝑣1 + Δ + 𝑡𝑖) =⇒ 𝑡𝑖 =
𝛼

1 − 𝛼
(𝑣1 + Δ) (153)

where Δ solves the equation
𝐴(𝑣1 + Δ) =𝑊 − Δ (154)

which gives

Δ =
𝑊 − 𝐴𝑣1
𝐴 + 1 . (155)
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Note that
dΔ
d𝐴 = −𝑊 + 𝑣1

(𝐴 + 1)2 < 0 (156)

and the total cost is given by𝑊 − Δ, which is increasing in 𝐴. □

C.2 Optimal non-contingent offers with access to externally raised
funds and that debt is not borne by the principal

In this extension, we consider another extension where the debt is imposed on the
firm’s asset, which affects the existing contract holders’ payoff.

To implement the outcome ℎ = 0 when the agent has access to the funds raised, the
set of necessary conditions is that

• The total payment can be financed by new borrowing and internal wealth

𝑁∑
𝑗=1

𝑡 𝑗(0) ≤ 𝐹 +𝑊 (157)

• Tendering is better off than holding out for A𝑖

𝑡𝑖(0) ≥ 𝑅𝑂𝑖
©«𝑣(𝑒𝑖) +𝑊 −

𝑁∑
𝑗=1, 𝑗≠𝑖

𝑡 𝑗(0), 𝑒𝑖ª®¬ ,∀𝑖 ∈ 𝒩 (158)

Since the new debt 𝐹 is paid ahead of the existing contract holder, it has no effect other
than relaxing the intertemporal constraint. So the optimal solution is independent of
the choice of 𝐹 as any excess borrowing would be undone by the repayment.

Proposition 21. The optimal non-contingent offer is given by

𝑡𝑖(0) = 𝑡∗𝑖 (Δ
∗) (159)

where 𝑡𝛿
𝑖
= inf{𝑡 ≥ 0 : 𝑡 ≥ 𝑅𝑂

𝑖
(𝑣(𝑒𝑖) + Δ + 𝑡 , 𝑒𝑖)} and Δ∗ solve the fixed point equation∑𝑁

𝑖=1 𝑡
∗𝛿
𝑖

=𝑊 − Δ.

Proof. Following the same analysis as in the proof of Proposition 19, the solution to the
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optimal non-contingent exchange offers can be described by the system of equations


𝑡𝑖 = 𝑅𝑂(𝑣(𝑒𝑖) +𝑊 − 𝑇 + 𝑡𝑖 , 𝑒𝑖) ∀𝑖 ∈ 𝒩

𝑇 =

𝑁∑
𝑖=1

𝑡𝑖
(160)

But different from Proposition 19, the term Δ =𝑊 − 𝑇 can be negative here. This can
be described by the fixed-point equation

𝑁∑
𝑖=1

𝑡∗𝛿𝑖 =𝑊 − Δ (161)

where 𝑡∗𝛿
𝑖

= inf{𝑡 ≥ 0 : 𝑡 ≥ 𝑅𝑂
𝑖
(𝑣(𝑒𝑖) + Δ + 𝑡 , 𝑒𝑖)}. Since the LHS is increasing in Δ and

the RHS decreasing, the LHS exceeds the RHS at Δ =𝑊 and □

Proposition 2 (Extreme Gauging). With fully contingent contracts, the principal can
uniquely implement the action profile ℎ = 0 and guarantees herself a value of 𝑣(0).

Proof. Consider the following offer: Let �(ℎ) = {𝑖 ∈ 𝒩 : ℎ𝑖 = 0} be the set of agents who
fully tender in ℎ =

∑
𝑖∉�(ℎ) ℎ𝑖𝑒𝑖 . If 𝒟(ℎ) = 𝒩 , 𝑅𝑖(𝑣(ℎ), ℎ) = �

𝑁 . If instead 𝒟(ℎ) = ∅, let

𝑅 𝑗(𝑣(ℎ), ℎ) =


0 if 𝑗 ≠ 1

𝑣(ℎ) otherwise
(162)

If �(ℎ)is neither ∅ nor 𝒩 , let

𝑅 𝑗(𝑣(ℎ), ℎ) =


0 if 𝑗 ∉ �(ℎ)
𝑣(ℎ)
|�(ℎ)| otherwise

∀𝑗 ∈ 𝒩 (163)

To see why ℎ = 0 is the unique equilibrium, first, let’s check every agent deviating
from 0 is not an equilibrium. If in action profile ℎ𝑎, all agents choosing ℎ𝑎

𝑖
≠ 0, then

agent 𝑖 gets the full project value 𝑣(ℎ𝑎) while others get nothing. It’s strictly profitable
for agent 𝑗 ≠ 1 to deviate to ℎ 𝑗 = 0 since this deviation would result in an increase of 𝑗’s
payoff by 𝑣((ℎ𝑎−𝑗 , 0)) > 0. Now let’s consider an action profile ℎ𝑝 where the nonempty
set 𝒟(ℎ𝑝) ≠ 𝒩 , then for any agent 𝑖 ∈ 𝒟, he gets 0 in the action profile while deviating
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to ℎ𝑖 = 0 would give him a positive payoff 𝑣(ℎ𝑝−𝑖 ,0)
𝑁−|𝒟(ℎ𝑝−𝑖 ,0)|

> 0. □

D Proofs for Section 4 (Optimal Exchange Offer with
Limited Commitment)

Relaxing 1-Lipschitz continuity I have used the Lipschitz condition in two steps:
i) calculating the highest alternative payoff the principal can obtain at the deviation
node by punishing the holdout on the deviation node; ii) substituting the required
off-path payoff to credibility constraint. In both cases, what matters is the maximum
punishment at the deviation node instead of that off-deviation node, i.e., on path. But
the maximum is no longer guaranteed without the 1-Lipschitz continuity.

I show here relaxing the continuity could lead to the absence of renegotiation-proof
contracts using an example. Suppose 𝑣(𝑒1) = 2. Consider a strictly increasing càdlàg
function

𝑅𝑂𝑖 (𝑣, 𝑒𝑖) =
1
3𝑣 +

1
21{𝑣≥1} (164)

the total payment given punishment 𝑥 is

𝑥 + 𝑅𝑂𝑖 (𝑣(𝑒2) − 𝑥, 𝑒𝑖) =𝑥 +
1
3(2 − 𝑥) + 1

21{2−𝑥≥1} (165)

=
2(1 + 𝑥)

3 + 1
21{𝑥≤1} (166)

and the optimal punishment would be slightly above 𝑥 = 1 but is never attained. Thus,
there would be no renegotiation-proof contracts since any contracts can be improved.

Lemma 1. Suppose 𝑓 (·) is a weakly increasing 1-Lipschitz function84 and 𝑎 is a positive
84To see how this Lipschitz condition affects the optimization problem, let’s heuristically discuss what

happens without it. Since 𝑓 (·) is a weakly increasing function, it has, at most, a zero-measure set of
discontinuous points and is differentiable almost everywhere. It only admits jump discontinuities by
Lebesgue’s Theorem, which also stipulates the non-differentiable points are either discontinuous, vertical
tangent points or kinky points. The optimal solution cannot be just to the right of a jump point. Otherwise,
the principal can reduce the total payment by increasing 𝑥 by a small 𝜖 and reduce the objective by a lot. The
same argument implies it cannot be at a vertical tangent point. So, any interior solution must either satisfy
the first-order condition or be at a kinky point. When the first condition is satisfied, it means 1 = 𝑓 ′(𝑎 − 𝑥),
i.e., any small increase or decrease in 𝑥 would just be offset by the response in 𝑓 (𝑎 − 𝑥). Put another way, in
the context of the model, the claims of the holdouts resemble debt locally at the optimal punishment. Finally,
let’s discuss the kinky point. One could increase 𝑥 without violating any constraints at the optimum. This
implies the function 𝑥 + 𝑓 (𝑎 − 𝑥) must have a non-negative right derivative at the optimum �̄�, i.e., 𝑓 (·) has a
left derivative weakly smaller than one at 𝑎 − �̄�. To focus on the interesting case and avoid tedious technical
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number. The solution to the following problem

min
𝑥∈[0,𝑎]

𝑔(𝑥) := 𝑥 + 𝑓 (𝑎 − 𝑥) (25)

is obtained at 𝑥 = 0 and the minimum value is 𝑓 (𝑎). Moreover, if 𝑓 (·) has a left derivative
𝑓 ′(𝑎) < 1, the solution is unique. Otherwise, any 𝑥 ∈ [0, �̄�], where �̄� = inf{𝑥 : 𝑓 ′(𝑎 − 𝑥) < 1},
solves the problem and any 𝑥 > �̄� does not.

Proof. By Rademacher’s theorem, Lipschitz continuity implies that 𝑓 is absolutely
continuous and differentiable almost everywhere in [0, 𝑎]. We take the first-order
derivatives

𝑔′(𝑥) = 1 − 𝑓 ′(𝑎 − 𝑥) ≥ 0, 𝑎.𝑒., (167)

so the function 𝑥 + 𝑓 (𝑎 − 𝑥) is weakly increasing. Therefore, 𝑥 = 0 is one of the
optimizers, and the minimum value is 𝑓 (𝑎).

When 𝑓 ′(𝑎) < 1, 𝑔′(𝑥) = 1− 𝑓 ′(𝑎 − 𝑥) is strictly positive at 𝑥 = 0 so 𝑥 = 0 is the unique
solution. To see why, suppose there’s also another minimizer 𝑥′ > 0, then 𝑔(𝑥) must be
flat on [0, 𝑥′], which means 𝑔′(𝑥) can only be non-zero on a set of Lebesgue measure
zero. But this is impossible as Darboux’s theorem requires that (𝑔′)−1([𝑔′(𝑎)/2, 𝑔′(𝑎)])
is also an interval, which has a positive Lebesgue measure.

When 𝑓 ′(𝑎) = 1, for any 𝑥 ∈ [0, �̄�), 1 − 𝑓 ′(𝑎 − 𝑥) = 0 so the function 𝑥 + 𝑓 (𝑎 − 𝑥)
is flat on [0, �̄�], so any 𝑥 ∈ [0, �̄�] is an optimizer. For any 𝑥 > �̄�, 𝑓 ′(𝑎 − 𝑥) < 1, or
equivalently 𝑔′(𝑥) > 0. Fix an 𝑥′ > �̄�, by Darboux’s theorem, there’s an 𝑥′′ ∈ (0, 𝑥′) such
that 𝑔′(𝑥′′) = 𝑔′(𝑥′)

2 . Moreover, since 𝑓 is absolutely continuous, it’s derivatives 𝑓 ′ is
integrable, i.e., 𝑓 ′ ∈ 𝐿1(0, 𝑎) and so is 𝑔′. Thus we can write

𝑔(𝑥) =𝑔(0) +
∫ 𝑥

0
𝑔′(𝑥)d𝑠 (168)

>𝑔(0) +
∫
(𝑔′)−1

( [
𝑔′(𝑥′)

2 ,𝑔′(𝑥′)
] ) 𝑔′(𝑠)d𝑠 (169)

>𝑔(0) + 𝑔′(𝑥′)
2 𝑚

(
(𝑔′)−1

( [
𝑔′(𝑥′)

2 , 𝑔′(𝑥′)
] ))

(170)

>𝑔(0). (171)

discussions on the unrealistic cases, we assume 1-Lipschitz.
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where 𝑚(·) is the Lebesgue measure. So, any 𝑥 > �̄� cannot be a minimizer. □

Lemma 2. Under Assumption A2, the highest payoff the principal can obtain at the deviating
profile 𝑒𝑖 with an IC contract �̃� ∈ ℐ(𝑒𝑖) is

𝑣(𝑒𝑖) − 𝑅𝑂𝑖 (𝑣(𝑒𝑖), 𝑒𝑖). (26)

Proof. I first construct an incentive compatible contract �̃� that delivers a payoff of
𝑣(𝑒𝑖) − 𝑅𝑂𝑖 (𝑣(𝑒𝑖), 𝑒𝑖) to the principal. The construction is similar to that in Proposition 2.
Let

�̃� 𝑗(𝑣(ℎ), ℎ) =



�/𝑁 if ℎ = 𝑒𝑖

0 if ℎ = 1 or 0

𝑣(ℎ)−�
|�(ℎ)| if ℎ ≠ 𝑒𝑖 , 1, 0 and 𝑗 ∈ �(ℎ)

0 if ℎ ≠ 𝑒𝑖 , 1, 0 and 𝑗 ∉ �(ℎ)

(172)

and
�̃�𝑖(𝑣(ℎ), ℎ) = 0 ∀ℎ. (173)

I will now show that with this proposal, for sufficiently small � ≥ 0, 𝑒𝑖 is an
equilibrium, and when � > 0 and 𝑅𝑂

𝑖
(·, ℎ) has a strictly positive right derivative at 0 for

all ℎ, the equilibrium is unique.

• For agent A𝑖 , as long as ℎ ≠ 𝑒𝑖 ,0 or 1, the total payment to the tendering agents
is 𝑣(ℎ) − � tendering results in a payoff of 0 while holding out yields a payoff of
𝑅𝑂
𝑖
(�, ℎ), so holding out is strictly better if � > 0 and 𝑅𝑂

𝑖
(·, ℎ) has a strictly positive

payoff. When everyone else holds out, holding out yields a payoff of 𝑅𝑂
𝑖
(𝑣(1), 1)

while tendering gives him nothing.

• For any other agent A𝑗 , non-tendering gives a payoff of zero, and tendering gives
a payoff of either �/𝑁 if everyone else other than A𝑖 tenders, or 𝑣(ℎ)−�

|�(ℎ)| otherwise,
which is positive for sufficiently small � > 0.

Thus, we proved �̃� is incentive compatible with 𝑒𝑖 .
For any arbitrary contract �̂� ∈ ℐ(𝑒𝑖), let 𝑥(𝑒𝑖 ; �̂�) =

∑
𝑘∈�(𝑒𝑖) 𝑅𝑘(𝑣(𝑒𝑖), 𝑒𝑖) be the payment

to the tendering agents and thus the total payment is

𝑥(𝑒𝑖 ; �̂�) + 𝑅𝑂𝑖 (𝑣(𝑒𝑖) − 𝑥(𝑒𝑖 ; �̂�), 𝑒𝑖) (174)
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Suppose the principal wants to find another contract �̂� to minimize the total payment.
Under Assumption A2, 𝑅𝑂

𝑖
(·, 𝑒𝑖) is weakly increasing and 1-Lipschitz, by Lemma 1, the

solution to the minimization problem above is obtained at 𝑥 = 0, which is achieved by
�̃� when � = 0. And the principal obtains a payoff of cannot obtain a higher payoff than
𝑣(𝑒𝑖) − 𝑅𝑂𝑖 (𝑣(𝑒𝑖), 𝑒𝑖). □

Proposition 3. When 𝑁 ≥ 2, under Assumption A2, the principal cannot obtain a strictly
higher value at ℎ = 0 with a strongly credible contingent contract than offering cash if and only
if for all 𝑖 ∈ 𝒩

𝜕

𝜕𝑤
𝑅𝑂𝑖 (𝑤, 𝑒𝑖)

���
𝑤↑𝑣(𝑒𝑖)

< 1. (27)

where ↑ indicates the limit from the left.85 Consequently, if this condition is satisfied, holdout
problems cannot be solved with any strongly credible contingent offers under Assumption A1.

Proof. To prove this result, I first show that when the condition in equation (27) is
satisfied for all𝑖, the contract 𝑅 is strongly credible if and only if the off-path punishment
at 𝑒𝑖 is 𝑥(𝑒𝑖) :=

∑
𝑗≠𝑖 𝑅 𝑗(𝑣(𝑒𝑖), 𝑒𝑖) = 0. Then, I calculate the value function of the principal

and show that it equals the valuing function when offering cash. Lastly, I show that the
principal can do strictly better when the condition in equation (27) is violated.

First, from Lemma 2, we know that at the deviation profile 𝑒𝑖 the principal was able
to obtain 𝑣(𝑒𝑖) − 𝑅𝑂𝑖 (𝑣(𝑒𝑖), 𝑒𝑖) using an incentive compatible contract. Therefore, the
credibility constraint at 𝑒𝑖 is

𝑣(𝑒𝑖) −
∑
𝑘≠𝑖

𝑅𝑘(𝑣(𝑒𝑖), 𝑒𝑖) − 𝑅𝑂𝑖

(
𝑣(𝑒𝑖) −

∑
𝑘≠𝑖

𝑅𝑘(𝑣(𝑒𝑖), 𝑒𝑖), 𝑒𝑖

)
≥ 𝛿

[
𝑣(𝑒𝑖) − 𝑅𝑂𝑖 (𝑣(𝑒𝑖), 𝑒𝑖)

]
(175)

Rearranging the terms, we obtain

𝑥(𝑒𝑖 ;𝑅) + 𝑅𝑂𝑖 (𝑣(𝑒𝑖) − 𝑥(𝑒𝑖 ;𝑅), 𝑒𝑖) ≤ (1 − 𝛿)𝑣(𝑒𝑖) + 𝛿𝑅𝑂𝑖 (𝑣(𝑒𝑖), 𝑒𝑖) (176)

where 𝑥(𝑒𝑖 ;𝑅) =
∑
𝑘≠𝑖 𝑅𝑘(𝑣(𝑒𝑖), 𝑒𝑖). When 𝛿 = 1, using Lemma 1, the unique solution

is 𝑥(𝑒𝑖 ;𝑅) = 0 when the first partial derivative 𝑅𝑂
𝑖
(𝑣(𝑒𝑖), 𝑒𝑖) is strictly smaller than 1 at

𝑣(𝑒𝑖). Since any punishment would be renegotiated away and the holdout would be

85Since 𝑅𝑂
𝑖
(·, 𝑒𝑖) is only meaningful on [0, 𝑣(𝑒𝑖)] and punishment usually reduces the value, we only look

at the left derivatives. It always exists given continuity at 𝑣(𝑒𝑖).
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paid 𝑅𝑂
𝑖
(𝑣(𝑒𝑖), 𝑒𝑖), in order to persuade the agent to tender, the principal has to pay at

least this much to A𝑖 , leaving at most

𝑣(0) −
𝑁∑
𝑖=1

𝑅𝑂𝑖 (𝑣(𝑒𝑖), 𝑒𝑖) (177)

to the principal, which is equivalent to offering cash. This is lower than 𝑐 under
Assumption A1; therefore, the restructuring plan is infeasible. □

Proposition 4. When existing securities are debt contracts 𝐷 = {𝐷𝑖}𝑖 , the principal’s value
function is

𝐽(0) = 𝑣(0) −
𝑁∑
𝑖=1

𝐷𝑖1𝐷𝑖<𝑣(𝑒𝑖) (31)

under the strong 𝛿-credibility constraint.

Proof. To prove this, we first show that the maximum possible punishment is �̄�𝛿(𝑒𝑖) =
(1 − 𝛿)(𝑣(𝑒𝑖) − 𝐷𝑖). This is obtained by finding the maximum 𝑥 such that

𝑥 + min{𝑣(𝑒𝑖) − 𝑥, 𝐷𝑖} ≤ 𝑣(𝑒𝑖) − 𝛿 [𝑣(𝑒𝑖) − min{𝑣(𝑒𝑖), 𝐷𝑖}] (178)

When 𝑣(𝑒𝑖) ≤ 𝐷𝑖 , the RHS is simplified to 𝑣(𝑒𝑖), while the LHS is always smaller than
𝑣(𝑒𝑖) as

𝑥 + min{𝑣(𝑒𝑖) − 𝑥, 𝐷𝑖} ≤ 𝑥 + min{𝑣(𝑒𝑖), 𝐷𝑖 + 𝑥} ≤ 𝑣(𝑒𝑖) (179)

so the maximum punishment is �̄�𝛿(𝑒𝑖) = 𝑣(𝑒𝑖). The holdout A𝑖 doesn’t get paid anything.
When 𝑣(𝑒𝑖) > 𝐷𝑖 , the LHS ranges from 𝐷𝑖 to 𝑣(𝑒𝑖) while the RHS (1 − 𝛿)𝑣(𝑒𝑖) + 𝛿𝐷𝑖

is a value strictly in between. So the maximum possible value is given by �̄�𝛿(𝑒𝑖) =
(1 − 𝛿)(𝑣(𝑒𝑖) − 𝐷𝑖). And the holdout is paid min{𝑣(𝑒𝑖) − �̄�𝛿(𝑒𝑖), 𝐷𝑖} = 𝐷𝑖 .

Thus, at ℎ = 0, the principal has to pay 𝐷𝑖 to any agent A𝑖 such that 𝐷𝑖 < 𝑣(𝑒𝑖) since
he could otherwise hold out and get paid in full. So the value function of the principal
is

𝐽(0) = 𝑣(0) −
𝑁∑
𝑖=1

𝐷𝑖1𝐷𝑖<𝑣(𝑒𝑖) (180)

under the strong 𝛿-credibility constraint. □
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Proposition 5. When existing securities are equities 𝛼 = {𝛼𝑖}𝑖 , the principal’s value function
on the set of strongly 𝛿-credible contracts is

𝐽(0) = 𝑣(0) − 𝛿
𝑁∑
𝑖=1

𝛼𝑖𝑣(𝑒𝑖) (34)

which is higher when the commitment is higher (𝛿 is smaller).

Proof. To prove this, I calculate the principal’s value function when the cost is sunk.
First, I show that the maximum possible punishment at 𝑒𝑖 is 𝑥(𝑒𝑖 ;𝑅) = (1 − 𝛿)𝑣(𝑒𝑖).

This is obtained by substituting the functional form 𝑅𝑂
𝑖
(𝑥, 𝑒𝑖) = 𝛼𝑖𝑥 into Equation (176),

which becomes

𝑥(𝑒𝑖 ;𝑅) + 𝛼𝑖(𝑣(𝑒𝑖) − 𝑥(𝑒𝑖 ;𝑅)) ≤ (1 − 𝛿)𝑣(𝑒𝑖) + 𝛿𝛼𝑖𝑣(𝑒𝑖) (181)

which gives 𝑥(𝑒𝑖 ;𝑅) ≤ (1 − 𝛿)𝑣(𝑒𝑖) so the maximum punishment that can be imposed
on A𝑖 is 𝑥(𝑒𝑖) = (1 − 𝛿)𝑣(𝑒𝑖).

Therefore, the principal has to pay at least 𝛼𝑖(𝑣(𝑒𝑖) − 𝑥(𝑒𝑖)) = 𝛼𝑖𝛿𝑣(𝑒𝑖) on path to A𝑖 .
The firm’s value function is

𝐽(0) = 𝑣(0) −
𝑁∑
𝑖=1

𝛿𝛼𝑖𝑣(𝑒𝑖) (182)

which is decreasing in 𝛿. □

Proposition 6. The principal’s value function 𝐽(0) on the set of strongly 𝛿-credible contracts is
weakly decreasing in 𝛿 for any existing contracts 𝑅𝑂 .

Proof. I first prove the maximum punishment 𝑥𝛿(𝑒𝑖), given by finding the largest 𝑥
subject to the inequality

𝑥 + 𝑅𝑂𝑖 (𝑣(𝑒𝑖) − 𝑥, 𝑒𝑖) ≤ 𝑣(𝑒𝑖) − 𝛿(𝑣(𝑒𝑖) − 𝑅𝑂𝑖 (𝑣(𝑒𝑖), 𝑒𝑖)) (183)

is decreasing in 𝛿 for any 𝑒𝑖 . I prove this auxiliary statement by contradiction. Suppose
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there exists 𝛿1 < 𝛿2 and 𝑥𝛿1(𝑒𝑖) < 𝑥𝛿2(𝑒𝑖) for some 𝑒𝑖 . Then we have

𝑥𝛿2(𝑒𝑖)+𝑅𝑂𝑖 (𝑣(𝑒𝑖)−𝑥
𝛿2(𝑒𝑖), 𝑒𝑖) ≤ 𝑣(𝑒𝑖)−𝛿2(𝑣(𝑒𝑖)−𝑅𝑂𝑖 (𝑣(𝑒𝑖), 𝑒𝑖)) < 𝑣(𝑒𝑖)−𝛿1(𝑣(𝑒𝑖)−𝑅𝑂𝑖 (𝑣(𝑒𝑖), 𝑒𝑖))

(184)
where the first inequality is given by the definition of 𝑥𝛿2(𝑒𝑖) and the second is by
𝛿2 > 𝛿1. Thus 𝑥𝛿2(𝑒𝑖) is a feasible value of 𝑥 when 𝛿 = 𝛿1 in equation (183). This
contradicts the optimality of 𝑥𝛿1(𝑒𝑖)! Thus, it must be 𝑥𝛿1(𝑒𝑖) ≥ 𝑥𝛿2(𝑒𝑖).

The principal’s value function

𝐽(0) = 𝑣(0) −
𝑁∑
𝑖=1

𝑅𝑂𝑖 (𝑣(𝑒𝑖) − 𝑥
𝛿(𝑒𝑖), 𝑒𝑖) (185)

is increasing in 𝑥𝛿(𝑒𝑖) for each 𝑒𝑖 since 𝑅𝑂
𝑖
(·, 𝑒𝑖) is increasing for each 𝑒𝑖 .

Combining these two facts, we arrive at the conclusion that 𝐽(0) is weakly decreasing
in 𝛿 for any 𝑅𝑂 .

□

Proposition 7 (Existence and Uniqueness). The set of 𝛿−credible contracts {𝒞(ℎ)}ℎ exists,
it is non-empty and unique.

Proof Overview To tackle this problem, we decompose the problem into two sub-
problems. First, for each ℎ, we assign a number 𝐽(ℎ), and define the sets of contracts
that are i) IC at each ℎ and ii) allow the principal to guarantee a payoff of at least 𝐽(ℎ):

𝒞𝛿(ℎ |𝐽) :=

{
𝑅 ∈ ℐ : 𝑣(ℎ̂) −

𝑁∑
𝑖=1

𝑢𝑖(ℎ̂𝑖 | ℎ̂−𝑖 , 𝑅) ≥ 𝛿𝐽(ℎ̂) ∀ℎ̂ ∈ ℬ(ℎ)
}

(SP1)

The set of contract 𝒞𝛿(·|𝐽) is no longer recursively defined, so we can easily see that the
set is unique, despite that it might be empty for some values of 𝐽. Indeed, we will show
in the proof that the 𝒞𝛿(ℎ |𝐽) is non-empty if 𝐽 ∈ ∏

ℎ[0, 𝛿−1(𝑣(ℎ) − 𝛿ℎ · 𝑅𝑂(𝑣(ℎ), ℎ))] for
𝛿 > 0. Second, for any sets of contracts ℛ available at ℎ, we define an upper bound of
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the value attainable by the principal using contracts within ℛ to be

𝐽(ℎ |ℛ) := sup
�̃�∈ℛ(ℎ)

𝑣(ℎ) −
𝑁∑
𝑖=1

𝑢𝑖(ℎ𝑖 |ℎ−𝑖 , �̃�) (SP2)

We follow the convention and define the supremum to be −∞ if the set ℛ(ℎ) is empty.
The supremum need not be attainable if the contract space ℛ is not compact or the
objective function is not continuous in �̃�. But regardless, we have the following Let 𝐽∗

be the vector that solves the fixed-point equation

𝐽(ℎ) = 𝐽(ℎ |𝒞𝛿(ℎ |𝐽)) ∀ℎ ∈ 𝐻, (186)

then 𝒞𝛿(·|𝐽∗) satisfies the definition of credible contracts in Definition 6. On the other hand,
for any credible contracts 𝒞𝛿∗ defined in Definition 6, whenever it exists, the value function
𝐽(ℎ |𝒞𝛿∗), as defined in Equation (SP2) solves the fixed-point equation (186).

Note the first 𝐽 on the RHS of equation (186) is part of the conditional operator 𝐽(·|·)
and hence not part of the solution 𝐽∗, which is a vector. The proof is largely standard and
formalizes the idea that the recursive definition can be characterized by a fixed-point
equation. Here, we look at the fixed point of the value function instead of the sets to
circumvent technical issues with the mapping between sets of contracts.

This approach is very similar to the classic dynamic contracting problems starting
from the seminal paper where they reduce the dynamic contract problem to a static
one given the continuation value. The main difference is that here, the recursion is over
the action space instead of time so that there is no order of dependence. Here, the value
functions of two different action profiles can mutually depend on each other, which
brings up the issue of existence and uniqueness. The next result says it is not a concern.

Proof. Proof. I first prove that 𝒞𝛿(·|𝐽∗) satisfies the definition of credible contracts. For
any contract 𝑅 ∈ 𝒞𝛿(ℎ |𝐽∗), the IC at ℎ is satisfied automatically, so we only need to check
that at any deviation node ℎ̂ ∈ ℬ(ℎ), it dominates any contract �̃� ∈ 𝒞𝛿(ℎ̂ |𝐽∗). From the
definition of 𝐽∗ and thus 𝒞𝛿(ℎ |𝐽∗), we know that for any 𝑅 ∈ 𝒞𝛿(ℎ |𝐽∗), we have

𝑣(ℎ̂) −
𝑁∑
𝑖=1

𝑢𝑖(ℎ̂𝑖 | ℎ̂−𝑖 , 𝑅) ≥ 𝛿𝐽∗(ℎ̂) ∀ℎ̂ ∈ ℬ(ℎ) (187)
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and that

𝐽∗(ℎ̂) = 𝐽(ℎ̂ |𝒞𝛿(ℎ̂ |𝐽∗)) = sup
�̃�∈𝒞𝛿(ℎ̂ |𝐽∗)

𝑣(ℎ̂) −
𝑁∑
𝑖=1

𝑢𝑖(ℎ̂𝑖 | ℎ̂−𝑖 , �̃�). (188)

Passing the inequality from the supremum to each contract in 𝒞𝛿(ℎ̂ |𝐽∗), we arrive at

𝑣(ℎ̂) −
𝑁∑
𝑖=1

𝑢𝑖(ℎ̂𝑖 | ℎ̂−𝑖 , 𝑅) ≥ 𝛿

[
𝑣(ℎ̂) −

𝑁∑
𝑖=1

𝑢𝑖(ℎ̂𝑖 | ℎ̂−𝑖 , �̃�)
]

∀�̃� ∈ 𝒞𝛿(ℎ̂ |𝐽∗) ∀ℎ̂ ∈ ℬ(ℎ)

(189)
which proves that 𝒞𝛿(·|𝐽∗) is a set of credible contracts.

Now I prove the other direction by showing that 𝐽(ℎ |𝒞𝛿∗) solves the fixed-point
equation (186), i.e., 𝐽(ℎ |𝒞𝛿∗) = 𝐽(ℎ |𝒞𝛿(ℎ |𝐽(ℎ |𝒞𝛿∗))). For any ℎ, by definition of 𝒞𝛿∗ and
𝐽(·|·), we have

𝐽(ℎ |𝒞𝛿∗) = sup
�̃�∈𝒞𝛿∗(ℎ)

𝑣(ℎ) −
𝑁∑
𝑖=1

𝑢𝑖(ℎ𝑖 |ℎ−𝑖 , �̃�) (190)

and that

𝒞𝛿∗(ℎ) =

𝑅 :
𝑢𝑖(ℎ𝑖 |ℎ−𝑖 , 𝑅) ≥ 𝑢𝑖(ℎ′𝑖 |ℎ−𝑖 , 𝑅) ∀ℎ′𝑖 ∈ 𝐻𝑖 ∀𝑖 ∈ 𝒩 &

𝑣(ℎ̂) −
𝑁∑
𝑖=1

𝑢𝑖(ℎ̂𝑖 | ℎ̂−𝑖 , 𝑅) ≥ 𝛿

[
𝑣(ℎ̂) −

𝑁∑
𝑖=1

𝑢𝑖(ℎ̂𝑖 | ℎ̂−𝑖 , �̃�)
]

∀�̃� ∈ 𝒞𝛿∗(ℎ̂) ∀ℎ̂ ∈ ℬ(ℎ)

 .
(191)

Substitute in the definition 𝒞𝛿∗(ℎ̂) and passing inequality to the supremum, we can
write

𝒞𝛿∗(ℎ) =

𝑅 :
𝑢𝑖(ℎ𝑖 |ℎ−𝑖 , 𝑅) ≥ 𝑢𝑖(ℎ′𝑖 |ℎ−𝑖 , 𝑅) ∀ℎ′𝑖 ∈ 𝐻𝑖 ∀𝑖 ∈ 𝒩 &

𝑣(ℎ̂) −
𝑁∑
𝑖=1

𝑢𝑖(ℎ̂𝑖 | ℎ̂−𝑖 , 𝑅) ≥ 𝛿𝐽(ℎ̂ |𝒞𝛿∗) ∀ℎ̂ ∈ ℬ(ℎ)

 = 𝒞𝛿(ℎ |𝐽(ℎ |𝒞𝛿∗)).

(192)
To see this, suppose instead 𝑣(ℎ̂) −∑𝑁

𝑖=1 𝑢𝑖(ℎ̂𝑖 | ℎ̂−𝑖 , 𝑅) < 𝛿𝐽(ℎ̂ |𝒞𝛿∗), then by definition of
sup, there exists a �̃� such that 𝑣(ℎ̂) −∑𝑁

𝑖=1 𝑢𝑖(ℎ̂𝑖 | ℎ̂−𝑖 , 𝑅) < 𝛿
[
𝑣(ℎ̂) −∑𝑁

𝑖=1 𝑢𝑖(ℎ̂𝑖 | ℎ̂−𝑖 , �̃�)
]
,

contradicting the definition of 𝒞𝛿∗(ℎ). Finally, applying the 𝐽 operator on the identity
𝒞𝛿∗(ℎ) = 𝒞𝛿(ℎ |𝐽(ℎ |𝒞𝛿∗)), we get 𝐽(ℎ |𝒞𝛿∗) = 𝐽(ℎ |𝒞𝛿(ℎ |𝐽(ℎ |𝒞𝛿∗))).

Thus, we established the equivalence of the recursive definition 6 and the fixed-point
characterization (186). □

110



The key step in the proof is that the constraint the credibility puts is asymmetric
for agents who deviate from holdout to tendering and for those who deviate from
tendering to holdout. In the former case, to deter tendering, we must reduce the
payoff from tendering for the deviating agent. This can be easily achieved by reducing
his payoff from tendering to 0. Doing so would not affect the credibility constraint
as it weakly reduces the total payoffs to all agents under the 1-Lipschitz condition,
which is weakly beneficial for the principal. However, to discourage an agent from
holding out, the principal must try to minimize his payoff off-path. However, there is
a limit to what the principal can achieve by imposing externalities on him. In other
words, the principal can only punish deviating agents by granting higher payoff to
other tendering agents, but doing so would weakly lower the principal’s payoff. There
will be no renegotiation as long as it’s still below the principal’s value function at the
deviation profile. So, the maximum punishment the principal can credibly impose on
the deviator on the deviation node is the one that makes her payoff equivalent to her
value function at the deviation node.

This asymmetry in constraints reveals an asymmetric inter-dependence of the value
functions that the value of 𝐽(ℎ |𝒞𝛿(ℎ |𝐽)) only depends on the values of 𝐽(ℎ̂ |𝐽) for the
profiles ℎ̂ where there are more deviating agents than ℎ, i.e., �(ℎ̂) ⊂ �(ℎ). Thus, we can
prove the existence by constructing a vector 𝐽∗ that solves the fixed-point equation (186)
in finite steps. We start from an arbitrary vector 𝐽0 in the feasible space (specified in the
proof) and calculate the value function on the action profile 1 on which everyone holds
out. It turns out that, as expected, the value function 𝐽(1|𝒞𝛿(1|𝐽0)) is independent of
the choice of 𝐽0. Then we replace the value of 𝐽(1) by 𝐽(1|𝒞𝛿(1|𝐽0)), and use that vector,
renamed 𝐽1, for the next iteration, i.e., calculating the value function 𝐽(ℎ |𝒞𝛿(ℎ |𝐽1)) on the
action profiles where exactly one agent tenders. Again, it turns out the value function
is independent of the initial choice 𝐽0: it only depends on the value 𝐽(1|𝒞𝛿(1|𝐽0)). We
update the vector and continue the process by calculating the value functions on
all the profiles where one more agent tenders. This process ends after we calculate
the value function on the node 0 on which everyone tenders and set the vector 𝐽𝑁+1

to be 𝐽∗. Finally, we conclude that the vector found 𝐽∗ is indeed the solution to the
fixed-point equation by noticing 𝐽∗(ℎ) = 𝐽(ℎ |𝒞𝛿(ℎ |𝐽 𝑘+1)) = 𝐽(ℎ |𝒞𝛿(ℎ |𝐽∗)) for any ℎ such
that |�(ℎ)| = 𝑘.

The uniqueness can be obtained by noticing that in the construction above, the fixed
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point found is independent of the choice of the initial 𝐽0. In the proof, I give a more
formal proof by contradiction, showing that there’s no other solution than the one
found using the procedure above.

Solving for fixed-point To show a fixed point 𝐽∗ exists and is unique, I first prove
that the set 𝒞𝛿(ℎ |𝐽) is non-empty for all 𝐽 ∈ ∏

ℎ[0, 𝛿−1(𝑣(ℎ) − 𝛿ℎ · 𝑅𝑂(𝑣(ℎ), ℎ))]; then I
display the asymmetry mentioned by solving the problem SP2 over the sets 𝒞𝛿(ℎ |𝐽) for
any vector 𝐽 ∈ ∏

ℎ[0, 𝛿−1(𝑣(ℎ) − 𝛿ℎ · 𝑅𝑂(𝑣(ℎ), ℎ))], i.e., I want to calculate 𝐽(ℎ |𝒞𝛿(ℎ |𝐽)).

Non-emptiness of 𝒞𝛿(ℎ |𝐽) I first show that 𝒞𝛿(ℎ |𝐽) is non-empty for any 𝐽 ∈∏
ℎ[0, 𝛿−1(𝑣(ℎ) − 𝛿ℎ · 𝑅𝑂(𝑣(ℎ), ℎ))]. To do so, I only need to give one example of

a contract, and an obvious one would be this “no-punishment contract”.

• At ℎ, the principal pays to whoever holds out 0 through new contracts, and to
whoever tenders what he would otherwise obtain, he holds out, i.e.,

𝑅𝑖(𝑣(ℎ), ℎ) =


0 ∀𝑖 ∉ �(ℎ)

𝑅𝑂
𝑖
(𝑣(ℎ + 𝑒𝑖), ℎ) ∀𝑖 ∈ �(ℎ)

(193)

The IC, the first constraint in the definition (Equation SP1), is clearly satisfied.

• At ℎ̂ ∈ ℬ(ℎ), the principal pays nothing to the tendering agents and any arbitrary
amount, e.g., 0, to those who hold out in the new contract, which they don’t accept.
Then the total payout to all agents is

0 + ℎ̂ · 𝑅𝑂(𝑣(ℎ̂) − 0, ℎ̂) (194)

which is no larger than 𝑣(ℎ̂) − 𝛿𝐽(ℎ̂) so the second constraint in the definition
(Equation SP1) is also satisfied.

• It takes any arbitrary values on any other action profiles.

Since at least one contract exists in 𝒞𝛿(ℎ |𝐽) when 𝐽 ∈ ∏
ℎ[0, 𝛿−1(𝑣(ℎ) − 𝛿ℎ ·𝑅𝑂(𝑣(ℎ), ℎ))],

it’s non-empty.
Now, I prove another auxiliary lemma that would be used in the main proof.
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Lemma 8. Let 𝑓 (·) and 𝑔(·) be two weakly increasing 1-Lipschitz functions and so is their sum.
Given two constant 𝑎, 𝑏 > 0, the solution to the problem

inf
𝑥∈[0,𝑎]

𝑔(𝑎 − 𝑥) (195)

subject to
𝑔(𝑎 − 𝑥) + 𝑓 (𝑎 − 𝑥) + 𝑥 ≤ 𝑏 (196)

exists if and only of 𝑓 (𝑎) + 𝑔(𝑎) ≤ 𝑏 and one solution is given by

�̄� = max{𝑥 ∈ [0, 𝑎] : 𝑔(𝑎 − 𝑥) + 𝑓 (𝑎 − 𝑥) + 𝑥 = 𝑏}. (197)

Proof. Invoking Lemma 1, the fact that 𝑓 (·)+𝑔(·) is 1-Lipschitz implies that 𝑔(𝑎−𝑥)+ 𝑓 (𝑎−
𝑥) + 𝑥 is a weakly increasing function and its minimum can always be attained at 𝑥 = 0,
so the feasible set is non-empty if and only if 𝑓 (𝑎) + 𝑔(𝑎) ≤ 𝑏. Moreover, the continuity
of 𝑓 (·) and 𝑔(·) also implies the feasible set {𝑥 ∈ [0, 𝑎], 𝑔(𝑎 − 𝑥) + 𝑓 (𝑎 − 𝑥) + 𝑥 ≤ 𝑏} is
compact so the infimum can be attained whenever it is non-empty.

Since 𝑔(𝑎 − 𝑥) is a weakly decreasing function of 𝑥, its minimum can be achieved at
the largest 𝑥 in which the constraint is satisfied. Since 𝑔(𝑎 − 𝑥) + 𝑓 (𝑎 − 𝑥) + 𝑥 is a weakly
increasing, an obvious one is simply �̄� = max{𝑥 ∈ [0, 𝑎] : 𝑔(𝑎−𝑥)+ 𝑓 (𝑎−𝑥)+𝑥 = 𝑏}. □

Asymmetry in ICs We want to show the value of 𝐽 only affects the credibility
constraints at the deviation node ℎ̂, which in turn affects the IC constraint through the
off-path threat 𝑢𝑖(ℎ′𝑖 |ℎ−𝑖 , 𝑅). To be more specific, let’s say, at ℎ, the agent A𝑗 deviates,
i.e., ℎ̂ = (ℎ−𝑗 , 1 − ℎ 𝑗), which includes two cases:

• Agent 𝑗 deviates from 1 to 0, i.e., ℎ 𝑗 = 1 and ℎ̂ 𝑗 = 0: In this case, the on-path IC for
agent 𝑗 is

𝑢𝑗(ℎ 𝑗 |ℎ−𝑗 , 𝑅) = 𝑅𝑂𝑗
©«𝑣(ℎ) −

∑
𝑖∈�(ℎ)

𝑅𝑖(𝑣(ℎ), ℎ), ℎª®¬ ≥ 𝑅 𝑗(𝑣(ℎ̂), ℎ̂) (198)

using the fact that after taking the deviation ℎ′
𝑗
= 1 − ℎ 𝑗 , the action profile arrives
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at ℎ̂. The credibility constraint at ℎ̂ can be written as

𝑅 𝑗(𝑣(ℎ̂), ℎ̂) +
∑
𝑖∈�(ℎ)

𝑅𝑖(𝑣(ℎ̂), ℎ̂) +
∑
𝑖∉�(ℎ̂)

𝑅𝑂𝑖
©«𝑣(ℎ̂) −

∑
𝑘∈�(ℎ)

𝑅𝑘(𝑣(ℎ̂), ℎ̂) − 𝑅 𝑗(𝑣(ℎ̂), ℎ̂), ℎ̂ª®¬
≤𝑣(ℎ̂) − 𝛿𝐽(ℎ̂).

(199)

I used the fact that �(ℎ̂) = �(ℎ)∐{ 𝑗} and consequently { 𝑗}∐ �(ℎ̂)𝑐 ∐ �(ℎ) = 𝒩 ,
which allows me to write the total payoff on the left-hand side to all agents in three
parts.

In order to maximize the principal’s payoff at ℎ, I want to set the total payoff to
the agents

∑𝑁
𝑖=1 𝑢𝑖(ℎ𝑖 |ℎ−𝑖 , 𝑅) as small as possible. The problem is only relaxed if

𝑅 𝑗(𝑣(ℎ̂), ℎ̂) is made smaller.

I want to ask what’s the smallest possible value for 𝑅 𝑗(𝑣(ℎ̂), ℎ̂). Under the assump-
tion that ℎ · 𝑅𝑂(·, ℎ̂) = ∑𝑁

𝑖=1 ℎ𝑖 · 𝑅𝑂𝑖 (·, ℎ̂) is 1-Lipschitz, without additional constraints,
the minimum of the left-hand side can be achieved by setting 𝑅 𝑗(𝑣(ℎ̂), ℎ̂) = 0
and

∑
𝑖∈�(ℎ) 𝑅𝑖(𝑣(ℎ̂), ℎ̂) = 0 simultaneously by Lemma 1. This constitutes a so-

lution to the minimization problem if and only if 𝛿𝐽(ℎ̂) ≤ 𝑣(ℎ̂) − ℎ̂ · 𝑅𝑂(𝑣(ℎ̂), ℎ̂).
Moreover, the IC is reduced from 𝑅𝑂

𝑗

(
𝑣(ℎ) −∑

𝑖∈�(ℎ) 𝑅𝑖(𝑣(ℎ), ℎ), ℎ
)
≥ 𝑅 𝑗(𝑣(ℎ̂), ℎ̂)

to 𝑅𝑂
𝑗

(
𝑣(ℎ) −∑

𝑖∈�(ℎ) 𝑅𝑖(𝑣(ℎ), ℎ), ℎ
)
≥ 0 by setting 𝑅 𝑗(𝑣(ℎ̂), ℎ̂) to 0, which always

holds as 𝑅𝑂
𝑗

is assumed to be non-negative.

This tells us that in order to prevent the agent A𝑗 from deviating to tendering, I
could just set the payoff of tendering to zero for agent 𝑗 without affecting any other
constraints, so neither the IC nor the credibility constraint has a bite as long as
𝛿𝐽(ℎ̂) ≤ 𝑣(ℎ̂) − ℎ̂ · 𝑅𝑂(𝑣(ℎ̂), ℎ̂).

• Agent 𝑗 deviates from 0 to 1, i.e., ℎ 𝑗 = 0 and ℎ̂ 𝑗 = 1. The on-path IC for agent 𝑗 is

𝑢𝑗(ℎ 𝑗 |ℎ−𝑗 , 𝑅) = 𝑅 𝑗(𝑣(ℎ), ℎ) ≥ 𝑅𝑂𝑗
©«𝑣(ℎ̂) −

∑
𝑖∈�(ℎ̂)

𝑅𝑖(𝑣(ℎ̂), ℎ̂), ℎ̂ª®¬ (200)

Again, the problem can be relaxed if we can make 𝑅𝑂
𝑗

(
𝑣(ℎ̂) −∑

𝑖:ℎ̂𝑖=0 𝑅𝑖(𝑣(ℎ̂), ℎ̂), ℎ̂
)
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smaller, if unimpeded by the credibility constraint at ℎ̂. The credibility constraint
now is

∑
𝑖∈�(ℎ̂)

𝑅𝑖(𝑣(ℎ̂), ℎ̂) + 𝑅𝑂𝑗
©«𝑣(ℎ̂) −

∑
𝑖∈�(ℎ̂)

𝑅𝑖(𝑣(ℎ̂), ℎ̂), ℎ̂ª®¬ (201)

+
∑
𝑘∉�(ℎ)

𝑅𝑂
𝑘

©«𝑣(ℎ̂) −
∑
𝑖∈�(ℎ̂)

𝑅𝑖(𝑣(ℎ̂), ℎ̂), ℎ̂ª®¬ ≤ 𝑣(ℎ̂) − 𝛿𝐽(ℎ̂) (202)

Again, we are using the fact that { 𝑗}∐ �(ℎ̂)∐ �(ℎ)𝑐 = 𝒩 . And again, the left-hand
side could be minimized by setting

∑
𝑖∈�(ℎ̂) 𝑅𝑖(𝑣(ℎ̂), ℎ̂) to zero without affecting

other constraints under 1-Lipschitz condition using Lemma 1. So the condition for
the existence of the solution is again 𝛿𝐽(ℎ̂) ≤ 𝑣(ℎ̂) − ℎ̂ · 𝑅𝑂(𝑣(ℎ̂), ℎ̂).

However, setting
∑
𝑖∈�(ℎ̂) 𝑅𝑖(𝑣(ℎ̂), ℎ̂) to zero,86 despite of minimizing the total pay-

off to { 𝑗}∐ �(ℎ)𝑐 , doesn’t necessarily minimize 𝑅𝑂
𝑗

(
𝑣(ℎ̂) −∑

𝑖∈�(ℎ̂) 𝑅𝑖(𝑣(ℎ̂), ℎ̂), ℎ̂
)

as the value of it is 𝑅𝑂
𝑗
(𝑣(ℎ̂), ℎ̂) instead of zero. I could further increase the

value of
∑
𝑖∈�(ℎ̂) 𝑅𝑖(𝑣(ℎ̂), ℎ̂), the value of the LHS might also increase until the

constraint is binding, without additional constraints. Using Lemma 8, we know that
𝑅𝑂
𝑗

(
𝑣(ℎ̂) −∑

𝑖∈�(ℎ̂) 𝑅𝑖(𝑣(ℎ̂), ℎ̂), ℎ̂
)

is minimized at

�̄�𝛿(𝐽(ℎ̂); ℎ̂) :=max
{
𝑥 ∈ [0, 𝑣(ℎ̂)] : 𝑅𝑂𝑗

(
𝑣(ℎ̂) − 𝑥, ℎ̂

)
+ 𝑥+ (203)∑

𝑘∉�(ℎ)
𝑅𝑂
𝑘

(
𝑣(ℎ̂) − 𝑥, ℎ̂

)
= 𝑣(ℎ̂) − 𝛿𝐽(ℎ̂)

}
(204)

=max
{
𝑥 ∈ [0, 𝑣(ℎ̂)] : ℎ̂ · 𝑅𝑂

(
𝑣(ℎ̂) − 𝑥, ℎ̂

)
+ 𝑥 = 𝑣(ℎ̂) − 𝛿𝐽(ℎ̂)

}
, (205)

using the fact { 𝑗}∐ �(ℎ)𝑐 = �(ℎ̂)𝑐 . Note the solution exists because 0 + ℎ̂ ·
𝑅𝑂

(
𝑣(ℎ̂), ℎ̂

)
= 𝑣(ℎ̂) − 𝐽(ℎ̂) ≤ 𝑣(�̂�) − 𝛿𝐽(ℎ̂) ≤ 𝑣(ℎ̂) + ℎ̂ · 𝑅𝑂

(
0, ℎ̂

)
and the LHS is

a continuous function of 𝑥 . The maximum is attainable because the zeros of a
Lipschitz function on a closed interval are a compact set.

In what follows, we will call this the maximum possible punishment (or threat)

86Note, I do not require 𝑅 to be IC at ℎ̂ so it can be set to 0. The alternative contract �̃� that can be proposed
needs to be IC, but it’s captured in the 𝐽(ℎ̂).
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at ℎ̂, and write it as �̄�𝛿(ℎ̂) when the value function 𝐽(ℎ̂) is plugged in recursively.
Again, we will drop 𝛿 from the notation when it equals 1.

The minimum possible value of𝑅𝑂
𝑗

(
𝑣(ℎ̂) −∑

𝑖∈�(ℎ̂) 𝑅𝑖(𝑣(ℎ̂), ℎ̂), ℎ̂
)

is𝑅𝑂
𝑗

(
𝑣(ℎ̂) − �̄�(𝐽(ℎ̂); ℎ̂), ℎ̂

)
.

This tells us that the credibility constraint does have a bite in order to persuade
agent 𝑗 to tender.

Note that the function �̄�𝛿(·; ℎ̂) is not necessarily continuous. It admits a jump
whenever ℎ̂ · 𝑅𝑂(·, ℎ̂) has a flat region.

Remark: One caveat though is that the contract 𝑅 need not be the same one when ℎ̂ is
considered from other profiles. Readers might notice that in the first case when we
set 𝑅 𝑗(𝑣(ℎ̂), ℎ̂) = 0 and

∑
𝑖∈�(ℎ) 𝑅𝑖(𝑣(ℎ̂), ℎ̂) = 0, we only consider the deviation from ℎ to

ℎ̂ = ℎ − 𝑒 𝑗 , but the value of the contract 𝑅 on ℎ̂ would matter if we view ℎ̂ as deviation
from other action profiles. In particular, we can divide them into two categories:

• Profile ℎ̂ as deviation from ℎ̂ + 𝑒𝑖 for some 𝑖 ∈ �(ℎ̂) and 𝑖 ≠ 𝑗. Since �(ℎ̂) =

�(ℎ)∐{ 𝑗} = �(ℎ̂ + 𝑒𝑖)
∐{𝑖}, setting 𝑅𝑘(𝑣(ℎ̂), ℎ̂) to zero for all 𝑘 ∈ �(ℎ̂) coincides

with minimization of agent 𝑖’s payoff when preventing agent 𝑖 deviating from ℎ̂+ 𝑒𝑖
to ℎ̂. Therefore, we can set them to zero without worrying about other deviations.

• Profile ℎ̂ as deviation from ℎ̂ − 𝑒𝑖 for some 𝑖 ∉ �(ℎ̂). According to the analysis
in the second case, in order to prevent this type of deviation while minimizing
the outside option of the deviator, we need to have

∑
𝑖∈�(ℎ̂) 𝑅𝑖(𝑣(ℎ̂), ℎ̂) = �̄�(𝐽(ℎ̂); ℎ̂).

This condition cannot be satisfied simultaneously if �̄�𝛿(𝐽(ℎ̂); ℎ̂) > 0.

Similarly, the same issue occurs when we set
∑
𝑖∈�(ℎ̂) 𝑅𝑖(𝑣(ℎ̂), ℎ̂) = �̄�𝛿(𝐽(ℎ̂); ℎ̂) the in

second deviation case. However, this is not an issue as we are calculating the contracts
in 𝒞𝛿(ℎ |𝐽) that maximize the principal’s payoff at ℎ, it need not be the same contract
with the one in 𝒞𝛿(ℎ − 𝑒 𝑗 + 𝑒𝑖 |𝐽) that maximizes principal’s payoff at ℎ − 𝑒 𝑗 + 𝑒𝑖 , i.e.,

∀ 𝑅 ∈ arg max
𝒞𝛿(ℎ |𝐽)

𝑣(ℎ) −
𝑁∑
𝑖=1

𝑢𝑖(ℎ𝑖 |ℎ−𝑖 , �̃�) (206)

≠⇒ 𝑅 ∈ arg max
𝒞𝛿(ℎ̃ |𝐽)

𝑣(ℎ) −
𝑁∑
𝑖=1

𝑢𝑖(ℎ̃𝑖 | ℎ̃−𝑖 , �̃�) for ℎ̃ = ℎ − 𝑒 𝑗 + 𝑒𝑖 : 𝑖 ≠ 𝑗 (207)
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Summary of existence and uniqueness In summary, the condition for a credible to
exist is that for any deviation ℎ̂ ∈ ℬ(ℎ), the highest value 𝐽(ℎ̂) that can be alternatively
obtained using a credible contract at ℎ̂ is smaller than the difference between the asset
value 𝑣(ℎ̂) and the collective holdout payout ℎ̂ · 𝑅𝑂(𝑣(ℎ̂), ℎ̂), i.e.,

𝛿𝐽(ℎ̂) ≤ 𝑣(ℎ̂) − ℎ̂ · 𝑅𝑂(𝑣(ℎ̂), ℎ̂) ∀ℎ̂ ∈ ℬ(ℎ). (208)

Moreover, the analysis above shows that, for any 𝐽 ∈ ∏
ℎ[0, 𝛿−1(𝑣(ℎ)−ℎ ·𝑅𝑂(𝑣(ℎ), ℎ))],

the value 𝐽(ℎ |𝒞𝛿(ℎ |𝐽)) depends only on 𝐽(ℎ + 𝑒𝑖) for some 𝑖 ∈ �(ℎ), and recursively on
any ℎ′ ≥ ℎ. On the contrary, the value 𝐽(ℎ − 𝑒 𝑗) for some 𝑗 ∉ �(ℎ) does not affect the
value of 𝐽(ℎ |𝒞𝛿(ℎ |𝐽)) and recursively so does any ℎ′ not in the upper contour set of ℎ:
{ℎ′ : ℎ′ ≥ ℎ}.

Construction of the fixed point: The discussion above allows us to calculate the 𝐽∗

via the following procedure for 𝛿 > 0. In particular, we want to emphasize that we are
not calculating 𝐽(ℎ |𝒞𝛿(ℎ |𝐽)) for a specific 𝐽.

1. First we decompose 𝐻 = {0, 1}𝑁 into 𝑁 + 1 disjoint sets

𝐻 𝑘 = {ℎ : �(ℎ) = 𝑘} for 𝑘 = 0, ..., 𝑁 (209)

on which exactly 𝑘 agents tender.

2. We calculate the 𝐽(ℎ |𝒞𝛿(ℎ |𝐽0)) on 𝐻0 = {1} for any fixed 𝐽0 ∈ ∏
ℎ[0, 𝛿−1(𝑣(ℎ) − ℎ ·

𝑅𝑂(𝑣(ℎ), ℎ))]. Since at ℎ = 1, none of the credibility constraints matter, and the ICs
are simply

𝑅𝑂𝑖 (1|1−𝑖 , 1) = 𝑅𝑂𝑖 (𝑣(1, 1)) ≥ 0 ∀𝑖 ∈ 𝒩 (210)

so we can calculate the value function

𝐽∗(1) := 𝐽(1|𝒞𝛿(1|𝐽0)) = 𝑣(1) −
𝑁∑
𝑖=1

𝑅𝑂𝑖 (𝑣(1, 1)) = 𝑅𝑂0 (𝑣(1), 1) (211)

and the maximum possible punishment

�̄�𝛿(1) := �̄�𝛿(𝐽∗(1), 1) = 𝑣(1) − 𝛿𝐽∗(1) = 𝛿1 · 𝑅𝑂(𝑣(1, 1)) + (1 − 𝛿)𝑣(1). (212)
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Then, we update our 𝐽0 to 𝐽1 as follows

𝐽1(ℎ) =

𝐽0(ℎ) if ℎ ∉ 𝐻0

𝐽∗(ℎ) if ℎ ∈ 𝐻0
(213)

3. Now instead of calculating 𝐽(ℎ |𝒞𝛿(ℎ |𝐽0)) on 𝐻1 = {1 − 𝑒𝑖}𝑖∈𝒩 , we calculate
𝐽(ℎ |𝒞𝛿(ℎ |𝐽1)). Given that, we can calculate the action profile with one fewer
1, i.e., ℎ = 1 − 𝑒𝑖 , the only relevant constraint is

𝑅𝑖(𝑣(ℎ), ℎ) ≥ 𝑅𝑂𝑖 (𝑣(1) − �̄�
𝛿(1), 1) (214)

and we obtain the value function

𝐽∗(1 − 𝑒𝑖) :=𝑣(1 − 𝑒𝑖) − 𝑅𝑂𝑖
(
𝑣(1) − �̄�𝛿(𝐽1(1); 1), 1

)
(215)

−
∑
𝑗≠𝑖

𝑅𝑂𝑗

(
𝑣(1 − 𝑒𝑖) − 𝑅𝑂𝑖

(
𝑣(1) − �̄�𝛿(𝐽1(1); 1), 1

)
, 1 − 𝑒𝑖

)
(216)

=𝑣(1 − 𝑒𝑖) − 𝑅𝑂𝑖
(
𝑣(1) − �̄�𝛿(1), 1

)
(217)

− ⟨1 − 𝑒𝑖 , 𝑅𝑂⟩
(
𝑣(1 − 𝑒𝑖) − 𝑅𝑂𝑖

(
𝑣(1) − �̄�𝛿(1), 1

)
, 1 − 𝑒𝑖

)
(218)

To calculate �̄�𝛿(𝐽(1 − 𝑒𝑖); 1 − 𝑒𝑖), we need to find the largest solution to

(1 − 𝑒𝑖) · 𝑅𝑂(𝑣(1 − 𝑒𝑖) − 𝑥, 1 − 𝑒𝑖) + 𝑥 = 𝑣(1 − 𝑒𝑖) − 𝛿𝐽∗(1 − 𝑒𝑖) (219)

where the RHS is

(1 − 𝛿)𝑣(1 − 𝑒𝑖) + 𝛿𝑅𝑂𝑖

(
𝑣(1) − �̄�𝛿(1), 1

)
(220)

+ 𝛿⟨1 − 𝑒𝑖 , 𝑅𝑂⟩
(
𝑣(1 − 𝑒𝑖) − 𝑅𝑂𝑖

(
𝑣(1) − �̄�𝛿(1), 1

)
, 1 − 𝑒𝑖

)
(221)

If we substitute 𝑥 = 𝑅𝑂
𝑖

(
𝑣(1) − �̄�𝛿(1), 1

)
into the expression, the LHS yields

𝑅𝑂𝑖

(
𝑣(1) − �̄�𝛿(1), 1

)
+ ⟨1 − 𝑒𝑖 , 𝑅𝑂⟩

(
𝑣(1 − 𝑒𝑖) − 𝑅𝑂𝑖

(
𝑣(1) − �̄�𝛿(1), 1

)
, 1 − 𝑒𝑖

)
(222)
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which is smaller than the RHS as

(1 − 𝛿)𝑣(1 − 𝑒𝑖) ≥ (1 − 𝛿)𝑅𝑂𝑖
(
𝑣(1) − �̄�𝛿(1), 1

)
(223)

+ (1 − 𝛿)⟨1 − 𝑒𝑖 , 𝑅𝑂⟩
(
𝑣(1 − 𝑒𝑖) − 𝑅𝑂𝑖

(
𝑣(1) − �̄�𝛿(1), 1

)
, 1 − 𝑒𝑖

)
.

(224)

And if we choose 𝑥 = 𝑣(1 − 𝑒𝑖), then the LHS is 𝑣(1 − 𝑒𝑖). By continuity, a solution
must exist. The maximum can be attained because, for a continuous function, the
pre-image of a singleton is a closed set, which is also bounded here.

In particular, when 𝛿 = 1, 𝑥 = 𝑅𝑂
𝑖
(𝑣(1) − �̄�(1), 1) is a solution to the equation above

and thus by Lemma 1

�̄�(1 − 𝑒𝑖) = �̄�(𝐽(1 − 𝑒𝑖); 1 − 𝑒𝑖) = 𝑅𝑂𝑖 (𝑣(1) − �̄�(1), 1) (225)

+ inf
{
𝑥 ≥ 0, 𝜕

𝜕𝑣
(1 − 𝑒𝑖) · 𝑅𝑂

(
𝑣(1 − 𝑒𝑖) − 𝑅𝑂𝑖 (𝑣(1) − �̄�(1), 1) − 𝑥, 1 − 𝑒𝑖

)
< 1

}
.

(226)

the second term of which is zero if the holdout agents do not collectively take
all the asset value and positive otherwise The we update the value of 𝐽1 to 𝐽2 as
follows

𝐽2(ℎ) =

𝐽1(ℎ) if ℎ ∉ 𝐻1

𝐽∗(ℎ) if ℎ ∈ 𝐻1
(227)

𝑘 + 3. Now we carry out the calculation by induction: Suppose 𝐽∗(·), �̄�𝛿(·) are defined on
all 𝐻� for � = 0, 1, . . . , 𝑘, and 𝐽 𝑘+1 is also defined. We solve for 𝐽∗(·), �̄�𝛿(·) defined
on all𝐻 𝑘+1 by solving for 𝐽(ℎ |𝒞𝛿(ℎ |𝐽 𝑘+1)) and update 𝐽 𝑘+1 to 𝐽 𝑘+2. For any ℎ ∈ 𝐻 𝑘+1,
the relevant constraints are

𝑅𝑖(𝑣(ℎ), ℎ) ≥ 𝑅𝑂𝑖 (𝑣(ℎ + 𝑒𝑖) − �̄�
𝛿(ℎ + 𝑒𝑖), ℎ + 𝑒𝑖). (228)

The RHS is known as ℎ + 𝑒𝑖 ∈ 𝐻 𝑘 . We re-iterate the principal’s problem following
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the simplification above:

max
𝑅

𝑣(ℎ) −
∑
𝑖∈�(ℎ)

𝑅𝑖(𝑣(ℎ), ℎ) −
∑
𝑗∉�(ℎ)

𝑅𝑂𝑗
©«𝑣(ℎ) −

∑
𝑖∈�(ℎ)

𝑅𝑖(𝑣(ℎ), ℎ), ℎª®¬ (229)

subject to the constraints


𝑅𝑂
𝑗

(
𝑣(ℎ) −∑

𝑖∈�(ℎ) 𝑅𝑖(𝑣(ℎ), ℎ), ℎ
)
≥ 0 ∀𝑗 ∉ �(ℎ)

𝑅 𝑗(𝑣(ℎ), ℎ) ≥ 𝑅𝑂
𝑗

(
𝑣(ℎ + 𝑒 𝑗) − �̄�𝛿(ℎ + 𝑒 𝑗), ℎ + 𝑒 𝑗

)
∀𝑗 ∈ �(ℎ)

(230)

The first set of constraints for the holdouts {𝑖 ∈ 𝒩 : ℎ𝑖 = 1} are naturally satisfied
by the feasibility constraints, so we only have credibility constraints for tendering
agents.

Again, under the assumption that ℎ · 𝑅𝑂(·, ℎ) is 1-Lipschitz, the objective is weakly
decreasing in each on-path payoff 𝑅 𝑗(𝑣(ℎ), ℎ) for each 𝑗 such that ℎ 𝑗 = 0.

And we have

𝐽∗(ℎ) := 𝐽(ℎ |𝒞𝛿(ℎ |𝐽 𝑘+1)) = 𝑣(ℎ) −
∑
𝑖∈�(ℎ)

𝑅𝑂𝑖

(
𝑣(ℎ + 𝑒𝑖) − �̄�𝛿(ℎ + 𝑒𝑖), ℎ + 𝑒𝑖

)
−

∑
𝑗∉�(ℎ)

𝑅𝑂𝑗
©«𝑣(ℎ) −

∑
𝑖∈�(ℎ)

𝑅𝑂𝑖

(
𝑣(ℎ + 𝑒𝑖) − �̄�𝛿(ℎ + 𝑒𝑖), ℎ + 𝑒𝑖

)
, ℎ

ª®¬ . (231)

To calculate the maximum possible punishment at ℎ, we find the largest solution
to the equation

ℎ · 𝑅𝑂(𝑣(ℎ) − 𝑥, ℎ) + 𝑥 = 𝑣(ℎ) − 𝛿𝐽∗(ℎ) (232)

Using a similar argument as in Step 3, the maximum solution exists and is unique,
and we calculate

�̄�𝛿(ℎ) = max{𝑥 ∈ [0, 𝑣(ℎ)] : ℎ · 𝑅𝑂(𝑣(ℎ) − 𝑥, ℎ) + 𝑥 = 𝑣(ℎ) − 𝛿𝐽∗(ℎ)}. (233)
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In particular, when 𝛿 = 1, the maximum possible punishment

�̄�(ℎ) =
∑
𝑖∈�(ℎ)

𝑅𝑂𝑖 (𝑣(ℎ + 𝑒𝑖) − �̄�(ℎ + 𝑒𝑖), ℎ + 𝑒𝑖) (234)

+ inf
𝑥 ≥ 0 : 𝜕

𝜕𝑣
ℎ · 𝑅𝑂 ©«𝑣(ℎ) −

∑
𝑖∈�(ℎ)

𝑅𝑂𝑖 (𝑣(ℎ + 𝑒𝑖) − �̄�(ℎ + 𝑒𝑖), ℎ + 𝑒𝑖) − 𝑥, ℎª®¬ < 1
 .

(235)

We also update 𝐽 𝑘+1 to 𝐽 𝑘+2 as follows

𝐽 𝑘+2(ℎ) =

𝐽 𝑘+1(ℎ) if ℎ ∉ 𝐻 𝑘+1

𝐽∗(ℎ) if ℎ ∈ 𝐻 𝑘+1
(236)

𝑁 + 3. Finally, after calculating 𝐽∗ for 𝑘 = 𝑁 − 1, we obtain 𝐽∗ = 𝐽𝑁+1, and we need to verify
that it satisfies

𝐽∗(ℎ) = 𝐽(ℎ |𝒞𝛿(ℎ |𝐽∗)). (237)

This could be easily done by observing that 𝐽∗(ℎ) = 𝐽(ℎ |𝒞𝛿(ℎ |𝐽 𝑘+1)) = 𝐽(ℎ |𝒞𝛿(ℎ |𝐽∗))
for any ℎ ∈ 𝐻 𝑘 for 𝑘 = 0, 1, ..., 𝑁 − 1.

Finally, the uniqueness should be obvious, noticing the 𝐽∗ we calculated in the
procedure is independent of the initial choice 𝐽0. But the readers may wonder if
there’s a fixed point not found through the procedures above. To alleviate this concern,
suppose there exists to exist points 𝐽 and 𝐽 such that 𝐽 ≠ 𝐽 and 𝐽(ℎ) = 𝐽(ℎ |𝒞𝛿(ℎ |𝐽))
(resp. 𝐽(ℎ) = 𝐽(ℎ |𝒞𝛿(ℎ |𝐽))) for any ℎ. Since 𝐽(1|𝒞𝛿(1|𝐽)) doesn’t depend on any 𝐽, it
must be that 𝐽(1) = 𝐽(1|𝒞𝛿(1|𝐽)) = 𝐽(1|𝒞𝛿(1|𝐽)) = 𝐽(b). Then there must be an ℎ such that
𝐽(ℎ) = 𝐽(ℎ). Let

𝑘 = min{𝑘 ≥ 1 : ∃ℎ ∈ 𝐻 𝑘 : 𝐽(ℎ) ≠ 𝐽(ℎ)} (238)

Then on all the action profiles ℎ ∈ 𝐻 𝑘−1, 𝐽(ℎ) = 𝐽(ℎ), then we would have for all ℎ ∈ 𝐻 𝑘

𝐽(ℎ) = 𝐽(ℎ |𝒞𝛿(ℎ |𝐽)) = 𝐽(ℎ |𝒞𝛿(ℎ |𝐽)) = 𝐽(ℎ), (239)

contradicting the definition of 𝑘. Thus, the solution to the fixed point equation (186) is
unique.
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□

Proposition 8. The pair of vectors {𝐽∗(ℎ), �̄�𝛿(ℎ)}ℎ∈{0,1}𝑁 is the pair of the principal’s value
function 𝐽∗ and the maximum punishment �̄�𝛿 at each node ℎ if and only if they satisfy the
following recursive relation

𝐽∗(ℎ) = 𝑣(ℎ) − 𝑥(ℎ) −
∑
𝑗∉�(ℎ)

𝑅𝑂𝑗
(
𝑣(ℎ) − 𝑥(ℎ), ℎ

)
(37)

where
𝑥(ℎ) :=

∑
𝑖∈�(ℎ)

𝑅𝑂𝑖

(
𝑣(ℎ + 𝑒𝑖) − �̄�𝛿(ℎ + 𝑒𝑖), ℎ + 𝑒𝑖

)
(38)

is the minimum punishment to implement ℎ, and

�̄�𝛿(ℎ) = max{𝑥 ∈ [0, 𝑣(ℎ)] : ℎ · 𝑅𝑂(𝑣(ℎ) − 𝑥, ℎ) + 𝑥 = 𝑣(ℎ) − 𝛿𝐽∗(ℎ)} (39)

with the initial condition �̄�(1) = 0.

Proof. The “only if” part is derived in the proof of 7, and the “if” part is by uniqueness. □

Lemma 3. When {𝑅𝑂
𝑖
}𝑖 are equity contracts, i.e., 𝑅𝑂

𝑖
(𝑣, ℎ) = 𝛼𝑖𝑣 for all ℎ, the maximum

possible punishment on the action profile ℎ satisfies the recursive relation

�̄�𝛿(ℎ) = (1 − 𝛿)𝑣(ℎ) + 𝛿
∑
𝑖∈�(ℎ)

𝛼𝑖(𝑣(ℎ + 𝑒𝑖) − �̄�𝛿(ℎ + 𝑒𝑖)) ∀ℎ ≠ 1 (40)

with the initial condition �̄�𝛿(1) = 0 if either
∑𝑁
𝑖=1 𝛼𝑖 = 1 or 𝑣(1) = 0.

Proof. We first calculate the initial condition at ℎ = 1. Since credibility constraint matters
at 1, the principal obtains her highest value by paying every agent his holdout payoff

𝐽(1) = 𝑣(1) − 1 · 𝑅𝑂(𝑣(1), 1) (240)

To solve for �̄�𝛿(1), I solve the equation

𝑥 + 1 · 𝑅𝑂(𝑣(1) − 𝑥, 1) = (1 − 𝛿)𝑣(1) + 𝛿1 · 𝑅𝑂(𝑣(1), 1) (241)
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which, in the equity case, can be written as

𝑥 + ⟨1, 𝛼⟩(𝑣(1) − 𝑥) = (1 − 𝛿)𝑣(1) + 𝛿⟨1, 𝛼⟩𝑣(1) (242)

Rearranging terms

(1 − ⟨1, 𝛼⟩)𝑥 = (1 − 𝛿)(1 − ⟨1, 𝛼⟩)𝑣(1) (243)

If ⟨1, 𝛼⟩ ≠ 1, the only solution is

�̄�𝛿(1) = (1 − 𝛿)𝑣(1) = 0 (244)

using the normalization 𝑣(1) = 0.
If instead ⟨1, 𝛼⟩ = 1, the equation is reduced to an identity that always holds

regardless of the choice of 𝑥. Thus, the largest possible solution is

�̄�𝛿(1) = 𝑣(1) = 0 (245)

So, in either case, the initial condition is �̄�𝛿(1) = 0. Note, here �̄�𝛿(1) = 0 holds either
when the asset value is zero or if all agents don’t have the full stake of the asset, which
in case there’s some equity that is either held by the agents outside the game or the
principal herself and the principal can create punishment to by allocating assets to this
particular guy. Otherwise, there’s no feasible threat at 1.

Now, I show the iterative relation. When �̄�𝛿(ℎ + 𝑒𝑖) is known, I can write the value
function at ℎ as

𝐽∗(ℎ) =𝑣(ℎ) −
∑
𝑖∈�(ℎ)

𝛼𝑖
(
𝑣(ℎ + 𝑒𝑖) − �̄�𝛿(ℎ + 𝑒𝑖)

)
(246)

− ⟨ℎ, 𝛼⟩ ©«𝑣(ℎ) −
∑
𝑖∈�(ℎ)

𝛼𝑖
(
𝑣(ℎ + 𝑒𝑖) − �̄�𝛿(ℎ + 𝑒𝑖)

)ª®¬ (247)

=𝑣(ℎ) − (1 − ⟨ℎ, 𝛼⟩)
∑
𝑖∈�(ℎ)

𝛼𝑖
(
𝑣(ℎ + 𝑒𝑖) − �̄�𝛿(ℎ + 𝑒𝑖)

)
− ⟨ℎ, 𝛼⟩𝑣(ℎ) (248)
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Then in order to find �̄�𝛿(ℎ), we solve the equation

⟨ℎ, 𝛼⟩(𝑣(ℎ) − 𝑥) + 𝑥 = 𝑣(ℎ) − 𝛿𝐽∗(ℎ). (249)

Substitute in 𝐽∗(ℎ) and we write the RHS as

𝑣(ℎ) − 𝛿𝐽∗(ℎ) = (1 − 𝛿)𝑣(ℎ) + 𝛿⟨ℎ, 𝛼⟩𝑣(ℎ) + 𝛿(1 − ⟨ℎ, 𝛼⟩)
∑
𝑖∈�(ℎ)

𝛼𝑖
(
𝑣(ℎ + 𝑒𝑖) − �̄�𝛿(ℎ + 𝑒𝑖)

)
.

(250)

Rearranging terms yields

(1−⟨ℎ, 𝛼⟩)𝑥 = (1−𝛿)(1−⟨ℎ, 𝛼⟩)𝑣(ℎ)+𝛿(1−⟨ℎ, 𝛼⟩)
∑
𝑖∈�(ℎ)

𝛼𝑖
(
𝑣(ℎ + 𝑒𝑖) − �̄�𝛿(ℎ + 𝑒𝑖)

)
(251)

Whenever ⟨ℎ, 𝛼⟩ ≠ 1, which is true for all ℎ ≠ 1, there’s a unique solution

�̄�𝛿(ℎ) = (1 − 𝛿)𝑣(ℎ) + 𝛿
∑
𝑖∈�(ℎ)

𝛼𝑖
(
𝑣(ℎ + 𝑒𝑖) − �̄�𝛿(ℎ + 𝑒𝑖)

)
(252)

Thus, I proved the lemma. □

Proposition 9. For equity contracts, the maximum possible punishment on action profile ℎ
takes the following alternating multi-linear form

�̄�(ℎ) = (1 − 𝛿)𝑣(ℎ) +
|�(ℎ)|∑
𝑘=1

(−𝛿)𝑘+1

(|�(ℎ)| − 𝑘)!
∑

𝜎∈Σ(�(ℎ))

(
𝑘∏
𝑠=1

𝛼𝜎(𝑠)

)
𝑣

(
ℎ +

𝑘∑
𝑠=1

𝑒𝜎(𝑠)

)
(41)

where �(ℎ) = {𝑖 : ℎ𝑖 = 0} is the set of tendering agents and Σ(�(ℎ)) is the set of all the
permutations on �(ℎ). The highest payoff the principal can credibly obtain at 0 is

𝐽(0) = 𝑣(0) +
𝑁∑
𝑘=1

(−𝛿)𝑘
(𝑁 − 𝑘)!

∑
𝜎∈Σ(𝒩)

(
𝑘∏
𝑠=1

𝛼𝜎(𝑠)

)
𝑣

(
𝑘∑
𝑠=1

𝑒𝜎(𝑠)

)
. (42)

Proof. To prove this result, we need to show that i) the initial condition is satisfied and
that ii) the equation (40) is satisfied when we plug the equation (41) in. The initial
condition is very easy to verify: at 1, there are no tendering agents, so the RHS is
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non-existent.
Before plugging, we want to state several basic facts about the set of permutations.

By definition, �(ℎ) = �(ℎ + 𝑒𝑖) ∪ {𝑖}, and thus |�(ℎ + 𝑒𝑖)| = |�(ℎ)| − 1. Moreover,
consider two sets of permutations Σ(�(ℎ + 𝑒𝑖)) and Σ(�(ℎ)). It’s easy to see that
|Σ(�(ℎ))| = |�(ℎ)| · |Σ(�(ℎ + 𝑒𝑖))| but conditional on the 𝑘th element being 𝑖, the subset
{𝜎 ∈ Σ(�(ℎ)) : 𝜎(𝑘) = 𝑖} is isomorphic to Σ(�(ℎ + 𝑒𝑖)). Moreover the disjoint union of
them is isomorphic to Σ(ℎ). That is,∐
𝑖∈�(ℎ)

Σ(�(ℎ + 𝑒𝑖)) �
∐
𝑖∈�(ℎ)

{𝜎 ∈ Σ(�(ℎ)) : 𝜎(𝑘) = 𝑖} � Σ(�(ℎ)) ∀ 𝑘 = 1, ..., |�(ℎ)| (253)

Now we plug the solution in Equation (41) into the recursive equation (40), the right
hand side of the equation (40) is (1 − 𝛿)𝑣(ℎ) + 𝛿

∑
𝑖∈�(ℎ) 𝛼𝑖(𝑣(ℎ + 𝑒𝑖) − �̄�(ℎ + 𝑒𝑖)). The

second term is

𝛿
∑
𝑖∈�(ℎ)

𝛼𝑖(𝑣(ℎ + 𝑒𝑖) − �̄�(ℎ + 𝑒𝑖))

=𝛿
∑
𝑖∈�(ℎ)

𝛼𝑖
©«𝛿𝑣(ℎ + 𝑒𝑖) −

|�(ℎ+𝑒𝑖)|∑
𝑘=1

(−𝛿)𝑘+1

(|�(ℎ + 𝑒𝑖)| − 𝑘)!
∑

𝜎∈Σ(�(ℎ+𝑒𝑖))

(
𝑘∏
𝑠=1

𝛼𝜎(𝑠)

)
𝑣

(
ℎ + 𝑒𝑖 +

𝑘∑
𝑠=1

𝑒𝜎(𝑠)

)ª®¬
=

𝛿2

(|�(ℎ)| − 1)!
∑

𝜎∈Σ(�(ℎ))
𝛼𝜎(1)𝑣

(
ℎ + 𝑒𝜎(1)

)
+

∑
𝑖∈�(ℎ)

|�(ℎ)|∑
𝑘′=2

(−𝛿)𝑘′+1

(|�(ℎ)| − 𝑘′)!
∑

𝜎∈Σ(�(ℎ+𝑒𝑖))

(
𝛼𝑖

𝑘′−1∏
𝑠=1

𝛼𝜎(𝑠)

)
𝑣

(
ℎ + 𝑒𝑖 +

𝑘′−1∑
𝑠=1

𝑒𝜎(𝑠)

)
=

𝛿2

(|�(ℎ)| − 1)!
∑

𝜎∈Σ(�(ℎ))
𝛼𝜎(1)𝑣

(
ℎ + 𝑒𝜎(1)

)
+

|�(ℎ)|∑
𝑘=2

(−𝛿)𝑘+1

(|�(ℎ)| − 𝑘)!
∑
𝑖∈�(ℎ)

∑
𝜎∈Σ(�(ℎ)):𝜎(𝑘)=𝑖

(
𝑘∏
𝑠=1

𝛼𝜎(𝑠)

)
𝑣

(
ℎ +

𝑘∑
𝑠=1

𝑒𝜎(𝑠)

)
=

|�(ℎ)|∑
𝑘=1

(−𝛿)𝑘+1

(|�(ℎ)| − 𝑘)!
∑

𝜎∈Σ(�(ℎ))

(
𝑘∏
𝑠=1

𝛼𝜎(𝑠)

)
𝑣

(
ℎ +

𝑘∑
𝑠=1

𝑒𝜎(𝑠)

)
where the first quality is the result with �̄�(ℎ+𝑒𝑖) directly plugged in; the second equality
is the separation of the first term and the rest, with the replacement 𝑘′ = 𝑘 + 1. Note,
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we have the 1
(|�(ℎ)|−1)! term because |Σ(�(ℎ))| = |�(ℎ)| · |Σ(�(ℎ + 𝑒𝑖))| = |�(ℎ)| · (�(ℎ) − 1)!

so the term is used to offset the repetitive counting. In the third equality, we switch the
indicator to 𝑘, and change the order of the summation using the isomorphism between
{𝜎 ∈ Σ(�(ℎ)) : 𝜎(𝑘) = 𝑖} and Σ(�(ℎ + 𝑒𝑖)). The last line combines the two parts, using
the isomorphism in equation (253).

This proves that the solution (41) solves the recursive equation (40).
At ℎ = 0, the maximum punishment is also �̄�𝛿(0) = 𝑣(0) − 𝛿𝐽(0), which gives us that

𝐽(0) = 𝛿−1(𝑣(0) − �̄�𝛿(0)) = 𝑣(0) +
𝑁∑
𝑘=1

(−𝛿)𝑘
(𝑁 − 𝑘)!

∑
𝜎∈Σ(𝒩)

(
𝑘∏
𝑠=1

𝛼𝜎(𝑠)

)
𝑣

(
𝑘∑
𝑠=1

𝑒𝜎(𝑠)

)
(254)

where I have used �(0) = 𝒩 and |�(0)| = 𝑁 .
This proves the value function at 𝐽(0) is the one given in the lemma.

□

D.1 𝛿-credible contracts with debts

Now, suppose the existing securities are debts. Each agent A𝑖 holds a debt contract
with face value 𝐷𝑖 . For simplicity, I use the vector 𝐷 = {𝐷𝑖}𝑖 to denote the profile of
existing securities. Given a profile ℎ, the total outstanding debt (not including the
potentially newly issued) is given by the inner product 𝐷 · ℎ. Applying the general
formulation of the recursive relation of the maximum credible punishment, we can
write it for the debt case as follows.

Lemma 9. For debt contracts 𝐷 = {𝐷𝑖}𝑖 , the maximum possible punishment on the profile
ℎ ≠ 1 is given by the recursive relation

�̄�𝛿(ℎ) =

𝑣(ℎ) if 𝑥(ℎ) ≥ 𝑣(ℎ) − 𝐷 · ℎ or 𝛿 = 0

(1 − 𝛿)(𝑣(ℎ) − 𝐷 · ℎ) + 𝛿𝑥(ℎ) otherwise
(255)

with the initial condition �̄�𝛿(1) = 0 where

𝑥(ℎ) :=
∑
𝑖∈�(ℎ)

min
{

𝐷𝑖

𝐷 · (ℎ + 𝑒𝑖)
[
𝑣(ℎ + 𝑒𝑖) − �̄�𝛿(ℎ + 𝑒𝑖)

]
, 𝐷𝑖

}
(256)
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is the sum of the minimal payments to hold in the tendering agents.

Proof. When ℎ = 1, there is no tendering agents so by definition �̄�𝛿(1) = 0.
Consider any ℎ ≠ 1, the principal’s value function at ℎ is given by

𝐽(ℎ) =𝑣(ℎ) −
∑
𝑖∈�(ℎ)

min
{

𝐷𝑖

𝐷 · (ℎ + 𝑒𝑖)
[
𝑣(ℎ + 𝑒𝑖) − �̄�𝛿(ℎ + 𝑒𝑖)

]
, 𝐷𝑖

}
(257)

− min
𝑣(ℎ) −

∑
𝑖∈�(ℎ)

min
{

𝐷𝑖

𝐷 · (ℎ + 𝑒𝑖)
[
𝑣(ℎ + 𝑒𝑖) − �̄�𝛿(ℎ + 𝑒𝑖)

]
, 𝐷𝑖

}
, 𝐷 · ℎ


(258)

=𝑣(ℎ) − min
𝑣(ℎ), 𝐷 · ℎ +

∑
𝑖∈�(ℎ)

min
{

𝐷𝑖

𝐷 · (ℎ + 𝑒𝑖)
[
𝑣(ℎ + 𝑒𝑖) − �̄�𝛿(ℎ + 𝑒𝑖)

]
, 𝐷𝑖

}
(259)

=max
0, 𝑣(ℎ) − 𝐷 · ℎ −

∑
𝑖∈�(ℎ)

min
{

𝐷𝑖

𝐷 · (ℎ + 𝑒𝑖)
[
𝑣(ℎ + 𝑒𝑖) − �̄�𝛿(ℎ + 𝑒𝑖)

]
, 𝐷𝑖

}
(260)

The corresponding equation for the maximum punishment is

𝑥 + min {𝑣(ℎ) − 𝑥, 𝐷 · ℎ} ≤ 𝑣(ℎ) − 𝛿𝐽(ℎ) = (1 − 𝛿)𝑣(ℎ) (261)

+ 𝛿 min
𝑣(ℎ), 𝐷 · ℎ +

∑
𝑖∈�(ℎ)

min
{

𝐷𝑖

𝐷 · (ℎ + 𝑒𝑖)
[
𝑣(ℎ + 𝑒𝑖) − �̄�𝛿(ℎ + 𝑒𝑖)

]
, 𝐷𝑖

} (262)

When 𝐷 · ℎ + ∑
𝑖∈�(ℎ) min

{
𝐷𝑖

𝐷·(ℎ+𝑒𝑖)
[
𝑣(ℎ + 𝑒𝑖) − �̄�𝛿(ℎ + 𝑒𝑖)

]
, 𝐷𝑖

}
≥ 𝑣(ℎ) or 𝛿 = 0, the

inequality always holds because

• The LHS is at most 𝑣(ℎ): min {𝑣(ℎ) − 𝑥, 𝐷 · ℎ} + 𝑥 = min {𝑣(ℎ), 𝐷 · ℎ + 𝑥} ≤ 𝑣(ℎ)

• The RHS is simply 𝑣(ℎ)

so the largest punishment is �̄�𝛿 = 𝑣(ℎ);
Otherwise, there’s an interior solution as the LHS varies from 𝐷 · ℎ to 𝑣(ℎ) while the

RHS is a constant in-between:
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• It is strictly smaller than 𝑣(ℎ) because 𝑣(ℎ) − 𝛿𝐽(ℎ) < 𝑣(ℎ) by the positivity of 𝐽(ℎ)
and 𝛿.

• It is larger than 𝐷 · ℎ because both 𝑣(ℎ) and

min
𝑣(ℎ), 𝐷 · ℎ +

∑
𝑖∈�(ℎ)

min
{

𝐷𝑖

𝐷 · (ℎ + 𝑒𝑖)
[
𝑣(ℎ + 𝑒𝑖) − �̄�𝛿(ℎ + 𝑒𝑖)

]
, 𝐷𝑖

}
are larger than 𝐷 · ℎ.

The interior solution is given by solving 𝑥 + 𝐷 · ℎ = 𝑅𝐻𝑆 when the RHS is strictly
smaller than 𝑣(ℎ), which yields

�̄�𝛿(ℎ) = (1 − 𝛿) (𝑣(ℎ) − 𝐷 · ℎ) + 𝛿
∑
𝑖∈�(ℎ)

min
{

𝐷𝑖

𝐷 · (ℎ + 𝑒𝑖)
[
𝑣(ℎ + 𝑒𝑖) − �̄�𝛿(ℎ + 𝑒𝑖)

]
, 𝐷𝑖

}
(263)

Thus we complete the proof. □

This lemma says that when the asset value is low enough, the principal can credibly
punish the holdouts by giving all the asset value to the tendering agents since she will
not be paid anyway. But, if the asset value is high, then such punishment hurts the
principal, and there’s a limit on the punishment, which consists of two parts: i) the value
exceeding the full payment to the holdouts 𝑣(ℎ) − 𝐷 · ℎ lost due to discounting; ii) the
discounted payment to each tendering agents if he were to hold out. The second case is
similar to the situation where outstanding securities are equities, but the complication
comes from the fact that there are two cases on each profile ℎ depending on the
magnitude of the asset value versus the total outstanding debt of the holdouts with an
additional recursive component for payment to tendering agents. The formulation that
the holdouts’ debt is subtracted from the asset value seems to suggest that all holdouts
would be paid in full in the second case, and it is indeed true:

Lemma 10. Each holdout 𝑖 ∉ �(ℎ) is either paid nothing or in full at any ℎ ≠ 1. More
specifically, the value that can be distributed to the holdouts and the principal herself is

𝑣(ℎ) − �̄�𝛿(ℎ)

= 0 if 𝑥(ℎ) ≥ 𝑣(ℎ) − 𝐷 · ℎ or 𝛿 = 0

> 𝐷 · ℎ otherwise,
(264)
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where 𝑥(ℎ) is defined in Lemma 9.

Proof. The proof is obtained by simply calculating 𝑣(ℎ) − �̄�𝛿(ℎ) using the recursive
equation in Lemma 9

𝑣(ℎ)−�̄�𝛿(ℎ) =


0 if
∑
𝑖∈�(ℎ) min

{
𝐷𝑖

𝐷·(ℎ+𝑒𝑖)
[
𝑣(ℎ + 𝑒𝑖) − �̄�𝛿(ℎ + 𝑒𝑖)

]
, 𝐷𝑖

}
≥ 𝑣(ℎ) − 𝐷 · ℎ or 𝛿 = 0

𝛿
(
𝑣(ℎ) − 𝐷 · ℎ −∑

𝑖∈�(ℎ) min
{

𝐷𝑖

𝐷·(ℎ+𝑒𝑖)
[
𝑣(ℎ + 𝑒𝑖) − �̄�𝛿(ℎ + 𝑒𝑖)

]
, 𝐷𝑖

})
+ 𝐷 · ℎ

(265)
and the non-negativity of the first term in the second case. Since 𝑣(ℎ) − 𝐷 · ℎ −∑
𝑖∈�(ℎ) min

{
𝐷𝑖

𝐷·(ℎ+𝑒𝑖)
[
𝑣(ℎ + 𝑒𝑖) − �̄�𝛿(ℎ + 𝑒𝑖)

]
, 𝐷𝑖

}
is strictly positive, the second case is

always positive. □

Thus, either no holdouts are paid anything, or all of them are paid in full. This
allows us to describe the recursive relation using an indicator variable:

Lemma 11. Let η = {�(ℎ)}ℎ ∈ {0, 1}2𝑁 be a vector of indicator functions such that �(ℎ) = 1 if
and only if 𝛿 > 0 and 𝑣(ℎ) − �̄�𝛿(ℎ) ≥ 𝐷 · ℎ. Then the recursive relation in Lemma 9 can be
described as

�(ℎ) =


0 if 𝛿 = 0

1{𝑣(ℎ)≥𝐷·ℎ} if 𝛿 ≠ 0 and ℎ = 1

1{𝑣(ℎ)>𝐷·ℎ+∑
𝑖∈�(ℎ) 𝐷𝑖�(ℎ+𝑒𝑖)} otherwise

. (266)

Proof. The case when 𝛿 = 0 is trivial since �(ℎ) = 0 for all ℎ by definition.
At ℎ = 1, since no punishment can be imposed �̄�𝛿(1) = 0, �(1) = 1 if and only if

𝑣(ℎ) ≥ 𝐷 · ℎ by definition.
At any ℎ ≠ 1, by Lemma 10 the condition 𝑣(ℎ) − �̄�𝛿(ℎ) ≥ 𝐷 · ℎ is satisfied if and

only if
∑
𝑖∈�(ℎ) min

{
𝐷𝑖

𝐷·(ℎ+𝑒𝑖)
[
𝑣(ℎ + 𝑒𝑖) − �̄�𝛿(ℎ + 𝑒𝑖)

]
, 𝐷𝑖

}
< 𝑣(ℎ) −𝐷 · ℎ. Also, whenever

𝑣(ℎ+𝑒𝑖)− �̄�𝛿(ℎ+𝑒𝑖) > 0, we have 𝑣(ℎ+𝑒𝑖)− �̄�𝛿 ≥ 𝐷 · (ℎ+𝑒𝑖) by Lemma 10 and hence �(ℎ+
𝑒𝑖) = 1. Therefore, whenever this is the case, min

{
𝐷𝑖

𝐷·(ℎ+𝑒𝑖)
[
𝑣(ℎ + 𝑒𝑖) − �̄�𝛿(ℎ + 𝑒𝑖)

]
, 𝐷𝑖

}
=

𝐷𝑖 as 𝐷𝑖

𝐷·(ℎ+𝑒𝑖)
[
𝑣(ℎ + 𝑒𝑖) − �̄�𝛿(ℎ + 𝑒𝑖)

]
≥ 𝐷𝑖

𝐷·(ℎ+𝑒𝑖)𝐷 · (ℎ + 𝑒𝑖) = 𝐷𝑖 . So the condition∑
𝑖∈�(ℎ) min

{
𝐷𝑖

𝐷·(ℎ+𝑒𝑖)
[
𝑣(ℎ + 𝑒𝑖) − �̄�𝛿(ℎ + 𝑒𝑖)

]
, 𝐷𝑖

}
> 𝑣(ℎ) − 𝐷 · ℎ can be rewritten as∑

𝑖∈�(ℎ)𝐷𝑖�(ℎ+ 𝑒𝑖) > 𝑣(ℎ)−𝐷 · ℎ. And we obtain the recursive relation in the lemma. □

Whenever �(ℎ) = 1, the asset value is more than enough to pay off every creditor,
tendering or not; And the principal gets paid something instead of nothing, so she
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cannot credibly punish the holdouts by diverting asset value to the tendering creditors
since any diversion hurts herself. Otherwise, when �(ℎ) = 0, the principal doesn’t get
paid anything, and the punishment is credible.

An immediate implication of this result is that the level of commitment 𝛿 is almost
irrelevant to the success of the exchange offer

Proposition 22 (Almost Irrelevance and Discontinuity of Commitment). The vector η

that solves the recursive relation in Lemma 11 is independent of 𝛿 for any 𝛿 > 0 and �(ℎ) = 0
for all ℎ if 𝛿 = 0. Given the solution η, the value of the principal is

𝐽(0) = 𝑣(0) −
𝑁∑
𝑖=1

𝐷𝑖�(𝑒𝑖) (267)

Proof. Since the recursion in Lemma 11 doesn’t depend on 𝛿 for any 𝛿 > 0, neither
would the solution. When 𝛿 = 0, by definition �(ℎ) = 0 by definition.

Given η, the holdout A𝑖 would be paid in full if �(𝑒𝑖) = 1 and nothing otherwise. So
the principal has to pay A𝑖 exactly what he would get if he deviates, i.e., 𝐷𝑖 . And this
gives the principal a value of 𝑣(0) −∑𝑁

𝑖=1 𝐷𝑖�(𝑒𝑖) □

This result, together with the lemma above, reveals a discontinuity at 𝛿 = 0: Almost
full commitment is very different from full commitment, but the level of the commitment
between 0 and 1 affects neither the resolution of the holdout problem nor the principal’s
value.

This discontinuity in the value function is a result of the discontinuity of the
maximum punishment due to the flat region in the payment function illustrated in
Figure 5. The RHS of the equation for the maximum punishment is 𝑣(ℎ) − 𝛿𝐽(ℎ) is
plotted using the dashed line. The LHS, the total payment to all creditors, as a function
of the punishment when the holdout has a debt 𝐷 is 𝑥 +min{𝑣 − 𝑥, 𝐷} and is displayed
using a solid black line. When the discount rate is 𝛿 > 0, the dashed line (in red) is
always below the flat region of the payment function, so the maximum punishment
is the intersection point 𝑣(ℎ) − 𝐷 − 𝛿𝐽(ℎ). But when 𝛿 = 0, the dashed line (in blue)
overlaps with the flat region of the payment function, and the maximum punishment
jumps from 𝑣(ℎ) − 𝐷 to 𝑣.

Moreover, it is also different from strong credibility. Under strong credibility, the
principal needs to pay 𝐷𝑖 on path to A𝑖 if 𝑣(𝑒𝑖) > 𝐷𝑖 but under 𝛿−credibility, she does
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𝑥 + min{𝑣 − 𝑥, 𝐷}

𝑥

D
𝑣 − 𝛿𝐽 (𝛿 > 0)

𝑣
𝑣 − 𝛿𝐽 (𝛿 = 0)

𝑣 − 𝐷
𝑣 − 𝐷 − 𝛿𝐽 𝑣

Figure 5: Discontinuity of Punishment

so if 𝑣(𝑒𝑖) > 𝐷𝑖 +
∑
𝑗≠𝑖 𝐷𝑗�(𝑒𝑖 + 𝑒 𝑗). I illustrate this point using the three-agent example

below.
A deeper characterization of the relationship between strong 𝛿-credibility and

𝛿-credibility is provided in Section 6

Numerical Example: Three-Agent Case with Debts The principal has 3 creditors
A𝑖 for 𝑖 ∈ {1, 2, 3} and A𝑖 has outstanding debt 𝐷𝑖 = 10𝑖. And the value of the asset
depends on the number of holdouts 𝑣(ℎ) = 40 + 5ℎ⊤1. I.e., the value is 55 (resp.
50, 45, 40) when 0 (resp. 1, 2, 3) agents hold out.

Under full commitment, the principal can extract full surplus as per Proposition 2,
so the principal’s value is 𝐽(0) = 𝑣(0) = 55.

Under strong 𝛿-credibility for 𝛿 > 0, since 𝑣(𝑒𝑖) > 𝐷𝑖 for all 𝑖, the principal has to
repay everyone in full. His value is 55− 10− 20− 30 = −5. So, he might not even initiate
the restructuring. He will only do so if 𝑣(0) > 60.

Under 𝛿-credibility for 𝛿 > 0, I calculate the � function using backward induction.
�(1) = 0 as 𝑣(1) = 40 < 𝐷 · 1 = 60. At ℎ = 𝑒1 + 𝑒3 (resp. ℎ = 𝑒2 + 𝑒3), the asset value 45 is
larger than the total outstanding debt 40 (resp. 30), so �(𝑒1 + 𝑒3) = �(𝑒2 + 𝑒3) = 1. Now I
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calculate �(𝑒3):

𝑣(𝑒3) = 50 < 𝐷3 +
∑
𝑗=1,2

𝐷𝑗�(𝑒3 + 𝑒 𝑗) = 𝐷1 + 𝐷2 + 𝐷3 = 60. (268)

So, by definition, �(𝑒3) = 0. Similarly one can get �(𝑒2) = 0 and �(𝑒1) = 1. Thus, the
principal’s value is 𝑣(0) − 𝐷1 = 45.

E Proofs for Section 5 (Property Rights)

Proposition 10. With full commitment, greater property rights protection exacerbates the
holdout problem. More specifically, the principal’s value at 0 is

𝐽(0) = 𝑣(0) −
𝑁∑
𝑖=1

𝜋𝑖 (46)

which is always decreasing in 𝜋𝑖 for all 𝑖.

Proof. When A𝑖 deviates, the principal could promise to give the entire asset to other
tendering agents, and the holdout A𝑖 still enjoys a value of 𝜋𝑖 by retaining his property.
Thus, to convince A𝑖 to tender, he must be paid 𝜋𝑖 on path. Therefore, the value at 0 is
the asset value minus the sum of property values. □

Proposition 11. There exists a set of initial contracts such that a locally small increase in
property rights protection facilitates restructuring. In particular, let �̂�1 = �̂�3 = 1, �̂�2 = 98/100,
𝜋1 = 𝜋2 = 1/100 and 𝜋3 = 99/100, 𝛼2 = 7/10, 𝛼1 = 𝛼3 = 1/10, 𝛽1 = 𝛽2 = 1/10, 𝛽3 = 7/10.
Let 𝑣(·) be such that 𝑣(1) = 0, 𝑣(0) = 3, 𝑣(𝑒𝑖) = 2, 𝑣(1 − 𝑒𝑖) = 1 for all 𝑖. The principal’s value
function 𝐽(0) is increasing in 𝜋1 at the parameters specified above.

Proof. Since the asset value 𝑣(1) = 0, when all three agents hold out, they get nothing
more than their property value, so in order to convince one of them, say A𝑖 , to tender,
the principal only needs to pay him 𝜋𝑖 , that is,

𝑋(1 − 𝑒𝑖) = 𝜋𝑖 (269)
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and the principal obtains a value

𝐽(1 − 𝑒𝑖) = 𝑣(1 − 𝑒𝑖) − 𝜋𝑖 −
∑
𝑗≠𝑖

𝑅𝑂𝑗 (𝑣(1 − 𝑒𝑖) − 𝜋𝑖 , 1 − 𝑒𝑖) (270)

Solving for the maximum 𝑥 such that

𝑥 +
∑
𝑗≠𝑖

𝑅𝑂𝑗 (𝑣(1 − 𝑒𝑖) − 𝑥, 1 − 𝑒𝑖) ≤ 𝐽(1 − 𝑒𝑖) (271)

yields
�̄�(1 − 𝑒𝑖) = 𝑋(1 − 𝑒𝑖) = 𝜋𝑖 (272)

given the parametric assumption on the slopes of 𝑅𝑂
𝑗

.
Now consider the holdout profile 𝑒𝑖 . The principal obtains a value

𝐽(𝑒𝑖) = 𝑣(𝑒𝑖) − 𝑋(𝑒𝑖) − 𝑅𝑂𝑖 (𝑣(𝑒𝑖) − 𝑋(𝑒𝑖), 𝑒𝑖) (273)

where
𝑋(𝑒𝑖) =

∑
𝑗≠𝑖

[
𝑅𝑂𝑗 (𝑣(𝑒𝑖 + 𝑒 𝑗) − 𝜋𝑘 , 𝑒𝑖 + 𝑒 𝑗) + 𝜋 𝑗

]
𝑘 ≠ 𝑖 , 𝑗. (274)

Again, solving for the maximum 𝑥 such 𝑥 + 𝑅𝑂
𝑖
(𝑣(𝑒𝑖) − 𝑥, 𝑒𝑖) ≤ 𝑣(𝑒𝑖) − 𝐽(𝑒𝑖) yields

�̄�(𝑒𝑖) = 𝑋(𝑒𝑖) =
∑
𝑗≠𝑖

[
𝑅𝑂𝑗 (𝑣(𝑒𝑖 + 𝑒 𝑗) − 𝜋𝑘 , 𝑒𝑖 + 𝑒 𝑗) + 𝜋 𝑗

]
𝑘 ≠ 𝑖 , 𝑗. (275)

Taking derivatives with respect to 𝜋 𝑗 gives

d�̄�(𝑒𝑖)
d𝜋 𝑗

= 1 − 𝜕

𝜕𝑣
𝑅𝑂
𝑘
(𝑣(𝑒𝑖 + 𝑒𝑘) − 𝜋 𝑗 , 𝑒𝑖 + 𝑒𝑘) (276)

The principal’s value at ℎ = 0 is

𝐽(0) = 𝑣(0) −
3∑
𝑖=1

[
𝑅𝑂𝑖 (𝑣(𝑒𝑖) − 𝑋(𝑒𝑖), 𝑒𝑖) + 𝜋𝑖

]
(277)
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Taking derivatives with respect to 𝜋𝑖 gives

d𝐽(0)
d𝜋𝑖

= − 1 +
∑
𝑗≠𝑖

𝜕

𝜕𝑣
𝑅𝑂𝑗 (𝑣(𝑒 𝑗) − �̄�(𝑒 𝑗), 𝑒 𝑗)

d�̄�(𝑒 𝑗)
d𝜋𝑖

(278)

= − 1 +
∑
𝑗≠𝑖

𝜕

𝜕𝑣
𝑅𝑂𝑗 (𝑣(𝑒 𝑗) − �̄�(𝑒 𝑗), 𝑒 𝑗)

[
1 − 𝜕

𝜕𝑣
𝑅𝑂
𝑘
(𝑣(𝑒 𝑗 + 𝑒𝑘) − 𝜋𝑖 , 𝑒 𝑗 + 𝑒𝑘)

]
(279)

In particular, given the parameters in the proposition, we have

d𝐽(0)
d𝜋1

= − 1 + 𝜕

𝜕𝑣
𝑅𝑂2 (𝑣(𝑒2) − �̄�(𝑒2), 𝑒2)

[
1 − 𝜕

𝜕𝑣
𝑅𝑂3 (𝑣(𝑒2 + 𝑒3) − 𝜋1, 𝑒2 + 𝑒3)

]
(280)

+ 𝜕

𝜕𝑣
𝑅𝑂3 (𝑣(𝑒3) − �̄�(𝑒3), 𝑒3)

[
1 − 𝜕

𝜕𝑣
𝑅𝑂2 (𝑣(𝑒2 + 𝑒3) − 𝜋1, 𝑒2 + 𝑒3)

]
(281)

= − 1 + 𝛼2(1 − 𝛼3) + 𝛽3(1 − 𝛽2) =
13
50 > 0 (282)

as �̄�(𝑒2) = 1.1 and �̄�(𝑒3) = 0.806. □

Proposition 12 (Property rights hinder equity restructruring). For any equity contracts
{𝛼𝑖}𝑖 , the prinicpal’s value 𝐽(0) under 𝛿-credibility for any 𝛿 ∈ (0, 1] is decreasing in 𝜋𝑖 for all
𝑖 ∈ 𝒩 .

Proof. We first show that the maximum punishment satisfies the recursion

�̄�(ℎ) =
∑
𝑖∈�(ℎ)

[𝛼𝑖(𝑣(ℎ + 𝑒𝑖) − �̄�(ℎ + 𝑒𝑖)) + 𝜋𝑖] (283)

with the initial condition �̄�(1) = 0. This is because given �̄�(ℎ + 𝑒𝑖), at ℎ, each tendering
agent A𝑖 could have otherwise obtained a value of 𝛼𝑖(𝑣(ℎ + 𝑒𝑖) − �̄�(ℎ + 𝑒𝑖)) + 𝜋𝑖 were he
to hold out. Thus, the value function of the principal is

𝐽(ℎ) = 𝑣(ℎ) − 𝑋(ℎ) − ⟨ℎ, 𝛼⟩(𝑣(ℎ) − 𝑋(ℎ)) (284)

where 𝑋(ℎ) = ∑
𝑖∈�(ℎ) [𝛼𝑖(𝑣(ℎ + 𝑒𝑖) − �̄�(ℎ + 𝑒𝑖)) + 𝜋𝑖]. And solving for the maximum 𝑥

such that
𝑥 + ⟨ℎ, 𝛼⟩(𝑣(ℎ) − 𝑥) ≤ 𝑣(ℎ) − 𝐽(ℎ) (285)
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yields
(1 − ⟨ℎ, 𝛼⟩)𝑥 ≤ ⟨ℎ, 𝛼⟩𝑋(𝑒𝑖) (286)

which gives

�̄�(ℎ) =

𝑣(ℎ) if ℎ = 1

𝑋(ℎ) otherwise
(287)

From the recursive relation of �̄�, we obtain

d�̄�(ℎ)
d𝜋𝑖

= 1{𝑖∈�(ℎ)} −
∑
𝑗∈�(ℎ)

𝛼 𝑗
d�̄�(ℎ + 𝑒 𝑗)

d𝜋𝑖
(288)

with the initial condition
d�̄�(1)
d𝜋𝑖

= 0 (289)

since �̄�(1) = 0.
To solve d𝐽(0)

d𝜋𝑖 , we establish two lemmata:

Lemma 12. For any ℎ and any 𝑖 such that 𝑖 ∉ �(ℎ),

d�̄�(ℎ)
d𝜋𝑖

= 0 (290)

Proof. I prove the lemma by induction. For any ℎ such that |�(ℎ)| = 0, i.e., ℎ = 1, we
have the obvious case d�̄�(h)

d𝜋𝑖 = 0.
Now I show that if the statement is true for any ℎ such that 𝑖 ∉ �(ℎ) and |�(ℎ)| = 𝑛,

it is also true for any ℎ such that 𝑖 ∉ �(ℎ) and |�(ℎ)| = 𝑛 + 1. First notice that if 𝑖 ∉ �(ℎ),
then for any 𝑗 ∈ �(ℎ), 𝑗 ∉ �(ℎ + 𝑒 𝑗). And |�(ℎ + 𝑒 𝑗)| = |�(ℎ)| − 1. Then, we have

d�̄�(ℎ)
d𝜋𝑖

= −
∑
𝑗∈�(ℎ)

𝛼 𝑗
d�̄�(ℎ + 𝑒 𝑗)

d𝜋𝑖
= 0 (291)

where the first equality holds because 𝑖 ∉ �(ℎ) and the second holds by induction
hypothesis. □
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Lemma 13. For any ℎ and any 𝑖 such that 𝑖 ∈ �(ℎ),

0 <
d�̄�(ℎ)
d𝜋𝑖

≤ 1 (292)

Proof. I prove the lemma by induction. For any ℎ such that |�(ℎ)| = 1, i.e., ℎ = 1 − 𝑒𝑖,
we have the obvious case d�̄�(h)

d𝜋𝑖 = 1.
Now I show that if the statement is true for any ℎ such that 𝑖 ∈ �(ℎ) and |�(ℎ)| = 𝑛,

it is also true for any ℎ such that 𝑖 ∈ �(ℎ) and |�(ℎ)| = 𝑛 + 1. First notice that if 𝑖 ∈ �(ℎ),
then for any 𝑗 ∈ �(ℎ) : 𝑗 ≠ 𝑖, 𝑗 ∈ �(ℎ + 𝑒 𝑗). And |�(ℎ + 𝑒 𝑗)| = |�(ℎ)| − 1. Thus, The
recursive relation could be written as

d�̄�(ℎ)
d𝜋𝑖

=1 − 𝛼𝑖
d�̄�(ℎ + 𝑒𝑖)

d𝜋𝑖
−

∑
𝑗∈�(ℎ):𝑗≠𝑖

𝛼 𝑗
d�̄�(ℎ + 𝑒 𝑗)

d𝜋𝑖
(293)

=1 −
∑

𝑗∈�(ℎ):𝑗≠𝑖
𝛼 𝑗

d�̄�(ℎ + 𝑒 𝑗)
d𝜋𝑖

(294)

where the second equality holds because 𝑖 ∉ �(ℎ + 𝑒𝑖) so the middle term is zero. Since
by induction hypothesis, each d�̄�(ℎ+𝑒 𝑗)

d𝜋𝑖 is in (0, 1], we have

d�̄�(ℎ)
d𝜋𝑖

< 1 −
∑

𝑗∈�(ℎ):𝑗≠𝑖
𝛼 𝑗 × 0 = 1 (295)

and
d�̄�(ℎ)
d𝜋𝑖

≥ 1 −
∑

𝑗∈�(ℎ):𝑗≠𝑖
𝛼 𝑗 × 1 > 0. (296)

Thus, it holds for all ℎ such that 𝑖 ∈ �(ℎ). □

Using
d𝐽(ℎ)
d𝜋𝑖

= −(1 − ⟨ℎ, 𝛼⟩)d�̄�(ℎ)d𝜋𝑖
(297)

I obtain
d𝐽(0)
d𝜋𝑖

= −d�̄�(0)
d𝜋𝑖

∈ [−1, 0) (298)

Thus, a higher property rights protection always undermines restructuring when the
initial set of contracts are equities.
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□

Example 5.1 (Property rights hinder equity restructuring: 3-agent example). With limited
commitment, the value function of the principal at 0 with equities outstanding is decreasing in
each 𝜋𝑖 ,

𝜕

𝜕𝜋𝑖
𝐽(0) = − ©«1 −

∑
𝑗≠𝑖

𝛼𝑖(1 − 𝛼𝑘)ª®¬ < 0 for 𝑘 ≠ 𝑗 , 𝑖 ∀𝑖. (48)

Proof. We first show that the maximum punishment satisfies the recursion

�̄�(ℎ) =
∑
𝑖∈�(ℎ)

[𝛼𝑖(𝑣(ℎ + 𝑒𝑖) − �̄�(ℎ + 𝑒𝑖)) + 𝜋𝑖] (299)

with the initial condition �̄�(1) = 0. This is because given �̄�(ℎ + 𝑒𝑖), at ℎ, each tendering
agent A𝑖 could have otherwise obtained a value of 𝛼𝑖(𝑣(ℎ + 𝑒𝑖) − �̄�(ℎ + 𝑒𝑖)) + 𝜋𝑖 were he
to hold out. Thus the value function of the principal is

𝐽(ℎ) = 𝑣(ℎ) − 𝑋(ℎ) − ⟨ℎ, 𝛼⟩(𝑣(ℎ) − 𝑋(ℎ)) (300)

where 𝑋(ℎ) = ∑
𝑖∈�(ℎ) [𝛼𝑖(𝑣(ℎ + 𝑒𝑖) − �̄�(ℎ + 𝑒𝑖)) + 𝜋𝑖]. And solving for the maximum 𝑥

such that
𝑥 + ⟨ℎ, 𝛼⟩(𝑣(ℎ) − 𝑥) ≤ 𝑣(ℎ) − 𝐽(ℎ) (301)

yields
(1 − ⟨ℎ, 𝛼⟩)𝑥 ≤ ⟨ℎ, 𝛼⟩𝑋(𝑒𝑖) (302)

which gives

�̄�(ℎ) =

𝑣(ℎ) if ℎ = 1

𝑋(ℎ) otherwise
(303)

Using this recursion with the parameters specified, we obtain

�̄�(1 − 𝑒𝑖) = 𝜋𝑖 ∀𝑖 (304)

�̄�(𝑒𝑖) =
∑
𝑗≠𝑖

[
𝛼 𝑗(𝑣(𝑒𝑖 + 𝑒 𝑗) − 𝜋𝑘) + 𝜋 𝑗

]
𝑘 ≠ 𝑖 , 𝑗 ∀𝑖 (305)
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and the value function of the principal is

𝐽(0) =𝑣(0) −
3∑
𝑖=1

[𝛼𝑖(𝑣(𝑒𝑖) − �̄�(𝑒𝑖)) + 𝜋𝑖] (306)

=𝑣(0) −
3∑
𝑖=1

𝛼𝑖𝑣(𝑒𝑖) −
3∑
𝑖=1

𝜋𝑖 +
3∑
𝑖=1

𝛼𝑖
∑
𝑗≠𝑖

[
𝛼 𝑗(𝑣(𝑒𝑖 + 𝑒 𝑗) − 𝜋𝑘) + 𝜋 𝑗

]
(307)

=𝑣(0) −
3∑
𝑖=1

𝛼𝑖𝑣(𝑒𝑖) +
3∑
𝑖=1

∑
𝑗≠𝑖

𝛼𝑖𝛼 𝑗𝑣(𝑒𝑖 + 𝑒 𝑗) −
3∑
𝑖=1

©«1 −
∑
𝑗≠𝑖

𝛼𝑖(1 − 𝛼𝑘)ª®¬𝜋𝑖 (308)

Taking partial derivatives yields the expression in the proposition.
Without loss of generality, look at the coefficient of 𝜋𝑖 . Even if I ignore the constraint

that ⟨ℎ, 𝛼⟩ = 1, the coefficient 1 − 𝛼2 − 𝛼3 + 2𝛼2𝛼3 is minimized at 𝛼2 = 𝛼3 = 1/2 with a
minimum value of 1/2. Thus, all coefficients of 𝜋𝑖 are positive. □

Proposition 13 (Property rights generically hinder debt restructruring). For any debts
contracts {𝐷𝑖}𝑖 , the prinicpal’s value 𝐽(0) under 𝛿-credibility for any 𝛿 ∈ (0, 1] is generically
locally decreasing in 𝜋𝑖 for all 𝑖. That is,

d𝐽(0)
d𝜋𝑖

< 0 (49)

at any differentiable points.

Proof. Consider the deviation profile 𝑒𝑖 , let 𝑋(𝑒𝑖) be the total payments to the tendering
creditors according to one of the optimal 𝛿-credible contracts, which could be a function
of {𝜋𝑖}𝑖

Then, the principal’s value at 𝑒𝑖 is

𝐽(𝑒𝑖) = 𝑣(𝑒𝑖) − 𝑋(𝑒𝑖) − min{𝐷𝑖 , 𝑣(𝑒𝑖) − 𝑋(𝑒𝑖)} (309)

and the maximum punishment is the largest 𝑥 such that

𝑥 + min{𝐷𝑖 , 𝑣(𝑒𝑖) − 𝑥} ≤ 𝑣(𝑒𝑖) − 𝐽(𝑒𝑖) (310)
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which yields

�̄�(𝑒𝑖) =

𝑣(𝑒𝑖) 𝑣(𝑒𝑖) − 𝑋(𝑒𝑖) ≤ 𝐷𝑖

(1 − 𝛿)(𝑣(𝑒𝑖) − 𝐷𝑖) + 𝛿𝑋(𝑒𝑖) 𝑣(𝑒𝑖) − 𝑋(𝑒𝑖) ≥ 𝐷𝑖

(311)

Then, the principal’s value is

𝐽(0) =𝑣(0) −
𝑁∑
𝑖=1

[min{𝐷𝑖 , 𝑣(𝑒𝑖) − �̄�(𝑒𝑖)} + 𝜋𝑖] (312)

=𝑣(0) −
𝑁∑
𝑖=1

[
𝐷𝑖1{𝑣(𝑒𝑖)≥𝑋(𝑒𝑖)+𝐷𝑖} + 𝜋𝑖

]
(313)

because whenever 𝑣(𝑒𝑖) − 𝑋(𝑒𝑖) ≤ 𝐷𝑖 , �̄�(𝑒𝑖) = 𝑣(𝑒𝑖) and thus min{𝐷𝑖 , 𝑣(𝑒𝑖) − �̄�(𝑒𝑖)} = 0;
In contrast, when 𝑣(𝑒𝑖) − 𝑋(𝑒𝑖) > 𝐷𝑖

𝑣(𝑒𝑖) − �̄�(𝑒𝑖) = 𝛿(𝑣(𝑒𝑖) − 𝑋(𝑒𝑖) − 𝐷𝑖) + 𝐷𝑖 > 𝐷𝑖 (314)

so min{𝐷𝑖 , 𝑣(𝑒𝑖) − �̄�(𝑒𝑖)} = 𝐷𝑖 . In either case, the payment to each tendering agent is
independent of the renegotiation off-path.

Thus
𝜕𝐽(0)
𝜕𝜋𝑖

= −1 ∀𝑖 (315)

which implies a locally small increase in property rights protection always hinders
restructuring. □

Proposition 14. With limited commitment, the principal’s value in the 2-creditor example is

𝐽(0) = 𝑣(0) −
2∑
𝑖=1

[
𝐷𝑖1{𝑣(𝑒𝑖)≥𝜋𝑗+𝐷𝑖} + 𝜋𝑖

]
(50)

Given the parameters above, the principal’s value increases when the property rights of A𝑗

increases from any value 𝜋 𝑗 ∈ (1/2, 1) to any 𝜋 𝑗 + Δ𝜋 𝑗 ∈ (1, 3/2).

Proof. At every 𝑒𝑖 , the principal only needs to compensate A𝑗 at most 𝜋 𝑗 for him to
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tender so the principal’s value is

𝐽(𝑒𝑖) = 𝑣(𝑒𝑖) − 𝜋 𝑗 − min{𝑣(𝑒𝑖) − 𝜋 𝑗 , 𝐷 · 𝑒𝑖}. (316)

The maximum credible punishment is given by

𝑥 + min{𝑣(𝑒𝑖) − 𝑥, 𝐷 · 𝑒𝑖} ≤ 𝑣(𝑒𝑖) − 𝐽(𝑒𝑖) (317)

which gives

�̄�(𝑒𝑖) =

𝑣(𝑒𝑖) if 𝑣(𝑒𝑖) ≤ 𝜋 𝑗 + 𝐷 · 𝑒𝑖
𝜋 𝑗 otherwise.

(318)

The principal’s value at 0 is then

𝐽(0) =𝑣(0) −
2∑
𝑖=1

[min{𝐷𝑖 , 𝑣(𝑒𝑖) − �̄�(𝑒𝑖)} + 𝜋𝑖] (319)

=𝑣(0) −
2∑
𝑖=1

[
𝐷𝑖1{𝑣(𝑒𝑖)≥𝜋𝑗+𝐷𝑖} + 𝜋𝑖

]
(320)

When 𝜋 𝑗 ∈ (1/2, 1), given that 𝐷𝑖 = 1 and 𝑣(𝑒𝑖) = 2, we have 𝑣(𝑒𝑖) > 𝜋 𝑗 + 𝐷𝑖; In
contrast, when 𝜋 𝑗 ∈ (1, 3/2), we have 𝑣(𝑒𝑖) ≤ 𝜋 𝑗 + 𝐷𝑖 , so the change in the principal’s
value is

𝐷𝑖 − Δ𝜋 𝑗 > 0 (321)

since Δ𝜋 𝑗 < 3/2 − 1/2 = 1. □

F Proofs for Section 6 (Unifiying Notions of Credibility)

Lemma 4. The even subsequence of {𝒞𝛿
𝑘
(ℎ)}𝑘 is weakly decreasing and the odd subsequence is

weakly increasing. That is,

𝒞𝛿
2𝑘(ℎ) ⊂ 𝒞𝛿

2𝑘−2(ℎ) and 𝒞𝛿
2𝑘−1(ℎ) ⊂ 𝒞𝛿

2𝑘+1(ℎ) ∀ℎ ∀𝑘 = 1, 2, 3, · · · (52)

Proof. For simplicity let 𝐽(ℎ̂;𝑅) := 𝑣(ℎ̂) −∑𝑁
𝑖=1 𝑢𝑖(ℎ̂𝑖 | ℎ̂−𝑖 , 𝑅).

I prove this lemma by induction. First, I prove that it is true for 𝑘 = 1. By definition
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𝒞𝛿
2 (ℎ) ⊂ 𝒞𝛿

0 (ℎ) = ℐ(ℎ). For any 𝑅 ∈ 𝒞𝛿
1 (ℎ), by definition, for any ℎ̂ ∈ ℬ(ℎ)

𝐽(ℎ̂;𝑅) ≥ 𝛿𝐽(ℎ̂; �̃�) ∀�̃� ∈ 𝒞𝛿
0 (ℎ̂) (322)

and since 𝒞𝛿
2 (ℎ̂) ⊂ 𝒞𝛿

0 (ℎ̂), it is also true that for any ℎ̂ ∈ ℬ(ℎ)

𝐽(ℎ̂;𝑅) ≥ 𝛿𝐽(ℎ̂; �̃�) ∀�̃� ∈ 𝒞𝛿
2 (ℎ̂). (323)

Thus 𝑅 ∈ 𝒞𝛿
3 (ℎ). I proved the first step of the induction.

Now I proceed to the second step. Suppose this is true for 𝑘 ∈ {1, 2, . . . , �}, I want
to show this is true for 𝑘 = � + 1.

• I show 𝒞𝛿
2�(ℎ) ⊂ 𝒞𝛿

2�−2(ℎ). By definition, for any 𝑅 ∈ 𝒞𝛿
2�(ℎ̂), for any ℎ̂ ∈ ℬ(ℎ)

𝐽(ℎ̂;𝑅) ≥ 𝛿𝐽(ℎ̂; �̃�) ∀�̃� ∈ 𝒞𝛿
2�−1(ℎ̂) (324)

and since 𝒞𝛿
2�−3(ℎ̂) ⊂ 𝒞𝛿

2�−1(ℎ̂) by the induction hypothesis, it is also true that for
any ℎ̂ ∈ ℬ(ℎ)

𝐽(ℎ̂;𝑅) ≥ 𝛿𝐽(ℎ̂; �̃�) ∀�̃� ∈ 𝒞𝛿
2�−3(ℎ̂). (325)

Thus 𝑅 ∈ 𝒞𝛿
2�−2(ℎ) given 𝑅 ∈ ℐ(ℎ).

• Now I show 𝒞𝛿
2�−1(ℎ) ⊂ 𝒞𝛿

2�+1(ℎ). By definition, for any 𝑅 ∈ 𝒞𝛿
2�−2(ℎ̂), for any

ℎ̂ ∈ ℬ(ℎ)
𝐽(ℎ̂;𝑅) ≥ 𝛿𝐽(ℎ̂; �̃�) ∀�̃� ∈ 𝒞𝛿

2�−2(ℎ̂) (326)

and since 𝒞𝛿
2�(ℎ̂) ⊂ 𝒞𝛿

2�−2(ℎ̂) by induction hypothesis, it is also true that for any
ℎ̂ ∈ ℬ(ℎ)

𝐽(ℎ̂;𝑅) ≥ 𝛿𝐽(ℎ̂; �̃�) ∀�̃� ∈ 𝒞𝛿
2�(ℎ̂). (327)

Thus 𝑅 ∈ 𝒞𝛿
2�+1(ℎ) given 𝑅 ∈ ℐ(ℎ).

Therefore, we conclude that the statement is correct. □

Lemma 5. The odd subsequence never exceeds the even subsequence. That is,

𝒞𝛿
2𝑘+1(ℎ) ⊂ 𝒞𝛿

2𝑘(ℎ) ∀ℎ ∀ 𝑘 = 1, 2, 3, · · · (54)
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And as a corollary, lim𝑘→∞ 𝒞𝛿
2𝑘+1(ℎ) ⊂ lim𝑘→∞ 𝒞𝛿

2𝑘(ℎ).

Proof. For simplicity let 𝐽(ℎ̂;𝑅) := 𝑣(ℎ̂) −∑𝑁
𝑖=1 𝑢𝑖(ℎ̂𝑖 | ℎ̂−𝑖 , 𝑅).

Fix an ℎ, let
� = inf{𝑘 ≥ 1 : 𝒞𝛿

2𝑘+1(ℎ) ⊄ 𝒞𝛿
2𝑘(ℎ)} (328)

which implies both 𝒞𝛿
2�+1(ℎ) ⊄ 𝒞𝛿

2�(ℎ) and, by the minimality of �, 𝒞𝛿
2�−1(ℎ) ⊂ 𝒞𝛿

2�−2(ℎ).
Therefore two possibilities between 𝒞𝛿

2�−1(ℎ) and 𝒞𝛿
2�(ℎ) and we prove by contradic-

tion that both are not possible.

• 𝒞𝛿
2�−1(ℎ) ⊂ 𝒞𝛿

2�(ℎ). In this case, from 𝒞𝛿
2�+1(ℎ) ⊄ 𝒞𝛿

2�(ℎ) we know ∃𝑅 ∈ 𝒞𝛿
2�+1(ℎ)

but 𝑅 ∉ 𝒞𝛿
2�(ℎ), which implies for any ℎ̂ ∈ ℬ(ℎ),

𝐽(ℎ̂;𝑅) ≥ 𝛿𝐽(ℎ̂; �̃�) ∀�̃� ∈ 𝒞𝛿
2�(ℎ) (329)

while ∃�̃� ∈ 𝒞𝛿
2�−1(ℎ̂)

𝐽(ℎ̂;𝑅) < 𝛿𝐽(ℎ̂; �̃�). (330)

This implies 𝒞𝛿
2�−1(ℎ) is not a subset of 𝒞𝛿

2�(ℎ), contradicting the case 𝒞𝛿
2�−1(ℎ) ⊂

𝒞𝛿
2�(ℎ).

• 𝒞𝛿
2�−1(ℎ) ⊄ 𝒞𝛿

2�(ℎ). This means ∃𝑅 ∈ 𝒞𝛿
2�−1(ℎ) but 𝑅 ∉ 𝒞𝛿

2�(ℎ), which implies for
any ℎ̂ ∈ ℬ(ℎ),

𝐽(ℎ̂;𝑅) ≥ 𝛿𝐽(ℎ̂; �̃�) ∀�̃� ∈ 𝒞𝛿
2�−2(ℎ) (331)

while ∃�̃� ∈ 𝒞𝛿
2�−1(ℎ̂)

𝐽(ℎ̂;𝑅) < 𝛿𝐽(ℎ̂; �̃�). (332)

This suggests 𝒞𝛿
2�−1(ℎ) is not a subset of 𝒞𝛿

2�−2(ℎ), contradicting the minimality of
�.

Thus we must have 𝒞𝛿
2𝑘+1(ℎ) ⊂ 𝒞𝛿

2𝑘(ℎ) ∀ℎ ∀𝑘 = 1, 2, . . .
To prove lim𝑘→∞ 𝒞𝛿

2𝑘+1(ℎ) ⊂ lim𝑘→∞ 𝒞𝛿
2𝑘(ℎ), it is enough to show for any 𝑘 and any

𝑘′ > 𝑘, 𝒞𝛿
2𝑘+1(ℎ) ⊂ 𝒞𝛿

2𝑘′(ℎ). This is true, given

𝒞𝛿
2𝑘+1(ℎ) ⊂ 𝒞𝛿

2𝑘′−1(ℎ) ⊂ 𝒞𝛿
2𝑘′(ℎ). (333)

The first inclusion holds because the odd subsequence is non-decreasing, and the
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second holds by the first half of this lemma. □

Proposition 15. The recursively defined 𝒞𝛿(ℎ) in Definition 6 satisfies

lim inf
𝑘→∞

𝒞𝛿
𝑘
(ℎ) ⊂ 𝒞𝛿(ℎ) ⊂ lim sup

𝑘→∞
𝒞𝛿
𝑘
(ℎ) ∀ℎ (58)

Proof. For simplicity let 𝐽(ℎ̂;𝑅) := 𝑣(ℎ̂) −∑𝑁
𝑖=1 𝑢𝑖(ℎ̂𝑖 | ℎ̂−𝑖 , 𝑅).

I first show that lim inf𝑘→∞ 𝒞𝛿
𝑘
(ℎ) ⊂ 𝒞𝛿(ℎ). For any 𝑅 ∈ lim inf𝑘→∞ 𝒞𝛿

𝑘
(ℎ), there

exists a 𝑘 such that for all 𝑗 ≥ 𝑘, 𝑅 ∈ 𝒞𝛿
𝑗
(ℎ), i.e., 𝑅 ∈ ⋂

𝑗≥𝑘 𝒞𝛿
𝑗
(ℎ) which implies for any

ℎ̂ ∈ ℬ(ℎ)
𝐽(ℎ̂;𝑅) ≥ 𝛿𝐽(ℎ̂; �̃�) ∀ �̃� ∈ 𝒞𝛿

𝑗−1(ℎ̂) ∀𝑗 ≥ 𝑘 (334)

This can be equivalently written as

𝐽(ℎ̂;𝑅) ≥ 𝛿𝐽(ℎ̂; �̃�) ∀ �̃� ∈
⋃
𝑗≥𝑘

𝒞𝛿
𝑗−1(ℎ̂) ∃𝑘 (335)

which, since
⋂
𝑘≥1

⋃
𝑗≥𝑘 𝒞𝛿

𝑗−1(ℎ̂) ⊂
⋃
𝑗≥𝑘 𝒞𝛿

𝑗−1(ℎ̂) ∀𝑘, implies

𝐽(ℎ̂;𝑅) ≥ 𝛿𝐽(ℎ̂; �̃�) ∀ �̃� ∈
⋂
𝑘≥1

⋃
𝑗≥𝑘

𝒞𝛿
𝑗−1(ℎ̂) (336)

Since
⋃
𝑗≥𝑘 𝒞𝛿

𝑗−1(ℎ̂) is a decreasing sequence,
⋂
𝑘≥1

⋃
𝑗≥𝑘 𝒞𝛿

𝑗−1(ℎ̂) =
⋂
𝑘≥0

⋃
𝑗≥𝑘 𝒞𝛿

𝑗
(ℎ̂) =

lim sup𝑘→∞ 𝒞𝛿
𝑘
(ℎ) and therefore

lim inf
𝑘→∞

𝒞𝛿
𝑘
(ℎ) ⊂ {𝑅 ∈ ℐ(ℎ) : 𝐽(ℎ̂;𝑅) ≥ 𝛿𝐽(ℎ̂; �̃�) ∀�̃� ∈ lim sup

𝑘→∞
𝒞𝛿
𝑘
(ℎ̂) ∀ℎ̂ ∈ ℬ(ℎ)}

(337)

⊂ {𝑅 ∈ ℐ(ℎ) : 𝐽(ℎ̂;𝑅) ≥ 𝛿𝐽(ℎ̂; �̃�) ∀�̃� ∈ lim inf
𝑘→∞

𝒞𝛿
𝑘
(ℎ̂) ∀ℎ̂ ∈ ℬ(ℎ)} (338)

where the second inclusion holds because lim inf𝑘→∞ 𝒞𝛿
𝑘
(ℎ̂) ⊂ lim sup𝑘→∞ 𝒞𝛿

𝑘
(ℎ̂).

This shows that for any 𝑅 ∈ lim inf𝑘→∞ 𝒞𝛿
𝑘
(ℎ), we have 𝐽(ℎ̂;𝑅) ≥ 𝛿𝐽(ℎ̂; �̃�) ∀�̃� ∈

lim inf𝑘→∞ 𝒞𝛿
𝑘
(ℎ̂) ∀ℎ̂ ∈ ℬ(ℎ), which satisfies the definition of 𝒞𝛿(ℎ), and therefore

𝑅 ∈ 𝒞𝛿(ℎ). Thus, we proved lim inf𝑘→∞ 𝒞𝛿
𝑘
(ℎ) ⊂ 𝒞𝛿(ℎ).

Now I proceed to show that 𝒞𝛿(ℎ) ⊂ lim sup𝑘→∞ 𝒞𝛿
𝑘
(ℎ). For any 𝑅 ∈, by definition,
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we have
𝐽(ℎ̂;𝑅) ≥ 𝛿𝐽(ℎ̂; �̃�) ∀ �̃� ∈ 𝒞𝛿(ℎ̂). (339)

And since lim inf𝑘→∞ 𝒞𝛿
𝑘
(ℎ) ⊂ 𝒞𝛿(ℎ̂), we have

𝐽(ℎ̂;𝑅) ≥ 𝛿𝐽(ℎ̂; �̃�) ∀ �̃� ∈ lim inf
𝑘→∞

𝒞𝛿
𝑘
(ℎ). (340)

Since
⋂
𝑗≥𝑘 𝒞𝛿

𝑗
(ℎ) is an increasing sequence in 𝑘, we have

lim inf
𝑘→∞

𝒞𝛿
𝑘
=

⋃
𝑘≥0

⋂
𝑗≥𝑘

𝒞𝛿
𝑗 (ℎ) =

⋃
𝑘≥1

⋂
𝑗≥𝑘

𝒞𝛿
𝑗−1(ℎ). (341)

In order to show 𝑅 ∈ lim sup𝑘→∞ 𝒞𝛿
𝑘
(ℎ), by definition, we need to show 𝑅 ∈⋃

𝑗≥𝑘 𝒞𝛿
𝑗
(ℎ) ∀𝑘 ≥ 1, which means for any 𝑘 ≥ 1, there is a 𝑗(𝑘) ≥ 𝑘 such that 𝑅 ∈ 𝒞𝛿

𝑗(𝑘)(ℎ),
which means for any ℎ̂ ∈ ℬ(ℎ)

𝐽(ℎ̂;𝑅) ≥ 𝛿𝐽(ℎ̂; �̃�) ∀ �̃� ∈ 𝒞𝛿
𝑗(𝑘)−1(ℎ̂) ∀𝑘 ≥ 1. (342)

This could be equivalently written as

𝐽(ℎ̂;𝑅) ≥ 𝛿𝐽(ℎ̂; �̃�) ∀ �̃� ∈
⋃
𝑘≥1

𝒞𝛿
𝑗(𝑘)−1(ℎ̂). (343)

Now, it remains to show that if

𝐽(ℎ̂;𝑅) ≥ 𝛿𝐽(ℎ̂; �̃�) ∀ �̃� ∈
⋃
𝑘≥1

⋂
𝑗≥𝑘

𝒞𝛿
𝑗−1(ℎ̂), (344)

then there exists a 𝑗(𝑘) ≥ 𝑘 such that

𝐽(ℎ̂;𝑅) ≥ 𝛿𝐽(ℎ̂; �̃�) ∀ �̃� ∈
⋃
𝑘≥1

𝒞𝛿
𝑗(𝑘)−1(ℎ̂), (345)

which amounts to show that

∃𝑗(𝑘) ≥ 𝑘 :
⋃
𝑘≥1

𝒞𝛿
𝑗(𝑘)−1(ℎ̂) ⊂

⋃
𝑘≥1

⋂
𝑗≥𝑘

𝒞𝛿
𝑗−1(ℎ̂) = lim

𝑘→∞
𝒞𝛿

2𝑘+1(ℎ̂). (346)
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For any 𝑘, there’s a 𝑗(𝑘) ≥ 𝑘 and is an even number, then by the fact that the odd
subsequence is increasing (Lemma 4), we have 𝒞𝛿

𝑗(𝑘)−1(ℎ̂) ⊂ lim𝑘→∞ 𝒞𝛿
2𝑘+1(ℎ̂). Thus, we

proved 𝒞𝛿(ℎ) ⊂ lim sup𝑘→∞ 𝒞𝛿
𝑘
(ℎ).

□

Proposition 16. There exists a set of initial contracts 𝑅𝑂 such that lim inf𝑘→∞ 𝒞𝛿
𝑘
(ℎ) ⫋

lim sup𝑘→∞ 𝒞𝛿
𝑘
(ℎ) for some ℎ.

Proof. To prove this, we show that when the existing securities are equities and 𝛿 > 0,
𝒞𝛿

2 (0) = ℐ(0) ⫋ 𝒞𝛿
1 (0) and thus by induction, 𝒞𝛿

2�(0) = ℐ(0) ⫋ 𝒞𝛿
2�+1(0) = 𝒞𝛿

1 (0).
We have shown that

sup
𝑅∈ℐ(0)

𝐽(0;𝑅) = 𝑣(0) > sup
𝑅∈𝒞𝛿

1 (0)
𝐽(0;𝑅) = 𝑣(0) − 𝛿

𝑁∑
𝑖=1

𝛼𝑖𝑣(𝑒𝑖) (347)

Thus, it must be the case that ℐ(0) ⫋ 𝒞𝛿
1 (0).

To see why 𝒞𝛿
2 (0) = ℐ(0), notice we have proven that when the existing securities

are equities, no contracts can do better than simply using cash (Proposition 3), and the
same is true at any 𝑒𝑖 . Formally

𝐽(𝑒𝑖 ;𝑅) ≥ sup
𝑅∈𝒞𝛿

1 (𝑒𝑖)
𝐽(𝑒𝑖 ;𝑅) ∀𝑅 ∈ ℐ(𝑒𝑖) (348)

Therefore, in the definiton of 𝒞𝛿
2 (0), the condition

𝑅 ⪰𝛿 �̃� ∀�̃� ∈ 𝒞𝛿
1 (𝑒𝑖) ∀𝑒𝑖 (349)

always holds and thus 𝒞𝛿
2 (0) = ℐ(0). □
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