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1 Introduction

We introduce a model to explain three observations on the corporate bond market: (1)

the increase in customer-customer prearranged matches intermediated by dealers, for which

customers provide liquidity to other customers; (2) the decrease in measured illiquidity, even

though market participants indicate more difficulty in trading; and (3) the increase in the

importance of illiquidity for the yield spread. To explain these observations, we introduce a

search and matching model with elements of Lagos and Rocheteau (2009) and Hugonnier,

Lester, and Weill (2022). The model generates the three stated observations. Moreover, the

model implies the possibility of multiple equilibria and financial crises.

In the model, dealers face intermediation costs to facilitate trading. When the intermedia-

tion cost increases, customers accept to wait until they are matched with another customer.

The intermediation cost creates a customer-dealer and a customer-customer market. The

customer-dealer market represents inventory trade and the customer-customer market repre-

sents customer liquidity provision as described by Choi et al. (2024). In the customer-dealer

market, customers do not incur higher search costs. They are willing to pay a higher price for

immediacy. In the customer-customer market, customers might pay a smaller price for the

asset (or sell for a higher price), but they take longer to trade.

An important ingredient of the model is the ability of investors to choose to participate in

customer-dealer or customer-customer markets—in the spirit of Guerrieri et al. (2010), agents

direct their search in financial markets. An increase in dealer costs makes investors look

for other investors to trade, which represents customer liquidity provision intermediated by

dealers. For a large enough increase in dealer costs, this change in composition decreases the

aggregate bid-ask spread in equilibrium. Standard indicators of illiquidity rely on observed

transactions. Therefore, a decrease in the aggregate bid-ask spread implies an improvement

in standard indicators of liquidity. The model then generates a change in the structure of the

corporate bond market together with improvement of indicators of market illiquidity.

As the arrangement of customer-customer matches takes longer to be executed, the actual

frictions in the model increase. We use the model to propose a new measure of illiquidity.

The measure obtained from the model takes into account equilibrium prices, search frictions,

and the fraction of the market that engages in inventory trade or customer liquidity provision.
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After the 2007-2009 financial crisis, several regulations were enacted with the objective

of avoiding future financial crises. The US enacted the Dodd-Frank Wall Street Reform

and Consumer Protection Act in 2010. To some extent, the Dodd-Frank Act and similar

regulations in other countries accomplished their goal. This was highlighted by the ability of

the financial sector to resist the fluctuations caused by the recent pandemic. However, the

focus of academics, practitioners and government officials turned to how such regulations

affect the financial sector in normal times, when the economy is not under distress. There are

indications that the form in which trades take place in over-the-counter markets has changed

after the regulations were put in place. We propose a model of trading in over-the-counter

markets to analyze these changes.1

The improvement in the traditional measures of market liquidity after the 2008 financial

crisis has been documented by Bessembinder et al. (2018). We confirm this finding with

recent data for the BPW and Amihud liquidity measures (respectively after Bao, Pan, and

Wang 2011 and Amihud 2002). We focus on the corporate bond market, a market for which

over-the-counter trading is the usual method of trade. The improvement in measured market

liquidity could suggest that regulations had a minor impact on financial market liquidity.

However, we show that the impact of illiquidity on the yield spread of corporate bonds

increased. While markets seem to be more liquid, the cost of illiquidity increased.2

In addition to the changes in the illiquidity measures, Bessembinder et al. (2018) and

Choi et al. (2024) report a decrease in dealer trade frequency. Especially, Choi et al. (2024)

indicate a change in the composition of the provision of liquidity. The provision of liquidity

has increasingly been made by customers rather than dealers. In practice, there is a perceived

movement of customers from dealers as final trade counterparties to other customers.

The model builds on Duffie, Gârleanu, and Pedersen (2005), Lagos and Rocheteau (2009)

(LR) and Hugonnier, Lester, and Weill (2022) (HLW). Depending on the parameters, it implies
1During a 2015 congressional hearing, for example, Rep. French Hill questioned the Federal Reserve Chair

at the time, Janet Yellen, on whether regulations were to blame for the deterioration of liquidity on different
bond markets. Yellen replied: “I am not ruling out the possibility that regulations could play a role here, it is
simply we have not been able to understand through a lot of different factors and we need to look at it more to
sort out just what is going on and what the different influences are, but I am not ruling that out.”

2We obtain similar findings on the importance of illiquidity for the yield spreads as Li and Yu (2023) and
Wu (2023), which worked in coincident and independent papers. Our empirical results are different in some
aspects (such as our focus on the BPW and Amihud measures) and they complement their findings. However,
our focus is on the model to explain the movements in the corporate bond market.
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LR or HLW as particular cases. Time is continuous. There is an asset that pays dividends

over time. There are two types of traders: customers and dealers. Dealers have access to a

competitive inter-dealer market where the asset is traded at an equilibrium price. Customers

trade in a decentralized way with dealers or with other customers. There are search frictions

when customers search for a trade counterparty. These search frictions are different for finding

another dealer or customer. In particular, the search friction to find a dealer is smaller than

the search friction to find another customer. Customers are heterogeneous in the valuation of

the asset.

Each asset has a stochastic maturity date and a stochastic issue opportunity. The

heterogeneity in asset valuation implies gains to trade. Assets trade hands over time. We

characterize the stationary distribution of asset holdings as well as the equilibrium bid-ask

spreads. We then show that the empirical behavior of market illiquidity and its correlation

with yield spreads can be rationalized by the model when we interpret the Dodd-Frank act as

causing an increase in intermediation costs.

The increase in costs faced by dealers increases the equilibrium bid-ask spread of dealers.

Customers that do not have the asset but have a high valuation of it still trade with dealers.

They pay a high ask price because they want to find a trade counterparty fast. Similarly,

customers that have the asset but have a low valuation of the asset also look for dealers to

trade. They accept a lower bid price as they want to sell the asset fast. On the other hand,

customers that have intermediary valuations of the asset avoid trading with dealers. They

wait to be matched with other customers to avoid the surcharge in the form of large bid-ask

spreads. Empirically, Choi et al. (2024) find that matched customers in fact pay lower spreads.

We show that an increase in trade costs increases the number of customer-customer trades.

As a result, the measured bid-ask spread decreases as well as measured illiquidity measures.

The paper is organized as follows. Section 2 states the observations on the corporate bond

market after 2008. Section 3 describes the model. Section 4 characterizes the equilibrium and

defines a measure of illiquidity obtained from the model. Section 5 discusses the implications

of the model for the illiquidity measures and for the liquidity premium. Section 7 concludes.
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2 Changes in the corporate bond market

We call attention to three observations about the corporate bond market: (1) the increase

in the importance of trades customer-customer relative to trades customer-dealer (customer-

customer trades are also known as risk-free trades or agency trades; customer-dealer trades

are also known as risky principal trades); (2) the decrease in the values of illiquidity measures;

and (3) the increase in the liquidity premium. Our goal with the model in section 3 is to

explain these observations.

2.1 Trade composition and perception of illiquidity

Our first observation is the change in the composition of trades and increased perception

of illiquidity in the corporate bond market. As documented by Choi et al. (2024), after

the regulations that followed the 2008 financial crisis, it is more common to find trades for

which customers are matched with other customers instead of trades for which dealers use

their inventory to provide liquidity. Dealers facilitate both forms of trade. However, when

customers are matched with other customers, customers provide liquidity. In this case, the

dealer does not use its inventory of bonds. It is a customer that provides liquidity to other

customers either as a seller or a buyer.

The changes in the composition of trades have been connected with the enactment of

regulations that affect depository institutions, such as banks, with access to the Federal

Reserve as a lender of last resort or to FDIC insurance (Adrian et al. 2017, Bao et al. 2018,

Choi et al. 2024; Duffie 2012 pointed out some risks of the new regulations). Especially, the

Volcker rule prohibits banks from engaging in proprietary trading, that is, trading that uses

the inventory of assets purchased earlier with the intention of profiting from a higher sale price.

The Volcker rule is part of the Dodd-Frank Wall Street Reform and Consumer Protection

Act. The Dodd-Frank act was enacted in July 2012. The Volcker rule was put into effect

in July 2015 after a period of transition. The objective of the Volcker rule is to limit risk

taking of protected institutions. However, as the rule prohibits proprietary trade, it decreases

incentives of maintaining an inventory of assets.

Choi et al. (2024) classify trades as being the result of a match customer-customer (DC-
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DC), a match customer-dealer intermediated by an interdealer (DC-ID), and inventory trades.

They focus on over-the-counter trades in the corporate bond market. The classification is

made with TRACE data, using dealer identifiers, counterparty pair types, and the time

record of the trades. DC-DC and DC-ID trades have matches identified within a period of 15

minutes. Inventory trades are not matched with the opposing side, which implies that the

asset is held after the trade as inventory. Since 2011, they find an increase in the fraction of

customer-customer trades.

Customer-customer trades require a longer search and matching process for the trade

execution. Suppose that a customer contacts a dealer to sell an asset. This customer demands

liquidity. Conventionally, the dealer would buy the asset and provide liquidity. Instead,

especially for trades equal to or larger than 1 million dollars, it is now more frequent that the

dealer uses its relationships with other clients to find a customer willing to purchase the asset.

The second customer found by the dealer provides liquidity. This process takes time. Kargar

et al. (2021) examine corporate bond market liquidity and trade composition during COVID.

They find an increase in the costs of customer-dealer trades and a shift of customers toward

slower customer-customer trades.3

An evidence of the value of the provision of liquidity is that customers are compensated

for it (Choi et al. 2024). Customers that provide liquidity by buying the asset pay smaller,

even negative spreads. The same happens for customers that provide liquidity by selling the

asset. Giannetti et al. (2023) find that bond mutual funds engage more frequently in liquidity

provision since 2015, and that the performance of funds with strategies of liquidity provision

has improved. Rapp and Waibel (2023) show that regulatory costs are associated with the

use of the client network for the provision of liquidity. As we discuss below, the decrease in

spreads charged to customers implies a decrease in bid-ask spreads and an improvement of

liquidity measures, even though these DC-DC trades could take longer to be executed.

There is evidence that the search process can be costly. Transactions datasets such as

TRACE contain only the final outcome of successful transactions. It is then not possible

to measure the duration of the whole search process. Using data from electronic platforms,
3However, they do not investigate the effects of regulations and only imply that the decrease in the liquidity

provision of dealers during the crisis might have been a consequence of regulatory restrictions. Their model is
also silent about the connection between regulations and measures of liquidity.
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Kargar et al. (2023) find that a substantial number of requests for quote are not promptly

fulfilled. If the quote is not fulfilled initially, it takes on average from 2 to 3 days for a trade

to be finalized. Another indicator of the need to match customers is the advent of electronic

platforms to facilitate matching between trade counterparties (Hendershott et al. 2021).

The Volcker rule does not allow proprietary trading, but allows trading to facilitate

transactions that were driven by customers. The law recognizes the role of dealers in the

functioning of markets. Dealers cannot transact in a way intended to make profits based on

the increase in the price of the asset, but they can profit from bid-ask spreads. As a result, a

change in the market structure, with more frequent customer liquidity provision, would imply

higher transaction costs for those trades that are executed with the inventory of dealers.

In fact, Choi et al. (2024) find that inventory trades have a transaction cost 60% higher

than before the financial crisis. According to the classification above, inventory trades do not

require a match of another dealer or customer to be executed. These trades are faster to be

finalized. Therefore, the higher transaction cost reflects a higher premium on immediacy after

the change in the market structure.

Early evidence that the new regulations affected markets was shown by Adrian et al. (2017)

and Bao et al. (2018). Adrian et al. found that the ability to intermediate customer trades of

affected institutions decreased. Bao et al. note that dealers affected by the Volcker rule have

been the main liquidity providers. They found that the illiquidity of bonds in time of stress

has increased after the Volcker rule. As stated above, there was an increase in the fraction

of liquidity provided by customers, but only with a more costly matching procedure. The

increase in illiquidity during stress events can be explained by a change in the structure of

markets toward costly matching.

There is therefore evidence that the structure of the corporate bond market has changed

toward the prearrangement of trades between customers. This prearrangement is made to save

on inventory of securities. The complete trade from the first contact until the final transaction

becomes costly and protracted.

The changes in market structure, however, are not fully captured by standard measures of

illiquidity. These measures do not take into account the time for the arrangement of matches.

They use recorded prices at the final moment of the trade. We next discuss the behavior of
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the illiquidity measures over time.

2.2 Illiquidity measures

Our second observation is the improvement of the illiquidity measures since 2008. This

improvement is surprising given the changes in the market structure, as discussed above.

Trade in over-the-counter markets has moved toward prearranged matching of customers

instead of a faster trade using existing dealer inventory. As these trades take longer to be

executed, it is surprising to observe an improvement of measured illiquidity. As we argue

later, the source of the difference is the fact that these measures use observed trading records.

We later offer an alternative measure of illiquidity implied by the model in section 3.

We discuss the behavior of two measures of illiquidity: the γ measure, proposed by BPW,

and the Amihud measure, proposed by (Amihud, 2002). Figure 1 shows the evolution of the

measures over time.

The γ measure (BPW) is given by the covariance of subsequent price changes. The γi

measure for bond i is defined as

γi = −Cov(∆pit, ∆pit+1), (1)

where ∆pit = pit − pit−1 and pit is the logarithm of the clean price Pit of bond i on trade t.

The clean price is the bond price minus accrued interest since the last coupon payment. We

require a bond to have at least ten pairs of consecutive annualized-returns to estimate γi.

The objective of the measure is to extract a transitory component from observed prices.

This transitory component is interpreted as the impact of illiquidity, as efficient markets with

no trading frictions imply uncorrelated returns. Let pt = ft + ut, where ft corresponds to

a fundamental component, equal to the value of the asset with no market frictions, and ut

corresponds to the transitory component, uncorrelated with the fundamental value. If the

fundamental value ft follows a random-walk process, then (1) implies that γ depends only on

the transitory component ut.

In addition to γ, we estimate the Amihud measure (Amihud 2002). The Amihud measure
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for each bond is given by the average of absolute returns divided by the volume of trades,

AMDid = 1
Nid

Nid∑
j=1

|rij |
Vid

, (2)

where Nid is the number of available returns rij of bond i on day d, and Vid is the volume of

trade of bond i on day d in millions of dollars. We require at least two trades on each day to

estimate AMDid.

High Amihud measure implies high price change per unit of volume, that is, high impact

or order flow. Liquid markets should not show large changes in price relative to volume.

Therefore, a high Amihud measure is interpreted as lack of market liquidity. Table 1 reports

the correlations between γ, Amihud and other variables.4

Table 1: Correlations between illiquidity measures and other variables

γ AMD Spread CDS Volume Frequency Maturity Age Turnover ZTD
γ 1.00
AMD .466 1.00
Spread .385 .444 1.00
CDS .290 .347 .816 1.00
Volume −.002 −.055 .040 .056 1.00
Frequency .047 .196 .146 .140 .420 1.00
Maturity .163 .149 .092 −.026 .097 −.052 1.00
Age .017 .109 .079 .056 −.202 −.001 −.075 1.00
Turnover .013 −.008 .125 .127 .588 .303 .110 −.209 1.00
ZTD −.051 −.198 −.080 −.088 −.199 −.356 .084 .016 −.034 1.00

Correlations between our main illiquidity measures, γ and AMD, and other commonly-used liquidity metrics,
the spread, and the CDS. Data description in appendix B. Spread is the corporate bond yield spread with
respect to the US Treasury with the same maturity (appendix B). Maturity is the issue’s time to maturity.
Maturity and age are calculated in years at the last business day of each month. Turnover is the traded volume
divided by the amount outstanding. ZTD is the percentage of zero-trading days.

We define a measure of aggregate market level illiquidity over time by taking the median,

mean or volume-weighted average of bond measures in each cross-section. Figure 1 shows

the aggregate measures for the corporate bond market γ and AMD over time. γ and AMD

increase when liquidity worsens. Both illiquidity measures strongly increased during the

financial crisis. After the crisis, liquidity gradually improved. The covid shock was large but

brief and did not affect the trend.
4Additional measures of illiquidity are given, among others, by Mahanti et al. (2008) and Dick-Nielsen et al.

(2012). Mahanti et al. present a liquidity measure based on the accessibility of the issues. Dick-Nielsen et al.
introduce a measure computed by an average of different illiquidity measures.
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Figure 1: Time series of γ and AMD illiquidity measures. Periods: (1) May 2010, when the
Dodd-Frank bill passed the U.S. Senate, and the European debt crisis deepened with the ECB
announcement of the Securities Market Programme and Greece’s bailout; (2) August 2011,
when the U.S. had its credit rating downgraded; and (3) December 2015, when the Fed raised
interest rates for the first time since the financial crisis.
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It is possible to identify significant events that create local peaks in the time series of

the illiquidity measures. Two of these local peaks can be associated with events related to

credit and regulatory changes. The first local peak can be associated with the passing of the

Dodd-Frank bill by the US Senate and the deepening of the European debt crisis around

May 2010, when Greece agreed to a bailout and the European Central Bank announced the

Securities Market Programme. The second local peak occurs around the downgrade of the US

credit rating in August 2011. The third peak in illiquidity follows the decision of the Federal

Reserve in December 2015 to raise interest rates. This increase in interest rates was the first

increase after a period of 7 years of low interest rates close to zero.

Different from the previous events, the decision of the FOMC to raise rates is not a credit

event. Its effects on corporate bond liquidity can be understood by the microstructure of

the corporate bond market. The predominance of over-the-counter trading in the corporate

bond market provides dealers with an important role in supplying liquidity. To pursue their

activity, dealers must hold inventory, thereby incurring costs and risk. The ability with which

liquidity suppliers can manage their inventories affects market liquidity (Comerton-Forde et al.

2010). The increase in illiquidity in this period is also consistent with the changes in liquidity

provision discussed above and the funding liquidity channel discussed in Brunnermeier and

Pedersen (2009) and in Boudt et al. (2017).
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Figure 2: γ and AMD illiquidity measures after the 2008 financial crisis according to the
corporate bond rating. Description of the selected periods in Fig 1.
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As interest rates rise, it becomes more costly and riskier for dealers to maintain corporate

bonds in their inventories. Fleming and Remolona (1999) state that the release of major

macroeconomic changes by the FOMC worsens liquidity as it affects inventory controls.

Chordia et al. (2001) show that an increase in short term interest rate negatively impacts

liquidity because of the increase in inventory costs. Anderson and Stulz (2017) show that

bond illiquidity is higher around extreme VIX changes more recently than it was before the

crisis. These results indicate that an increase in interest rates should have a higher impact

on illiquidity for riskier bonds. In accordance with this view, figure 2 shows that the Fed

tightening had a higher impact on illiquidity for high yield bonds.
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Figure 3: Median γ (left) and median Primary Dealers monthly net positions in corporate
debt instruments (right). Primary Dealers net positions in billions of U.S. Dollars; data from
the New York Fed. Description of the selected periods in Fig 1.

According to our first point, liquidity provision by dealers has been replaced by customer

liquidity provision. At the same time, however, illiquidity indicators declined. Figure 3 shows

the net position of Primary Dealers in corporate debt instruments and illiquidity over time.

It shows the decrease in inventories together with a decrease in γ. We explain this paradox

with the model of section 3.

Also used as a measure of liquidity, turnover has declined after the 2008 financial crisis.

We calculate daily turnover for an individual bond by dividing the amount traded in each

day by the amount outstanding at the end of the corresponding month. We then define the
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monthly turnover measure for an individual bond by the median of its daily turnover. Figure

4 shows the median turnover of all bonds as an aggregate measure (the behavior looks similar

for the mean turnover). The figure also shows the moving average of 12 months.

The turnover rate decreased after August 2009. The 12-month average decreased from

13.8% in August 2009 to 7.8% in August 2017. This decline is consistent with the decrease

in inventories as discussed above. The decline in turnover is consistent with our results in

Proposition 3, which states that an increase in intermediation costs, such as the ones induced

by the Dodd-Frank regulations, lead to a decrease in turnover.
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18

Turnover

Moving average (12 months)

Figure 4: Monthly turnover (median from daily values). Turnover has decreased since 2009.

2.3 Liquidity premium

Our third observation is the increase in the premium on illiquidity. We measure illiquidity with

monthly data on γ and AMD. We regress yield spreads on illiquidity and bond characteristics

such as risk (CDS), volume, and maturity as controls. We find that the coefficient on γ

increased 5.7 times from 2007 to 2021 and that the coefficient on AMD increased 4.6 times in

the same period (table 2).5

5Li and Yu (2023) and Wu (2023), in independent work, also find an increase in the coefficients related to
illiquidity. They use the bid-ask spread as a measure of illiquidity. Wu (2023) use monthly data, as we do. Li
and Yu (2023) uses quarterly data; they find an increase of four times of the coefficient on the bid-ask spread.
We find a larger increase in the coefficient on illiquidity using γ and AMD and monthly data.
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We run a Fama-MacBeth regression (Fama and MacBeth 1973) of corporate yield spreads

on γ and AMD. In the first step, we estimate N cross-sectional regressions for each month,

where N is the number of issues. In the second step, we average the coefficients over the

T periods in the sample. The t-statistics are calculated with standard errors corrected for

serial correlation by Newey-West (Newey and West 1987). Our sample implies 115 monthly

cross-sections from a sample of 3,073 bonds and 139,168 bond-month observations, as stated

in appendix B. We estimate the coefficients for the complete period December 2007–June

2021 and the following four sub-periods: (1) the financial crisis period from December 2007 to

December 2009; (2) the post-crisis period from January 2010 to November 2015; (3) the rate

normalization period from December 2015 to February 2020; and (4) the COVID-19 pandemic

period from March 2020 to June 2021. Table 2 summarizes our results. As the results with γ

and AMD are consistent with each other, we focus our discussion on γ.

For the complete sample period the coefficients on illiquidity taken individually are smaller

only to the coefficients on the issuer’s coupon and credit quality (CDS and credit rating). The

first three lines show the results with the illiquidity measures and CDS taken individually.

Illiquidity is an important element for customers to consider in the corporate bond market.

The inclusion of controls maintains the economic and statistical significance of illiquidity.

The coefficient on AMD for the regression with all controls (line 5 of table 2) implies that an

increase of one standard deviation of the AMD of an issue increases corporate yield spreads

28 basis points. This increase is equivalent to 13% of the average yield spread. The results

are even more substantial for γ. An increase of one standard deviation in γ is associated with

an increase in the yield spread of 40 basis points. This increase corresponds to 18% of the

average yield spread.6

Turnover also shows a robust, positive coefficient, contrasting with that of volume. This

result is intriguing given that volume is an element of the turnover and that the two measures,

as a result, have a strong correlation. As shown in table 1, volume and turnover have a

correlation of 0.727. One explanation, consistent with our model, is that turnover better

captures search frictions since trade volume can increase artificially with the amount of bonds
6We consider the one standard deviation change to be the time series average of cross-sectional standard

deviations within each interval. According to table 3, for the complete period, one standard deviation of γ
corresponds to 3.931. Similarly, we consider the average yield spread to be the time series mean of cross-sectional
averages within that period. These and other metrics are detailed in table 3.
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Table 2: Corporate Yield Spreads on γ, AMD and controls

γ AMD CDS EqVol. Cpn IG Call Volume Freq. Maturity Age Turnover ZTD Constant Adj.R2 Obs.

Panel A: Complete Period, December 2007–June 2021
.429 1.41 .181 196, 345

[11.01] [7.86]
.278 1.37 .149 196, 345

[9.58] [8.09]
.787 .664 .646 196, 345

[32.11] [8.32]
.143 .535 .548 .175 −.851 −.042 −.467 .423 .010 .004 .010 .370 .297 .791 196, 345

[9.61] [20.38] [9.12] [11.93] [−9.20] [−1.82] [−4.39] [8.68] [2.01] [.70] [5.73] [6.40] [3.04]
.098 .537 .579 .179 −.862 −.058 −.410 .281 .015 −.005 .012 .603 .237 .792 196, 345

[8.70] [19.59] [9.71] [11.33] [−9.26] [−2.11] [−3.96] [6.12] [2.39] [−1.05] [6.79] [6.66] [2.49]

Panel B: Crisis, December 2007–December 2009
.151 3.33 .085 16, 687

[4.56] [6.19]
.102 3.28 .052 16, 687

[3.96] [7.58]
.935 1.48 .744 16, 687

[20.33] [5.75]
.042 .758 .877 .290 −1.32 −.188 −.295 .009 −.046 .058 .009 .720 .638 .791 16, 687

[4.37] [16.19] [5.86] [4.97] [−3.07] [−2.16] [−1.02] [.18] [−3.13] [3.09] [1.84] [3.74] [1.28]
.036 .764 .876 .300 −1.32 −.233 −.196 −.062 −.048 .045 .010 1.28 .544 .792 16, 687

[3.62] [10.42] [6.26] [5.77] [−3.89] [−2.42] [−.56] [−1.60] [−2.88] [4.27] [3.06] [3.56] [1.40]

Panel C: Post-Crisis, January 2010–November 2015
.327 1.20 .169 90, 727

[10.37] [18.13]
.211 1.21 .120 90, 727

[9.85] [17.22]
.827 .446 .668 90, 727

[67.56] [18.52]
.098 .541 .392 .146 −.692 −.049 −.424 .460 .018 −.003 .008 .157 .228 .801 90, 727

[9.50] [23.55] [5.97] [16.05] [−14.86] [−2.01] [−4.51] [13.67] [7.43] [−1.81] [6.26] [3.00] [3.85]
.069 .547 .419 .148 −.709 −.065 −.411 .377 .023 −.010 .009 .317 .187 .800 90, 727

[8.64] [22.93] [6.19] [16.83] [−15.27] [−2.86] [−4.66] [14.99] [10.38] [−4.22] [8.30] [6.78] [3.12]

Panel D: Rate Normalization, December 2015–February 2020
.606 .858 .225 68, 997

[16.40] [23.32]
.368 .818 .192 68, 997

[10.20] [22.42]
.644 .592 .584 68, 997

[19.13] [25.85]
.225 .440 .569 .150 −.738 .010 −.393 .535 .026 −.011 .011 .390 .199 .776 68, 997

[13.06] [16.52] [5.63] [19.55] [−16.23] [0.97] [−1.75] [6.15] [23.51] [−8.08] [2.58] [8.58] [2.57]
.150 .432 .622 .154 −.754 .008 −.328 .326 .033 −.021 .013 .585 .132 .778 68, 997

[9.06] [16.38] [6.22] [18.94] [−16.70] [0.76] [−1.45] [3.43] [36.09] [−7.77] [3.19] [10.27] [1.74]

Individual bond yield spreads regressed on the illiquidity measures γ and AMD and other variables for different
periods. Coefficients estimated using Fama-MacBeth and standard errors corrected by Newey-West. T-statistics
reported in square brackets. γ and AMD are the illiquidity measures detailed in section B. AMD multiplied by
103. EqVol. is the annualized volatility of the issuer’s equity returns and Cpn is the issue’s coupon. IG is 1
if the bond is Investment Grade and 0 otherwise. Call is 1 if the bond is callable and 0 otherwise. Volume
is calculated as the total $ amount traded ×10−11. Frequency in thousands of trades. Maturity and Age
calculated in years at the last business day of the month. Turnover is the monthly median of daily volume
divided by amount outstanding and ZTD is the percentage of zero-trading days. Adj. R2 is the time series
average of cross-sectional adjusted-R2’s.

15



Table 2: Corporate Yield Spreads on γ, AMD and controls (continued)

γ AMD CDS EqVol. Cpn IG Call Volume Freq. Maturity Age Turnover ZTD Constant Adj.R2 Obs.

Panel E: COVID-19 Pandemic, March 2020–June 2021
.748 .1.11 .242 19,934

[11.38] [5.18]
.566 .878 .293 19,934

[13.53] [5.49]
.832 .592 .591 19,934

[14.88] [4.22]
.239 .463 .658 .208 −1.19 .049 −1.17 .544 .015 −.003 .021 .708 .383 .799 19,934

[8.62] [6.10] [5.49] [8.47] [−10.97] [1.30] [−5.50] [4.53] [2.65] [−.45] [6.75] [4.03] [5.50]
.165 .474 .686 .203 −1.16 .038 −.999 .246 .020 −.010 .022 .870 .315 .801 19,934

[4.54] [4.99] [5.32] [7.82] [−9.49] [.89] [−4.58] [2.29] [4.99] [−1.82] [8.00] [5.22] [3.66]

Individual bond yield spreads regressed on the illiquidity measures γ and AMD and other variables for different
periods. Coefficients estimated using Fama-MacBeth and standard errors corrected by Newey-West. T-statistics
reported in square brackets. γ and AMD are the illiquidity measures detailed in section B. AMD multiplied by
103. EqVol. is the annualized volatility of the issuer’s equity returns and Cpn is the issue’s coupon. IG is 1
if the bond is Investment Grade and 0 otherwise. Call is 1 if the bond is callable and 0 otherwise. Volume
is calculated as the total $ amount traded ×10−11. Frequency in thousands of trades. Maturity and Age
calculated in years at the last business day of the month. Turnover is the monthly median of daily volume
divided by amount outstanding and ZTD is the percentage of zero-trading days. Adj. R2 is the time series
average of cross-sectional adjusted-R2’s.

outstanding while turnover corrects for such changes.

Credit risk, captured by the CDS spread, is the most relevant pricing factor of corporate

spreads. An increase of 100 basis points to an issuer’s CDS is associated with an increase in

yield spreads of 59 basis points. Credit rating also plays an important role in the pricing of

yield spreads. Investment grade bonds have spreads substantially lower, by 85 basis points,

than their lower grade peers.7

Among the additional controls, trade frequency, in particular, yields a positive coefficient.

That is, bonds that trade more frequently have on average higher spreads. In contrast, volume

traded has a negative slope. These results combined indicate that bonds with larger average

size per trade have on average tighter spreads.8

As shown in table 2, the coefficient on illiquidity has been increasing over time. The

illiquidity measures have been decreasing over time, but their importance on the yield spread

has been increasing. We relate this observation to the changes in regulations with the Dodd-

Frank act. Illiquidity is most relevant both in its ability to explain the variation of yield

spreads and in its contribution to basis points in relative terms.
7See, for example, Forte and Pena (2009) for the role of CDS for corporate bonds.
8In the same direction, Chordia et al. (2000) find a positive correlation between spreads and the number of

individual transactions, and a negative correlation between spreads and individual volume.
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The explanatory power of illiquidity is larger for later periods. In terms of absolute basis

points, a one standard deviation increase to an issue’s illiquidity is associated with an increase

of about 30 basis points to yield spreads during the monetary tightening period. This value

compares to 50 basis points during the financial crisis and 18 basis points during the post-crisis

period.

Although the impact of a one standard deviation increase in illiquidity is smaller in

absolute terms after the rate normalization (30 versus 50 basis points during the financial

crisis), the impact is higher in relative terms. The higher impact in relative terms occurs

because the corporate yield spreads decreased during the period. A one standard deviation

increase in bond illiquidity is associated with an increase in the average yield spread of 12%

during the financial crisis and 11% in the post-crisis periods. After the normalization, an

increase of one standard deviation in bond illiquidity is associated with an increase in the

average yield spread of 18%.

3 Model

3.1 Environment

We model over-the-counter markets as markets in which agents take decisions under search

frictions. First search models applied to OTC markets include Gehrig (1993), Spulber (1996),

and Rust and Hall (2003).9 Our model builds more directly on Duffie et al. (2005).

Agents, time, goods and assets There are two types of agents in the economy: a

measure one of infinitely-lived customers and a measure one of infinitely-lived dealers. Time

is continuous and infinite. All agents discount the future at rate r > 0, and have access to

a transferable utility technology. There is an endogenous supply s ≥ 0 of assets. A unit of

the asset pays a unit flow of dividend goods, which cannot be traded — that is, the agent

holding an asset consumes its dividend good. Customers can hold either zero or one unit of

the asset. We refer to customers holding an asset as owners, and to those not holding an asset

as non-owners. For now we assume that dealers do not hold assets. We relax this assumption

in Section 6 when introducing dealers inventory.
9See also Cimon and Garriott (2019), Saar et al. (2023), An and Zheng (2022).
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Preferences Customers are heterogeneous in the utility ν that they derive from consuming

the dividend flow of the asset. We refer to ν as the customer utility type. Types are fixed

over time, common knowledge, independent across customers, and initially drawn from the

cumulative distribution F . The distribution F has support R, and a continuous density

f(·) > 0. Moreover, we assume that
∫

ν2f(ν)dν < ∞ and that there is no free disposal of

assets. The assumption that the distribution of types has unbounded support is convenient

because we do not have to consider corner solutions. However, we can obtain our main

results also with a bounded support [
¯
ν, ν̄] if we assume that the density is sufficient low at the

extremes. Similarly, the assumption of no free disposal can be replace with the assumption

that the measure of agents with ν < 0 is sufficiently low.

Decentralized market There is a decentralized asset market, where trade occurs as follows:

customers choose to trade with a dealer or to search for another customer, as in HLW.

Customers cannot search for both simultaneously. When the customer chooses to trade with

a dealer, the customer is randomly matched with one of the available dealers — that is,

dealers not already matched with other customers — immediately. The dealer then joins

an over-the-counter inter-dealer market, to be described in the following, to complete the

transaction on the behalf of the costumer. We call this type of intermediation risk-free

principal trades because dealers do not take the asset on its balance sheet.10 When the

customer chooses to search for another customer, it finds one at the arrival rate λC/2 > 0.

Hence, customers searching for customers will meet one at rate λC (with arrival rate λC/2,

the customer finds another customer, and with arrival rate λC/2 another customer finds him).

Customers searching for customers do not find customers matched with dealers.

The inter-dealer market Dealers trade in an over-the-counter interdealer market in

the style of Lagos and Rocheteau (2009). With an arrival rate λD, they have access to a

competitive market where assets are traded at an endogenous price p. When a dealer meets a

customer, the dealer bargains over the possible gains from trade coming from either buying

an asset from the customer, and reselling it at price p, or buying it at the price p, and selling

it to the customer. However, there is an intermediation cost τ ≥ 0 that the dealer must pay if
10In Section 6 we extend the model to allow for dealers to perform risky-principal trades.
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the dealer buys or sells that asset, even if the asset stays on the balance sheet only for an

infinitesimal amount of time. As a result, the net price by which the dealer sells an asset is

p − τ , and the net price by which the dealer buys an asset is p + τ .

Bargaining Customers trade with dealers using a Nash bargaining protocol where the

bargaining power of the customer is θD ∈ [0, 1], and customers trade with other customers

using a Nash bargaining protocol where the bargaining power of the non-owner is θn
C ∈ [0, 1],

and the bargaining power of the asset owner is θo
C = 1 − θn

C . We assume the following relation

between the search and bargaining parameters:

Assumption 1. λDθD > max{λCθo
C , λCθn

C}.

Assumption 1 guarantees that customers are better off searching for dealers than searching

for other customers when the intermediation cost τ is equal to zero. That is, in the absence

of intermediation costs, the dealers have a superior technology for trade.

Asset supply Assets mature and customers produce new assets following two Poisson

distributions. With Poisson arrival rate µ > 0, the asset matures. Which means that the

asset disappears from the economy. With Poisson arrival rate η > 0, a customer can issue a

new asset at no cost. Similar to Bethune et al. (2022), the existence of asset maturity and

issuance implies that a steady state with positive trade emerges even without time-varying

types. Adding time-varying types in our model is not as straightforward as it would be in

their model, however, and we discuss this later in the paper.

3.2 Value functions and reservation value

We now describe how agents evaluate future payoffs and assets. We focus on steady-state

equilibria and omit time subscripts. Let Φo(ν) and Φn(ν) denote the cumulative distribution

of owners and non-owners. Since each owner holds exactly one unit of the asset, the measure

of assets is s =
∫

dΦo. Let {Ωo
D, Ωo

C} and {Ωn
D, Ωn

C} be two partitions of R. The set Ωo
D

represents the owners that search for dealers and Ωo
C represents the set of owners that search

for non-owners. Analogously, Ωn
D represents the set of non-owners that search for dealers and

Ωn
C represents the set of non-owners that search for owners. We denote the search partitions
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of customers by P = {Ωo
D, Ωo

C , Ωn
D, Ωn

C}, and assume that customers of the same type make

the same search decisions.

Denote the value functions of owners and non-owners searching for a dealer by V o
D(ν) and

V n
D(ν) and the value functions of owners and non-owners searching for other customers by V o

C(ν)

and V n
C (ν). The value function of customers is the maximum between the searching choices.

That is, V o(ν) = max{V o
D(ν), V o

C(ν)} and V n(ν) = max{V n
D(ν), V n

C (ν)}. The reservation

value of a customer, ∆(ν), is the compensation that makes a customer indifferent between

holding and not holding an asset. That is, ∆(ν) = V o(ν) − V n(ν).

Searching for dealers The value function of an owner of type ν searching for dealers is

rV o
D(ν) = ν − µ∆(ν) + λDθD max{(p − τ) − ∆(ν), 0}. (3)

The first term of the value function, ν, is the utility flow of holding the asset. The second

term, −µ∆(ν), is the loss of the reservation value due to asset maturity. The third term,

λDθD max{(p − τ) − ∆(ν), 0}, is the profit of an owner when meeting a dealer. When

trading with a dealer, an owner sells the asset if the inter-dealer price for the asset minus the

intermediation cost cost τ is larger than the reservation value of the owner. If the owner sells

the asset, the gains from trade are (p − τ) − ∆(ν) and the owner keeps a share θD of it. If the

owner does not sell the asset, the gains from trade are zero.

The value function of a non-owner of type ν searching for dealers is

rV n
D(ν) = η∆(ν) + λDθD max{∆(ν) − (p + τ), 0}. (4)

The first term of the value function, η∆(ν), is the gain of the reservation value obtained

from an issuance opportunity. The second term, λDθD max{∆(ν) − (p + τ), 0}, is the profit

of an non-owner when meeting a dealer. An non-owner buys an asset from a dealer if the

inter-dealer asset price plus the intermediation cost is smaller than the reservation value of

the non-owner. If the non-owner buys the asset, the gains from trade are ∆(ν) − (p + τ) and

the non-owner keeps a share θD of it. If the non-owner does not buy the asset, the gains from

trade are zero.
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Searching for customers The value function of an owner of type ν searching for a

non-owner is

rV o
C(ν) = ν − µ∆(ν) + λCθo

C

∫
Ωn

C

[∆(ν̃) − ∆(ν)]1{∆(ν̃)>∆(ν)}dΦn(ν̃). (5)

The first term of the value function, ν, is the utility flow of holding the asset. The second

term, −µ∆(ν), is the loss of the reservation value because of asset maturity. The third term is

the expected profits of an owner when meeting a non-owner. When trading with a non-owner

of type ν̃, an owner of type ν sells the asset if the reservation value of his counterparty, ∆(ν̃),

is higher than the reservation value of the owner. That is, if ∆(ν̃) > ∆(ν). The gains from

trade are ∆(ν̃) − ∆(ν) and the owner keeps a share θo
C of it. We obtain the expected value of

the gains from trade by integrating it in ν̃ over Ωn
C using the distribution of owners Φn(ν̃).

The value function of a non-owner of type ν searching for an owner is

rV n
C (ν) = η∆(ν) + λCθn

C

∫
Ωo

C

[∆(ν) − ∆(ν̃)]1{∆(ν)>∆(ν̃)}dΦo(ν̃). (6)

The first term of the value function, η∆(ν), is the expected gain of reservation value because

of an asset issuance. The second term is the expected profit of a non-owner when searching

for an owner. When trading with an owner of type ν̃, a non-owner of type ν buys the asset

if his reservation value, ∆(ν), is higher than the reservation value of the owner. That is, if

∆(ν) > ∆(ν̃). The gains from trade are ∆(ν) − ∆(ν̃) and the non-owner keeps a share θn
C of

it. We obtain the expected value of the gains from trade by integrating it in ν̃ over Ωo
C using

the distribution of owners Φo(ν̃).

Value functions, reservation value and the optimal searching choice The value

functions V o and V n of a customer type ν satisfy

V o(ν) = max{V o
D(ν), V o

C(ν)} and V n(ν) = max{V n
D(ν), V n

C (ν)}, (7)

and the reservation value function satisfies

∆(ν) = V o(ν) − V n(ν). (8)
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We characterize the search partition P = {Ωo
D, Ωo

C , Ωn
D, Ωn

C} in the following way. For Ωo
D,

an owner searches for a dealer if it yields higher value than searching for a non-owner. In the

same way, for Ωn
D, a non-owner searches for a dealer if it yields higher value then searching

for an owner. We have

Ωo
D = {ν ∈ R; V o

D(ν) ≥ V o
C(ν)} and Ωn

D = {ν ∈ R; V n
D(ν) ≥ V n

C (ν)}. (9)

Analogously,

Ωo
C = {ν ∈ R; V o

C(ν) > V o
D(ν)} and Ωn

C = {ν ∈ R; V n
C (ν) > V n

D(ν)}, (10)

where we assume that customers search for dealers when indifferent between searching for

a dealer or other customers, and search for other customers only when they are strictly

better off doing so than searching for dealers. For the equilibrium class that we consider, this

assumption is without loss of generality because there is a measure zero of customers that are

indifferent between the two and trade in equilibrium.

3.3 Inter-dealer market clearing

The interdealer market clears when the measure of owners finding dealers to sell an asset is

equal to the measure of non-owners finding dealers to buy an asset. That is,

λD

∫
Ωo

D

1{∆(ν)<p−τ}dΦo(ν) = λD

∫
Ωn

D

1{∆(ν)>p+τ}dΦn(ν). (11)

The left-hand side describes the measure of owners that want to sell the asset at the inter-dealer

market price net of the intermediation cost, p − τ , and find a dealer. The right-hand side have

an analogous description for the sellers that want to buy an asset at the inter-dealer market

price added the intermediation cost, p + τ . As the search intensity parameter is the same for

potential sellers and buyers, this parameter cancels out from the formula. We will use this

equation to find the equilibrium price p∗ in this market.
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3.4 The distribution of assets

The cumulative distribution of owners is given by Φo and the cumulative distribution of

non-ownersis given by Φn. The change over time of the distribution of owners Φo satisfies

Φ̇o(ν) = ηΦn(ν) − µΦo(ν)

− λD

∫ ν

−∞
1{ν̃∈Ωo

D,∆(ν̃)<p−τ}dΦo(ν̃) + λD

∫ ν

−∞
1{ν̃∈Ωn

D,∆(ν̃)>p+τ}dΦn(ν̃)

− λC

∫ ν

−∞

∫ ∞

ν
1{ν̃∈Ωo

C ,ν̂∈Ωn
C ,∆(ν̂)>∆(ν̃)}dΦn(ν̂)dΦo(ν̃)

+ λC

∫ ν

−∞

∫ ∞

ν
1{ν̃∈Ωo

C ,ν̂∈Ωn
C ,∆(ν̃)>∆(ν̂)}dΦo(ν̂)dΦn(ν̃), (12)

where Φ̇o(ν) = 0 for all ν in an steady-state equilibrium. On the right-hand side of (12), the

first term accounts for the inflow of owners that issue an asset. The second term accounts

for the outflow of owners because of asset maturity. The third and fourth terms account for

owners searching for dealers. The third term for the outflow of owners with type below ν

searching for dealers and that sell their asset and the fourth for the inflow of non-owners with

type below ν searching for dealers and that buy an asset. The fifth and sixth terms account

for customers searching for other customers. The fifth term for the outflow of owners with

type below ν searching for other costumers, and that sell their asset to non-owners of type

above ν. The sixth term for the inflow of non-owners with type below ν searching for other

costumers, and that buy an asset from owners of type above ν.

We will see that the last term in equation (12) will be equal to zero in equilibrium. The

reason is that, in equilibrium, the reservation value function ∆ is monotonically increasing in

the utility type ν. As a result, the measure of non-owners with type ν̃ and owners with type

ν̂ such that ∆(ν̃) > ∆(ν̂) and ν̃ < ν̂ is equal to zero.

As the measure of customers, F , is exogenous, the measures of owners and non-owners

satisfy the equilibrium condition

Φo(ν) + Φn(ν) = F (ν). (13)

All assets in the economy are held by owners. So, the stock of assets is s = Φo(∞).
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3.5 Equilibrium

We define a symmetric stationary equilibrium in the following way.

Definition 1. An equilibrium is a family of value functions, reservations value, price, distri-

butions and partitions, {V o, V n, ∆, p, Φo, Φn, P} satisfying equations (3)–(13).

An equilibrium can be a complicated object. To simplify it further, let ΩC = Ωo
C = Ωn

C =

(νl, νh) and ΩD = Ωo
D = Ωn

D = (−∞, νl] ∪ [νh, ∞). Notice that we can have Ωo
C = Ωn

C as we

have some customers of type ν holding the asset and other customers of the same type that

do not hold the asset. Define the following class of equilibrium.

Definition 2. A symmetric stationary equilibrium {V o, V n, ∆, p, Φo, Φn, P} is regular if

ΩC = Ωo
C = Ωn

C = (νl, νh) and ΩD = Ωo
D = Ωn

D = (−∞, νl] ∪ [νh, ∞) for some νl, νh ∈ R

satisfying νl ≤ νh with strict inequality if τ > 0, and the reservation value ∆ is continuous

and strictly increasing.

We use the notation {V o, V n, ∆, p, Φo, Φn, νl, νh} instead of {V o, V n, ∆, p, Φo, Φn, P} when

referring to a regular equilibrium since νl and νh characterize P. Figure 5 illustrates the

partition of a regular equilibrium.

ν

ΩC

Trade with other customers

... ...

ΩD

Trade with dealers

νl νh

Figure 5: Partition {ΩD, ΩC} in a regular equilibrium.

What motivates looking for an equilibrium with the characteristics of a regular equilibrium

is the following. Customers with type close to each other, inside ΩC = (νl, νh), choose to
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trade among themselves to avoid the cost τ that has to be paid when trading with dealers

because they do not gain much from trading to justify the cost. Customers with extreme

types, that is, outside ΩC = (νl, νh), are in a hurry to trade and they are willing to cover

higher dealer cost. These customers have very low or very high values for ν. Customers of

type ν ≤ νl that hold the asset search for dealers to sell their asset. Customers of type ν ≥ νh

that do not have the asset search for dealers to buy an asset.

We also impose that νl < νh when the intermediation cost is strictly positive, τ > 0. The

reason is that we can always build an equilibrium where customers do not search for costumers

because they expect other customers to do the same. In this case, the probability of finding a

customer is zero so customers may as well search for dealers. The assumption that νl < νh

if τ > 0 rules out equilibria built on this sort of weak inequality. In the next section, we

characterize a regular equilibrium and provide conditions that it exists.

4 Equilibrium

A regular equilibrium has two blocks. Given νl and νh, customers type ν ∈ ΩD = (−∞, νl] ∪

[νh, ∞) act as in LR. Customers type ν ∈ ΩC = (νl, νh) act as in HLW. We can solve these

two blocks separately using the tools developed in these papers.

The challenge is to characterize νl and νh that are consistent with the equilibrium equations

(9) and (10). That is, to find νl and νh such that customers searching for dealers, with low types

ν ≤ νl or high types ν ≥ νh, are not better off searching for other customers. Analogously,

that customers searching for customers, with intermediary types νl < ν < νh, are not better

off searching for dealers.

4.1 Solving the LR block

The reservation value of a type-ν customer searching for a dealer is ∆(ν) = V o
D(ν) − V n

D(ν).

The value functions, V o
D(ν) and V n

D(ν), of a type-ν customer searching for a dealer when

holding and not holding an asset are stated in equations (3) and (4). Taking the difference

between the two equations to isolate ∆(ν) yields the following lemma.

Lemma 1 (Reservation value, dealer market). Consider a regular equilibrium {V o, V n, ∆, p,

Φo, Φn, νl, νh} and the set of utility types ΩD = (−∞, νl] ∪ [νh, ∞). Then, the reservation

25



value ∆(ν) satisfies

∆(ν) =


σD[ν + λDθD(p − τ)], ν ≤ νl

σD[ν − λDθD(p + τ)], ν ≥ νh

(14)

where

σD = 1
r + η + µ + λDθD

. (15)

Moreover, ∆(νl) ≤ p − τ and ∆(νh) ≥ p + τ .

The derivative of the reservation value with respect to ν is given by σD. As HLW, we can

interpret σD as the local surplus at ν. It captures the trade surplus generated if the asset of

an agent type ν is transferred to an agent type ν + dν. The local surplus is independent of ν

for all ν /∈ (νl, νh). That is, because all agents that search for a dealer face the same price

after bargaining and intermediation costs, the trade surplus in this case is constant.

In addition to the interpretation above, we interpret σD as an indicator of market friction.

To see this, suppose that there are no search frictions when the agent searches for a dealer.

In the model, when λD → ∞. In this case, ∆(ν) is constant in ν at p − τ or p + τ and so

σD = 0. Higher values of σD are associated with higher search frictions. We will later find an

analogous value of search frictions for the customer-customer market.

We now turn to the distributions of owners and non-owners Φo and Φn. From Lemma 1,

owners of type ν ≤ νl always sell to dealers whereas non-owners of type ν ≥ νh always buy

from dealers. Moreover, non-owners of type ν ≤ νl are inactive. They have a small reservation

value ∆(ν). It neither compensates for them paying the price asked by dealers nor searching

for other customers. It does not compensate searching for other customers because they would

have to find a customer with the asset and with an even smaller reservation value so that

this other customer would like to sell the asset. In the same way, owners of type ν ≥ νh are

inactive. Their high reservation value does not compensate the bid price made by dealers. It

also unlikely that this owner could find another customer with even higher reservation value

that would like to purchase the asset. So, they do not search for other customers. Therefore,

non-owners of type ν ≤ νl and owners of type ν ≥ νh are inactive.

Lemma 2 (Distributions, dealer market). A regular equilibrium {V o, V n, ∆, p, Φo, Φn, νl,
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νh} is such that the cumulative distribution of owners satisfies

Φo(ν) = F (ν) − Φn(ν) = ηF (ν)
η + µ + λD

, (16)

for all ν ≤ νl, and

Φo(ν) = F (ν) − Φn(ν) = η

η + µ
− (η + λD)[1 − F (ν)]

η + µ + λD
(17)

for all ν ≥ νh. Moreover, νl and νh satisfy

ηF (νl) = µ[1 − F (νh)] and Φo(νl) + Φn(νh) = µ

η + µ
. (18)

Define the separating utility type νs as the value of ν such that ηF (ν) = µ[1 − F (ν)],

νs = F −1
[

µ
η+µ

]
. If τ = 0, then νl = νh = νs and all customers trade with dealers. In this

case, νs separates the dealer-customer market into owners who want to sell the asset and

non-owners that want to buy the asset. νs is the marginal customer. Customers ν < νs are

owners that want to sell the asset and customers ν ≥ νs want to buy the asset.

A decrease in νl below νs reduces the measure of customers that sell assets. In this case,

νh has to increase to keep market clearing in the inter-dealer market. The asset inflow into

the market,

λDΦo(νl) = λD
ηF (νl)

η + µ + λD
,

should equal the asset outflow from the market,

λD[Φn(∞) − Φn(νh)] = λD

[
µ

η + µ
− Φn(νh)

]
= λD

µ[F (∞) − F (νh)]
η + µ + λD

= λD
µ[1 − F (νh)]
η + µ + λD

.

4.2 Solving the HLW block

For customers searching for other customers, the value functions and reservation values are

obtained in the following way. For the value functions, from equations (5) and (6), the value
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function of a type ν ∈ ΩC customer holding an asset satisfies

rV o
C(ν) = ν − µ∆(ν) + λC

∫ νh

ν
θo

C [∆(ν̃) − ∆(ν)]dΦn(ν̃), and (19)

rV n
C (ν) = η∆(ν) + λC

∫ ν

νl

θn
C [∆(ν) − ∆(ν̃)]dΦo(ν̃). (20)

Combined with the definition of reservation value, ∆(ν) = V o
C(ν) − V n

C (ν), given in equation

(8), the equations above imply the following lemma.

Lemma 3 (Reservation value, customer-customer market). A regular equilibrium {V o, V n,

∆, p, Φo, Φn, νl, νh} satisfies

∆(ν) = ∆(νl) +
∫ ν

νl

σC(ν̃)dν̃ (21)

for all ν ∈ (νl, νh), and

σC(ν) = 1
r + µ + η + λC

{
θo

C

[
Φn(νh) − Φn(ν)

]
+ θn

C

[
Φo(ν) − Φo(νl)

]} . (22)

for almost all ν ∈ (νl, νh).

The trade surplus between a seller of type ν and buyer of type ν + dν is approximately

equal to σC(ν)dν, thus providing us with the interpretation discussed in HLW of σC(ν)dν

as the local surplus. The function σC(ν) discounts the additional utility dν by the discount

rate r, the likelihood that the asset will mature µ, the loss in the likelihood of issuing an

asset η, and the loss in option value from either meeting another buyer with higher valuation

λCθo
C

[
Φn(νh) − Φn(ν)

]
, or finding another seller with lower valuation, λθn

C

[
Φo(ν) − Φo(νl)

]
.

We now turn to the distributions Φo, Φn among customers searching other customers.

Lemma 4 (Distributions, customer-customer market). A regular equilibrium {V o, V n, ∆, p,

Φo, Φn, νl, νh} is such that the cumulative distribution of owners satisfies

Φ̃o(ν) = F (ν) − F (νl) − Φ̃n(ν)

= −µ+η+λC [F (νh)−F (ν)−sC ]
2λC

+

√
{µ+η+λC [F (νh)−F (ν)−sC ]}2+4λCη

[
F (ν)−F (νl)

]
2λC

, (23)
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ν ∈ (νl, νh), where Φ̃o(ν) ≡ Φo(ν) − Φo(νl) and Φ̃n(ν) ≡ Φn(ν) − Φn(νl), and

sC ≡ Φo(νh) − Φo(νl) = η

µ + η

[
F (νh) − F (νl)

]
. (24)

Figure 6 shows a representation of the reservation value as function of the utility type

ν. Lemma 1 implies that ∆(ν) is linear for ν ≤ νl and ν ≥ νh. Moreover, ∆(νl) ≤ p − τ

and ∆(νh) ≥ p + τ . That is, owners with ν ≤ νl choose sell to dealers and non-owners with

ν ≥ νh choose to buy from dealers. Lemmas 3 and 4 imply the nonlinear shape of ∆ in (νl, νh).

Customers that trade with dealers have ν ≤ νl. Customers that trade with other customers

have ν ∈ (νl, νh).

ν

∆(ν)

νl νh

∆(νl)

∆(νh)

Figure 6: Reservation value as function of the customer type, ∆(ν). Customers that trade
with dealers have ν ≤ νl. Customers that trade with other customers have ν ∈ (νl, νh).

4.3 Characterization

The results in sections 4.1 and 4.2, equations (4)–(24), establish necessary conditions for the

equilibrium objects V o, V n, ∆, p, Φo, Φn, s, νl and νh. The equilibrium objects can all be

written as functions of νl and νh. We now provide necessary conditions on νl and νh and

show that, together with equations (4)–(24), these conditions are also sufficient for a regular

equilibria. These results provide a full characterization of the equilibrium.
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Lemma 5. A regular equilibrium {V o, V n, ∆, p, Φo, Φn, νl, νh} satisfies

2τλDθD =
∫ νh

νl

σC(ν) − σD

σD
dν. (25)

Moreover,

p = ∆(νl) + τ + λCθo
C

λDθD

∫ νh

νl

∫ ν

νl

σC(ν̃)dν̃dΦn(ν)

= ∆(νh) − τ − λCθn
C

λDθD

∫ νh

νl

∫ νh

ν
σC(ν̃)dν̃dΦo(ν). (26)

Lemmas 2 to 5 establish necessary conditions that are satisfied in all regular equilibria. In

the proposition below, we show that these conditions are not only necessary but sufficient.

Therefore they fully characterize a regular equilibrium.

Proposition 1. If a family {V o, V n, ∆, p, Φo, Φn, νl, νh} is a regular equilibrium, the family

{∆, p, Φo, Φn, νl, νh} satisfies equations (14)–(26). Reversely, if {∆, p, Φo, Φn, νl, νh} satisfies

equations (14)–(26), then {V o, V n, ∆, p, Φo, Φn, νl, νh} is a regular equilibrium where the value

functions V o and V n are constructed using equations (3)–(7).

Proposition 1 implies a procedure to solve for an equilibrium. Given the results above,

equation (25) implies Φo, Φn and σC as functions of νl and νh. Define the function g :

(−∞, νs] → [νs, ∞) as g(νl) = F −1 [(µ − ηF (νl))/µ], using Lemma 2. For an arbitrary νl,

g(νl) yields the value of ν such that the market for the ones that want to sell, ηF (νl), is equal

to the market of those that want to buy, µ[1 − F (ν)]. Define νh given an arbitrary νl by

νh = g(νl). An equilibrium νl then solves

G(νl) = τ, (27)

where G : (−∞, νs] → R is given by

G(νl) ≡ 1
2λDθD

∫ g(νl)

νl

σC(ν; νl, νh) − σD

σD
dν, (28)

The function G is such that G(νl) > 0 for νl sufficiently small and G(νs) = 0.

After obtaining a νl that satisfies G(νl) = τ , we can then obtain all the other equilibrium
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objects using equations (3)–(7) and (14)–(26). Moreover, as the first part of proposition 1

establishes sufficiency, all regular equilibrium can be obtained in this way.

An important result is that proposition 1 does not imply uniqueness. We can have

multiple equilibria because G may not be monotone. The intuition is the following. When

many customers decide to search for customers instead of for dealers, then the probability of

matching is higher and the gain of searching for customers increases. More customers search

for customers if they are convinced that others will follow this strategy. This behavior can

lead to multiple equilibria. But we can show that it only happens when intermediation costs

are sufficiently high.

Proposition 2. There exists τ̄ > 0 such that a regular equilibrium is unique for τ ∈ [0, τ̄).

Proposition 2 establishes that strategic complementarity is not strong enough to generate

multiplicity when the intermediation cost τ is close to zero. Assumption 1 implies that

searching for dealers is in general preferable than searching for customers. If τ is small enough,

no matter how many customers search for customers, it is still preferable to search for dealers.

Multiplicity only happens if τ is large enough so that the measure of customers searching for

customers affects the decision to search for dealers or for customers.

(a) Density of types f (b) Function G

Figure 7: Economy with different equilibrium patterns according to the intermediation cost τ .
Small customer-customer market for τ1. Large customer-customer market for τ3. Multiplicity
of equilibria for τ2.

Figure 7 shows the different types of equilibria. The figure shows the results from

simulations with r = 0.05, µ = η = 0.3, θD = θn
C = θo

C = 0.5, λD = 3 and λC = 1. The
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distribution of utility types, in panel 7a, is a combination of three normal distributions.11

Panel 7b shows the function G and characterizes the equilibrium νl for given values of τ .

The equilibrium is unique around τ1 and τ3. For τ = τ1, the equilibrium νl is unique and

approximately equal to 4.6. For τ = τ3, it is for νl around 0.7. For τ = τ2, we have three

equilibria associated with νl approximately equal to 1.5, 2 and 2.5.

An interpretation of G is that it is a proxy for the expected difference in valuation of an

owner with νl that wants to sell the asset and a non-owner with νh that wants buy the asset,

both using CC trades. A large difference in valuation, high G, implies that a non-owner might

need to pay a substantial amount to the owner to acquire the asset. If G is high relative to τ ,

it is better to switch from CC to DC trade. A buyer might pay p + τ net of bargaining in a

DC trade, but it would still be smaller than the expected price to pay in a CC trade. This

case is such that G(νl) > τ . A switch from CC to DC implies an increase in νl and a smaller

interval (νl, νh).

G(νl) decreases with νl if the valuation of agents that engage in CC trades gets closer to

each other as νl increases. This is the case in figure 7 around τ3. Consider an increase in τ . It

would decrease the gain of DC trades. The equilibrium νl would decrease and the set of CC

trades would increase. Similarly, an increase in λC would make CC trades more effective. It

would imply a downward shift in G. For τ = τ3, it would decrease νl and increase the set of

CC trades. We can apply the same reasoning to changes around τ1.

The G function in this example, however, increases for certain values of νl as (νl, νh)

includes the higher density of utility types around 2 and 8 in the limits of the interval.

Surprisingly, an increase in τ2 would increase the equilibrium around ν∗
l = 2. The measure of

customers trading with dealers would increase with the intermediation cost τ . Similarly, an

increase in λC , which makes CC trades more effective, would shift G downward and decrease

the set of CC trades.

These effects are related with the instability of equilibrium for νl = 2. For this equilibrium,

suppose that a small set of agents to the left of νl = 2 switch their decisions from DC trades to

CC trades. The set of agents in CC trades would increase to (νl − ϵ, ν ′
h), where ν ′

h = g(νl − ϵ).

We would then have G(νl − ϵ) < G(νl) < τ2, which implies that it is beneficial for an agent to
11f(ν) = 0.45N(2, 0.25) + 0.1N(5, 0.25) + 0.45N(8, 0.25).
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the left of νl − ϵ also to switch from DC to CC trades. All agents to the left would behave

in the same way, which would increase further the set of agents in CC trades, until the

equilibrium with νl around 0.7 is reached.

At τ = τ2 and νl around 1.5, the equilibrium is stable. A switch from DC to CC trades of

a small set of agents to the left of νl = 1.5 would increase G. It would be better to return to

DC trades. The same reasoning can be applied to a switch from CC to DC trades to the right

of νl = 1.5 and also to the other stable equilibrium for τ = τ2 around νl = 2.5.

A stable equilibrium is therefore associated with a region in which G is decreasing and an

unstable equilibrium with a region in which G is increasing. A small perturbation in the set

of agents in CC or DC trades in regions where G is decreasing would make agents return to

the previous decision of the counterparty. However, in regions where G is increasing, such

perturbation would make agents switch the trading counterparty permanently toward a new

equilibrium. For these reasons, when necessary to derive results, we focus on the region where

G is decreasing and so of a stable equilibrium.

4.4 A measure of illiquidity

The interpretation of σD and σC as measures of trade distortions leads to a natural definition

of a measure of illiquidity. σD and σC are the derivatives of the reservation value ∆ with

respect to ν. As discussed above, σD and σC given in (15) and (22) increase if the trade

distortions increase. If λD or λC go to infinity, which means that there are no search frictions,

then σD or σC go to zero.

A natural measure of illiquidity obtained from the model is therefore given by a weighted

average of the frictions faced by all investors in the market. That is, define a measure of

illiquidity by

σ =
∫ ∞

−∞
σi(ν) dF (ν), (29)

where σi(ν) = σD(ν) when ν ∈ (−∞, νl] ∩ [νh, +∞) and σi(ν) = σC(ν) when ν ∈ (νl, νh).

Given the expressions of σD and σC in (15) and (22), we see that the measure of illiquidity

depends on the interest rate and characteristics of the asset (µ and η) as well as on the

measure of investors that engage in different forms of trades.
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5 Turnover, illiquidity, and liquidity premium

Several indicators are used to measure illiquidity in financial markets. Here we focus on turnover

and the bid-ask spread. We also discuss the liquidity premium—that is, the compensation

required to induce investors to purchase an asset that is less liquid.

Turnover is defined by the ratio between the volume of assets traded during a certain

period and the amount outstanding of the asset. High turnover indicates high trading activity

and is associated with liquidity. Denote turnover by T . The value of turnover implied by the

model is given by

T ≡
λD {Φo(νl) + [Φn(∞) − Φn(νh)]} + λC

∫ νh
νl

∫ νh
ν dΦn(ν̃) dΦo(ν)∫

Φo(ν) dν

=
2λDΦo(νl) + λC

∫ νh
νl

∫ νh
ν dΦn(ν̃) dΦo(ν)

η/(η + µ) . (30)

The volume of assets sold by customers to dealers is λDΦo(νl) and the volume of assets

bought by customers from dealers is λD[Φn(∞) − Φn(νh)]. As market clearing implies that

λDΦo(νl) = λD[Φn(∞) − Φn(νh)], we have that the total volume of bonds traded between

customers and dealers is 2λDΦo(νl). The total volume of bonds traded between customers is

λC
∫ νh

νl

∫ νh
ν dΦn(ν̃)dΦo(ν). Finally, the amount of bonds outstanding is s =

∫
dΦo(ν) = η

η+µ .

Another measure of liquidity is the difference between the bid and ask prices. That is, the

difference between the bid on the asset made by the dealer when the customer wants to sell

an asset and the price asked by the dealer when the customer wants to buy an asset.

In our model, we define the bid-ask price as |pbuy − psell|, where psell is the value received

by the customer when the customer sells the asset, and pbuy is the value paid by the customer

when the customer purchases the asset. Usually, psell < pbuy.12 A common interpretation

is that the market is less liquid when |pbuy − psell| increases. We now calculate the value of

|pbuy − psell| as implied by the model, and show that this is not always the case.
12For example, if the customer sells the asset to a dealer, psell is the bid made by the dealer to buy the asset.

If the customer purchases the asset from a dealer, pbuy is the price asked by the dealer for the asset.
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In a regular equilibrium, the average price paid by customers buying from dealers is

pbuy
D =

∫ ∞
νh

[θD(p + τ) + (1 − θD)∆(ν)]dΦn(ν)
Φn(∞) − Φn(νh)

=
∫ ∞

νh

(1−θD)ν+(r+η+µ+λDθD)(p+τ)
r+η+µ+λDθD

dΦn(ν)
Φn(∞) − Φn(νh) = p + τ +

∫ ∞
νh

(1−θD)ν
r+η+µ+λDθD

dΦn(ν)
Φn(∞) − Φn(νh) , (31)

and the average price paid by customers buying from customers is

pbuy
C =

∫ νh
νl

∫ ν
νl

[θn
C∆(ν) + θo

C∆(ν̃)]dΦo(ν̃)dΦn(ν)∫ νh
νl

∫ ν
νl

dΦo(ν̃)dΦn(ν) . (32)

So the average price paid by customers is

pbuy = P[buy from dealer]pbuy
D + P[buy from customer]pbuy

C

=
λD[Φn(∞) − Φn(νh)]pbuy

D + λC
∫ νh

νl

∫ ν
νl

dΦo(ν̃)dΦn(ν)pbuy
C

λD[Φn(∞) − Φn(νh)] + λC
∫ νh

νl

∫ ν
νl

dΦo(ν̃)dΦn(ν) (33)

Similarly, the average price received by customers selling to dealers is

psell
D =

∫ νl
−∞[θD(p − τ) + (1 − θD)∆(ν)]dΦo(ν)

Φo(νl)

=
∫ νl

−∞
(1−θD)ν+(r+η+µ+λDθD)(p−τ)

r+η+µ+λDθD
dΦo(ν)

Φo(νl)
= p − τ +

∫ νl
−∞

(1−θD)ν
r+η+µ+λDθD

dΦo(ν)
Φo(νl)

, (34)

and the average price received by customers selling to customers is

psell
C =

∫ νh
νl

∫ νh
ν [θn

C∆(ν̃) + θo
C∆(ν)]dΦn(ν̃)dΦo(ν)∫ νh

νl

∫ νh
ν dΦn(ν̃)dΦo(ν) . (35)

So the average price received by customers selling assets is

psell = P[sell to dealer]psell
D + P[sell to customer]psell

C

=
λDΦo(νl)psell

D + λC
∫ νh

νl

∫ νh
ν dΦn(ν̃)dΦo(ν)psell

C

λDΦo(νl) + λC
∫ νh

νl

∫ ν
νl

dΦn(ν̃)dΦo(ν) . (36)
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The bid-ask spread is then given by

BA ≡ pbuy − psell = λDΦo(νl)(pbuy
D − psell

D )
λDΦo(νl) + λC

∫ νh
νl

∫ ν
νl

dΦn(ν̃)dΦo(ν)

=
2λDΦo(νl)τ + λD(1 − θD)

∫ ∞
νh

νdΦn(ν)−
∫ νl

−∞ νdΦo(ν)
r+η+µ+λDθD

λDΦo(νl) + λC
∫ νh

νl

∫ ν
νl

dΦn(ν̃)dΦo(ν) . (37)

The equalities above are obtained by the clearing condition of the inter-dealer market and

the structure of the customer-customer market. The inter-dealer market clearing condition

implies that Φo(νl) = Φn(∞) − Φn(νh). In the customer-customer market, as every asset sold

by a customer is bought by another customer, we have psell
C = pbuy

C .

5.1 The impact of τ on turnover

In regions with a unique equilibrium, an increase in intermediation cost decreases the measure

of customers trading with dealers. As dealers under our assumptions have a more efficient

matching technology, this force tends to decrease turnover when intermediation costs increase.

We call this the dealer-efficiency impact on turnover. However, there is another force. When

an asset is intermediated by dealers, there is not a long chain of trades to allocate the asset.

The asset goes from an investor with ν ≤ νl to a dealer, then another dealer, and then to

an an investor with ν ≥ νh. In customer-to-customer trades, the asset can potentially be

allocated by a long chain of customers until it gets to an investor with very high νh and ceases

to be traded. The length of this chain tends to increase turnover when intermediation costs

increase and more investors chose customer-customer trade. We call this the customer-chain

impact on turnover.

Proposition 3. The turnover is always decreasing in τ in a neighborhood of τ = 0. Moreover,

if the search technologies satisfy λC ≤ λD ≤
√

2−1√
2 (η + µ), then the turnover is decreasing in τ

in all regions with a unique equilibrium.

For low intermediation costs (τ close to zero), the dealer-efficiency impact on turnover

dominates the customer-chain impact. Turnover decreases when the intermediation cost

increases. In this case, the measure of investors choosing customer-customer trade is small.

It takes too long to form a chain of trades and the asset is likely to mature before it is
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formed. For τ not close to zero, it is possible that the customer-chain impact on turnover

dominates the dealer-efficiency impact. For this to happen, the search technology has to

be sufficiently efficient so that assets do not mature, or possible buyers get an issuance

opportunity, before the asset is traded and the chain is formed. Formally, we show that

whenever λC ≤ λD ≤
√

2−1√
2 (η + µ) the dealer-efficiency impact dominates the customer-chain

impact on turnover.

5.2 The impact of τ on bid-ask spreads

There are two ways in which an increase in the intermediation cost of dealers, τ , impacts the

bid-ask spread: the intensive margin and the extensive margin.

On the intensive margin, customers have to compensate dealers for their costs to interme-

diate the trade. As a result, an increase in τ implies an increase in the bid-ask spread charged

by dealers. On the extensive margin, the higher bid-ask spread charged by dealers drive

customers to trade with other customers instead of trading with dealers (customer matching).

Since we assume that trading with customers is slow but has zero intermediation cost for

customers, the extensive margin reduces the average bid-ask spread.

These two forces move the bid-ask spread in opposite directions and therefore the impact

of τ on the average bid-ask spread is ambiguous. However, we find that an increase in τ

from τ = 0 implies an initial increase in the bid-ask spread, which could be interpreted as a

decrease in liquidity. The intensive margin dominates in this case. On the other hand, for

a high enough value of τ , the bid-ask spread decreases. In this case, the extensive margin

dominates. The bid-ask spread would decrease, which could be interpreted as an improvement

in liquidity.

Proposition 4. The following holds regarding the behavior of bid-ask spreads.

i. There exists τ̃ > 0 such that the bid-ask spread is increasing in τ for all τ ∈ [0, τ̃).

ii. There exist τ0, τ1 > 0, with τ0 < τ1, and associated regular equilibria E0 and E1, such

that the bid-ask spread in E0 is strictly bigger than the bid-ask spread in E1.

Proposition 4 has two parts. Part 1 asserts that, for small intermediation costs, the bid-ask

spread has the expected behavior—a higher costs for dealers to intermediate transactions
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increases the bid-ask spread in the market. Part 2 shows that, on the other hand, the bid-ask

spread is not monotone in τ . This result is illustrated in Figure 8.

The intuition for Proposition 4 is the following. When τ is not very high, most trades are

DC trades. In this case, an increase in τ increases the trading cost for most customers. This

force increases the average bid-ask spread, which is the first part of the proposition. However,

as stated in the second part of the proposition, if τ increases enough, many customers stop

trading with dealers and the bid-ask spread actually decreases. In fact, the bid-ask spread

converges to zero as τ goes to infinity.

τ

BA(τ)

0 τ1 τ2 τ3

Figure 8: An increase in the intermediation cost parameter τ1 increases the bid-ask spread.
τ2 implies multiplicity of equilibrium. An increase in τ3 implies a decrease in the bid-ask.

Figure 8 shows a possible relation between the bid-ask spread and τ . It is compatible

with the function G in figure 7b. For small values of τ , the bid-ask spread is increasing in

τ . For intermediary values of τ , there can be multiplicity of equilibrium and corresponding

multiplicity of bid-ask spreads. For large values of τ , the bid-ask spread is decreasing τ . A

decreasing bid-ask spread as the intermediation cost τ increases is a result of the higher

number of customer-customer transactions.
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6 Dealers inventory

7 Conclusions

We propose a model to explain structural changes observed in the corporate bond market

since the 2008 financial crisis. It has been identified that a larger fraction of trades are

executed in a way in which dealers do not need to maintain asset inventory. In these trades,

customers provide liquidity to other customers. These trades take longer to be executed.

At the same time, standard measures of illiquidity show a decrease in illiquidity since 2008

whereas investors require a higher illiquidity premium. The model explains these at first sight

conflicting observations.

The model combines Lagos and Rocheteau (2009) and Hugonnier, Lester, and Weill (2022).

Lagos and Rocheteau study trades between customers and dealers. Hugonnier, Lester, and

Weill study trades between customers and customers. We combine the two models to include

the decision of a customer to trade with a dealer and with another costumer. Both models

study decisions on OTC markets with search frictions, as in Duffie et al. (2005).

In the model, τ represents the intermediation cost paid by dealers. We interpret the

regulations in Dodd-Frank, which include increased capital requirements, increased reporting

requirements, and increased restrictions on trading activities, as an increase in τ . The

regulations made it more expensive for dealers to provide liquidity. We then examine the

equilibrium outcomes from the model.

When the intermediation cost of dealers increases, customers seek liquidity from other

customers, increasing the number of customer-customer trades and decreasing the number

of customer-dealer trades. In the context of the model, the measure of customers in the

customer-customer market increases. The average bid-ask spread, which considers the final

transaction prices, decreases. However, the average trade becomes more costly. A measure of

illiquidity based on final prices would imply a decrease in illiquidity, as we find empirically.

The model allows us to propose a new measure of illiquidity. This measure takes into

account the distortions caused by the search frictions, as well as the bargaining power, number

of customers engaged in customer-customer or customer-dealer trades and other variables.

An increase in the measure of agents that engage in customer-customer trades increases the
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value of this comprehensive measure of illiquidity.

The model implies the possibility of multiple equilibria and financial crises. Depending

on τ , there can be an equilibrium with a small number of customer-customer trades and an

another one with a large number of customer-customer trades. This is so because the decision

to direct search on one market or the other depends on the expected number of agents that

engage in the same activity. Both equilibria are stable. A movement from one equilibrium to

another would cause abrupt changes in the market that can be perceived as financial crises.

The 2008 financial crisis generated a strong response in financial regulations. Our results

indicate a way to connect the changes in regulations with changes in the structure of financial

markets. Especially, in the structure of a market heavily based on over-the-counter trades

such as the corporate bond market.
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Proof. Take the difference between equations (3) and (4) to obtain

r∆(ν) = ν − µ∆(ν) − η∆(ν)

+ λDθD max{p − τ − ∆(ν), 0} − λDθD max{∆(ν) − p − τ, 0}, (38)

which implies that

=⇒ ∆(ν) = ν + λDθD [p + τ + max{∆(ν), p − τ} − max{∆(ν), p + τ}]
r + ν + µ + λDθD

(39)

for all types ν ∈ (−∞, νl] ∪ [νh, ∞). Equation (39) is associated with a functional operator

satisfying all Blackwell’s conditions for a contraction. Then, by the contraction mapping

theorem, there is a unique function ∆ satisfying the equation (39). Also note that if τ = 0,

then the results follow directly from equation (39). So we focus on the case with τ > 0.

Since ∆ is strictly increasing and continuous, we must have that ∆(νl) ≤ p − τ . To see

this, notice first that, if p − τ < ∆(νl) < p + τ , then the customer would not trade with a

dealer because of transaction costs, as the reservation value of a potential seller is higher

than the highest bid price of a dealer, p − τ , and the reservation value of a potential buyer is

smaller than the lowest ask price of a dealer, p + τ . The last terms in equations (3) and (4)

would be zero. Therefore, searching for a dealer is equivalent to be inactive. In this case, the

customer would be better off searching for customers type ν ∈ (νl, νh) to obtain a share of

the gains from trade. This implies that νl /∈ ΩD, which is a contradiction. Implicit in this

argument is the fact that the densities of Φo and Φn are bounded away from zero in the set

(νl, νh) because of issuance and maturity (see proof of Lemma 2), and νl ̸= νh (which holds by

assumption on a regular equilibrium with τ > 0).

Moreover, if ∆(νl) ≥ p + τ , then either p − τ < ∆(ν) < p + τ for some customer type

ν ∈ ΩD or ∆(ν) ≥ p + τ for all customer type ν ∈ ΩD. The first cannot hold because again

it would imply ν /∈ ΩD. The second would be inconsistent with inter-dealer market clearing

because all customers searching for a dealer would want to buy assets as their reservation

value would be greater than or equal to the highest ask price.

Therefore, we must have ∆(νl) ≤ p − τ . An analogous argument applies for νh in the

opposite direction. That is, ∆(νh) ≥ p + τ . With ∆(νl) ≤ p − τ and ∆(νh) ≥ p + τ , we can
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solve for the max relations in equation (39), which then implies equation (14). ■

Proof of Lemma 2

Proof. First note that equation (12) implies

Φ̇o(∞) = ηΦn(∞) − µΦo(∞) (40)

as, when ν goes to infinity, both the inflow and outflow from trading goes to zero. Then, from

Φ̇o(∞) = 0 and equation (13), we have that

η[F (∞) − Φo(∞)] − µΦo(∞) = 0 ⇐⇒ Φo(∞) = η

η + µ
, (41)

which characterizes the total supply of assets s = Φo(∞), equal, by definition, to the measure

of owners. This also establishes that the measure of non-owners is given by

Φn(∞) = F (∞) − Φo(∞) = 1 − Φo(∞) =⇒ Φn(∞) = µ

η + µ
. (42)

Consider now the case ν ≤ νl. According the law of motion for Φo, given by equation (12),

we have

Φ̇o(ν) = ηΦn(ν) − µΦo(ν) − λDΦo(ν), (43)

as no customer with ν̃ ≤ ν ≤ νl will either search for other customers or purchase the asset

from a dealer. Substituting Φn(ν) = F (ν) − Φo(ν) and setting Φ̇o(ν) = 0 implies

Φo(ν) = ηF (ν)
η + µ + λD

, ν ≤ νl. (44)

Consider now the case ν ≥ νh. In this case, it is useful to work with the measure of
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non-owners of type above ν, Φn(∞) − Φn(ν). Using equations (13) and (12), we have

0 = Φ̇n(∞) − Φ̇n(ν) (45)

= −η[Φn(∞) − Φn(ν)] − λD[Φn(∞) − Φn(ν)] + µ[Φo(∞) − Φo(ν)] (46)

= −η[1 − s − F (ν) + Φo(ν)] − λD[1 − s − F (ν) + Φo(ν)] + µ[s − Φo(ν)] (47)

= −(η + λD)[1 − F (ν)] + (η + µ + λD)[s − Φo(ν)] (48)

=⇒ s − Φo(ν) = (η + λD)[1 − F (ν)]
η + µ + λD

. (49)

As s = η
η+µ , we have

Φo(ν) = η

η + µ
− (η + λD)[1 − F (ν)]

η + µ + λD
, ν ≥ νh. (50)

Now let us show that ηF (νl) = µ[1 − F (νh)]. According to the market clearing condition

(11) and Lemma 1,

Φo(νl) =
∫ ∞

−∞
1{ν∈Ωn

D,∆(ν)>p+τ}dΦn(ν) =⇒ Φo(νl) = Φn(∞) − Φn(νh). (51)

We know that Φo(νl) = ηF (νl)
η+µ+λD

. Moreover,

Φn(∞) − Φn(νh) = F (∞) − Φo(∞) − [F (νh) − Φo(νh)]

= 1 − s −
[
F (νh) − η

η + µ
+ (η + λD)[1 − F (νh)]

η + µ + λD

]
= µ[1 − F (νh)]

η + µ + λD
. (52)

Thus, ηF (νl) = µ[1 − F (νh)]. Finally, the result that Φo(νl) = µ
η+µ − Φn(νh) comes from

equation (51) and the fact that Φn(∞) = F (∞) − Φo(∞) = 1 − η
η+µ = µ

η+µ . ■

Proof of Lemma 3

Proof. By taking the difference between equations (19) and (20), we know that the reservation

value satisfies

∆(ν) =
ν + λC

∫ νh
ν θo

C [∆(ν̃) − ∆(ν)]dΦn(ν̃) − λC
∫ ν

νl
θn

C [∆(ν) − ∆(ν̃)]dΦo(ν̃)
r + µ + η

. (53)
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Moreover, because ∆ is continuous and monotone, equation (53) implies that ∆ is Lipschitz

continuous in the interval (νl, νh). To see this, note that we can rearrange equation (53) to

show that ∣∣∣∣∆(ν + t) − ∆(ν)
t

∣∣∣∣ ≤
∣∣∣∣1 + 2λC supx f(x)[∆(νh) − ∆(νl)]

r + µ + η

∣∣∣∣
for all ν and ν + t in the interval (νl, νh), where f is the density of the distribution F . Given

that ∆ is Lipschitz continuous in the interval (νl, νh), ∆ is differentiable almost everywhere

in the interval (νl, νh) and satisfies ∆(ν) = ∆(νl) +
∫ ν

νl
σC(ν̃)dν̃, where σC(ν) denote the

derivative of ∆. Using this result, take the derivative on both sides of equation (53) to obtain

σC(ν) = 1 − λCθo
C [Φn(νh) − Φn(ν)]σC(ν) − λCθn

C [Φo(ν) − Φo(νl)]σC(ν)
r + µ + η

. (54)

We then obtain σC(ν) by rearranging the equation above. ■

Proof of Lemma 4

Proof. We have ˙̃Φo(ν) = Φ̇o(ν) − Φ̇o(νl). From equation (12), we have

˙̃Φo(ν) = ηΦ̃n(ν) − µΦ̃o(ν) − λC

∫ ν

νl

∫ νh

ν
dΦn(ν̂)dΦo(ν̃)

= ηΦ̃n(ν) − µΦ̃o(ν) − λCΦ̃o(ν)
[
Φn(νh) − Φn(ν)

]
= ηΦ̃n(ν) − µΦ̃o(ν) − λCΦ̃o(ν)

[
F (νh) − F (ν)

]
+ λCΦ̃o(ν)

[
Φ̃o(νh) − Φ̃o(ν)

]
= η

[
F (ν) − F (νl)

]
− Φ̃o(ν)

{
µ + η + λC

[
F (νh) − F (ν) − Φ̃o(νh)

]}
− λCΦ̃o(ν)2. (55)

We can then solve the quadratic equation above with ˙̃Φo(ν) = 0 to obtain equation (23).

Equation (24) is obtained by the solution of the quadratic equation for ν = νh. ■

Proof of Lemma 5

Proof. In a regular equilibrium, customers of type νl are indifferent between searching for

dealers or customers. The reason is that equations (3)–(6) and the continuity of ∆ imply the
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continuity of V o
C , V n

C , V o
D and V n

D . As a result,

rV o
C(νl) = νl − µ∆(νl) + λC

∫ νh

νl

θo
C [∆(ν) − ∆(νl)]dΦn(ν)

= νl − µ∆(νl) + λCθo
C

∫ νh

νl

∫ ν

νl

σC(ν̃)dν̃dΦn(ν)

= νl − µ∆(νl) + λDθD[p − τ − ∆(νl)] = rV o
D(νl). (56)

Which implies that

p = ∆(νl) + τ + λCθo
C

λDθD

∫ νh

νl

∫ ν

νl

σC(ν̃)dν̃dΦn(ν). (57)

And similarly,

rV n
C (νh) = η∆(νh) + λC

∫ νh

νl

θn
C [∆(νh) − ∆(ν)]dΦo(ν)

= η∆(νh) + λCθn
C

∫ νh

νl

∫ νh

ν
σC(ν̃)dν̃dΦo(ν)

= η∆(νh) + λDθD[∆(νh) − p − τ ] = rV n
D(νh). (58)

Which implies that

p = ∆(νh) − τ − λCθn
C

λDθD

∫ νh

νl

∫ νh

ν
σC(ν̃)dν̃dΦo(ν). (59)

Equalizing the above two price equations and using lemma 3 we obtain

2τλDθD = λDθD

∫ νh

νl

σC(ν)dν

− λCθn
C

∫ νh

νl

∫ νh

ν
σC(ν̃)dν̃dΦo(ν) − λCθo

C

∫ νh

νl

∫ ν

νl

σC(ν̃)dν̃dΦn(ν). (60)

Applying integration by parts in the last two terms we obtain

2τλDθD = λDθD

∫ νh

νl

σC(ν)dν

− λC

∫ νh

νl

{
θn

C

[
Φo(ν) − Φo(νl)

]
+ θo

C

[
Φn(νh) − Φn(ν)

]}
σC(ν)dν. (61)
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From the definition of σC(ν), we have λC{θo
C

[
Φn(νh) − Φn(ν)

]
+ θn

C

[
Φo(ν) − Φo(νl)

]
} =

1
σC(ν) − (r + µ + η). Substituting above and rearranging implies

2τλDθD =
∫ νh

νl

[(r + µ + η + λDθD)σC(ν) − 1]dν. (62)

As r + µ + η + λDθD = 1/σD, we obtain

2τλDθD =
∫ νh

νl

σC(ν) − σD

σD
dν. (63)

This concludes the proof. ■

Proof of Proposition 1

Proof. The necessity of equations (14)–(26) are established in Lemmas 2–5. So let us focus on

the sufficiency. Consider a family {∆, p, Φo, Φn, νl, νh} satisfying equations (14)–(26) and value

functions V o and V n constructed using equations (3)–(7) given the family {∆, p, Φo, Φn, νl, νh}.

Let us show that the family {V o, V n, ∆, p, Φo, Φn, νl, νh} is a regular equilibrium—that is, it

satisfies equations (3)–(13) and definition 2.

Equations (3)–(7): These equations are satisfied by the construction of V o and V n.

Equations (9)–(10): First let us show that V o
D(ν) ≥ V o

C(ν) for all ν ≤ νl.

V o
D(ν) ≥ V o

C(ν) ⇐⇒ λDθD[(p − τ) − ∆(ν)] ≥ λCθo
C

∫ νh

νl

[∆(ν̃) − ∆(ν)]dΦn(ν̃)

⇐⇒ (p − τ) − ∆(ν) ≥ λCθo
C

λDθD

∫ νh

νl

[∆(ν̃) − ∆(νl)]dΦn(ν̃)

+ λCθo
C

λDθD
[Φn(νh) − Φn(νl)][∆(νl) − ∆(ν)].

From equation (26) we know that λCθo
C

λDθD

∫ νh

νl
[∆(ν̃) − ∆(νl)]dΦn(ν̃) = (p − τ) − ∆(νl), therefore

V o
D(ν) ≥ V o

C(ν) ⇐⇒ ∆(νl) − ∆(ν) ≥ λCθo
C

λDθD
[Φn(νh) − Φn(νl)][∆(νl) − ∆(ν)].
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Assumption 1 implies that λCθo
C

λDθD
∈ (0, 1). From the equations (16) and (17) we have that

Φn(νh) − Φn(νl) = µ[F (νh)−F (νl)]
η+µ ∈ [0, 1). Using equation (14) in Lemma 1, we have that

V o
D(ν) ≥ V o

C(ν) ⇐⇒ νl − ν ≥ λCθo
C

λDθD
[Φn(νh) − Φn(νl)][νl − ν].

We can then see that V o
D(ν) ≥ V o

C(ν) holds. Moreover, it holds with strictly inequality for all

ν < νl. The proofs that V n
D(ν) ≥ V n

C (ν) for all ν ≤ νl; V o
D(ν) ≤ V o

C(ν) for all ν ∈ (νl, νh); and

V n
D(ν) ≤ V n

C (ν) for all ν ∈ (νl, νh) are analogous.

Equation (8): Let us start with ν ≤ νl. In this case we have that V o(ν) = V o
D(ν) and

V n(ν) = V n
D(ν) based on equation (9). Then, from equations (3) and (4) we have that

V o(ν) − V n(ν) = ν + λDθD(p − τ) − (η + µ + λDθD)∆(ν)
r

= (r + η + µ + λDθD)∆(ν) − (η + µ + λDθD)∆(ν)
r

= ∆(ν).

The result for ν ≥ νh is analogous. For ν ∈ (νl, νh) we have that

r[V o(ν) − V n(ν)] = ν − (η + µ)∆(ν) + λC

∫ νh

ν
θo

C [∆(ν̃) − ∆(ν)]dΦn(ν̃)

− λC

∫ ν

νl

θn
C [∆(ν) − ∆(ν̃)]dΦo(ν̃)

Replacing equation (21) and applying integration by parts we get

r[V o(ν) − V n(ν)] = ν − (η + µ)∆(νl) − (η + µ)
∫ ν

νl

σC(ν̃)dν̃

+ λC

∫ νh

ν
θo

C [Φn(νh) − Φn(ν̃)]σC(ν̃)dν̃ − λC

∫ ν

νl

θn
C [Φo(ν̃) − Φo(νl)]σC(ν̃)dν̃

= ν − (η + µ)∆(νl) + λC

∫ νh

ν
θo

C [Φn(νh) − Φn(ν̃)]σC(ν̃)dν̃

−
∫ ν

νl

{η + µ + λCθn
C [Φo(ν̃) − Φo(νl)]} σC(ν̃)dν̃

= ν − (η + µ)∆(νl) + λC

∫ νh

ν
θo

C [Φn(νh) − Φn(ν̃)]σC(ν̃)dν̃

− ν + νl −
∫ ν

νl

{r + λCθo
C [Φn(νh) − Φn(ν̃)]} σC(ν̃)dν̃

= νl − (r + η + µ)∆(νl) + λC

∫ νh

νl

θo
C [Φn(νh) − Φn(ν̃)]σC(ν̃)dν̃ + r∆(ν).

50



Now we can replace equation (26) to obtain

r[V o(ν) − V n(ν)] = νl − (r + η + µ)∆(νl) + λCθo
C [p − τ − ∆(νl)] + r∆(ν)

= νl + λCθo
C(p − τ) − (r + η + µ + λCθo

C)∆(νl) + r∆(ν) = r∆(ν),

where the last equality we obtained using equation (14) applied to ∆(νl).

Equation (11): The left-hand side of Equation (11) is given by

λD

∫
Ωo

D

1{∆(ν)<p−τ}dΦo(ν) = λD

∫ νl

−∞
dΦo(ν) = λDΦo(νl).

The right-hand side is

λD

∫
Ωn

D

1{∆(ν)>p+τ}dΦn(ν) = λD

∫ ∞

νh

dΦn(ν) = λD [Φn(∞) − Φn(νh)] .

Therefore, we have market clearing if, and only if, Φo(νl) = Φn(∞) − Φn(νh). This equation

holds because, from equation (17), Φo(∞) = η
η+µ =⇒ Φn(∞) = 1 − Φo(∞) = µ

η+µ , and, from

equation (18), µ
η+µ − Φn(νh) = Φo(νl).

Equation (12): First, consider ν ≤ νl. Then, equation (12) is given by

Φ̇o(ν) = ηΦn(ν) − µΦo(ν) − λDΦo(ν) = ηF (ν) − (η − µ − λD)Φo(ν).

Equation (16) states that Φo(ν) = ηF (ν)
η−µ−λD

. Thus, Φ̇o(ν) = ηF (ν) − ηF (ν) = 0. Consider now

ν ≥ νh. Then, equation (12) is given by

Φ̇o(ν) = ηΦn(ν) − µΦo(ν) − λDΦo(νl) + λD[Φn(ν) − Φn(νh)]

= (η + λD)F (ν) − (η + µ + λD)Φo(ν) − λD[Φo(νl) + Φn(νh)].
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Using equations (17) and (18) we then have

Φ̇o(ν) = (η + λD)F (ν) + (η + λD)[1 − F (ν)] − η(η + µ + λD)
η + µ

− λDµ

η + µ

= η + λD − η(η + µ) + λD(η + µ)
η + µ

= η + λD − (η + λD) = 0.

Finally, let us consider ν ∈ (νl, νh). In this case we have

Φ̇o(ν) = ηΦn(ν) − µΦo(ν) − λDΦo(νl) − λC [Φo(ν) − Φo(νl)][Φn(νh) − Φn(ν)]

= η[Φn(ν) − Φn(νl)] − µ[Φo(ν) − Φ0(νl)] + ηΦn(νl) − µΦo(νl) − λDΦo(νl)

− λC [Φo(ν) − Φo(νl)][F (νh) − F (ν)] + λC [Φo(ν) − Φo(νl)][Φo(νh) − Φo(ν)].

We have shown that ηΦn(νl) − µΦo(νl) − λDΦo(νl) = 0 when considering the case ν ≤ νl. By

using this result and the notation Φ̃o(ν) = Φo(ν) − Φ0(νl) and sC = Φ̃o(νh), we obtain

Φ̇o(ν) = η[F (ν) − F (νl)] − (η + µ)Φ̃o(ν)

− λCΦ̃o(ν)[F (νh) − F (ν)] + λCΦ̃o(ν)Φ̃o(νh) − λCΦ̃o(ν)2

= η[F (ν) − F (νl)] − (η + µ)Φ̃o(ν)

− Φ̃o(ν) {η + µ + λC [F (νh) − F (ν) − sC ]} − λCΦ̃o(ν)2.

The distribution Φ̃o(ν), as defined in equation (23), is the positive root of the equation above.

Therefore, Φ̇o(ν) = 0.

Equation (13): This is directly stated in equations (16), (17) and (23).

We showed that the family {V o, V n, ∆, p, Φo, Φn, νl, νh} is an equilibrium. That is, that

it satisfies equations (3)–(13). It is easy to see that it must also be a regular equilibrium

because equation (26) implies that νl ≤ νh with strict inequality if τ > 0, and equations (14)

and (21) imply that ∆ is continuous and strictly increasing. ■

Proof of Proposition 2

Proof. First note that equation (26) is necessarily satisfied by all regular equilibrium. There-

fore, it suffices to show that in a neighborhood of τ = 0, there is a unique pair (νl, νh) satisfying
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equation (26) for all τ in this neighborhood. Equation (26) can be rewritten as

G(νl) = 1
2λDθD

∫ g(νl)

νl

[
σC(ν; νl, g(νl))

σD
− 1

]
dν = τ.

When τ = 0, then G(νl) = τ implies that νl = g(νl) = νh = νs. That is because
σC(ν;νl,g(νl))

σD
− 1 is bounded away from zero. To see this notice that

σC(ν; νl, g(νl))
σD

− 1 > 0

⇔ r + µ + η + λDθD

r + µ + η + λC

{
θo

C

[
Φn(νh) − Φn(ν)

]
+ θn

C

[
Φo(ν) − Φo(νl)

]} > 1

⇔ λDθD > λC

{
θo

C

[
Φn(νh) − Φn(ν)

]
+ θn

C

[
Φo(ν) − Φo(νl)

]}
.

But note that λC

{
θo

C

[
Φn(νh) − Φn(ν)

]
+ θn

C

[
Φo(ν) − Φo(νl)

]}
< λC max{θo

C , θn
C} < λDθD,

which implies that σC(ν;νl,g(νl))
σD

− 1 is bounded away from zero. As a result, we can only

have G(νl) = 0 if the limits in the integral are the same. Then, since G(·) is continuous, it

suffices to show that it is strictly monotone in a neighborhood (ν̄l, νs]. Note also that G(·) is

differentiable and that

G′(νl) = 1
2λDθD

{
g′(νl)

[
σC(g(νl); νl, g(νl))

σD
− 1

]
−

[
σC(νl; νl, g(νl))

σD
− 1

]}
+ 1

2λDθD

∫ g(νl)

νl

1
σD

[
∂σC(ν; νl, g(νl))

∂νl
+ g′(νl)

∂σC(ν; νl, g(νl))
∂νh

]
dν.

The first term on the right-hand is negative since g′(νl) = − ηf(νl)
µf(g(νl)) , andσC(ν;νl,g(νl))

σD
− 1 is

bounded away from zero. Moreover, using the definition of σC , we can bound it above by

− 1
2λDθD

[
r + η + µ + λDθD

r + η + µ + λC max{θo
D, θn

D}
− 1

]
.

Therefore, to establish that G′(νl) < 0 in a neighborhood of (ν̄l, νs] we just have to show that

the second term converges to zero when νl ↗ νs. As g(νl) → νs when νl ↗ νs, it suffices to

show that the terms inside the integral, ∂σC(ν;νl,g(νl))
∂νl

and ∂σC(ν;νl,g(νl))
∂νh

, are bounded. We can
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write the first term as below.

∂σC(ν; νl, g(νl))
∂νl

= −σC(ν; νl, g(νl))2λC

∂
{

θo
C

[
Φn(νh) − Φn(ν)

]
+ θn

C

[
Φo(ν) − Φo(νl)

]}
∂νl

= −σC(ν; νl, g(νl))2λC

∂
{

θo
C

[
Φn(νh) − Φn(νl) + Φn(νl) − Φn(ν)

]
+ θn

CΦ̃o(ν)
}

∂νl

= −σC(ν; νl, g(νl))2λC

∂
{

θo
C

µ[F (νh)−F (νl)]
η+µ − θo

C [F (ν) − F (νl)] + Φ̃o(ν)
}

∂νl

= −σC(ν; νl, g(νl))2λC

{
θo

C

ηf(νl)
η + µ

+ ∂Φ̃o(ν)
∂νl

}
.

The first term in parenthesis is bounded. The second term is obtained by applying the implicit

function theorem to equation (55) and it yields

∂Φ̃o(ν)
∂νl

= −
ηf(νl)

[
1 + λCΦ̃o(ν)

η+µ

]
{

µ + η + λC

[
F (νh) − F (ν) − Φ̃o(νh)

]}
+ 2λCΦ̃o(ν)

,

which is also bounded. Similarly for∂σC(ν;νl,g(νl))
∂νh

,

∂σC(ν; νl, g(νl))
∂νh

= −σC(ν; νl, g(νl))2λC

∂
{

θo
C

µ[F (νh)−F (νl)]
η+µ − θo

C [F (ν) − F (νl)] + Φ̃o(ν)
}

∂νh

= −σC(ν; νl, g(νl))2λC

{
θo

C

µf(νh)
η + µ

+ ∂Φ̃o(ν)
∂νh

}
.

Again, the first term in parenthesis is bounded. The second term is

∂Φ̃o(ν)
∂νh

= −
µf(νh)λCΦ̃o(ν)

η+µ{
µ + η + λC

[
F (νh) − F (ν) − Φ̃o(νh)

]}
+ 2λCΦ̃o(ν)

,

which is also bounded. Therefore, G(·) is strictly monotone in a neighborhood (ν̄l, νs] with

G′(ν) < 0 in this neighborhood. If we then define the neighborhood [0, τ̄), where τ̄ = G(ν̄l),

we can conclude that there is a unique regular equilibrium for any τ ∈ [0, τ̄). ■

Proof of Proposition 3

Proof. We know that there exists neighborhood [0, τ̄) of τ = 0 that regular equilibrium is
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unique. Moreover, because G(νs) = 0, we must have G′(νl) ≤ 0 for any νl < νs with an unique

equilibrium in a neighborhood around it. To see this note that if G′(νl) > 0 for an νl with

G(νl) = τ , then there exists ν ′
l > νl such that G(ν ′

l) > G(νl). But then G(ν ′
l) > G(νl) ≥ G(0)

and we can conclude by continuity that there must be another ν ′′
l with G(ν ′′

l ) = τ . This is a

contradiction since we started assuming that there is an unique regular equilibrium at νl.

Consider then any (τ0, τ1) and (ν0
l , ν1

l ) such that all τ ∈ (τ0, τ1) is associated with a

unique regular equilibrium at some νl(τ) ∈ (ν0
l , ν1

l ). Since these regular equilibrium are

characterized by G(νl) = τ and G′(νl) ≤ 0, we must then have that νl(τ) is decreasing in τ for

all τ ∈ (τ0, τ1). Therefore, to obtain that the turnover is decreasing in τ in the neighborhood

(τ0, τ1), it suffices to show that it is increasing in νl.

From equation (30) we have that

T =
2λDΦo(νl) + λC

∫ νh
νl

∫ νh
ν dΦn(ν̃)dΦo(ν)

η
η+µ

=
2λDΦo(νl) + λC

∫ νh
νl

Φ̃o(ν)dΦ̃n(ν)
η

η+µ

.

From equation (16) we have Φo(νl) = ηF (νl)
η+µ+λD

, which is increasing in νl with its derivative

given by ∂Φo(νl)
∂νl

= ηf(νl)
η+µ+λD

. For the second term we have that

∂
∫ νh

νl
Φ̃o(ν)dΦ̃n(ν)

∂νl
= −�������

Φ̃o(νl)ϕn(νl) + g′(νl)Φ̃o(νh)ϕn(νh)

+
∫ νh

νl

dΦ̃o(ν)
dνl

ϕn(ν) + dϕn(ν)
dνl

Φ̃o(ν)dν.

Again for the first term inside the integral

dΦ̃o(ν)
dνl

= ∂Φ̃o(ν)
∂νl

+ g′(νl)
∂Φ̃o(ν)

∂νh
= −ηf(νl){

µ + η + λC

[
F (νh) − F (ν) − Φ̃o(νh)

]}
+ 2λCΦ̃o(ν)

.

Now we can apply the implicit function theorem to equation (55) and obtain that

ϕo(ν) = [η + λCΦ̃o(ν)]f(ν){
µ + η + λC

[
F (νh) − F (ν) − Φ̃o(νh)

]}
+ 2λCΦ̃o(ν)

.
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Thus,

dϕo(ν)
dνl

= −
2λCηf(ν) dΦ̃o(ν)

dνl[{
µ+η+λC

[
F (νh)−F (ν)−Φ̃o(νh)

]}
+2λCΦ̃o(ν)

]2

+ λCf(ν)
dΦ̃o(ν)

dνl

[{
µ+η+λC

[
F (νh)−F (ν)−Φ̃o(νh)

]}
+2λCΦ̃o(ν)

]
[{

µ+η+λC

[
F (νh)−F (ν)−Φ̃o(νh)

]}
+2λCΦ̃o(ν)

]2

− λCf(ν)
2λCΦ̃o(ν)dΦ̃o(ν)

dνl[{
µ + η + λC

[
F (νh) − F (ν) − Φ̃o(νh)

]}
+ 2λCΦ̃o(ν)

]2

=
λCf(ν) dΦ̃o(ν)

dνl
−2λCϕo(ν) dΦ̃o(ν)

dνl{
µ+η+λC

[
F (νh)−F (ν)−Φ̃o(νh)

]}
+2λCΦ̃o(ν)

=
λC [ϕn(ν)−ϕo(ν)] dΦ̃o(ν)

dνl{
µ+η+λC

[
F (νh)−F (ν)−Φ̃o(νh)

]}
+2λCΦ̃o(ν)

.

Also note that from the above we obtain ϕn(ν) and dϕn(ν)
dνl

from the identity f(ν) = ϕo(ν) +

ϕn(ν). Then we obtain that

ϕn(ν) = f(ν) − [η + λCΦ̃o(ν)]f(ν){
µ + η + λC

[
F (νh) − F (ν) − Φ̃o(νh)

]}
+ 2λCΦ̃o(ν)

=

[
{µ + λC

[
F (νh) − F (ν) − Φ̃o(νh)

]
} + λCΦ̃o(ν)

]
f(ν){

µ + η + λC

[
F (νh) − F (ν) − Φ̃o(νh)

]}
+ 2λCΦ̃o(ν)

.

Now we can write that

∂
∫ νh

νl
Φ̃o(ν)dΦ̃n(ν)

∂νl
= g′(νl)Φ̃o(νh)ϕn(νh) +

∫ νh

νl

dΦ̃o(ν)
dνl

ϕn(ν) + dϕn(ν)
dνl

Φ̃o(ν)dν

= −Φ̃o(νh) ηf(νl)
µ + η + λCΦ̃o(νh)

− ηf(νl)
∫ νh

νl

ϕn(ν)+ λC [ϕo(ν)−ϕn(ν)]Φ̃o(ν){
µ+η+λC

[
F (νh)−F (ν)−Φ̃o(νh)

]}
+2λCΦ̃o(ν){

µ+η+λC

[
F (νh)−F (ν)−Φ̃o(νh)

]}
+2λCΦ̃o(ν)

dν.
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With this equation in hand we now can show that dT
dνl

≥ 0, which is equivalent to show that

2λDηf(νl)
η + µ + λD

≥

λCΦ̃o(νh)ηf(νl)
µ + η + λCΦ̃o(νh)

+ λCηf(νl)
∫ νh

νl

ϕn(ν)+ λC [ϕo(ν)−ϕn(ν)]Φ̃o(ν){
µ+η+λC

[
F (νh)−F (ν)−Φ̃o(νh)

]}
+2λCΦ̃o(ν){

µ+η+λC

[
F (νh)−F (ν)−Φ̃o(νh)

]}
+2λCΦ̃o(ν)

dν,

which happens if, and only if,

2λD

η + µ + λD
≥

λCΦ̃o(νh)
µ + η + λCΦ̃o(νh)

+ λC

∫ νh

νl

ϕn(ν)+ λC [ϕo(ν)−ϕn(ν)]Φ̃o(ν){
µ+η+λC

[
F (νh)−F (ν)−Φ̃o(νh)

]}
+2λCΦ̃o(ν){

µ+η+λC

[
F (νh)−F (ν)−Φ̃o(νh)

]}
+2λCΦ̃o(ν)

dν.

Note that

{
µ + η + λC

[
F (νh) − F (ν) − Φ̃o(νh)

]}
+ 2λCΦ̃o(ν) = µ + η + λC

[
Φ̃n(νh) − Φ̃o(ν) + Φ̃o(ν)

]
.

Then we have that

∫ νh

νl

ϕn(ν)+ λC [ϕo(ν)−ϕn(ν)]Φ̃o(ν)
µ+η+λC

[
Φ̃n(νh)−Φ̃n(ν)+Φ̃o(ν)

]
µ+η+λC

[
Φ̃n(νh)−Φ̃o(ν)+Φ̃o(ν)

] dν =
∫ νh

νl

f(ν)
µ+η+λC

[
Φ̃n(νh)−Φ̃n(ν)+Φ̃o(ν)

]dν

−
∫ νh

νl

ϕo(ν)
{

µ+η+λC

[
Φ̃n(νh)−Φ̃n(ν)+Φ̃o(ν)

]}
−λC [ϕo(ν)−ϕn(ν)]Φ̃o(ν){

µ+η+λC

[
Φ̃n(νh)−Φ̃n(ν)+Φ̃o(ν)

]}2 dν

=
∫ νh

νl

f(ν)
µ+η+λC

[
Φ̃n(νh)−Φ̃n(ν)+Φ̃o(ν)

]dν −
∫ νh

νl

d

dν

[
Φ̃o(ν)

µ+η+λC

[
Φ̃n(νh)−Φ̃n(ν)+Φ̃o(ν)

]]
dν

=
∫ νh

νl

f(ν)
µ+η+λC

[
Φ̃n(νh)−Φ̃n(ν)+Φ̃o(ν)

]dν − Φ̃o(νh)
µ + η + λCΦ̃o(νh)

.
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So again it suffices to show that

2λD

η + µ + λD
≥

λCΦ̃o(νh)
µ + η + λCΦ̃o(νh)

+ λC

∫ νh

νl

ϕn(ν)+ λC [ϕo(ν)−ϕn(ν)]Φ̃o(ν){
µ+η+λC

[
F (νh)−F (ν)−Φ̃o(νh)

]}
+2λCΦ̃o(ν){

µ+η+λC

[
F (νh)−F (ν)−Φ̃o(νh)

]}
+2λCΦ̃o(ν)

dν =

λCΦ̃o(νh)
µ + η + λCΦ̃o(νh)

+ λC

∫ νh

νl

f(ν)
µ + η + λC

[
Φ̃n(νh) − Φ̃n(ν) + Φ̃o(ν)

]dν − λCΦ̃o(νh)
µ + η + λCΦ̃o(νh)

⇐⇒ 2λD

η + µ + λD
≥

∫ νh

νl

λCf(ν)
µ+η+λC

[
Φ̃n(νh)−Φ̃n(ν)+Φ̃o(ν)

]dν

⇐⇒
∫ νh

νl

[
2λD

η + µ + λD
− λC [F (νh) − F (νl)]

µ + η + λC

[
Φ̃n(νh) − Φ̃n(ν) + Φ̃o(ν)

]]
dF (ν) ≥ 0.

First note that the above inequality holds in a neighborhood of τ = 0 because it implies that

νl ≈ νh. Moreover, if λC ≤ λD ≤
√

2−1√
2 (η + µ), we must have that

2λD

η + µ + λD
≥ λC [F (νh) − F (νl)]

µ + η + λC

[
Φ̃n(νh) − Φ̃n(ν) + Φ̃o(ν)

]
holds. We can see this by comparing the two functions 2x

η+µ+x and ax
η+µ+bx , where a =

F (νh) − F (νl) and b = Φ̃n(νh) − Φ̃n(ν) + Φ̃o(ν). Both functions are strictly increasing in x,

and equal zero at x = 0. Moreover, the derivative of the first function is strictly greater than

the derivative of the second one for x ≤
√

2−1√
2 (η + µ), which implies that

2λD

η + µ + λD
>

λD[F (νh) − F (νl)]
µ + η + λD

[
Φ̃n(νh) − Φ̃n(ν) + Φ̃o(ν)

] ≥ λC [F (νh) − F (νl)]
µ + η + λC

[
Φ̃n(νh) − Φ̃n(ν) + Φ̃o(ν)

] .

This concludes the proof. ■

Proof of Proposition 4

Proof. The bid-ask spread, defined in equation (37), is

BA =
2λDΦo(νl)τ + λD(1 − θD)

∫ ∞
νh

νdΦn(ν)−
∫ νl

−∞ νdΦo(ν)
r+η+µ+λDθD

λDΦo(νl) + λC
∫ νh

νl

∫ ν
νl

dΦn(ν̃)dΦo(ν) .

To see the first part note that for τ = 0 we know that νl = νh = νs and the equilibrium is
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unique. So we can take the derivative of BA in equation (37) with respect to τ evaluated

at τ = 0 and show that it has to be strictly positive. Given that all the functions are

differentiable, we must have this derivative strictly positive in a neighborhood of τ = 0.

We have that

dBA

dτ
= ∂BA

∂τ
+ ∂BA

∂νl
× ∂νl

∂τ
.

For the first term in the right-hand side we have

∂BA

∂τ
= 2λDΦo(νl)

λDΦo(νl) + λC
∫ νh

νl

∫ ν
νl

dΦn(ν̃)dΦo(ν) ,

which implies that ∂BA
∂τ = 2 when evaluated at τ = 0 since in this case νl = νh = νs. For the

second term we have that

∂BA

∂νl

∣∣∣∣τ=0,
νl=νs

= λD(1 − θD)

d
dνl

[∫ ∞
νh

νdΦn(ν)−
∫ νl

−∞ νdΦo(ν)
r+η+µ+λDθD

]
λDΦo(νl)[

λDΦo(νl) + λC
∫ νh

νl

∫ ν
νl

dΦn(ν̃)dΦo(ν)
]2

− λD(1 − θD)

∫ ∞
νh

νdΦn(ν)−
∫ νl

−∞ νdΦo(ν)
r+η+µ+λDθD

d
dνl

[
λDΦo(νl) + λC

∫ νh
νl

∫ ν
νl

dΦn(ν̃)dΦo(ν)
]

[
λDΦo(νl) + λC

∫ νh
νl

∫ ν
νl

dΦn(ν̃)dΦo(ν)
]2 .

Note that

d

dνl

[∫ ∞

νh

νdΦn(ν) −
∫ νl

−∞
νdΦo(ν)

]
= d

dνl

[∫ ∞

νh

νµf(ν)
η + µ + λD

dν −
∫ νl

−∞

νηf(ν)
η + µ + λD

dν

]
= −νhµf(νh)g′(νl) − νlηf(νl)

η + µ + λD
= [νh − νl]ηf(νl)

η + µ + λD
,

which is zero when evaluated at νl = νh = νs. Moreover,

d

dνl

[
λDΦo(νl) + λC

∫ νh

νl

∫ ν

νl

dΦn(ν̃)dΦo(ν)
]

is positive in a neighborhood of τ = 0 since this is basically turnover, which we showed in the

previous proof that is increasing in νl in a neighborhood of τ = 0. Thus, ∂BA
∂νl

∣∣∣τ=0,
νl=νs

≤ 0. We
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also have shown that ∂νl
∂τ < 0 in a neighborhood of τ = 0. Therefore, we have that

dBA

dτ

∣∣∣∣τ=0,
νl=νs

= ∂BA

∂τ

∣∣∣∣τ=0,
νl=νs︸ ︷︷ ︸

= 2 + ∂BA

∂νl

∣∣∣∣τ=0,
νl=νs︸ ︷︷ ︸

≤0

× ∂νl

∂τ

∣∣∣∣τ=0,
νl=νs︸ ︷︷ ︸

≤0

> 0.

This proves the first part of the proposition. Namely, that the bid-ask spread is increasing in

τ in a neighborhood of τ = 0.

In order to show the second part of the proposition, it suffices to show that BA converges

to zero as τ converges to infinity. First lets us show that νl converges to −∞ when τ converges

to infinity. In equilibrium we must have that

G(νl) = 1
2λDθD

∫ g(νl)

νl

σC(ν; νl, νh) − σD

σD
dν = τ.

The term σC(ν;νl,νh)−σD

σD
is bounded below by λDθD−λC max{θn

C ,θo
C}

η+µ+λDθD
, and above by λDθD

η+µ+λDθD
.

Therefore, as τ converges to infinity, in order to obtain an equilibrium we must have νl

converging to −∞, and νh = g(νl) converging to ∞.

Consider now the formula for the bid-ask spread,

BA =
2λDΦo(νl)τ + λD(1 − θD)

∫ ∞
νh

νdΦn(ν)−
∫ νl

−∞ νdΦo(ν)
r+η+µ+λDθD

λDΦo(νl) + λC
∫ νh

νl

∫ ν
νl

dΦn(ν̃)dΦo(ν) .

We can see that
∫ ∞

νh
νdΦn(ν) −

∫ νl
−∞ νdΦo(ν) converge to zero since

∫ ∞
−∞ ν2f(ν)dν is bounded.

To show that Φo(νl)τ = ηF (νl)τ
η+µ+λD

converges to zero is not as simple because F (νl) converges to

zero and τ converges to infinity. But note that

lim
τ↗∞

F (νl)τ = lim
τ↗∞

τ

1/F (νl)
= lim

τ↗∞

1
f(νl)dνl

dτ /F (νl)2
= lim

νl↘−∞

G′(νl)F (νl)2

f(νl)
.

And, as we have established in the of Proposition 2,

G′(νl) = 1
2λDθD

{
g′(νl)

[
σC(g(νl); νl, g(νl))

σD
− 1

]
−

[
σC(νl; νl, g(νl))

σD
− 1

]}
+ 1

2λDθD

∫ g(νl)

νl

1
σD

[
∂σC(ν; νl, g(νl))

∂νl
+ g′(νl)

∂σC(ν; νl, g(νl))
∂νh

]
dν.
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So we only need to show that each of the terms above, when multiplied by F (νl)2

f(νl) , converges

to zero as νl converges to −∞. Let us start showing that F (νl)2

f(νl) converges to zero. Note that

0 ≤ lim
νl↘−∞

−νlF (νl) = lim
νl↘−∞

∫ νl

−∞
|νl|f(ν)dν ≤ lim

νl↘−∞

∫ νl

−∞
|ν|f(ν)dν = 0,

where the equality in the end comes from the fact that
∫

ν2f(ν)dν is finite. Therefore we can

conclude that limνl↘−∞ νlF (νl) = 0. But then

0 = lim
νl↘−∞

−νlF (νl) = lim
νl↘−∞

−νl

1/F (νl)
L’Hôpital= lim

νl↘−∞

−1
−f(νl)/F (νl)2 = lim

νl↘−∞

F (νl)2

f(νl)
.

Now let us look the individual terms of G′(νl). We have that

lim
νl↘−∞

F (νl)2

f(νl)

[
σC(νl; νl, g(νl))

σD
− 1

]
= 0

because
[

σC(νl;νl,g(νl))
σD

− 1
]

is bounded. We have that

lim
νl↘−∞

F (νl)2

f(νl) g′(νl)
[

σC(g(νl);νl,g(νl))
σD

− 1
]

= lim
νh↗−∞

[1−F (νh)]2
f(νh)

[
σC(νh;g−1(νh),νh)

σD
− 1

]
= 0

because again
[

σC(νh;g−1(νh),νh)
σD

− 1
]

is bounded and we can show that limνh↗−∞
[1−F (νh)]2

f(νh) = 0

in the same fashion that we showed that limνl↘−∞
F (νl)2

f(νl) = 0. Moreover,

0 ≤
∫ g(νl)

νl

∂σC(ν; νl, g(νl))
∂νl

dν =
∫ g(νl)

νl

σC(ν; νl, g(νl))2λC

{
θo

C

ηf(νl)
η + µ

− ∂Φ̃o(ν)
∂νl

}
dν

=
∫ g(νl)

νl

θo
C

λCησC(ν; νl, g(νl))2

η + µ
+

λCησC(ν; νl, g(νl))2
[
1 + λCΦ̃o(ν)

η+µ

]
{

µ + η + λC

[
F (νh) − F (ν) − Φ̃o(νh)

]}
+ 2λCΦ̃o(ν)

 f(νl)dν

≤
∫ g(νl)

νl

θo
C

λCησC(ν; νl, g(νl))2

η + µ
+

λCησC(ν; νl, g(νl))2
[
1 + λCΦ̃o(ν)

η+µ

]
{

µ + η + λC

[
F (νh) − F (ν) − Φ̃o(νh)

]}
+ 2λCΦ̃o(ν)

 f(ν)dν

which is bounded because the term in brakets is bounded and
∫ g(νl)

νl
f(ν)dν ≤ 1. Therefore,

we have that

lim
νl↘−∞

F (νl)2

f(νl)

∫ g(νl)

νl

∂σC(ν; νl, g(νl))
∂νl

dν = 0.
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The proof that

lim
νl↘−∞

F (νl)2

f(νl)

∫ g(νl)

νl

g′(νl)
∂σC(ν; νl, g(νl))

∂νh
dν = 0.

is analogous. With that, we can conclude that limτ↗∞ BA = 0, which implies the second

part of Proposition 4, and concludes the proof. ■

Proof of Proposition (premium)

Proof. First note that, due to the assumed symmetry in the parameters, we have that

pA(τ) = σDν̄A and pB(τ + dτ) = σDν̄A. Therefore, the liquidity premium can be written as

We have shown in the proof of Proposition 4 that dBA
dτ > 0 in a neighborhood of τ = 0,

which implies that BA(τ + dτ) − BA(τ) > 0 and LP (τ) < ν̄A−ν̄B

L̄B−L̄A .

We have also shown that limτ↗∞ BA = 0. Since we know that BA(τ) > 0 in a

neighborhood of τ = 0, this implies that dBA
dτ < 0 in for some τ , which implies that

BA(τ + dτ) − BA(τ) < 0 and LP (τ) > ν̄A−ν̄B

L̄B−L̄A . Moreover, because

lim
τ↗∞

BA(τ + dτ) − BA(τ) = lim
τ↗∞

BA(τ + dτ) − lim
τ↗∞

BA(τ) = 0,

we have that limτ↗∞ LP (τ) = ν̄A−ν̄B

L̄B−L̄A . This concludes the proof. ■

B Data

We use corporate bonds transactions data from the TRACE Enhanced (ETRACE) database

from January 2005 to June 2021. This initial data set provides us with a total of 171,140,493

trades as well as with 283,250 uniquely-identifiable bonds.13

We use a procedure based in Dick-Nielsen (2009) and Dick-Nielsen (2014) to filter out
13The Trade Reporting and Compliance Engine (TRACE) is the “FINRA-developed vehicle that facilitates

the mandatory reporting of over-the-counter secondary market transactions in eligible fixed income securities.”
The bond transactions report was implemented in different phases. It started with Phase I, on July 2002, for
investment grade bonds and with issue size greater than or equal to $1 bi, and it continued later with the
requirements expanded in Phase II in 2003. The complete implementation occurred in 2005, with Phase III.
The report of corporate bond transactions is mandatory for all broker-dealers FINRA members. Therefore,
Phase III virtually contains complete coverage of all public transactions. For consistency of the selection into
the dataset, our dataset focus on Phase III. The Enhanced TRACE differs from the Standard TRACE in that
it discloses more detailed information in individual transactions, e.g., actual trade size.
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errors, cancellations, reversals and double counting as well as transactions missing individual

CUSIP identification. We subsequently drop trades missing yield information and trades

that are either on a when-issued basis, in a non-secondary Market, with a special condition,

automatic give-ups, or in equity-linked notes.14

To avoid having many bonds in our sample that trade only momentarily, we add the

following two conditions: (1) the bond must have existed in ETRACE for at least one complete

year; and (2) the bond must have traded at least 75% of its relevant trading days (BPW and

Anderson and Stulz 2017). Bonds must also have sufficient trades to satisfy the conditions, as

defined in the following section, necessary to calculate their individual illiquidity measures.

Having applied all these trade-based criteria, we are left with 55,753,160 transactions in 5,410

unique issues.

We use Bloomberg to collect bond information on issuance and maturity dates, provisions,

coupons, currency denomination, amount outstanding, and ratings. We use the amount

outstanding of each issue at the last business day of each month. A bond is defined as

investment grade if its rating is greater than or equal to BBB– from S&P and Fitch or Baa3

from Moody’s. We first use the rating from Standard & Poor’s; if this rating is unavailable, we

use the rating from Fitch; and if this rating is unavailable, we use the rating from Moody’s.15

We exclude trades that took place outside the range of issuance and maturity dates of an

issue, and bonds for which the outstanding amount at the last business day of that specific

month was zero. Defaulting bonds are eliminated from the sample for as long as they are

considered in default, and so are bonds with missing information. We only keep in our sample

callable or non-provisional, fixed-rate bonds issued in the US. Callable bonds comprise a

significant portion of our sample. Removing these bonds would negatively impact the quality

of our results. Instead, we control our results for callability by introducing a dummy to our

model. At this stage, our sample consists of 45,026,565 trades in 4,255 individual bonds.

We calculate the individual yield spread as the difference between the yield of the corporate

bond and the yield of the government bond with the same maturity, as in BPW. The constant
14To remove any potentially erroneous trades still remaining in the database, we also add a price filter for

trades with prices deviating more than 25% from the daily average. This procedure cleans only about 0.1% of
the trades.

15Although we use a different order based on data availability, this process is similar to Dick-Nielsen et al.
(2012).
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maturity yield curve is obtained from the Federal Reserve Bank of St. Louis FRED dataset.

We use linear interpolation to calculate the yield of the government bond matching the exact

maturity of the corporate bond. The monthly cross-sectional yield spread of a corporate bond

is then calculated as the average daily spread in the month.
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Figure 9: 5-Year Credit Default Swaps and yield spreads for individual corporate bond issues
in the sample.

We use the Eikon dataset to collect each issuer’s daily 5-year Credit Default Swap (CDS)

quotes, which we use to proxy for the issuer’s credit risk. Our measure of credit risk for each

monthly cross-section is the average of the issuer’s end-of-day CDS spreads. As this data is

sufficiently large for the bonds in our database from December 2007, we redefine our sample

period to begin in December 2007. We use stock prices to calculate the annualized equity

return volatility of each issuer. Bonds missing CDS and equity volatility data are excluded

from our dataset. We collect the daily stock prices of the issuers from CRSP.

Our final bond sample consists of 32,435,392 trades in 3,073 unique issues, which are

distributed over a period of 115 months starting from December 2007. In total, we have

139,168 combinations of bond-month observations. The number of observations varies between

monthly cross-sections depending on, among other things, newly-issued and matured bonds,

trade frequency, and issues satisfying our selection criteria in the observed cross-section. Our

final sample is predominantly composed by investment grade bonds.

We separate our sample period in three time intervals characterized by different macroe-
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conomic conditions: (1) the financial crisis period from December 2007 to December 2009;

(2) the post-crisis period with historically low interest rates from January 2010 to November

2015; and (3) the monetary tightening period from December 2015 to June 2017. Figure 9

shows the CDS and the yield spreads over time of the bonds in the sample. Table 3 presents

a summary of our data together with the illiquidity measures described in the next section.

Table 3: Summary statistics

Complete Period Crisis Post-Crisis Monetary Tightening
Dec ‘07–June ‘17 Dec ‘07–Dec ‘09 Jan ‘10–Nov ‘15 Dec ‘15–June ‘17

Observations 139,168 17,165 91,424 30,579
Investment Grade 87% 86% 87% 87%
N. of Bonds 3,073 1,134 2,688 1,905
Callable 33% 33% 33% 31%
N. of Firms 416 227 388 310
N. of Trades 32,435,392 6,078,875 20,192,250 6,164,267

Mean Median SD Mean Median SD Mean Median SD Mean Median SD
γ 2.225 1.044 3.931 5.776 2.623 11.648 1.284 .639 1.842 1.067 .480 1.586
AMD (×103) 2.933 1.755 3.945 6.497 3.789 9.603 2.003 1.255 2.386 1.717 .947 2.325
Spread 2.163 1.543 2.179 4.160 2.856 4.634 1.598 1.202 1.387 1.646 1.090 1.909
CDS (×10−2) 1.674 1.063 2.008 2.712 1.529 3.837 1.385 .972 1.375 1.390 .789 1.969

This table reports a summary of our sample variables together with a summary of the main variables calculated.
The observations are the bond-month combinations. The mean, median and standard deviation are the
time-series averages of the respective cross-sectional measures within each sub-period. Spread is the corporate
bond yield spread detailed in section B. γ and AMD are the illiquidity measures detailed in section B.

C Additional empirical results

C.1 The determinants of bond illiquidity

Given the importance of bond illiquidity for yield spreads, we now study the determinants of

illiquidity for individual bonds. We regress illiquidity on characteristics such as CDS, time to

maturity, volume, issuance size, callability, and issuer’s credit rating. We estimate pooled

OLS regressions with two-dimensional clustered standard errors. Results are in table 4. In

summary, our results indicate that the main determinants of illiquidity of a particular bond

are credit risk and time to maturity.

We find that credit risk and time to maturity are the most important characteristics of

a bond for illiquidity. Illiquidity is positively correlated to credit risk and time to maturity.

When the CDS of an issuer widens 100 basis points, γ of its bonds increases .901. This
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Table 4: γ and AMD on bond characteristics

γ AMD

CDS .817 .901 .697 .719
[6.75] [6.50] [7.89] [6.93]

Maturity .161 .165 .128 .139
[11.02] [11.84] [7.87] [9.29]

Age −.002 .117
[−.12] [5.42]

Coupon .078 .079
[2.14] [2.17]

Volume −.750 −2.01
[−3.78] [−7.32]

Frequency .510 3.24
[2.15] [12.82]

ln(Issuance Size) −.787 −1.17
[−8.31] [−8.59]

EqVol. .481 .308
[1.38] [1.70]

IG 2.18 2.19
[5.05] [6.78]

Call −.318 −.053
[−3.08] [−.50]

Constant .526 .666 2.27 1.39 1.57 5.01
[4.26] [6.15] [3.28] [10.17] [13.06] [5.94]

Adj.R2 .089 .032 .142 .111 .035 .226
Obs. 139, 168 139, 168 139, 168 139, 168 139, 168 139, 168
Bond-level illiquidity measures regressed on bond characteristics. We run a pooled OLS regression with
standard-errors clustered by bond and month. T-statistics in square brackets. γ and AMD are the illiquidity
measures detailed in section B. AMD is multiplied by 103. Maturity is the issue’s time to maturity. Maturity
and age are calculated in years at the last business-day of each month. Volume is calculated as the total $
amount traded ×10−11 and frequency is in thousands of trades. Issuance size is in $ millions. EqVol. is the
issuer’s annualized equity return volatility. IG is 1 if the bond is Investment Grade and 0 if otherwise. Call is 1
if the bond is callable and 0 if otherwise.
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increase corresponds to about 40% of the average γ (table 3). One additional year in time to

maturity increases γ by .165, which corresponds to 7% of the average γ.

Volume and frequency show contrasting results. Bonds with greater volume are more

liquid, but so are bonds that trade less frequently. Bonds with larger average size per trade

are potentially more liquid. Callable bonds are more liquid for both γ and AMD.

The results for the credit rating and coupon are surprising. We find that investment-grade

bonds have substantially higher γ’s. This contrasts with the time-series measures observed

in figure 2. We interpret that the effect of credit quality is captured more strongly by the

CDS than by the credit rating. This effect occurs because high-yield bonds have on average

significantly higher CDS spreads than investment-grade bonds. Coupon has a non-intuitive

positive slope, but it is small are not highly significant.

The results for γ and AMD in general indicate the same direction. An exception is for

age, negative and not significant for γ, but positive and strongly significant for AMD. A

positive coefficient for age indicates a market preference for on-the-run securities as oppose to

older, off-the-run issues from the same firm. This finding is consistent with the on-the-run

and off-the-run spread (for example, Krishnamurthy 2002).

C.2 Aggregate factors and liquidity

We now address whether corporate bond liquidity can be affected by aggregate factors,

common to all bonds. We analyze factors such as financial stability, economic conditions, the

term structure, and market volatility. As BPW, to avoid results driven by few issues with

exceptionally high illiquidity, we focus on the median γ and AMD of individual bonds.

We proxy financial conditions by the NFCI Index, from the Chicago Fed. The volatility

measures for equities and the 10-year Treasury interest rate are given by the Cboe’s VIX and

TYVIX indices, from FRED. We use the difference between the 10-year and 2-year constant

maturity Treasury rates for the slope of the yield curve, from FRED. Corporate debt net

position of Primary Dealers is obtained from the NY Fed; monthly medians. Market volume

and frequency are given by the sum of individual bonds total volume traded and number

of transactions. We regress changes in aggregate market illiquidity on changes in financial,

economic and market measures. Table 5 reports the results.
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Aggregate financial conditions are closely related with corporate bond market liquidity.

When financial conditions tighten (NFCI increases), corporate bond market liquidity decreases.

A higher slope of the yield curve is associated with an increase in corporate bond market

illiquidity. When the yield curve steepens, corporate bond liquidity lowers. The net position of

Primary Dealers in corporate debt instruments is positively correlated with market illiquidity.

The results are similar for γ and AMD. This result supports the evidence that the post-crisis

liquidity provision in corporate debt instruments has been shifting from traditional Primary

Dealers to other market players.

Volatility in equity markets yields a positive slope. However, its statistical significance

weakens in the presence of control variables. Illiquidity increases with the VIX. Alternatively,

the volatility of interest rates, proxied by the benchmark 10-year Treasury note, has a negative

slope. When TYVIX is regressed alone, the coefficient is positive but with a small t-statistics

of .13 and a nearly null adjusted-R2. Illiquidity decreases with aggregate volume and increases

with aggregate frequency, as observed at the individual bond level.
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Table 5: Monthly changes in aggregate market illiquidity on monthly changes in macro variables

∆γ ∆ AMD

Aggr. by Median Mean Vol. Weight Median Mean Vol. Weight

∆NFCI 2.14 1.73 5.48 4.82 3.30 2.57 1.49 1.73 2.99 2.69 2.07 1.69
[4.32] [8.10] [6.11] [6.97] [1.92] [1.59] [7.98] [8.62] [7.20] [6.78] [8.56] [5.38]

∆VIX .051 .012 .113 .008 .062 .004 .031 .012 .062 .006 .045 .009
[2.51] [1.97] [2.16] [.62] [1.44] [.15] [2.45] [1.91] [2.32] [1.01] [2.15] [.93]

∆YCurve 1.00 .622 1.00 .468 .451 .578 .420 .622 .463 .206 .576 .463
[1.95] [3.74] [1.08] [.85] [.63] [.77] [2.24] [4.72] [.94] [.66] [2.92] [2.58]

∆PrimaryDealers .015 .012 −.022 .015 .006 0
[2.49] [1.57] [−1.08] [2.61] [1.18] [.00]

∆TYVIX −.091 −.043 .420 −.091 −.154 −.025
[−4.83] [−.28] [1.16] [−4.82] [−3.81] [−.45]

∆Volume −.190 −.626 .374 −.190 −.838 −.480
[−1.71] [−1.19] [.44] [−1.64] [−2.37] [−2.84]

∆Frequency .434 1.04 −.143 .434 .970 .517
[2.41] [1.65] [−.21] [2.28] [2.56] [2.24]

Constant .012 −.003 −.031 .036 −.005 .037 .019 −.006 −.019 .004 −.007 .031 .008 −.015 −.002 .002 −.013 −.009
[.66] [−.09] [1.98] [.91] [−.07] [.98] [.25] [−.08] [−.22] [.24] [−.22] [2.17] [.33] [−.25] [−.08] [.18] [−.42] [−.47]

Adj.R2 .401 .394 .734 .471 .236 .540 .111 .034 .182 .471 .283 .678 .478 .234 .732 .422 .265 .534
Results of changes in aggregate market illiquidity on changes in macro variables. The market illiquidity can be aggregated by the median, mean or
volume-weighted average of individual illiquidity measures within each of the 115 monthly cross-sections covered in our sample. Therefore, we have 114
observations of monthly changes in aggregate market liquidity. Coefficients are estimated using OLS and standard errors are corrected by Newey-West.
T-statistics are reported in square brackets. γ and AMD are the illiquidity measures detailed in section B. AMD is multiplied by 103. NFCI is the Chicago
Fed’s National Financial Conditions Index. VIX and TYVIX are respectively the Cboe’s volatility indices for the equities market and the benchmark 10-year
Treasury Note. YCurve is the yield curve slope measured as the spread between the 10-year and the 2-year constant maturity yields. PrimaryDealers is the
monthly median of corporate debt net positions in billions of U.S. dollars of Primary Dealers reported by the NY Fed. Volume is the total $ amount traded
in a month ×10−13 and Frequency the total number of trades in a month ×10−5.
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