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Abstract

This paper introduces a novel approach to enhancing the goodness-of-fit test for regression
models using kernel Fisher discriminant analysis. The proposed method incorporates the co-
variance structure of integrated regression functions into the test statistics. Unlike existing test
statistics, the new approach uniformly weights the components associated with the leading
eigenvalues of the covariance operator and downweights the remaining ones. This allows for
greater testing power by focusing on a user-tunable number of components. Additionally,
under certain assumptions regarding the convergence speed of the regularization term, the
test statistic can be made pivotal.
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1. Introduction
Regression models are widely used in empirical research, and rigorously testing these models
is crucial. This testing ensures that the models accurately reflect the relationships proposed
by economic theory and the underlying data-generating processes.

The majority of existing tests are based on the integrated regression function (IRF), which ex-
tends classical goodness-of-fit tests for cumulative distribution function (CDF) specifications
to the testing of regression models. For further details, refer to González-Manteiga & Crujeiras
(2013) for an in-depth review. Within this framework, two primary approaches to the testing
problem can be identified. The first approach relies on local smoothing methods for regression,
while the second involves the construction of empirical regression processes, often referred
to as the integrated conditional moment (ICM) approach. Noteworthy works aligned with the
first approach include Hardle & Mammen (1993), Zheng (1996), Li & Wang (1998), Dette (1999),
and Hsiao et al. (2007), among others. Works following the second approach include Bierens
(1982), Delgado (1993), Andrews (1997), Bierens & Ploberger (1997), Stute (1997), Delgado et
al. (2006), and Sant’Anna & Song (2019), to name a few.

These two approaches have long been considered complementary (see Fan & Li (2000) for
a detailed discussion): ICM tests exhibit greater power than local smoothing tests against
Pitman-type local alternatives and are also insensitive to the dimension of the covariates.
In contrast, local smoothing tests demonstrate greater power against high-frequency alterna-
tives than ICM tests and are generally pivotal. However, none of the existing works address
scenarios where the dimension of the covariates is large and deviations from the null occur
in high-frequency directions simultaneously.

Addressing this challenge requires more than just identifying a missing piece in a puzzle; it
necessitates a comprehensive analysis of the power properties of the underlying test statistics.
In this paper, we reframe the testing problem as a classification problem, and utilize recently
developed kernel mean embedding techniques (see Muandet et al. (2017) for a detailed review)
from the machine learning community to create a test statistic based on a maximized kernel
Fisher discriminant ratio (KFD ratio). Our test statistic combines the strengths of the two
aforementioned approaches while avoiding their limitations. Specifically, our test statistic has
the following properties.

Good Performance Against High-Frequency Alternatives. We conduct spectral analysis
and demonstrate that test statistics based on the IRF can be resolved into a linear combination
of infinitely many orthogonal directional test statistics, with descending weights {𝜆𝑗}𝑗≥1
attributed to each of these directional statistics. Specifically, higher frequency directions are
assigned lower weights. The KFD ratio addresses the higher frequency directions by adjusting
the weights to {(𝜆𝑗)/(𝜆𝑗 + 𝛾𝑛)}

𝑗≥1
, where 𝛾𝑛 represents a regularization parameter. In

comparison, local smoothing test statistics also accommodate the higher frequency deviations
by employing identical weights to all spectral directions as the bandwidth goes to zero, ℎ → 0.

𝒏−𝟏/𝟐‐rate against local alternatives. When the regularization parameter is fixed at a
constant: 𝛾𝑛 ≔ 𝛾, our test statistic can detect local deviations that converge in probability to
the null model at a rate of 𝑛−1/2.
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Pivotal with vanishing regularization parameter. When 𝛾𝑛 → 0, our test statistic, under
some conditions, will converge to a standard normal distribution. In this scenario, our statistic
remains responsive to high-frequency deviations; however, it only exhibits non-trivial power
against local alternatives that converge to the null at a rate of 𝑛−1/4.

Insensitive to covariate dimension. Through the appropriate selection of reproducing
kernels, our statistic remains insensitive to the dimension of the covariates, provided that this
dimension is fixed.

The structure of the paper is as follows. In the next section, we introduce key concepts related
to the reproducing kernel Hilbert space (RKHS), including the mean element and covariance
operator. Section 3 discusses the main components of the proposed test statistic, covering its
computation and the effects of estimation. We also perform a spectral analysis to demonstrate
the statistic’s sensitivity to high-frequency deviations. Section 4 presents the asymptotic
results, detailing the null distributions under both fixed and vanishing regularization parame-
ters, as well as consistency and local alternative results. In Section 5, we propose a multiplier
bootstrap algorithm for determining critical values when the regularization parameter is fixed.
Section 6 provides simulation results. In Section 7, we compare the proposed test statistic with
existing ones and explore its connections to these statistics. Finally, Section 8 concludes the
paper.

2. Mean Element and Covariance Operator in RKHS
2.1. Some Operator-Theoretic Tools
A linear operator 𝑇  is said to be bounded if there is a number 𝐶 such that ‖𝑇 𝑓‖ℋ ≤ 𝐶 ‖𝑓‖ℋ
for all 𝑓 ∈ ℋ. The operator norm of 𝑇  is then defined as the minimum of such numbers 𝐶 ,
that is

‖𝑇 ‖ = sup
‖𝑓‖ℋ≤1

‖𝑇 𝑓‖ℋ

.

Futhermore, a bounded linear operator ‖𝑇 ‖ is said to be Hilbert-Schmidt, if the Hilbert-
Schmidt norm

‖𝑇 ‖𝐻𝑆 = {∑
∞

𝑙=1
< 𝑇𝑒𝑙, 𝑇 𝑒𝑙 >ℋ}

1
2

= {∑
∞

𝑙=1
𝜆2

𝑙 }

1
2

< ∞

where 𝜆𝑙 and 𝑒𝑙 are the eigenvalues and eigenfunctions of the operator 𝑇 .

The tensor product operator 𝑢 ⊗ 𝑣 for 𝑢, 𝑣 ∈ ℋ is defined for all

(𝑢 ⊗ 𝑣)𝑓 = ⟨𝑣, 𝑓⟩ℋ𝑢

2.2. Mean Element and Covariance Operator
Given a sample {𝑍1, …, 𝑍𝑛}, where 𝑍𝑖 = (𝑌𝑖, 𝑋⊤

𝑖 )⊤, the dependent variable 𝑌  depends on
the explanatory variables 𝑋 by:
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𝑌 = 𝔼(𝑌 |𝑋) + 𝜀
= ℳ𝜃0

(𝑋) + 𝜀

where ℳ𝜃0
 is a parametrical model indexed by a vector of parameters 𝜃0. Let 𝜃 be a consistent

esitmator of 𝜃0 under the null (i.e., the model is correctly specified). The residual vector is
denoted by 𝜺 = (𝜀1(𝜃), …, 𝜀𝑖(𝜃))

⊤
, where

𝜀𝑖(𝜃) = 𝑌𝑖 − ℳ𝜃(𝑋𝑖)

We will denote 𝜀𝑖(𝜃) by 𝜀𝑖 and 𝜀𝑖(𝜃0) by 𝜀𝑖 whenever there is no ambiguity.

Let 𝑘 be a bounded reproducing kernel, i.e.,

sup
(𝑥,𝑦)∈𝒳×𝒳

𝑘(𝑥, 𝑦) < ∞

If ∫ 𝑘1/2(𝑥, 𝑥)ℙ(𝑑𝑥) < ∞, then the mean element 𝜇 is defined as the unique element in ℋ
satisfying for all functions 𝑓 ∈ ℋ,

⟨𝜇, 𝑓⟩ℋ = ℙ𝑓 ≔ ∫ 𝜀𝑓𝑑ℙ

or alternatively,

𝜇 = 𝔼(𝜀𝑘(𝑋, ⋅))

where under the null 𝜀 ≔ 𝜀𝜃0

If furthermore ∫ 𝑘(𝑥, 𝑥)ℙ(𝑑𝑥) < ∞, then the uncentered covariance operator Σℙ is defined
as the unique linear operator onto ℋ satisfying for all 𝑓, 𝑔 ∈ ℋ,

⟨𝑓, Σℙ𝑔⟩ℋ ≔ ∫(𝜀𝑓)(𝜀′𝑔)𝑑ℙ

Or alternatively,

Σ ≔ 𝔼(𝜀2𝑘(𝑋, ⋅) ⊗ 𝑘(𝑋, ⋅))

We now define an important concept denoted as Σ−1/2. For a compact operator Σ, the range
ℛ(Σ1/2) of Σ1/2 is characterized as

ℛ(Σ1/2) = {𝑓 ∈ ℋ, ∑
∞

𝑙=1
𝜆𝑙⟨𝑓, 𝑒𝑙⟩2

ℋ < ∞, 𝑓 ⟂ 𝒩(Σ1/2)}

where {𝜆𝑙}𝑙≥1 and {𝑒𝑙}𝑙≥1 are eigenvalues and eigenvectors of the covariance operator Σ.
And

𝒩(Σ) = {𝑓 ∈ ℋ, Σ𝑓 = 0}

is the null-space of Σ.

Defining
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ℛ−1(Σ1/2) = {𝑔 ∈ ℋ, 𝑔 = ∑
∞

𝑙=1
𝜆−1/2

𝑙 ⟨𝑓, 𝑒𝑙⟩ℋ𝑒𝑙, 𝑓 ∈ ℛ(Σ1/2)}

Thus, Σ1/2 is a one-to-one mapping between ℛ−1(Σ1/2) and ℛ(Σ1/2). Thus, restricting the
domain of Σ1/2 to ℛ−1(Σ1/2), we may define its inverse for all 𝑓 ∈ ℛ(Σ1/2) as

Σ−1/2𝑓 = ∑
∞

𝑙=1
𝜆−1/2

𝑙 ⟨𝑓, 𝑒𝑙⟩ℋ𝑒𝑙

The empirical estimates respectively of the mean element and the covariance operator are
then defined as follows:

𝜇̂ ≔ 1
𝑛

∑
𝑛

𝑖=1
𝑘(𝑋𝑖, ⋅)𝜀𝑖

≔ 𝔼𝑛(𝜀𝑘(𝑋, ⋅))
(1)

Σ̂ ≔ 1
𝑛

∑
𝑛

𝑖=1
𝜀2

𝑖 𝑘(𝑋𝑖, ⋅) ⊗ 𝑘(𝑋𝑖, ⋅)

≔ 𝔼𝑛(𝜀2𝑘(𝑋, ⋅) ⊗ 𝑘(𝑋, ⋅))
(2)

Remark. By the reproducing property, the empirical mean element has the form:

⟨𝜇̂, 𝑓⟩ = 1
𝑛

∑
𝑛

𝑖=1
𝜀𝑖𝑓(𝑋𝑖), ∀𝑓 ∈ ℋ

On the other hand, by the fact that (𝑢 ⊗ 𝑣)𝑓 = ⟨𝑣, 𝑓⟩ℋ𝑢, we have

Σ̂𝑔 = (1
𝑛

∑
𝑛

𝑖=1
𝜀2

𝑖 𝑘(𝑋𝑖, ⋅) ⊗ 𝑘(𝑋𝑖, ⋅))𝑔

= 1
𝑛

∑
𝑛

𝑖=1
𝜀2

𝑖 ⟨𝑘(𝑋𝑖, ⋅), 𝑔(⋅)⟩ℋ𝑘(𝑋𝑖, ⋅)

= 1
𝑛

∑
𝑛

𝑖=1
𝜀2

𝑖 𝑔(𝑋𝑖)𝑘(𝑋𝑖, ⋅)

= 𝔼𝑛(𝜀2𝑔(𝑋)𝑘(𝑋))

Hence,

⟨𝑓, Σ̂𝑔⟩ℋ = 1
𝑛

∑
𝑛

𝑖=1
𝜀2

𝑖 𝑓(𝑋𝑖)𝑔(𝑋𝑖)

= 𝔼𝑛(𝜀2𝑓(𝑋)𝑔(𝑋))
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3. The KFDA Test Statistic
3.1. Testing Problem as a Classification Problem
The testing problem can be reframed as a classification problem, which can provide insights
into the power of the test. Under the alternative hypothesis, one can construct two classes of
data: {𝑦𝑖𝑓𝑥𝑖

(⋅)} and {ℳ𝜃(𝑥𝑖)𝑓𝑥𝑖
(⋅)}, where 𝑓𝑥(⋅) is a member of an RKHS ℋ with infinite

dimensions. The first class consists of data generated by the true underlying distribution, while
the second class consists of data generated by the estimated model. To enhance the power, it
is essential to find a classification rule 𝑓𝑥(⋅) that effectively separates these two classes:

max
𝑓∈ℋ

‖ 𝔼𝑛((𝑦 − ℳ𝜃(𝑥))𝑓𝑥(⋅)) ‖ℋ

where 𝔼𝑛((𝑦 − ℳ𝜃(𝑥))𝑓𝑥(⋅)) is the sample mean average of the two classes, and can be
understood as “signals” of the deviation.

However, as Fisher (1936) argued, maximizing the signal alone is not sufficient; the noise of
the test statistic should also be minimized for optimal performance. The key idea of Fisher’s
discriminant analysis can be illustrated by the following simple linear classification example.

Consider two classes of 2-dimensional random samples: {𝑋1, 𝑋2 ∈ ℝ2}, where 𝑋1 and 𝑋2
are generated from two different distributions. One might first project the 2-dimensional data
into a 1-dimensional space using a linear projection2. A straightforward approach is to find a
projection direction that maximizes the separation of the two classes’ means, as illustrated in
Figure 1a. However, this projection is not optimal, as the distributions of the projected data
might overlap, as shown in Figure 1b. In our context, a significant overlap in the distributions
of these two classes would result in a high type II error rate.

(a) Simple Linear Projection (b) Distributions of Projected Data
Figure 1: Simple Classification

In contrast, Fisher discriminant analysis seeks a projection direction that not only maximizes
the separation between the means of the two classes but also minimizes the within-class vari-
ance. This is depicted in Figure 2a. Although the absolute difference between the means of the

2The example here is only for illustration; in our context, we will map data from a low-dimensional space
to the RKHS, which is an infinite-dimensional Hilbert space
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two classes is smaller compared to the simple projection, the distributions of the projected data
are more distinctly separated, as shown in Figure 2b. Fisher discriminant analysis achieves this
by finding a projection direction that maximizes the ratio of between-class variance to within-
class variance. In our context, this approach reduces the type II error rate by minimizing the
overlap between the distributions of the two classes in the projected space.

(a) Linear Projection With Fisher Discrimi-
nant Analysis (b) Distributions of Projected Data

Figure 2: Distinct Classification

3.2. Structure of the Statistic
Let Σ𝐵 := 𝜇 ⊗ 𝜇 be the between class covariance operator. Let {𝛾𝑛}𝑛≥1 be a sequence of
strictly positive numbers. The Maximum Kernel Fisher Discriminant Ratio serves as a basis of
the proposed test statistic:

𝑛 max
𝑓∈ℋ

⟨𝑓, Σ̂𝐵𝑓⟩ℋ

⟨𝑓, (Σ̂ + 𝛾𝑛𝐼)
−1

𝑓⟩ℋ

(3)

where 𝐼  denotes the identity operator. The goal of the Fisher discriminant analysis is give a
large separation of the class means while also keeping the in-class variance small.

The above optimization problem is equivalent to:

𝑛 max
𝑓∈ℋ

⟨𝑓, Σ̂𝐵𝑓⟩ℋ, 𝑠.𝑡

⟨𝑓, (Σ̂ + 𝛾𝑛𝐼)
−1

𝑓⟩ℋ = 1

By the Lagrange multiplier argument, it is easy to show that

𝑓∗ ∝ (Σ̂ + 𝛾𝑛𝐼)
−1

𝜇̂

The maximized kernel Fisher discriminant ratio is:

𝑛‖(Σ̂ + 𝛾𝑛𝐼)
−1/2

𝜇̂‖
2

ℋ
(4)
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Theorem 1 (Equivalence to the Null). Let the reporducing kernel 𝑘(⋅, ⋅) be integrally
strictly positive definite:

∫ ∫ 𝑓(𝑥)𝑓(𝑦)𝑘(𝑥, 𝑦)𝑑𝜂(𝑥)𝑑𝜂(𝑦) > 0

where 𝜂(⋅) is a valid probability measure. The null hypothesis holds true, i.e.,

𝔼(𝜀|𝑋) = 0

if and only if

‖(Σ + 𝛾𝑛𝐼)−1/2𝜇‖
2

ℋ
= 0

Proof :  See Section A.1. □

3.3. Computation of the Statistic
The kernel trick would facilitate the computation of the test statistic. Specifically, denote 𝑮̂ :
ℝ𝑛 → ℋ, a vector in ℋ:

𝑮̂ = (𝜀1𝑘(𝑋1, ⋅), …, 𝜀𝑛𝑘(𝑋𝑛, ⋅))

Let 𝑲̂ = 𝑮̂⊤𝑮̂ be the Gram matrix given by

𝑲̂(𝑖, 𝑗) = 𝜀𝑖𝑘(𝑋𝑖, 𝑋𝑗)𝜀𝑗  for 𝑖, 𝑗 ∈ {1, …, 𝑛}

Finally, define the vector 𝒎𝑛 = (𝒎𝑛,𝑖)1≤𝑖≤𝑛
 with 𝒎𝑛,𝑖 = 1/𝑛.

With these notations introduced above, we have

𝜇̂ = 𝑮̂𝒎𝑛 (5)

Σ̂ = 1
𝑛

𝑮̂𝑮̂⊤ (6)

and finally,

𝑛‖(Σ̂ + 𝛾𝑛𝐼)
−1/2

𝜇̂‖
2

ℋ

= ⟨𝜇̂, (Σ̂ + 𝛾𝑛𝐼)
−1

𝜇̂⟩ℋ

= 𝑛𝒎⊤
𝑛𝑮̂⊤(1

𝑛
𝑮̂𝑮̂⊤ + 𝛾𝐼)

−1
𝑮̂𝒎𝑛

= 𝑛𝛾−1
𝑛 𝒎⊤

𝑛𝑮̂⊤{𝐼 − 𝑛−1𝑮̂(𝛾𝑛𝐼 + 𝑛−1𝑮̂⊤𝑮̂)
−1

𝑮̂⊤}𝑮̂𝒎𝑛

= 𝑛𝛾−1
𝑛 {𝒎⊤

𝑛𝑲̂𝒎𝑛 − 𝑛−1𝒎⊤
𝑛𝑲̂(𝛾𝑛𝐼 + 𝑛−1𝑲̂)

−1
𝑲̂𝒎𝑛}

(7)
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where the third equality comes from the matrix inversion lemma.

3.4. Dealing with the Estimation Effects
The estimation effects arise because the empirical mean element and covariance operator
depend on the parameter estimators 𝜃, which are estimated from the same data used for
testing. To mitigate these effects, we introduce a projection mean difference in the RKHS.

Let

𝑔𝑖(𝜃) ≔ ∇𝜃𝜀𝑖(𝜃)

be the gradient of 𝜀𝑖(𝜃) and let ̄𝜃 = 𝛿𝜃 + (1 − 𝛿)𝜃, 𝛿 ∈ (0, 1). The term 𝑛𝑲̂𝑛 can be decom-
posed into:

𝑛𝑲̂𝑛(𝑖, 𝑗) = 𝑛(𝜀𝑖 + 𝑔⊤
𝑖 ( ̄𝜃)(𝜃 − 𝜃0))𝑘(𝑋𝑖, 𝑋𝑗)(𝜀𝑗 + 𝑔⊤

𝑗 ( ̄𝜃)(𝜃 − 𝜃0))

= 𝑛𝜀𝑖𝑘(𝑋𝑖, 𝑋𝑗)𝜀𝑗⏟⏟⏟⏟⏟⏟⏟
𝐴1(𝑖,𝑗)

+
√

𝑛(𝜀𝑖𝑘(𝑋𝑖, 𝑋𝑗)𝑔⊤
𝑗 ( ̄𝜃) + 𝜀𝑗𝑘(𝑋𝑖, 𝑋𝑗)𝑔⊤

𝑖 ( ̄𝜃))⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝐴2(𝑖,𝑗)

√
𝑛(𝜃 − 𝜃0)

+
√

𝑛(𝜃 − 𝜃0)
⊤
𝑔𝑖( ̄𝜃)𝑘(𝑋𝑖, 𝑋𝑗)𝑔⊤

𝑗 ( ̄𝜃)⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝐴3(𝑖,𝑗)

√
𝑛(𝜃 − 𝜃0)

= 𝑛𝐴1(𝑖, 𝑗) +
√

𝑛𝐴2(𝑖, 𝑗)𝑂𝑝(1) + (𝑜𝑝(1))⊤√
𝑛𝐴3(𝑖, 𝑗)𝑂𝑝(1)

and

𝑛𝒎⊤
𝑛𝑲̂𝒎𝑛 = 𝑛

𝑛2 ∑
𝑛

𝑖,𝑗=1
𝐴1(𝑖, 𝑗) +

√
𝑛

𝑛2 ∑
𝑛

𝑖,𝑗=1
𝐴2(𝑖, 𝑗)𝑂𝑝(1) + (𝑜𝑝(1))⊤

√
𝑛

𝑛2 ∑
𝑛

𝑖,𝑗=1
𝐴3(𝑖, 𝑗)𝑂𝑝(1)

= 𝑛𝐴1⏟
𝑂𝑝(1)

+
√

𝑛𝐴2⏟
𝑂𝑝(1)

𝑂𝑝(1) + (𝑜𝑝(1))⊤ √
𝑛𝐴3⏟

𝑂𝑝(1)

𝑂𝑝(1)

⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑜𝑝(1)

where under the null, the last equality comes from 𝐴1 is a degenerate V-statistic, and 𝐴2 and
𝐴3 are non degenerate.

From this decomposition, it is clear that the estimation effects are introduced via the second
term i.e., 𝐴2. To eliminate this estimation effect, we introduce a projection mean difference
{𝜀𝑖𝑘𝑝(𝑥𝑖, ⋅)} in RKHS:

𝜀𝑖𝑘𝑝(𝑥𝑖, ⋅) = 𝜀𝑖𝑘(𝑥𝑖, ⋅) − 𝑔⊤
𝑖 (𝜃)Γ̂−1𝔼𝑛(𝑔(𝜃)𝜀𝑘(𝑋, ⋅)) (8)

where Γ̂ = 𝔼𝑛(𝑔(𝜃)𝑔⊤(𝜃)), and Γ = 𝔼(𝑔(𝜃0)𝑔⊤(𝜃0)) is assumed to be non-singular.

Let 𝑮̂𝑝 = (𝜀1𝑘𝑝(𝑥1, ⋅), …, 𝜀𝑛𝑘𝑝(𝑥𝑛, ⋅)) and 𝒈 be a 𝑛 × 𝑑 matrix with 𝑖-th row 𝑔⊤
𝑖 (𝜃), the

vectorized Equation 8 reads:

𝑮̂⊤
𝑝 = 𝜺𝒌𝒑(𝑿, ⋅) = 𝜺𝒌(𝑿, ⋅) − 𝒈(𝒈⊤𝒈)−1𝒈⊤𝜺𝒌(𝑿, ⋅)

then it is easy to show that
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𝑮̂⊤
𝑝 = 𝜺𝒌(𝑿, ⋅) − 𝒈(𝒈⊤𝒈)−1𝒈⊤𝜺𝒌(𝑿, ⋅)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑮𝑝,𝑛

− 𝒈(𝒈⊤𝒈)−1𝒈⊤ ̄𝒈(𝜃 − 𝜃0)𝒌(𝑿, ⋅)

+ ̄𝒈(𝜃 − 𝜃0)𝒌(𝑿, ⋅)

= 𝑮𝑝 − 𝒈(𝒈⊤𝒈)−1𝒈⊤(𝒈 + 𝑂𝑝(𝑛−1/2))(𝜃 − 𝜃0)𝒌(𝑿, ⋅) + (𝒈 + 𝑂𝑝(𝑛−1/2))(𝜃 − 𝜃0)𝒌(𝑿, ⋅)

= 𝑮𝑝 + 𝑂𝑝(𝑛−1)

(9)

Thus,

𝜇̂𝑝 ≔ 𝑮̂𝑝𝒎𝑛 = 𝑮𝑝,𝑛𝒎𝑛 + 𝑂𝑝(𝑛−1)

= 𝜇𝑝,𝑛 + 𝑂𝑝(𝑛−1)
(10)

Similary, one can show

𝒎⊤
𝑛𝑲̂𝑝𝒎𝑛 = 𝒎⊤

𝑛𝑲𝑝,𝑛𝒎𝑛 + 𝑂𝑝(𝑛−1)

where

𝑲̂𝑝 = 𝑮̂⊤
𝑝 𝑮̂𝑝

𝑲𝑝,𝑛 = 𝑮⊤
𝑝,𝑛𝑮𝑝,𝑛

Let Σ̂𝑝 = 𝑛−1𝑮̂𝑝𝑮̂⊤
𝑝 , Σ𝑛,𝑝 = 𝑛−1𝑮𝑝,𝑛𝑮⊤

𝑝,𝑛. Note that

Σ̂𝑝 = 𝔼𝑛(𝜀2𝑘𝑝(𝑥, ⋅) ⊗ 𝑘𝑝(𝑥, ⋅))

= 𝔼𝑛((𝜀 + 𝑔( ̄𝜃)⊤(𝜃 − 𝜃0))
2
𝑘𝑝(𝑥, ⋅) ⊗ 𝑘𝑝(𝑥, ⋅))

Further analysis of it reveals:

Σ̂𝑝 = 𝔼𝑛((𝜀2 + 2𝜀𝑔( ̄𝜃)⊤(𝜃 − 𝜃0) + 𝑔( ̄𝜃)⊤(𝜃 − 𝜃0)(𝜃 − 𝜃0)
⊤
𝑔( ̄𝜃))𝑘𝑝(𝑥, ⋅) ⊗ 𝑘𝑝(𝑥, ⋅))

= 𝔼𝑛(𝜀2𝑘𝑝(𝑥, ⋅) ⊗ 𝑘𝑝(𝑥, ⋅)) + 𝑂𝑝(𝑛−1/2)⊤𝔼𝑛(𝜀𝑔( ̄𝜃)𝑘𝑝(𝑥, ⋅) ⊗ 𝑘𝑝(𝑥, ⋅))

+𝑂𝑝(𝑛−1/2)⊤𝔼𝑛(𝑔( ̄𝜃)𝑘𝑝(𝑥, ⋅) ⊗ 𝑔( ̄𝜃)⊤𝑘𝑝(𝑥, ⋅))𝑂𝑝(𝑛−1/2)

= Σ𝑛,𝑝 + 𝑂𝑝(𝑛−1/2)⊤𝐵1,𝑛 + 𝑂𝑝(𝑛−1/2)⊤𝐵2,𝑛𝑂𝑝(𝑛−1/2)

Thus,

‖Σ̂𝑝 − Σ𝑛,𝑝‖ = ‖𝑂𝑝(𝑛−1/2)⊤𝐵1,𝑛 + 𝑂𝑝(𝑛−1/2)⊤𝐵2,𝑛𝑂𝑝(𝑛−1/2)‖ = 𝑂𝑝(𝑛−1/2) (11)

The results presented in Equation 10 and Equation 11, with assumptions listed below, lead to
Lemma 1, which would be helpful when performing the asymptotic analyses.

Assumption 1.1 : (i) The parameter space Θ is a compact subset of ℝ𝑑; (ii) the true
parameter 𝜃0 is an interior point of Θ; (iii) ‖ 𝜃 − 𝜃0‖ = 𝑂𝑝(𝑛−1/2).
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Assumption 1.2 : The residual 𝜀(𝜃) is twice continuously differentiable with respect
to 𝜃, with its first derivative 𝑔(𝜃) = ∇𝜃𝜀(𝜃) satisfying 𝔼[sup𝜃∈Θ‖𝑔(𝜃)‖] < ∞ and its
second derivative satisfying 𝔼[sup𝜃∈Θ‖∇𝜃𝑔(𝜃)‖] < ∞. Furthermore, the matrix Γ =
𝔼(𝑔(𝜃)𝑔⊤(𝜃)) is nonsingular in a neibourhood of 𝜃0.

Assumption 1.1 is weaker than related conditions in the literature. We only impose 
√

𝑛(𝜃 −
𝜃0) = 𝑂𝑝(1), but do not require it to admit an asymptotically linear representation. This
could be useful in the context of non-standarad estimation procedures, such as the Lasso.
Assumption 1.2 is standard in the literature and imposes regularity conditions on the smooth-
ness of the residual function.

Lemma 1. Let 𝜇̂𝑝 be the projected mean element as presented in Equation 10, assume
Assumption 1.1 and Assumption 1.2, then

𝑛‖(Σ̂𝑝 + 𝛾𝑛𝐼)
−1/2

𝜇̂𝑝‖
2

ℋ

= 𝑛‖(Σ𝑝,𝑛 + 𝛾𝑛𝐼)−1/2𝜇𝑝,𝑛‖
2

ℋ
+ 𝑜𝑝(1)

(12)

Proof :  See Section A.2. □

Thus, for asymptotic analysis, it would be suffice to focuse on

𝑛‖(Σ𝑝,𝑛 + 𝛾𝑛𝐼)−1/2𝜇𝑝,𝑛‖
2

ℋ

In the literature of goodness-of-fit test, similar idea of projecting out the estimation effects can
be found in Bickel et al. (2006), Escanciano (2009), Escanciano & Goh (2014), and Sant’Anna
& Song (2019).

Finally, the proposed test statistic is updated as:

𝑇𝑛(𝛾𝑛) = 𝑛‖(Σ̂𝑝 + 𝛾𝑛𝐼)
−1/2

𝜇̂𝑝‖
2

ℋ

= 𝑛𝛾−1
𝑛 {𝒎⊤

𝑛𝑲̂𝑝𝒎𝑛 − 𝑛−1𝒎⊤
𝑛𝑲̂𝑝(𝛾𝑛𝐼 + 𝑛−1𝑲̂𝑝)

−1
𝑲̂𝑝𝒎𝑛

3.5. Spectral Analysis on the (Projected) KFDA statistics
We now analyze the weights of the projected KFDA statistics. Let {𝑒𝑙}𝑙≥1 be the eigenfunc-
tions of Σ𝑝, and {𝜆𝑙(Σ𝑝)}𝑙≥1

 are the corresponding eigenvalues. Furthermore, let

𝑓𝑙 = 𝜆−1/2
𝑙 (Σ𝑝)(𝜀𝑒𝑙) (13)

Notice that
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𝜆𝑘(Σ𝑝)𝛿𝑘,𝑙 = ⟨𝑒𝑙, Σ𝑝𝑒𝑘⟩
ℋ

= ⟨(𝜀𝑒𝑘), (𝜀′𝑒𝑙)⟩𝐿2(ℙ)

= 𝜆1/2
𝑘 (Σ𝑝)𝜆

1/2
𝑙 (Σ𝑝)⟨𝑓𝑘, 𝑓𝑙⟩𝐿2(ℙ)

where 𝛿𝑘,𝑙 is the Kronecker’s delta. Hence {𝑓𝑘}𝑘≥1 is an orthonormal system of 𝐿2(ℙ), and ℙ
is a joint probability measure of (𝜀, 𝑋).

𝑛‖(Σ𝑛,𝑝 + 𝛾𝑛𝐼)−1/2𝜇𝑝,𝑛‖
2

ℋ

= 𝑛‖∑
𝑗≥1

(𝜆𝑗(Σ𝑛,𝑝) + 𝛾𝑛)−1/2⟨𝜇𝑝,𝑛, 𝑒𝑗⟩ℋ
𝑒𝑗(⋅)‖

2

ℋ

=
(1)

𝑛‖∑
𝑗≥1

(𝜆𝑗(Σ𝑛,𝑝) + 𝛾𝑛)−1/2(𝜆𝑗(Σ𝑝)
1/2𝔼𝑛(𝑓𝑗(𝑍)))𝑒𝑗(⋅)‖

2

ℋ

= 𝑛 ∑
𝑗≥1

(
𝜆𝑗(Σ𝑝)

𝜆𝑗(Σ𝑛,𝑝) + 𝛾𝑛
)(𝔼𝑛(𝑓𝑗(𝑍)))2

=
(2)

𝑛 ∑
𝑗≥1

(
𝜆𝑗(Σ𝑝)

𝜆𝑗(Σ𝑝) + 𝛾𝑛
)(𝔼𝑛(𝑓𝑗(𝑍)))2 + 𝑜𝑝(1)

(14)

To derive equality (1), simply note that

⟨𝜇𝑝,𝑛, 𝑒𝑗⟩ℋ
= 𝔼𝑛(𝜀𝑒𝑗(𝑋))

= 𝜆𝑗(Σ𝑝)
1/2𝔼𝑛(𝑓𝑗(𝑍))

Equality (2) comes directly from Lemma 6:

|𝜆𝑗(Σ𝑛,𝑝) − 𝜆𝑗(Σ𝑝)| = 𝑜𝑝(1)

and the continuous mapping theorem.

Under the null, we have

𝔼(𝑓𝑙(𝑍)) = 𝜆−1/2
𝑙 𝔼(𝜀𝑒𝑙(𝑋)) = 𝜆−1/2

𝑙 ⟨𝜇𝑝, 𝑒𝑙⟩ℋ
= 0

and

𝕍(𝑓𝑙(𝑍)) = 𝔼(𝑓2
𝑙 (𝑍)) − 𝔼(𝑓𝑙(𝑍))2

= ⟨𝑓𝑙, 𝑓𝑙⟩𝐿2(ℙ)

= 1

Equation 14 indicates how our proposed test statistic “assigns” different weights to different
orthogonal directions, represeted by {𝑒𝑗}𝑗≥1

. As long as 𝛾𝑛 > 0 is (strictly) positive constant,
∑𝑗≥1 𝜆𝑗(Σ𝑝)/(𝜆𝑗(Σ𝑝) + 𝛾𝑛) < ∞. For non-vanishing ratios, its value are all approximately
to one, overcoming the weakness of ICM test statistics, i.e., downweighting the higher

12



frequency directions. More importantly, 𝛾 is user chosen and researchers have the flexibility
of controlling how sensitive the test statistic is against high frequency alternatives.

4. Asymptotic Results
We first discuss the scenario where the regularization parameter 𝛾𝑛 is fixed. Subsequently, we
consider the case where 𝛾𝑛 approaches zero at a specific rate.

To establish the asymptotic theories, the following assumptions are also needed.

• Assumption 1.3 : The kernel 𝑘 is integral strictly positive definite (ISPD):

∫ ∫ 𝑓(𝑥)𝑘(𝑥, 𝑥′)𝑓(𝑥′)𝑑𝜂(𝑥)𝑑𝜂(𝑥′) > 0, ∀‖𝑓‖𝐿2(𝜂) ≠ 0

• Assumption 1.4 : (i) The eigenvalues {𝜆𝑗(Σ𝑝)}𝑗≥1
 satisfy

∑
∞

𝑗=1
𝜆1/2

𝑗 (Σ𝑝) < ∞

. (ii) There are infinitely many strictly positive eigenvalues {𝜆𝑗(Σ𝑝)}𝑗≥1
 of Σ𝑝.

4.1. Fixed Regularization Parameter
First, we discuss the case where 𝛾𝑛 ≔ 𝛾 > 0 is fixed. Theorem 2, Theorem 3 and Theorem 4
provide the asymptotic results under the null, fixed alternatives, and local alternatives,
respectively.

Theorem 2 (Null Limiting Distribution under Fixed Regularization). Assume
Assumption  1.3 and Assumption  1.4 (i), and assume in addition that 𝐻0 holds, the
random variable (vector) 𝜀 and 𝑔( ̄𝜃) are both bounded in probability, and that 𝛾𝑛 ≔ 𝛾 >
0. Then,

𝑇𝑛(𝛾) →
𝑑

𝑇∞(Σ𝑝, 𝛾) ≔ ∑
∞

𝑗=1

𝜆𝑗(Σ𝑝)
𝜆𝑗(Σ𝑝) + 𝛾

𝑊 2
𝑗 (15)

where 𝑊𝑗, 𝑗 ≥ 1 are independent standard normal variables.

Proof :  See Section A.3. □

Note that for all 𝛾 > 0, the weights (𝜆𝑗(Σ𝑝) + 𝛾)−1𝜆𝑗(Σ𝑝) are summable.

Theorem 3. Under the fixed alternatives, and assume Assumption 1.3. If 𝛾𝑛 ≔ 𝛾, then
for any 𝑡 > 0,

ℙ𝐻1
(𝑇𝑛(𝛾𝑛) > 𝑡) → 1
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Proof :  See Section A.5 □

We now consider the limiting power of the proposed test statistic under a local alternative:

ℍ1,𝑛 : 𝑌𝑖 − ℳ𝜃0
(𝑋𝑖) = 𝜀𝑖 + 𝑛−𝛼/2𝑅(𝑋𝑖) ≔ 𝜀𝑖

where 𝔼(𝜀𝐾(𝑋, ⋅)) = 𝟎, and 𝔼(𝑅(𝑋)𝑘(𝑋, ⋅)) ≠ 𝟎.

Theorem 4. Under the local alternative ℍ1,𝑛, let

𝜂 ≔ 𝔼(𝑅(𝑋)𝑘𝑝(𝑋, ⋅)) ∈ ℛ(Σ1/2
𝑝 )

If 𝛾𝑛 = 𝛾 > 0 is fixed and 𝛼 = 1, we have

𝑇𝑛(𝛾𝑛) ⟶
𝑑

𝑇∞(Σ𝑝, 𝛾) + 𝐷1

where

𝐷1 ≔ ‖(Σ𝑝 + 𝛾𝐼)−1/2𝜂‖
2

ℋ

.

Proof :  See Section A.6. □

4.2. Vanishing Regularization Parameter
The null limiting distribution ∑∞

𝑙=1 𝜆𝑙/(𝜆 + 𝛾𝑛)𝑊 2
𝑙  can be interpreted as a 𝜒2

𝑣 distribution
with degrees of freedom 𝑣 = ∑∞

𝑙=1 𝜆𝑙/(𝜆 + 𝛾𝑛). It is well known that the distribution of a 𝜒2
𝑣

with a large degree of freedom 𝑣 can be approximated by a normal distribution with mean
𝑣 and variance 2𝑣. As 𝛾𝑛 approaches zero, the degrees of freedom of the test statistic tend
to infinity. Consequently, the limiting distribution of the test statistic should also approach a
standard normal distribution, provided the statistic is appropriately studentized.

To achieve such studentization, define a quantity:

𝑑𝑟(Σ, 𝛾) ≔ {∑
∞

𝑙=1
( 𝜆𝑙

𝜆𝑙 + 𝛾
)

𝑟

}
1/𝑟

(16)

where {𝜆𝑙}𝑙≥1 are eigenvalues associated with Σ.

Specifically, two quantities of such type is relevant to this paper:

𝑑1(Σ, 𝛾) = ∑
∞

𝑙=1

𝜆𝑙
𝜆𝑙 + 𝛾

and
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𝑑2(Σ, 𝛾) = {∑
∞

𝑙=1
( 𝜆𝑙

𝜆𝑙 + 𝛾
)

2

}
1/2

The proposed test statistic is studentized as:

𝑇𝑛(𝛾𝑛) =
𝑛‖(Σ̂𝑝 + 𝛾𝑛𝐼)

−1/2
𝜇̂𝑝‖

2

ℋ
− 𝑑1(Σ̂𝑝, 𝛾𝑛)

√
2𝑑2(Σ̂𝑝, 𝛾𝑛)

(17)

Theorem 5, Theorem 6 and Theorem 7 provide the asymptotic results under the null, fixed
alternatives, and local alternatives, respectively.

Theorem 5 (Null limiting Distribution under Vanishing Regularization). Under the null,
assume Assumption 1.3 and Assumption 1.4. Assume in addition that the regularization
term 𝛾𝑛 satisfies

𝛾𝑛 + 𝑑−1
2 (Σ𝑝, 𝛾𝑛)𝑑1(Σ𝑝, 𝛾𝑛)𝛾−1

𝑛 𝑛−1/2 ⟶ 0

Then,

𝑇𝑛(𝛾𝑛) ⟶
𝑑

𝒩(0, 1)

Proof :  See Section A.4. □

Remark. Contrary to the case where 𝛾𝑛 ≡ 𝛾, the limiting distribution does not depend
on the kernel, nor on the sequence of regularization parameters {𝛾𝑛}𝑛≥1.

However, notice that 𝑑−1
2 (Σ𝑊 , 𝛾𝑛)𝑑1(Σ𝑊 , 𝛾𝑛)𝛾−1

𝑛 𝑛−1/2 → 0 requires that {𝛾𝑛}𝑛≥1
goes to zero at a rate slower than 𝑛−1/2. In addition, this condition also implies that the
decay rate of 𝛾𝑛 is also affected by the kernel as well as the underlying distribution.

Theorem 6. Under the fixed alternatives, and assume Assumption  1.3. If 𝛾𝑛 +
𝑑−1

2 (Σ𝑝, 𝛾𝑛)𝑑1(Σ𝑝, 𝛾𝑛)𝛾−1
𝑛 𝑛−1/2 → 0, then for any 𝑡 > 0,

ℙ𝐻1
(𝑇𝑛(𝛾𝑛) > 𝑡) → 1

Proof :  See Section A.5 □

Recall under the local alterantive, we have

ℍ1,𝑛 : 𝑌𝑖 − ℳ𝜃0
(𝑋𝑖) = 𝜀𝑖 + 𝑛−𝛼/2𝑅(𝑋𝑖) ≔ 𝜀𝑖

The next theorem states the limiting distribution of the proposed test statistic with vanishing
regularization parameter under the local alternative.

15



Theorem 7. Under the local alternative ℍ1,𝑛, let

𝜂 ≔ 𝔼(𝑅(𝑋)𝑘𝑝(𝑋, ⋅)) ∈ ℛ(Σ1/2
𝑝 )

if

𝛾𝑛 + 𝑑−1
2 (Σ𝑝, 𝛾𝑛)𝑑1(Σ𝑝, 𝛾𝑛)𝛾−1

𝑛 𝑛−1/2 → 0

and 𝛼 = 1/2, then we have

𝑇𝑛(𝛾𝑛) ⟶
𝑑

𝒩(0, 1) + 𝐷2

where

𝐷2 ≔ Δ‖Σ−1/2
𝑝 𝜂‖

2

ℋ

and 𝑛1/2

𝑑2(Σ𝑝,𝛾𝑛) → Δ < ∞.

Proof :  See Section A.6. □

Remark. When 𝜂𝑝 ∉ ℛ(Σ1/2
𝑝 ), the asymptotic distribution of 𝑇𝑛(𝛾𝑛) for a vanishing 𝛾𝑛

is, in general, not well defined.

5. Critical Value via Multiplier Bootstrap for Fixed 𝛾
When the regularization term 𝛾𝑛 ≔ 𝛾 is fixed, the corresponding test statistic 𝑇𝑛(𝛾) is
non-pivotal. In this section, we propose a simple-to-use multiplier bootstrap procedure to
approximate the null distribution. Its implementation is listed below:

1. Generate a sequence of i.i.d random variables {𝑣𝑖}𝑖=1,…,𝑛 with mean zero and unit variance.
Random variables with such properties could include,e.g, Rademacher random variable,
standard normal or Bernoulli random variable with ℙ(𝑣 = 1 − 𝜅) = 𝜅/

√
5 and ℙ(𝑣 = 𝜅) =

1 − 𝜅/
√

5, where 𝜅 = (
√

5 + 1)/2.

2. Compute

(𝑇 ∗
𝑛(𝛾))

𝑏
=

𝑛‖(Σ̂∗
𝑝 + 𝛾𝐼)

−1/2
𝜇̂∗

𝑝‖
2

ℋ
− 𝑑1(Σ̂∗

𝑝, 𝛾)

𝑑2(Σ̂∗
𝑝, 𝛾)

where

𝜇̂∗
𝑝 = 𝑮∗𝒎𝑛

𝑮∗ = (𝑣1𝜀1𝑘𝑝(𝑋1, ⋅), …, 𝑣𝑛𝜀𝑛𝑘𝑝(𝑋𝑛, ⋅))

and Σ̂∗
𝑝 is generated using 𝜇̂∗

𝑝.

3. Repeat Steps 1 and 2 𝐵 times, and collect {(𝑇 ∗
𝑛(𝛾))

𝑏
, 𝑏 = 1, …, 𝐵}
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4. Define a confidence level 𝛼, obtain the (1 − 𝛼)‐th quantile of {(𝑇 ∗
𝑛(𝛾))

𝑏
, 𝑏 = 1, …, 𝐵},

𝑐∗
𝑛,𝛼

5. Reject the null if 𝑇𝑛(𝛾) > 𝑐∗
𝑛,𝛼, and fail to reject otherwise.

The multiplier bootstrapped procedure has several attractive properties. First, it does not
require computing new parameter estimates at each bootstrap draw,reducing the computa-
tional intensity of the proposed procedure. Second, due to the employment of the projection,
its implementation does not require using estimators that admit an asymptotic linear repre-
sentation. These computational conveniences are important when the dimension is high.

The next theorem establishes the asymptotic validity of the proposed bootstrap procedure.

Theorem 8. Assme that 𝑇 (𝛾, 𝜃) < ∞ for all 𝜃 ∈ Θ. Then, we have

𝑇 ∗
𝑛(𝛾) ⟶

𝑑∗

𝑇∞(Σ𝑝, 𝛾)

with probability one under the bootstrap law. Here ⟶
𝑑∗

 denotes the weak convergence
under the bootstrap law, i.e., conditional on the sample [𝑍]𝑛 = {𝑍𝑖}𝑖=1,…,𝑛

Proof :  See Section A.7 □

6. Simulation Studies
In this section, we conduct a series of simulation studies to evaluate the finite sample perfor-
mance of the proposed test statistic. We compare the proposed test statistic with the MMD-
Gaussian, Bierens, and MMD-IMQ tests. The MMD-Gaussian test is based on the maximum
mean discrepancy (MMD) statistic with a Gaussian kernel, while the MMD-IMQ test is based
on the MMD statistic with the inverse multi-quadratic kernel. The Bierens test is based on
the empirical process, but can be regarded as a MMD-Gaussian test with the kenerl parameter
1/2.

6.1. Comparision Test Statistics
The MMD test statistic is defined as (refer to the next section for a detailed discussion):

𝑛𝑇𝑛 = 𝑛‖𝜇̂𝑝‖ℋ

= 1
𝑛

∑
𝑖,𝑗

𝜀𝑖𝑘𝑝(𝑥𝑖, 𝑥𝑗)𝜀𝑗
(18)

For the MMD-Gaussian, the original kernel (before projection) is defined as:

𝑘(𝑥, 𝑥′) = exp(−𝛿 ‖ 𝑥 − 𝑥′ ‖2
2)

where 𝛿 is the bandwidth parameter, ‖ ⋅ ‖2 denotes the 𝐿2 norm. Bierens’ statistic can also be
understood as an MMD-Gaussian test with the kernel parameter 𝛿 = 1/2.

The MMD-IMQ test is based on the kernel:
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𝑘(𝑥, 𝑥′) = (1 + ‖ 𝑥 − 𝑥′ ‖2
2)

−1.5

The simulation studies are conducted after accounting for the estimation effects, as outlined
in Equation 10.

6.2. Data Generating Processes
We consider the following data generating processes (DGPs), which are grouped into four
categories: (1) Null DGPs, (2) Fixed Alternatives, (3) Frequency Alternatives, and (4) Local
Alternatives.

The null DGPs are defined as:

𝑌 = 𝑋𝛽 + 𝜎𝑢

where for all null DGPs, 𝑋 is an 𝑛 × 𝑝 matrix, 𝛽 = 𝟏𝑝 is a p-dimensional vector of ones, 𝜎 = 1,
and 𝑢 is an 𝑛 × 1 vector of independent standard normal random variables. The specifications
for different null DGPs are as follows:

• For DGP1, 𝑋 = (𝟏𝑛, 𝑋1, 𝑋2), where 𝑋1 and 𝑋2 are independent standard normal random
variables.

• For DGP2, 𝑋 = (𝟏𝑛, 𝑋1, 𝑋2, 𝑋3, 𝑋4, 𝑋5), where for 𝑖 = 1, 2, 3, 𝑋𝑖 are independent uni-
formly distributed random variables on [0, 1], and for 𝑖 = 4, 5, 𝑋𝑖 are independent normal
random variables with mean zero and standard deviation 1.

• For DGP3, 𝑋 = (𝟏𝑛, 𝑋̃), where 𝑋̃ is an 𝑛 × 10 matrix with columns {𝑋𝑖}𝑖=1,…,10. For
𝑖 = 1, …, 5, 𝑋𝑖 are independent uniformly distributed random variables on [0, 1], and for
𝑖 = 6, …, 10, 𝑋𝑖 are independent normal random variables with mean zero and standard
deviation 1.

• For DGP4, 𝑋 = (𝟏𝑛, 𝑋̃), where 𝑋̃ is an 𝑛 × 20 matrix with columns {𝑋𝑖}𝑖=1,…,20. For
𝑖 = 1, …, 10, 𝑋𝑖 are independent uniformly distributed random variables on [0, 1], and for
𝑖 = 11, …, 20, 𝑋𝑖 are independent normal random variables with mean zero and standard
deviation 1.

DGPs 5 to 8 are fixed alternatives, and are defined as:

𝑌 = 𝑋𝛽 + 𝐷 + 𝜎𝑢

where 𝐷 is a 𝑛 × 1 vector of deviation specifications. The parameters 𝛽 and the error terms
𝑢 are the same as in the null DGPs. The specifications for different fixed alternatives are as
follows:

• For DGP5, 𝑋 = (𝟏𝑛, 𝑋1, 𝑋2), where 𝑋1 and 𝑋2 are independent normal random variables
with mean zeros and standard deviation equal to 10. 𝜎 = 5, and 𝐷 = ‖𝑋̃‖2, where 𝑋̃ =
[𝑋1, 𝑋2].

• For DGP6, 𝑋 = (𝟏𝑛, 𝑋1, 𝑋2, 𝑋3, 𝑋4, 𝑋5), where for 𝑖 = 1, 2, 3, 𝑋𝑖 are independent uni-
formly distributed random variables on [0, 10 × 𝑖], and for 𝑖 = 4, 5, 𝑋𝑖 are independent
normal random variables with mean zero and standard deviation 10 × (𝑖 − 3). 𝜎 = 6, and
𝐷 = ‖𝑋̃‖2, where 𝑋̃ = [𝑋1, …, 𝑋5].
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• For DGP7, 𝑋 = (𝟏𝑛, 𝑋̃), where 𝑋̃ is an 𝑛 × 10 matrix with columns {𝑋𝑖}𝑖=1,…,10. For 𝑖 =
1, …, 5, 𝑋𝑖 are independent uniformly distributed random variables on [0, 1 + 0.1 × (𝑖 −
1)], and for 𝑖 = 6, …, 10, 𝑋𝑖 are independent normal random variables with mean zero and
standard deviation 1 + 0.1 × (𝑖 − 5). D = ‖𝑋̃‖2. 𝜎 = 7, and 𝐷 = ‖𝑋̃‖2.

• For DGP8, 𝑋 = (𝟏𝑛, 𝑋̃), where 𝑋̃ is an 𝑛 × 20 matrix with columns {𝑋𝑖}𝑖=1,…,20. For 𝑖 =
1, …, 10, 𝑋𝑖 are independent uniformly distributed random variables on [0, 1 + 0.1 × (𝑖 −
1)], for 𝑖 = 11, …, 15, 𝑋𝑖 are independent normal random variables with mean zero and
standard deviation 1 + 0.1 × (𝑖 − 11), and for 𝑖 = 16, …, 20, 𝑋𝑖 are independent normal
random variables with mean zero and standard deviation 1 + 0.1 × (𝑖 − 16). 𝜎 = 8, 𝐷 =
𝐷1 + 𝐷2, where 𝐷1 = ‖𝑋̃1:10‖2 and 𝐷2 = ‖𝑋̃11:20‖2, and 𝑋̃1:10 and 𝑋̃11:20 are the first and
second half of the columns of 𝑋̃, respectively.

Remark. DGPs 5-6 have relatively low dimension and small error term standard devia-
tion, while DGPs 7-8 have higher dimension and larger error term standard deviation.
We would expect that the first DGPs are relatively easier to detect than the latter DGPs.

Frequency alternatives are represented in DGPs 9-11, and are defined as:

𝑌 = 𝑋𝛽 + 𝑆 + 𝜎𝑢

where 𝑆 is a 𝑛 × 1 vector of frequency deviation specifications. The parameters 𝛽 and the
error terms 𝑢 are the same as in the null DGPs. 𝑋 = (𝟏𝑛, 𝑋̃), where 𝑋̃ is an 𝑛 × 20
matrix with columns {𝑋𝑖}𝑖=1,…,20. For 𝑖 = 1, …, 10, 𝑋𝑖 are independent uniformly distributed
random variables on [0, 1], and for 𝑖 = 11, …, 20, 𝑋𝑖 are independent normal random variables
with mean zero and standard deviation 1. 𝜎 = 1, and 𝑆 = 5 × Π20

𝑖=1 sin(𝑏 × 𝑋𝑖). The specifi-
cations for different frequency alternatives are as follows:

• For DGP9, the parameter 𝑏 = 1.

• For DGP10, the parameter 𝑏 = 2.

• For DGP11, the parameter 𝑏 = 7.

Remark. DGPs 9-11 have the same dimension and error term standard deviation, but
different frequency deviation specifications. We would expect that the first DGPs are
relatively easier to detect than the latter DGPs.

Finally, the local alternatives are represented in DGPs 12-14, and are defined as:

𝑌 = 𝑋𝛽 + 𝑛−1/2𝑅 + 𝜎𝑢

where 𝑛−1/2𝑅 is a 𝑛 × 1 vector of deviation specifications. The parameters 𝛽 and the error
terms 𝑢 are the same as in the null DGPs. The specifications for different fixed alternatives
are as follows:

• For DGP12, 𝑋 = (𝟏𝑛, 𝑋1, 𝑋2), where 𝑋1 and 𝑋2 are independent normal random variables
with mean zeros and standard deviation equal to 10. 𝜎 = √0.1 + 𝑋2

1 + 𝑋2
2 , and 𝑛−1/2𝑅 =

𝑛−1/2 ‖𝑋̃‖2, where 𝑋̃ = [𝑋1, 𝑋2].
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• For DGP13, 𝑋 = (𝟏𝑛, 𝑋1, 𝑋2, 𝑋3, 𝑋4, 𝑋5), where for 𝑖 = 1, 2, 3, 𝑋𝑖 are independent
uniformly distributed random variables on [0, 10 × 𝑖], and for 𝑖 = 4, 5, 𝑋𝑖 are independent
normal random variables with mean zero and standard deviation 10 × (𝑖 − 3). 𝜎 =
√0.1 + ∑3

𝑖=1 𝑋𝑖 + ∑5
𝑗=4 𝑋2

𝑗 , and 𝑛−1/2𝑅 = 𝑛−1/2 ‖𝑋̃‖2, where 𝑋̃ = [𝑋1, …, 𝑋5].

• For DGP14, 𝑋 = (𝟏𝑛, 𝑋̃), where 𝑋̃ is an 𝑛 × 10 matrix with columns {𝑋𝑖}𝑖=1,…,10. For 𝑖 =
1, …, 5, 𝑋𝑖 are independent uniformly distributed random variables on [0, 1 + 0.1 × (𝑖 −
1)], and for 𝑖 = 6, …, 10, 𝑋𝑖 are independent normal random variables with mean zero and
standard deviation 1 + 0.1 × (𝑖 − 5). D = ‖𝑋̃‖2. 𝜎 = √0.1 + ∑5

𝑖=1 𝑋𝑖 + ∑10
𝑗=6 𝑋2

𝑗 , and
𝑛−1/2𝑅 = 𝑛−1/2 ‖𝑋̃‖2.

• For DGP15, 𝑋 = (𝟏𝑛, 𝑋̃), where 𝑋̃ is an 𝑛 × 20 matrix with columns {𝑋𝑖}𝑖=1,…,20. For
𝑖 = 1, …, 10, 𝑋𝑖 are independent uniformly distributed random variables on [0, 1 + 0.1 ×
(𝑖 − 1)], for 𝑖 = 11, …, 15, 𝑋𝑖 are independent normal random variables with mean zero
and standard deviation 1 + 0.1 × (𝑖 − 11), and for 𝑖 = 16, …, 20, 𝑋𝑖 are independent
normal random variables with mean zero and standard deviation 1 + 0.1 × (𝑖 − 16). 𝜎 =
√0.1 + ∑5

𝑖=1 𝑋𝑖 + ∑20
𝑗=6 𝑋2

𝑗 , and 𝑛−1/2𝑅 = 𝑛−1/2 ‖𝑋̃‖2.

Remark. DGPs 12-13 have relatively small deviations, while DGPs 14-15 have larger
deviations. We would expect that the first DGPs are relatively more diffcoult to detect
than the latter DGPs.

6.3. Simulation Results
We choose the Gaussian kernel in our KFDA statistic with the bandwidth parameter 𝛿 =
(10 × 𝑐)−1, where 𝑐 is caculated using the average value of the principle component values for
the explanatory matrix 𝑋. The bandwidth parameter in MMD-Gaussian is set by the heuristic
rule: 𝛿 = 1/(2𝜎2), where 𝜎 = median‖𝑥𝑖 − 𝑥𝑗‖2 : 𝑖, 𝑗 = 1, …, 𝑛.

The regularization parameter in the proposed test statistic is set at 𝛾 = 0.5.

Table 1 and Table 2 present the empirical size and power of the proposed test statistic, as
well as the MMD-Gaussian, Bierens, and MMD-IMQ tests. The results are based on 200 and
400 sample size respectively. The empirical size and power are calculated based on 1000
replications. Within each replication, the bootstrap size is 500. The significance levels are set
at 0.1, 0.05, and 0.01.

20



Table 1: Rejection Rates Compariation of KFDA, MMD-Gaussian, and Bierens with MMD-
IMQ, 𝑁 = 200

N=200 KFDA,𝛾𝑛 = 0.5 MMD-Gaussian Bierens MMD-IMQ
Size 0.1 0.05 0.01 0.1 0.05 0.01 0.1 0.05 0.01 0.1 0.05 0.01

DGP1 0.111 0.059 0.011 0.089 0.040 0.008 0.110 0.059 0.009 0.081 0.037 0.010
DGP2 0.123 0.068 0.014 0.109 0.057 0.010 0.095 0.050 0.009 0.057 0.015 0.002
DGP3 0.140 0.063 0.011 0.125 0.054 0.014 0.000 0.000 0.000 0.000 0.000 0.000
DGP4 0.256 0.06 0.001 0.183 0.086 0.016 0.000 0.000 0.000 0.000 0.000 0.000
Power 0.1 0.05 0.01 0.1 0.05 0.01 0.1 0.05 0.01 0.1 0.05 0.01

Fixed Alternatives
DGP5 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.920 0.999 0.995 0.864
DGP6 1.000 1.000 1.000 1.000 1.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000
DGP7 0.540 0.413 0.155 0.401 0.275 0.099 0.082 0.020 0.002 0.009 0.000 0.000
DGP8 1.000 1.000 0.995 0.370 0.241 0.072 0.000 0.000 0.000 0.000 0.000 0.000
Frequency Alternatives

DGP9 0.483 0.202 0.005 0.152 0.069 0.008 0.001 0.000 0.000 0.001 0.000 0.000
DGP10 0.474 0.194 0.009 0.195 0.078 0.015 0.001 0.000 0.000 0.000 0.000 0.000
DGP11 0.473 0.191 0.012 0.184 0.078 0.010 0.003 0.000 0.000 0.000 0.000 0.000

Local Alternatives
DGP12 0.222 0.136 0.039 0.214 0.130 0.039 0.219 0.138 0.038 0.208 0.124 0.031
DGP13 0.383 0.279 0.119 0.390 0.272 0.087 0.231 0.132 0.031 0.193 0.091 0.013
DGP14 0.990 0.979 0.891 0.999 0.962 0.859 0.000 0.000 0.000 0.000 0.000 0.000
DGP15 1.000 1.000 0.999 1.000 1.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000
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Table 2: Rejection Rates Compariation of KFDA, MMD-Gaussian, and Bierens with MMD-
IMQ, 𝑁 = 400

N=400 KFDA,𝛾𝑛 = 0.5 MMD-Gaussian Bierens MMD-IMQ
Size 0.1 0.05 0.01 0.1 0.05 0.01 0.1 0.05 0.01 0.1 0.05 0.01

DGP1 0.098 0.046 0.012 0.113 0.067 0.010 0.103 0.059 0.014 0.112 0.065 0.014
DGP2 0.099 0.048 0.012 0.105 0.046 0.011 0.101 0.056 0.009 0.074 0.021 0.001
DGP3 0.114 0.051 0.010 0.110 0.052 0.008 0.000 0.000 0.000 0.000 0.000 0.000
DGP4 0.136 0.045 0.006 0.137 0.066 0.011 0.000 0.000 0.000 0.000 0.000 0.000
Power 0.1 0.05 0.01 0.1 0.05 0.01 0.1 0.05 0.01 0.1 0.05 0.01

Fixed Alternatives
DGP5 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
DGP6 1.000 1.000 1.000 1.000 1.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000
DGP7 0.630 0.494 0.234 0.611 0.496 0.249 0.197 0.098 0.017 0.082 0.022 0.002
DGP8 1.000 1.000 1.000 0.466 0.352 0.147 0.000 0.000 0.000 0.000 0.000 0.000
Frequency Alternatives

DGP9 0.384 0.183 0.024 0.105 0.058 0.009 0.000 0.000 0.000 0.000 0.000 0.000
DGP10 0.374 0.154 0.016 0.141 0.057 0.007 0.000 0.000 0.000 0.000 0.000 0.000
DGP11 0.339 0.143 0.010 0.113 0.048 0.007 0.000 0.000 0.000 0.000 0.000 0.000

Local Alternatives
DGP12 0.222 0.130 0.028 0.195 0.126 0.037 0.215 0.138 0.038 0.200 0.129 0.044
DGP13 0.344 0.250 0.112 0.340 0.231 0.093 0.241 0.143 0.047 0.222 0.129 0.028
DGP14 0.975 0.958 0.887 0.987 0.973 0.891 0.000 0.000 0.000 0.000 0.000 0.000
DGP15 1.000 1.000 1.000 1.000 1.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000

The proposed test statistic demonstrates reasonably accurate size control across most of the
null DGPs with a small sample size (𝑁 = 200). The only exception is DGP4, where the statistic
shows an inflated size. However, this issue quickly resolves as the sample size increases to
𝑁 = 400. DGP4 seems to be the most challenging for all test statistics in the small sample
case. The MMD-Gaussian test statistic also exhibits inflated size, while the other statistics
experience under-size distortion.

The statistic also exhibits exceptional performance across all DGPs. Notably, it is particularly
effective in detecting frequency alternatives, which are characterized by both high frequency
and high dimensionality. Conventional methods, such as the Bierens test, are insensitive
to high-frequency deviations, while local smoothing test statistics suffer from the curse of
dimensionality.

DGPs 7-8 and 12-13 are characterized by small signal-to-noise ratios 𝜌:

𝜌 =
‖𝜇𝑝‖

2
ℋ

𝑠

where 𝑠2 = 4𝑉𝑍(𝔼𝑍′(𝜀𝑘𝑝(𝑥, 𝑥′)𝜀′)).
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MMD type statistics, under the alternative, are essentially non-degenerate V (or U) statistics.
Thus, using standard V (or U) statistic theory, it can be shown that a small signal-to-noise
ratio would lead to a low power of the test, see e.g., Muandet et al. (2020), Li & Song (2022).
The proposed test statistic, however, is able to detect these small deviations with high power.
Intuitively, this is because the construction of the Fisher discriminant ratio is built on the
minimization of the within-class variance, which helps to lower the noise level and boost the
signal-to-noise ratio.

We also investigate the finite sample performance of the proposed test statistic under
different regularization parameters. We consider the following regularization parameters: 𝛾 =
0.1, 0.5, 1. The results are presented in Figure 3 and Figure 4.

When 𝛾 is small, the proposed test statistic exhibits a slower decay rate of eigenvalues 𝜆𝑖/(𝜆𝑖 +
𝛾), which amplifies the impact of higher frequency directions. This can lead to an oversize
problem under the null hypothesis, as the magnitudes of oscillations in higher frequencies
are large. Conversely, when 𝛾 is large, the test statistic has a faster decay rate, placing more
weight on lower frequency directions. This can result in a loss of power under alternative
hypotheses. Selecting the optimal 𝛾 is crucial for performance but is a non-trivial task and is
beyond the scope of this paper.

Figure 3: KFDA Rejection Rates under Different Regularization Parameters, DGP1-6
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Figure 4: KFDA Rejection Rates under Different Regularization Parameters, DGP7-15

7. Discussion
In this section, we will discuss how our proposed test statistic is related to those found in the
existing literature. These discussions will provide further insight into the ways in which our
statistic has been enhanced.

7.1. ICM based Test Statistics
Most of the ICM based test statistics are based on an V (U)-statistic. For example, the ICM test
statistic of Bierens (1982) can be written as

𝑛𝑇𝑛 = 1
𝑛

∑
𝑖,𝑗

𝜀𝑖 exp(−
‖𝑥𝑖 − 𝑥𝑗‖2

2

2
)𝜀𝑗

Let’s consider the optimization problem of the numerator part of the KFD ratio, i.e.,
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𝑇𝑛 = max
‖𝑓‖ℋ≤1

⟨𝑓, Σ̂𝐵𝑓⟩
ℋ

it is easy to show that the solution of this problem is

𝑓 =
𝜇̂𝑝

‖𝜇̂𝑝‖ℋ

Hence

𝑇𝑛 =
⟨𝜇̂𝑝, Σ̂𝐵𝜇̂𝑝⟩ℋ

‖𝜇̂𝑝‖
2
ℋ

= ‖𝜇̂𝑝‖
2
ℋ

= 1
𝑛2 ∑

𝑖,𝑗
𝜀𝑖𝑘𝑝(𝑥𝑖, 𝑥𝑗)𝜀𝑗

(19)

Equation  19 implies that some IRF based test statistics can be expressed using a between
class covariance operator in a RKHS. A spectral analysis of Equation 19 reveals that for ICM
statistics,

‖𝜇̂𝑝‖
2
ℋ

= ‖∑
𝑗≥1

⟨𝜇̂𝑝, 𝑒𝑗⟩ℋ
𝑒𝑗(⋅)‖

2

ℋ

= ‖∑
𝑗≥1

𝜆𝑗(Σ𝑝)
1/2𝔼𝑛(𝑓𝑗(𝑍))𝑒𝑗(⋅)‖

2

ℋ

= ∑
𝑗≥1

𝜆𝑗(Σ𝑝)(𝔼𝑛(𝑓𝑗(𝑍)))2

where 𝑒𝑗(⋅), 𝑓𝑗(⋅) and 𝜆𝑗(Σ𝑝) are the same as in Equation 14. The eigenvalues {𝜆𝑗(Σ𝑝)}𝑗≥1
would decrease to zero, which explain why ICM statistics perform poorly when detecting high
frequency deviations.

7.2. Maximum Mean Discrepancy based Test Statistics
Equation 19 is precisely the maximum mean discrepancy (MMD) based statistics for regression
models. MMD statistics are first introduced for the nonparametric two sample test, see Gretton
et al. (2012a), Gretton et al. (2012b). Similar concept is then developped for regression model
checks, see Muandet et al. (2020) and Li & Song (2022). Thus, MMD statistics can be understood
as special cases of the ICM statistic.

MMD based statistics are insensitive to the dimension of the covariate, provided this dimen-
sion is fixed. For example, Muandet et al. (2020) have shown that for any 0 < 𝛿 < 1, with
probability at least 1 − 𝛿, one has
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‖𝜇̂𝑝 − 𝜇𝑝‖ℋ
≤

2𝐶𝜃 log(2
𝛿)

𝑛
+ √2𝜎2

𝜃 log(2
𝛿)

𝑛

where 𝐶𝜃 is constant number such that ‖𝜀𝜃𝑘𝑝(𝑋, ⋅)‖
ℋ

< 𝐶𝜃 < ∞ almost surely, and 𝜎2
𝜃 ≔

𝔼(‖𝜀𝜃𝑘𝑝(𝑋, ⋅)‖2
ℋ

).

This non-asymptotic upper bound states that 𝜇̂𝑝 converges at a rate of 𝑛−1/2 that is indepen-
dent of the dimension of 𝑋. This property is appealing because inferences based on 𝜇̂𝑝
(including MMD and our statistic) become less susceptible to the curse of dimensionality.

7.3. The Local Smooth Test Statistics
The local smooth test proposed by Zheng (1996) is constructed as:

𝑇𝑛 = 1
𝑛2 ∑

𝑖,𝑗

1
ℎ𝑑 𝜀𝑖𝑘(

𝑥𝑖 − 𝑥𝑗

ℎ
)𝜀𝑗

where ℎ is the bandwidth of the kernel 𝑘. To connect our proposed test statistic to the local
smooth test, we consider the Gaussian kernel. As ℎ → 0, the local smooth kernel matrix
𝑘(𝑥𝑖−𝑥𝑗

ℎ ) converges to an identity matrix, where its eigenvalues are essentially the same for
different frequency directions. A similar phenomenon can be observed in the proposed test
statistic when 𝛾𝑛 → 0. In this spectral sense, we believe that the proposed test statistic bridges
the gap between the local smooth test and the ICM test statistics.

7.4. The Pivotal Property
Local smoothing test statistics exhibit a normal null distribution, whereas the null distribution
for ICM statistics is notably more intricate. When a projection, such as the one presented
in this paper, is utilized, the null distribution takes the form of a linear combination of 𝜒2

distributions weighted by corresponding eigenvalues.

Recent literature has focused on establishing a pivotal property for ICM statistics. Raiola (2024)
partition the covariate space into disjoint sub-cells to construct 𝜒2 statistics within each cell.
This partitioning approach was first developed by Delgado & Vainora (2022) in the application
of testing conditional distribution models.

Jiang & Tsyawo (2024) propose the use of a modified residual term in a generalized martingale
difference divergence (GMDD) metric, ensuring that the test statistic is first-order non-degen-
erate and thus guarantees the pivotal property.

Our approach to achieving pivotality differs from existing methods. Firstly, under the null
hypothesis, our statistic converges to a standard normal distribution, whereas others converge
to a 𝜒2 distribution. Secondly, the method proposed by Raiola (2024) is not omnibus due to the
partition of the covariate space, whereas ours is omnibus. While the approach suggested by
Jiang & Tsyawo (2024) is omnibus, its power properties against high-frequency deviations are
not clear. In contrast, our statistic has a theoretical basis for demonstrating good performance
against high-frequency alternatives.
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7.5. Kernel Fisher Discriminant Analysis in Testing
The primary goal of a Fisher discriminant analysis (FDA) (Fisher, 1936) is to find a subspace
(or sub-minifold) which separates the classes as much as possible while the data also become
as spread as possible. The kernel FDA (Mika et al., 1999) performs this goal in a reproducing
kernel Hilbert space. Kernel FDA has found wide-ranging applications in machine learning
practices,, as detailed in the review by Ghojogh et al. (2019).

The utilization of kernel FDA in hypothesis testing is relatively limited. To the best of the
authors’ knowledge, Harchaoui et al. (2007) were the first to propose the use of such a
framework in the context of a nonparametric two-sample testing problem. Balasubramanian
et al. (2021) also employ a similar idea to explore the optimality of kernel-embedding based
test statistics.

8. Conclusion
This paper introduces a novel method for enhancing the goodness-of-fit testing of regression
models through the application of Kernel Fisher Discriminant Analysis (KFDA). By leveraging
the covariance structure of integrated regression functions, the proposed test statistic is
designed to improve upon existing methodologies by modifying the weights associated to
each component of the test statistic. This approach can be used to address a significant gap in
the literature, particularly in scenarios where the dimensionality of the covariates is high and
deviations from the null hypothesis occur in high-frequency directions.

The proposed test statistic is constructed to uniformly weight components associated with
the leading eigenvalues of the covariance operator and downweight the remaining compo-
nents. This strategy allows the test to gain greater power by concentrating on a user-tunable
number of components. Moreover, under specific assumptions about the convergence speed
of the regularization term, the test statistic becomes pivotal, providing a valuable property for
practitioners.

The paper also presents asymptotic results for the proposed test statistic under both fixed and
vanishing regularization parameters. Under a fixed regularization parameter, the test statistic
achieves an 𝑛−1/2 rate against local alternatives, making it capable of detecting subtle devia-
tions from the null hypothesis. With a vanishing regularization parameter, the test statistic
converges to a standard normal distribution, maintaining sensitivity to high-frequency devia-
tions but exhibiting non-trivial power against local alternatives that converge to the null at a
slower rate.

Another noteworthy aspect of the proposed methodology is its insensitivity to the dimension
of the covariates, provided that this dimension is fixed. This property is achieved through
the appropriate selection of reproducing kernels, making the test statistic robust in high-
dimensional settings.

To facilitate practical implementation, the paper provides a multiplier bootstrap algorithm
for finding critical values when the regularization parameter is fixed. Simulation results
are presented to validate the theoretical findings and demonstrate the effectiveness of the
proposed test statistic in various scenarios.

27



References
Andrews, D. W. (1997). A conditional Kolmogorov test. Econometrica: Journal of the Econo-

metric Society, 1097–1128.

Balasubramanian, K., Li, T., & Yuan, M. (2021). On the optimality of kernel-embedding based
goodness-of-fit tests. Journal of Machine Learning Research, 22(1), 1–45.

Bickel, P. J., Ritov, Y., & Stoker, T. M. (2006). Tailor-made tests for goodness of fit to semipara-
metric hypotheses. The Annals of Statistics, 34(2), 721–741.

Bierens, H. J. (1982). Consistent model specification tests. Journal of Econometrics, 20(1), 105–
134.

Bierens, H. J., & Ploberger, W. (1997). Asymptotic theory of integrated conditional moment
tests. Econometrica: Journal of the Econometric Society, 1129–1151.

Delgado, M. A. (1993). Testing the equality of nonparametric regression curves. Statistics &
Probability Letters, 17(3), 199–204.

Delgado, M. A., & Vainora, J. (2022). Conditional Distribution Model Specification Testing
Using Chi-Square Goodness-of-Fit Tests. Arxiv Preprint Arxiv:2210.00624.

Delgado, M. A., Dominguez, M. A., & Lavergne, P. (2006). Consistent tests of conditional
moment restrictions. Annales D'Économie Et De Statistique, 33–67.

Dette, H. (1999). A consistent test for the functional form of a regression based on a difference
of variance estimators. The Annals of Statistics, 27(3), 1012–1040.

Escanciano, J. C. (2009). Simple bootstrap tests for conditional moment restrictions.

Escanciano, J. C., & Goh, S.-C. (2014). Specification analysis of linear quantile models. Journal
of Econometrics, 178, 495–507.

Fan, Y., & Li, Q. (2000). Consistent model specification tests: Kernel-based tests versus Bierens'
ICM tests. Econometric Theory, 16(6), 1016–1041.

Fisher, R. A. (1936). The use of multiple measurements in taxonomic problems. Annals of
Eugenics, 7(2), 179–188.

Ghojogh, B., Karray, F., & Crowley, M. (2019). Fisher and kernel Fisher discriminant analysis:
Tutorial. Arxiv Preprint Arxiv:1906.09436.

González-Manteiga, W., & Crujeiras, R. M. (2013). An updated review of goodness-of-fit tests
for regression models. Test, 22, 361–411.

Gretton, A., Borgwardt, K. M., Rasch, M. J., Schölkopf, B., & Smola, A. (2012a). A kernel two-
sample test. The Journal of Machine Learning Research, 13(1), 723–773.

Gretton, A., Sejdinovic, D., Strathmann, H., Balakrishnan, S., Pontil, M., Fukumizu, K., & Sripe-
rumbudur, B. K. (2012b). Optimal kernel choice for large-scale two-sample tests. Advances
in Neural Information Processing Systems, 25.

Harchaoui, Zaid, Eric, M., & Bach, F. (2007). Testing for homogeneity with kernel Fisher
discriminant analysis. Advances in Neural Information Processing Systems, 20.

28



Hardle, W., & Mammen, E. (1993). Comparing nonparametric versus parametric regression
fits. The Annals of Statistics, 1926–1947.

Hsiao, C., Li, Q., & Racine, J. S. (2007). A consistent model specification test with mixed discrete
and continuous data. Journal of Econometrics, 140(2), 802–826.

Jiang, F., & Tsyawo, E. S. (2024). A Consistent ICM-based 𝜒2 Specification Test. Arxiv Preprint
Arxiv:2208.13370.

Li, Q., & Wang, S. (1998). A simple consistent bootstrap test for a parametric regression
function. Journal of Econometrics, 87(1), 145–165.

Li, Y., & Song, X. (2022). Consistent Test for Conditional Moment Restriction Models in Repro-
ducing Kernel Hilbert Spaces.

Mika, S., Ratsch, G., Weston, J., Scholkopf, B., & Mullers, K.-R. (1999). Fisher discriminant
analysis with kernels. Neural Networks for Signal Processing IX: Proceedings of the 1999 IEEE
Signal Processing Society Workshop (Cat. No. 98th8468), 41–48.

Muandet, K., Fukumizu, K., Sriperumbudur, B., Schölkopf, B., & others. (2017). Kernel mean
embedding of distributions: A review and beyond. Foundations and Trends® in Machine
Learning, 10(1–2), 1–141.

Muandet, K., Jitkrittum, W., & Kübler, J. (2020). Kernel conditional moment test via maximum
moment restriction. Conference on Uncertainty in Artificial Intelligence, 41–50.

Raiola, A. (2024). Testing Conditional Moment Restrictions: A Partitioning Approach.

Sant’Anna, P. H., & Song, X. (2019). Specification tests for the propensity score. Journal of
Econometrics, 210(2), 379–404.

Stute, W. (1997). Nonparametric model checks for regression. The Annals of Statistics, 613–641.

Zheng, J. X. (1996). A consistent test of functional form via nonparametric estimation tech-
niques. Journal of Econometrics, 75(2), 263–289.

29



Appendix A. Proofs
A.1 Proof of Theorem 1

Proof :  Note that

0 ≤ ‖(Σ + 𝛾𝑛𝐼)−1/2𝜇‖
2

ℋ
≤ ‖(Σ + 𝛾𝑛𝐼)−1/2‖ × ‖𝜇‖ℋ

Thus, the problem can be reduced to showing that

𝔼(𝜀|𝑋) = 0

if and only if

‖𝜇‖2
ℋ = 𝔼(𝜀𝑘(𝑋, 𝑋′)𝜀′) = 0

The “if” direction is relatively straightforward. For the “only if” direction, note that by
the Mecer’s theorem, we have

𝔼(𝜀𝑘(𝑋, 𝑋′)𝜀′) = 𝔼(𝜀 ∑
𝑗≥1

𝜉𝑗𝜑𝑗(𝑋)𝜑𝑗(𝑋′)𝜀′) = 0

where {𝜉𝑗} and {𝜑𝑗} are eigenvalues and eigenfunctions of the following integral
operator:

(𝑇 𝑓)(𝑥) = ∫ 𝑓(𝑥)𝑘(𝑥, 𝑠)𝑑𝜂(𝑠)

Note that {𝜑𝑗(𝑋)} are also basis functions of the space of functions in 𝐿2(𝜂) with
respect to the measure 𝜂 defined on the domain of 𝑋. Thus,

𝔼(𝜀|𝑋) = ∑
𝑖≥1

𝛼𝑖𝜑𝑖(𝑋)

In addition,

𝔼(𝜀 ∑
𝑗≥1

𝜉𝑗𝜑𝑗(𝑋)𝜑𝑗(𝑋′)𝜀′) = 0

implies that 𝜀 is orthogonal to all these basis functions:

𝔼(𝜀𝜑𝑖(𝑋)) = 0, ∀𝑖

To find the the coefficients 𝛼𝑖, we use the orthogonality conditions:

𝔼(𝜀𝜑𝑖(𝑋)) = 𝔼(𝔼(𝜀|𝑋)𝜑𝑖(𝑋)) = 𝔼((∑
𝑗≥1

𝛼𝑗𝜑𝑗(𝑋))𝜑𝑖(𝑋)) = 𝛼𝑖𝔼(𝜑2
𝑖 (𝑋)) = 0

Since 𝔼(𝜑2
𝑖 (𝑋)) = 1, we conclude

𝛼𝑖 = 0, ∀𝑖
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That completes the proof.

□

A.2 Proof of Lemma 1
Proof :

‖(Σ̂𝑝 + 𝛾𝑛𝐼)
−1/2

𝜇̂𝑝‖
ℋ

= ⟨𝜇̂𝑝, (Σ̂𝑝 + 𝛾𝑛𝐼)
−1

𝜇̂𝑝⟩
ℋ

= ⟨𝜇̂𝑝, ((Σ̂𝑝 + 𝛾𝑛𝐼)
−1

− (Σ𝑝,𝑛 + 𝛾𝑛𝐼)−1 + (Σ𝑝,𝑛 + 𝛾𝑛𝐼)−1)𝜇̂𝑝⟩
ℋ

= ⟨𝜇̂𝑝, ((Σ̂𝑝 + 𝛾𝑛𝐼)
−1

− (Σ𝑝,𝑛 + 𝛾𝑛𝐼)−1)𝜇̂𝑝⟩
ℋ⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝐴

+⟨𝜇̂𝑝, (Σ𝑝,𝑛 + 𝛾𝑛𝐼)−1𝜇̂𝑝⟩
ℋ⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝐵

Let’s first analyze 𝐴:

𝐴 ≤ ‖𝜇̂𝑝‖ℋ
‖((Σ̂𝑝 + 𝛾𝑛𝐼)

−1
− (Σ𝑝,𝑛 + 𝛾𝑛𝐼)−1)𝜇̂𝑝‖

ℋ

≤ ‖(Σ̂𝑝 + 𝛾𝑛𝐼)
−1

− (Σ𝑝,𝑛 + 𝛾𝑛𝐼)−1‖ × ‖𝜇̂𝑝‖
2
ℋ

Let

𝐶 = Σ̂𝑝 + 𝛾𝑛𝐼

𝐶𝑛 = Σ𝑝,𝑛 + 𝛾𝑛𝐼

Note that

‖𝐶−1 − 𝐶−1
𝑛 ‖ = ‖𝐶−1

𝑛 (𝐶𝑛 − 𝐶)𝐶−1‖ ≤ ‖𝐶−1
𝑛 ‖ × ‖𝐶𝑛 − 𝐶‖ × ‖𝐶−1‖

and

‖𝐶−1
𝑛 ‖ ≤ 𝛾−1

𝑛

‖𝐶−1‖ ≤ 𝛾−1
𝑛

in addition, by Equation 11,

‖𝐶𝑛 − 𝐶‖ = 𝑂𝑝(𝑛−1/2)

Using Equation 10, we have

𝐴 ≤ 𝑂𝑝(𝑛−1/2)‖𝜇̂𝑝‖
2
ℋ

= 𝑂𝑝(𝑛−1/2)(‖𝜇𝑝,𝑛‖2
ℋ

+ 2𝑂𝑝(𝑛−1) + 𝑂𝑝(𝑛−2))

31



We now analyze 𝐵:

𝐵 = ‖(Σ𝑝,𝑛 + 𝛾𝑛𝐼)−1/2(𝜇𝑝,𝑛 + 𝑂𝑝(𝑛−1))‖
2

ℋ

= ‖(Σ𝑝,𝑛 + 𝛾𝑛𝐼)−1/2𝜇𝑝,𝑛‖
2

ℋ

+2𝑂𝑝(𝑛−1) + 𝑂𝑝(𝑛−2)

Putting everything together, we have

𝑛‖(Σ̂𝑝 + 𝛾𝑛𝐼)
−1/2

𝜇̂𝑝‖
2

ℋ

= 𝑛‖(Σ𝑝,𝑛 + 𝛾𝑛𝐼)−1/2𝜇𝑝,𝑛‖
2

ℋ
+ 2𝑂𝑝(𝑛−1) + 𝑂𝑝(𝑛−2)

+𝑂𝑝(𝑛−1/2)‖𝜇𝑝,𝑛‖2
ℋ

= 𝑛‖(Σ𝑝,𝑛 + 𝛾𝑛𝐼)−1/2𝜇𝑝,𝑛‖
2

ℋ
+ 𝑜𝑝(1)

□

A.3 Proof of Theorem 2
Proof :  By Equation 12, it suffices to analyze

𝑛‖(Σ𝑛,𝑝 + 𝛾𝐼)−1/2𝜇𝑝,𝑛‖
2

ℋ
= ∑

𝑗≥1
(

𝜆𝑗(Σ𝑛,𝑝)
𝜆𝑗(Σ𝑛,𝑝) + 𝛾

)(
√

𝑛𝔼𝑛(𝑓𝑗(𝑍)))2
⏟⏟⏟⏟⏟⏟⏟
degenearte V-statistic

under the null

where the equality comes from Equation 14.

Note that under the null, by the central limit theory

(
√

𝑛𝔼𝑛(𝑓𝑗(𝑍)))2 ⟶
𝑝

𝑊 2
𝑗

where 𝑊𝑗 is a standard normal distributed random variable. By Lemma 7, we have

|𝜆𝑗(Σ𝑛,𝑝) − 𝜆𝑗(Σ𝑝)| = 𝑂𝑝(𝑛−1/2), ∀𝑗 ≥ 1 (20)

and finally, by the continuous mapping theorem,

𝜆𝑗(Σ𝑛,𝑝)
𝜆𝑗(Σ𝑛,𝑝) + 𝛾

⟶
𝑝 𝜆𝑗(Σ𝑝)

𝜆𝑗(Σ𝑝) + 𝛾

Putting everything together, we have proved what have been claimed.

□

A.4 Proof of Theorem 5
Proof :  First, we analyze the asymptotic behavior of 𝑑𝑟(Σ̂𝑝, 𝛾), 𝑟 = 1, 2.
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Note that

‖Σ̂𝑝 − Σ𝑝,𝑛‖ = 𝑂𝑝(𝑛−1/2)

Using Lemma 6, and the assumptions that 𝜀 = 𝑂𝑝(1), 𝑔( ̄𝜃) = 𝑂𝑝(1) and |𝑘|∞ < ∞,
we have

|𝜆𝑗(Σ̂𝑝) − 𝜆𝑗(Σ𝑝,𝑛)| ≤ ‖(Σ̂𝑝 − Σ𝑝,𝑛)𝑒𝑗‖ℋ
= 𝑂𝑝(𝑛−1/2), ∀𝑗 ≥ 1

Using the continuous mapping theorem again, we have

|𝑑𝑟(Σ̂𝑝, 𝛾) − 𝑑𝑟(Σ𝑝,𝑛, 𝛾)| ⟶
𝑝

0, 𝑟 = 1, 2

Using Lemma 8, we are able to prove that

|𝑑2(Σ𝑝,𝑛, 𝛾) − 𝑑2(Σ𝑝, 𝛾)| = 𝑂𝑝(𝑛−1/2)

Similarly, using Equation 23 in Lemma 3, we are able to prove that

|𝑑1(Σ𝑝,𝑛, 𝛾) − 𝑑1(Σ𝑝, 𝛾)| ⟶
𝑝

0

Finally, using the triangle inequality

|𝑑1(Σ̂𝑝, 𝛾) − 𝑑1(Σ𝑝, 𝛾)| ≤ |𝑑1(Σ̂𝑝, 𝛾) − 𝑑1(Σ𝑝,𝑛, 𝛾)| + |𝑑1(Σ𝑝,𝑛, 𝛾) − 𝑑1(Σ𝑝, 𝛾)|

⟶
𝑝

0

Next, by Equation 12, it suffices to analyze

𝑛‖(Σ𝑛,𝑝 + 𝛾𝑛𝐼)−1/2𝜇𝑝,𝑛‖
2

ℋ

We first will show that

𝑛‖(Σ𝑛,𝑝 + 𝛾𝑛𝐼)−1/2𝜇𝑝,𝑛‖
2

ℋ
= 𝑛‖(Σ𝑝 + 𝛾𝑛𝐼)−1/2𝜇𝑝,𝑛‖

2

ℋ

+𝑂𝑝(𝑑1(Σ𝑝, 𝛾𝑛)𝛾−1
𝑛 𝑛−1/2)

This asymptotic approximation leaves 𝜇𝑝,𝑛 as the only stochastic term. We then use the
Berry-Esseen inequality to show the asymptotic normal distribution.

Using a similar argument in the proof of Lemma 4, we can show that

|‖(Σ𝑝,𝑛 + 𝛾𝑛𝐼)−1/2𝜇𝑝,𝑛‖
2

ℋ
− ‖(Σ𝑝 + 𝛾𝑛𝐼)−1/2𝜇𝑝,𝑛‖

2

ℋ
| ≤ 𝐶1𝐶2𝐷

where
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𝐶1 = ‖(Σ𝑝,𝑛 + 𝛾𝑛𝐼)−1/2𝜇𝑝,𝑛‖
ℋ

𝐶2 = ‖(Σ𝑝 + 𝛾𝑛𝐼)−1/2𝜇𝑝,𝑛‖
ℋ

𝐷 = ‖(Σ𝑝,𝑛 + 𝛾𝑛𝐼)−1/2(Σ𝑝,𝑛 − Σ𝑝)(Σ𝑝 + 𝛾𝑛𝐼)−1/2‖

As before, since ‖(Σ𝑝,𝑛 + 𝛾𝑛𝐼)−1(Σ𝑝 + 𝛾𝑛𝐼)‖ = 1 + 𝑜𝑝(1), it is suffices to focus on
𝐶2

2 .

Note that,

𝔼‖(Σ𝑝 + 𝛾𝑛𝐼)−1/2𝜇𝑝,𝑛‖
2

ℋ
= Tr{(Σ𝑝 + 𝛾𝑛𝐼)−1𝔼(𝜇𝑝,𝑛 ⊗ 𝜇𝑝,𝑛)}

where, by Lemma 5

𝔼(𝜇𝑝,𝑛 ⊗ 𝜇𝑝,𝑛)

= 1
𝑛

𝔼(𝜀2𝑘𝑝(𝑋, ⋅) ⊗ 𝑘𝑝(𝑋, ⋅))

−1
𝑛

𝔼(𝜀𝑘𝑝(𝑋, ⋅)) ⊗ 𝔼(𝜀𝑘𝑝(𝑋, ⋅)) + 𝔼(𝜀𝑘𝑝(𝑋, ⋅)) ⊗ 𝔼(𝜀𝑘𝑝(𝑋, ⋅))
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

=0 under the null

Thus,

Tr{(Σ𝑝 + 𝛾𝑛𝐼)−1𝔼(𝜇𝑝,𝑛 ⊗ 𝜇𝑝,𝑛)} =null 𝑛−1 Tr{(Σ𝑝 + 𝛾𝑛𝐼)−1Σ𝑝}

and,

𝔼‖(Σ𝑝 + 𝛾𝑛𝐼)−1/2𝜇𝑝,𝑛‖
2

ℋ
=null 𝑛−1 Tr{(Σ𝑝 + 𝛾𝑛𝐼)−1Σ𝑝} = 𝑛−1𝑑1(Σ𝑝, 𝛾𝑛)

As for 𝐷, we notice that ‖(Σ𝑝,𝑛 + 𝛾𝑛)−1/2‖ ≤ 𝛾−1/2
𝑛  and ‖(Σ𝑝 + 𝛾𝑛)−1/2‖ ≤ 𝛾−1/2

𝑛 .

In addtion, by Lemma 8, we have

‖Σ𝑝,𝑛 − Σ𝑝‖HS
= 𝑂𝑝(𝑛−1/2)

Putting everything together, we have

𝑛|‖(Σ𝑝,𝑛 + 𝛾𝑛𝐼)−1/2𝜇𝑝,𝑛‖
2

ℋ
− ‖(Σ𝑝 + 𝛾𝑛𝐼)−1/2𝜇𝑝,𝑛‖

2

ℋ
| = 𝑂𝑝(𝑑1(Σ𝑝, 𝛾𝑛)𝛾−1

𝑛 𝑛−1/2)

This asymptotic approximation allows us to focus on 𝑛‖(Σ𝑝 + 𝛾𝑛𝐼)−1/2𝜇𝑝,𝑛‖
2

ℋ
 and

apply the Berry-Esseen inequality to obtain the asymptotic normality result.

Using Equation 14, one can show that
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𝑛‖(Σ𝑝 + 𝛾𝑛𝐼)−1/2𝜇𝑝,𝑛‖
2

ℋ
= ∑

𝑗≥1
(

𝜆𝑗(Σ𝑝)
𝜆𝑗(Σ𝑝) + 𝛾𝑛

)(
√

𝑛𝔼𝑛(𝑓𝑗(𝑍)))2 + 𝑜𝑝(1)

Let

𝑆𝑚,𝑛 = ∑
𝑚

𝑗=1
(

𝜆𝑗(Σ𝑝)
𝜆𝑗(Σ𝑝) + 𝛾𝑛

)(
√

𝑛𝔼𝑛(𝑓𝑗(𝑍)))2

be a partial sum and notice that under the null,

𝑆𝑚,𝑛 ⟶
𝑑

𝑆𝑚,∞ = ∑
𝑚

𝑗=1
(

𝜆𝑗(Σ𝑝)
𝜆𝑗(Σ𝑝) + 𝛾𝑛

)𝑊 2
𝑗

where {𝑊𝑗}𝑗
 are i.i.d standard normal distributed random variables.

Let

𝑌𝑗 = (
𝜆𝑗(Σ𝑝)

𝜆𝑗(Σ𝑝) + 𝛾𝑛
)(𝑊 2

𝑗 − 1)

It is easy to check that

𝔼(𝑌𝑗) = 0

𝜎2
𝑗 ≔ Var(𝑌𝑗) = 2(

𝜆𝑗(Σ𝑝)
𝜆𝑗(Σ𝑝) + 𝛾𝑛

)
2

Let

̄𝑆𝑚,∞ =
∑𝑚

𝑗=1 𝑌𝑗

√∑𝑚
𝑗=1 𝜎2

𝑗

By the Berry-Esseen theorem, we have

sup
𝑡∈ℝ

|ℙ( ̄𝑆𝑚,∞ < 𝑡) − Φ(𝑡)| ≤ 𝐶
∑𝑚

𝑗=1 𝜌𝑗

(∑𝑚
𝑗=1 𝜎2

𝑗 )
3/2

where 𝜌𝑗 = 𝔼(|𝑌𝑗|
3), and Φ(⋅) is the cumulative distribution fucntion of the standard

normal.

Remark.
1. √∑∞

𝑗=1 𝜎2
𝑗 =

√
2𝑑2(Σ𝑝, 𝛾𝑛)

2. The rate of convergence is determined by the ratio ∑𝑚
𝑗=1 𝜌𝑗/(∑𝑚

𝑗=1 𝜎2
𝑗 )

3/2
,

which is 𝑂(𝑚−1/2).

□
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A.5 Proof of Theorem 3 and Theorem 6
Proof :  When 𝛾𝑛 ≔ 𝛾 is fixed, by Equation 14, we have

‖(Σ𝑝,𝑛 + 𝛾𝐼)−1/2𝜇𝑝,𝑛‖
2

ℋ
= ∑

𝑗≥1

𝜆𝑗(Σ𝑝,𝑛)
𝜆𝑗(Σ𝑝,𝑛) + 𝛾

(𝔼𝑛(𝑓𝑗(𝑍)))2

Note that

0 < ∑
𝑗≥1

𝜆𝑗(Σ𝑝,𝑛)
𝜆𝑗(Σ𝑝,𝑛) + 𝛾

(𝔼𝑛(𝑓𝑗(𝑍)))2 < ∑
𝑗≥1

(𝔼𝑛(𝑓𝑗(𝑍)))2 = 1

Thus,

𝑛‖(Σ𝑝,𝑛 + 𝛾𝐼)−1/2𝜇𝑝,𝑛‖
2

ℋ
⟶ ∞

as 𝑛 ⟶ ∞, but at the same time 𝑑𝑟(Σ𝑝, 𝛾) < ∞, 𝑟 = 1, 2.

We now discuss the situation where 𝛾𝑛 vanishes to zero. We first prove that

𝑑2(Σ𝑝, 𝛾𝑛)−1‖(Σ𝑝,𝑛 + 𝛾𝑛𝐼)−1/2𝜇𝑝,𝑛‖
2

ℋ
⟶

𝑝
𝑑2(Σ𝑝, 𝛾∞)−1‖(Σ𝑝 + 𝛾∞𝐼)−1/2𝜇𝑝‖

2

ℋ

where 𝛾∞ ≔ lim𝑛→∞ 𝛾𝑛 = 0. It is easy to show that

𝑑2(Σ𝑝, 𝛾𝑛)−1|‖(Σ𝑝,𝑛 + 𝛾𝑛𝐼)−1/2𝜇𝑝,𝑛‖
2

ℋ
− ‖(Σ𝑝 + 𝛾∞𝐼)−1/2𝜇𝑝,𝑛‖

2

ℋ
| ≤ 𝑑2(Σ𝑝, 𝛾𝑛)−1𝐶1

where

𝐶1 ≔ ‖(Σ𝑝 + 𝛾𝑛𝐼)−1/2𝜇𝑝,𝑛‖
ℋ

‖(Σ𝑝,𝑛 + 𝛾𝑛𝐼)−1/2𝜇𝑝,𝑛‖
ℋ

× ‖(Σ𝑝,𝑛 + 𝛾𝑛𝐼)−1/2(Σ𝑝,𝑛 − Σ𝑝)(Σ𝑝 + 𝛾𝑛𝐼)−1/2‖

Using the proof results of Theorem 5 (in Section A.4), we have

𝑑2(Σ𝑝, 𝛾𝑛)−1𝐶1 = 𝑛−1𝑑2(Σ𝑝, 𝛾𝑛)−1𝑂𝑝(𝑑1(Σ𝑝, 𝛾𝑛)𝛾−1
𝑛 𝑛−1/2) = 𝑜𝑝(1)

Thus, from now on, we will focus on investigating

lim
𝑛→∞

𝑛‖(Σ𝑝 + 𝛾∞𝐼)−1/2𝜇𝑝,𝑛‖
2

ℋ
− 𝑑1(Σ𝑝, 𝛾∞)

𝑑2(Σ𝑝, 𝛾∞)
(21)

Note that

𝑛‖(Σ𝑝 + 𝛾∞𝐼)−1/2𝜇𝑝‖
2

ℋ
= ∑

𝑗≥1
(
√

𝑛𝔼𝑛(𝑓𝑗(𝑍)))2

where 𝑓𝑗(⋅) is defined in Equation 13. Under the fixed alterantive, we have
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𝔼(𝑓𝑗(𝑍)) = 𝐶𝑗

𝕍(𝑓𝑗(𝑍)) = 1 − 𝐶2
𝑗

Denote

𝑆𝑚,𝑛 = ∑
𝑚

𝑗=1
(𝔼𝑛(𝑓𝑗(𝑍)))2

= ∑
𝑚

𝑗=1
(𝔼𝑛(𝑓𝑗(𝑍) − 𝐶𝑗) + 𝐶𝑗)

2

= ∑
𝑚

𝑗=1
(𝔼𝑛(𝑓𝑗(𝑍)) + 𝐶𝑗)

2

= ∑
𝑚

𝑗=1
(𝔼𝑛(𝑓𝑗(𝑍)))

2
+ 2 ∑

𝑚

𝑗=1
𝐶𝑗𝔼𝑛(𝑓𝑗(𝑍)) + ∑

𝑚

𝑗=1
𝐶2

𝑗

and,

𝑛𝑆𝑚,𝑛 = ∑
𝑚

𝑗=1
(
√

𝑛𝔼𝑛(𝑓𝑗(𝑍)))
2

+ 2 ∑
𝑚

𝑗=1
𝐶𝑗𝑛𝔼𝑛(𝑓𝑗(𝑍)) + 𝑛 ∑

𝑚

𝑗=1
𝐶2

𝑗

Hence, Equation 21 is equivalent to

lim
𝑛→∞

lim
𝑚→∞

𝑛𝑆𝑚,𝑛 − 𝑚
√

2𝑚

Fix an 𝑚, then

lim
𝑛→∞

𝑛𝑆𝑚,𝑛 − 𝑚
√

2𝑚
=𝑑

∑𝑚
𝑗=1(1 − 𝐶2

𝑗 )(𝑊 2
𝑗 − 1)

√
2𝑚

− ∑
𝑚

𝑗=1

𝐶2
𝑗√

2𝑚

+ lim
𝑛→∞

2 ∑𝑚
𝑗=1 𝐶𝑗𝑛𝔼𝑛(𝑓𝑗(𝑍))

√
2𝑚

+ lim
𝑛→∞

𝑛
∑𝑚

𝑗=1 𝐶2
𝑗

√
2𝑚

Let 𝐶1 and 𝐶2 be the lower bounds of {𝐶𝑗𝔼𝑛(𝑓𝑗(𝑍))}
𝑗
 and {𝐶2

𝑗 }
𝑗
, respectively, Let

𝐶3 and 𝐶4 be the uppoer bounds of {𝐶𝑗}𝑗
 and {𝐶2

𝑗 }
𝑗
. Then

lim
𝑛→∞

𝑛𝑆𝑚,𝑛 − 𝑚
√

2𝑚
≥
𝑑

(1 − 𝐶4)
∑𝑚

𝑗=1(𝑊
2
𝑗 − 1)

√
2𝑚

− 𝐶3
𝑚√
2𝑚

+ lim
𝑛→∞

𝑛𝐶1
√

2𝑚 + lim
𝑛→∞

𝑛𝐶2
𝑚√
2𝑚

As 𝑚 → ∞, the first term converges in distribution to (1 − 𝐶4)𝒩(0, 1), but the rest of
the term goes to infinity in probability.

Hence,

𝑇𝑛(𝛾𝑛) ⟶
𝑝

∞
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□

A.6 Proof of Theorem 4 and Theorem 7
Proof :  Denote

̂̃𝜀𝑖 = 𝜀𝑖 + 𝑛−𝛼/2𝑅(𝑋𝑖), 𝜀𝑖 = 𝜀𝑖 + 𝑛−𝛼/2𝑅(𝑋𝑖)
̂̃𝜇𝑝 = 𝔼𝑛(̂̃𝜀𝑘𝑝(𝑋, ⋅)), 𝜇̃𝑝,𝑛 = 𝔼𝑛(𝜀𝑘𝑝(𝑋, ⋅))

̂̃Σ𝑝 = 𝔼𝑛(̂̃𝜀𝑘𝑝(𝑋, ⋅) ⊗ ̂̃𝜀𝑘𝑝(𝑋, ⋅))

Σ̃𝑝,𝑛 = 𝔼𝑛(𝜀𝑘𝑝(𝑋, ⋅) ⊗ 𝜀𝑘𝑝(𝑋, ⋅))

Σ̃𝑝 = 𝔼(𝜀𝑘𝑝(𝑋, ⋅) ⊗ 𝜀𝑘𝑝(𝑋, ⋅))

Using the similar arguments used in the proof of Lemma 1, we can show

𝑛‖(̂̃Σ𝑝 + 𝛾𝑛𝐼)
−1/2

̂̃𝜇𝑝‖
2

ℋ

= 𝑛‖(Σ̃𝑝,𝑛 + 𝛾𝑛𝐼)−1/2𝜇̃𝑝,𝑛‖
2

ℋ

+2⟨𝜇̃𝑝,𝑛, (Σ̃𝑝,𝑛 + 𝛾𝑛𝐼)−1𝔼𝑛(𝑘𝑝(𝑋, ⋅))⟩
ℋ⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝐴

+𝑂𝑝(𝑛1/2)‖𝜇̃𝑝,𝑛‖2
ℋ⏟⏟⏟⏟⏟⏟⏟

𝐵

+ 𝑂𝑝(𝑛−1/2)

and note that

𝐴 = ⟨𝜇𝑝,𝑛 + 𝑛−𝛼/2𝔼𝑛(𝑅(𝑋)𝑘𝑝(𝑋, ⋅))⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝜂𝑛(𝑋,⋅)

, (Σ̃𝑝,𝑛 + 𝛾𝑛𝐼)−1𝔼𝑛(𝑘𝑝(𝑋, ⋅))⟩

ℋ

= 𝑛−𝛼/2⟨𝜂𝑛, (Σ̃𝑝,𝑛 + 𝛾𝑛𝐼)−1𝔼𝑛(𝑘𝑝(𝑋, ⋅))⟩
ℋ

+ 𝑜𝑝(1)

= 𝑜𝑝(1)

and

𝐵 = 𝑂𝑝(𝑛1/2)‖𝜇𝑝,𝑛 + 𝑛−𝛼/2𝜂𝑛‖2

ℋ

= 𝑂𝑝(𝑛1/2)‖𝜇𝑝,𝑛‖2
ℋ

+ 𝑂𝑝(𝑛1/2−𝛼/2)⟨𝜇𝑝,𝑛, 𝜂𝑛⟩
ℋ

+𝑂𝑝(𝑛1/2−𝛼)‖𝜂𝑛‖2
ℋ

= 𝑜𝑝(1)

Thus,

𝑛‖(̂̃Σ𝑝 + 𝛾𝑛𝐼)
−1/2

̂̃𝜇𝑝‖
2

ℋ

= 𝑛‖(Σ̃𝑝,𝑛 + 𝛾𝑛𝐼)−1/2𝜇̃𝑝,𝑛‖
2

ℋ
+ 𝑜𝑝(1)

Next, we show that as long as 𝛼 > 1/2, we have
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𝑛‖(Σ̃𝑝,𝑛 + 𝛾𝑛𝐼)−1/2𝜇̃𝑝,𝑛‖
2

ℋ
= 𝑛‖(Σ̃𝑝 + 𝛾𝑛𝐼)−1/2𝜇̃𝑝,𝑛‖

2

ℋ
+ 𝑜𝑝(1)

The argument goes as follows,

𝑛‖(Σ̃𝑝,𝑛 + 𝛾𝑛𝐼)−1/2𝜇̃𝑝,𝑛‖
2

ℋ
= 𝑛⟨𝜇̃𝑝,𝑛, (Σ̃𝑝,𝑛 + 𝛾𝑛𝐼)−1 − (Σ̃𝑝 + 𝛾𝑛𝐼)−1𝜇̃𝑝,𝑛⟩

ℋ

+𝑛‖(Σ̃𝑝 + 𝛾𝑛𝐼)−1/2𝜇̃𝑝,𝑛‖
2

ℋ

and,

𝑛⟨𝜇̃𝑝,𝑛, (Σ̃𝑝,𝑛 + 𝛾𝑛𝐼)−1 − (Σ̃𝑝 + 𝛾𝑛𝐼)−1𝜇̃𝑝,𝑛⟩
ℋ

≤ 𝑛‖(Σ̃𝑝,𝑛 + 𝛾𝑛𝐼)−1‖ × ‖Σ̃𝑝,𝑛 − Σ̃𝑝‖

× ‖(Σ̃𝑝 + 𝛾𝑛𝐼)−1‖ × ‖𝜇̃𝑝,𝑛‖2
ℋ

≤ 𝛾−2
𝑛 𝑛𝑂𝑝(𝑛−1/2)(‖𝜇𝑝,𝑛‖2

ℋ
+ 𝑛−𝛼/2⟨𝜇𝑝,𝑛, 𝜂𝑛⟩

ℋ

+𝑛−𝛼‖𝜂𝑛‖2
ℋ)

= 𝛾−2
𝑛

(
((
((
(

𝑂𝑝(𝑛1/2)‖𝜇𝑝,𝑛‖2
ℋ⏟⏟⏟⏟⏟⏟⏟

𝑂𝑝(𝑛−1/2)

+ 𝑂𝑝(𝑛1/2−𝛼/2)⟨𝜇𝑝,𝑛, 𝜂𝑛⟩
ℋ⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑜𝑝(1)

+ 𝑂𝑝(𝑛1/2−𝛼)‖𝜂𝑛‖2
ℋ⏟⏟⏟⏟⏟⏟⏟

𝑜𝑝(1) )
))
))
)

Using a similar argument, we can show

𝑛‖(Σ̃𝑝 + 𝛾𝑛𝐼)−1/2𝜇̃𝑝,𝑛‖
2

ℋ
= 𝑛‖(Σ𝑝 + 𝛾𝑛𝐼)−1/2𝜇̃𝑝,𝑛‖

2

ℋ
+ 𝑜𝑝(1)

Thus, it suffices to analyze

𝑛𝑑2(Σ𝑝, 𝛾𝑛)−1(‖(Σ𝑝 + 𝛾𝑛𝐼)−1/2𝜇̃𝑝,𝑛‖
2

ℋ
− 𝑑1(Σ𝑝, 𝛾𝑛))

Note that

𝜇̃𝑝,𝑛 = 𝜇𝑝,𝑛 + 𝑛−𝛼/2𝜂𝑛

For a fixed regularization parameter, we have:

𝑛‖(Σ𝑝 + 𝛾𝑛𝐼)−1/2𝜇̃𝑝,𝑛‖
2

ℋ
= 𝑛‖(Σ𝑝 + 𝛾𝑛𝐼)−1/2𝜇𝑝,𝑛‖

2

ℋ
+ 2𝑛𝑛−𝛼/2⟨𝜇𝑝,𝑛, 𝜂𝑛⟩

ℋ

+𝑛1−𝛼‖(Σ𝑝 + 𝛾𝑛𝐼)−1/2𝜂𝑛‖
2

ℋ

= 𝐶1 + 𝐶2 + 𝐶3

For vanishing regularization parameter, we have:
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𝑛
‖(Σ𝑝 + 𝛾𝑛𝐼)−1/2𝜇̃𝑝,𝑛‖

2

ℋ
− 𝑑1(Σ𝑝, 𝛾𝑛)

𝑑2(Σ𝑝, 𝛾𝑛)
= 𝑛

‖(Σ𝑝 + 𝛾𝑛𝐼)−1/2𝜇𝑝,𝑛‖
2

ℋ
− 𝑑1(Σ𝑝, 𝛾𝑛)

𝑑2(Σ𝑝, 𝛾𝑛)

+
2𝑛𝑛−𝛼/2⟨𝜇𝑝,𝑛, 𝜂𝑛⟩

ℋ
𝑑2(Σ𝑝, 𝛾𝑛)

+
𝑛1−𝛼‖(Σ𝑝 + 𝛾𝑛𝐼)−1/2𝜂𝑛‖

2

ℋ
𝑑2(Σ𝑝, 𝛾𝑛)

= 𝐶1 + 𝐶2 + 𝐶3

Note that

𝐶1 ⟶
𝑑

{
𝑇∞(Σ𝑝, 𝛾)  if 𝛾𝑛 is fixed
𝒩(0, 1)  if 𝛾𝑛 + 𝑑−1

2 (Σ𝑝, 𝛾𝑛)𝑑1(Σ𝑝, 𝛾𝑛)𝛾−1
𝑛 𝑛−1/2 → 0

and

𝐶2 = 𝑜𝑝(1)

When 𝛾𝑛 ≔ 𝛾 is fixed and 𝛼 = 1, we have

𝐶3 ⟶
𝑝 ‖(Σ𝑝 + 𝛾𝐼)−1/2𝜂‖

2

ℋ
𝑑2(Σ𝑝, 𝛾)

When 𝛾𝑛 → 0 with speed such that 𝑛1−𝛼

𝑑2(Σ𝑝,𝛾𝑛) ⟶ Δ, then

𝐶3 ⟶
𝑝

Δ‖Σ−1/2
𝑝 𝜂‖

2

ℋ
{< ∞  if 𝜂 ∈ ℛ(Σ1/2

𝑝 )
= ∞ otherwise

□

A.7 Proof of Theorem 8
Proof :  Notice that 𝔼(𝜇̂∗

𝑝) = 0. and using a similar argument to Lemma 1, it suffices to
focus on

𝑛‖(Σ∗
𝑝,𝑛 + 𝛾𝐼)−1/2𝜇∗

𝑝,𝑛‖
2

ℋ

where

𝜇∗
𝑝,𝑛 = 𝑮∗

𝑝,𝑛𝒎𝑛

and

𝑮∗
𝑝,𝑛 = (𝑣1𝜀1𝑘𝑝(𝑋1, ⋅), …, 𝑣𝑛𝜀𝑛𝑘𝑝(𝑋𝑛, ⋅))

Further notice that, by Lemma 8
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‖Σ∗
𝑝,𝑛 − Σ∗

𝑝‖ = 𝑂𝑝(𝑛−1/2)

thus, using the same argument used in the proof of Lemma 1, we have

𝑛‖(Σ∗
𝑝,𝑛 + 𝛾𝐼)−1/2𝜇∗

𝑝,𝑛‖
2

ℋ
= 𝑛‖(Σ∗

𝑝 + 𝛾𝐼)−1/2𝜇∗
𝑝,𝑛‖

2

ℋ
+ 𝑂𝑝(𝑛−1/2)

where (Σ∗
𝑝 + 𝛾𝐼)−1/2 is deterministic and one only needs to focus on the asymptotic

behaviors of

𝑇𝑛 = 𝑛‖𝜇∗
𝑝,𝑛‖2

ℋ

Let

Σ∗
𝑝,𝑛 = 𝔼𝑛(𝑣𝜀𝑘𝑝(𝑋, ⋅) ⊗ 𝑣𝜀𝑘𝑝(𝑋, ⋅))

and {𝑒𝑘}𝑘≥1 be the eigenvectors of Σ∗
𝑝,𝑛, while let {𝜆𝑘(Σ∗

𝑝,𝑛)}
𝑘≥1

 be the corresponding
eigenvalues. Notice that

𝜆𝑘(Σ∗
𝑝,𝑛)𝛿𝑘,𝑙 = ⟨𝑒𝑘, Σ∗

𝑝,𝑛𝑒𝑘⟩
ℋ

= ⟨𝑣𝜀𝑒𝑘, 𝑣′𝜀′𝑒𝑙⟩𝐿2(ℙ𝑛)

= 𝜆1/2
𝑘 (Σ∗

𝑝,𝑛)𝜆1/2
𝑙 (Σ∗

𝑝,𝑛)⟨𝑣𝑓𝑘, 𝑣′𝑓𝑙⟩𝐿2(ℙ𝑛)

where

𝑓𝑘 = 𝜆−1/2
𝑘 (Σ∗

𝑝,𝑛)𝜀𝑒𝑘

Thus, {𝑣𝑓𝑘}𝑘≥1 is an orthonormal system of 𝐿2(ℙ𝑛), and

1 = ‖𝑣𝑓𝑘‖2
𝐿2(ℙ𝑛) = 1

𝑛
∑

𝑛

𝑖=1
𝑣2

𝑖 𝑓2
𝑘 (𝑧𝑖) = 1

𝑛
∑

𝑛

𝑖=1
𝑣2

𝑖
1
𝑛

∑
𝑛

𝑖=1
𝑓2

𝑘 (𝑧𝑖)

Thus,

1
𝑛

∑
𝑛

𝑖=1
𝑓2

𝑘 (𝑧𝑖) ⟶
𝑝

1

Hence,

𝑇𝑛 = 𝑛‖∑
𝑘≥1

⟨𝜇∗
𝑝,𝑛, 𝑒𝑘⟩

ℋ
𝑒𝑘(⋅)‖

2

ℋ

= 𝑛‖∑
𝑘≥1

𝔼𝑛(𝑣𝜀𝑒𝑘(𝑋))𝑒𝑘(⋅)‖
2

ℋ

= ∑
𝑘≥1

𝜆𝑘(Σ∗
𝑝,𝑛)(

√
𝑛𝔼𝑛(𝑣𝑓𝑘(𝑍)))2

Note that for all 𝑘 ≥ 1
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𝔼[𝑍]𝑛(𝔼𝑛(𝑣𝑓𝑘(𝑍))) = 0

and,

𝕍[𝑍]𝑛(
√

𝑛𝔼𝑛(𝑣𝑓𝑘(𝑍))) = 1
𝑛

∑
𝑛

𝑖=1
𝑓2

𝑘 (𝑧𝑖) ⟶
𝑝

1

By CLT and continuous mapping theorem, we have

(
√

𝑛𝔼𝑛(𝑣𝑓𝑘(𝑍)))2 ⟶
𝑑∗

𝑊 2
𝑘

where 𝑊𝑘 ∼ 𝒩(0, 1).

We now show that

𝜆𝑘(Σ∗
𝑝,𝑛) ⟶

𝑝
𝜆𝑘(Σ𝑝)

Note that

‖Σ∗
𝑝,𝑛 − Σ𝑝‖ ≤ ‖Σ∗

𝑝,𝑛 − Σ𝑝,𝑛‖ + ‖Σ𝑝,𝑛 − Σ𝑝‖

where by Lemma 8, we already known that

‖Σ𝑝,𝑛 − Σ𝑝‖ = 𝑂𝑝(𝑛−1/2)

Since

Σ∗
𝑝,𝑛 = 𝔼𝑛(𝑣𝜀𝑘𝑝(𝑋, ⋅) ⊗ 𝑣𝜀𝑘𝑝(𝑋, ⋅))

= 𝔼𝑛(𝔼[𝑍]𝑛,𝑛(𝑣2)𝜀𝑘𝑝(𝑋, ⋅) ⊗ 𝜀𝑘𝑝(𝑋, ⋅))

=
(1)

𝔼𝑛(𝜀𝑘𝑝(𝑋, ⋅) ⊗ 𝜀𝑘𝑝(𝑋, ⋅)) + 𝑂𝑝(𝑛−1/2)

= Σ𝑝,𝑛 + 𝑂𝑝(𝑛−1/2)

where equality (1) arises from

𝔼[𝑍]𝑛,𝑛(𝑣2) = 𝔼𝑛(𝑣2) = 𝔼(𝑣2) + 𝑂𝑝(𝑛−1/2)

= 1 + 𝑂𝑝(𝑛−1/2)

Thus,

‖Σ∗
𝑝,𝑛 − Σ𝑝,𝑛‖ = 𝑂𝑝(𝑛−1/2)

Using Lemma 7, we can conclude

𝜆𝑘(Σ∗
𝑝,𝑛) ⟶

𝑝
𝜆𝑘(Σ𝑝), ∀𝑘 ≥ 1

Putting everything together, we have

𝑇𝑛 ⟶
𝑑∗

𝑌 = ∑
𝑘≥1

𝜆𝑘(Σ𝑝)𝑊 2
𝑘
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□

Appendix B. Some Useful Lemmas
B.1 Perturbation Results on Covariance Operator

Lemma 2. Let 𝐴 be a compact self-adjoint operator, with {𝜆𝑙}𝑙≥1 the eigenvalues of
𝐴 and {𝑒𝑙}𝑙≥1 an orthonormal system of eigenvectors of 𝐴. Then for all integer 𝑘 > 1,
using the convention 𝑙𝑘+1 = 𝑙1,

∑
∞

𝑙=1
⟨𝑒𝑙, (𝐴𝐵)𝑘𝑒𝑙⟩ = ∑

∞

𝑙1=1
∑
∞

𝑙2=1
… ∑

∞

𝑙𝑘=1
{(∏

𝑘

𝑗=1
𝜆𝑙𝑗)(∏

𝑘

𝑗
⟨𝑒𝑙𝑗𝐵𝑒𝑙𝑗+1

⟩)}

Proof :  Let 𝑘 be some integer, fixed throughout the proof. The proof is by unduction, i.e.,
we shall prove that for all 𝑙 ∈ {1, …, 𝑘},

∑
∞

𝑙=1
⟨𝑒𝑙, (𝐴𝐵)𝑘𝑒𝑙⟩

= ∑
∞

𝑙1=1
∑
∞

𝑙2=1
… ∑

∞

𝑙𝑚=1
{(∏

𝑙−1

𝑗=1
𝜆𝑙𝑗)(∏

𝑙−1

𝑗
⟨𝑒𝑙𝑗𝐵𝑒𝑙𝑗+1

⟩)⟨𝑒𝑙𝑚 , (𝐴𝐵)𝑘−𝑙+1𝑒𝑙1⟩}, 𝒫(1)

First, for 𝑙 = 2, using that 𝐴∗𝑒𝑙1 = 𝐴𝑒𝑙1 = 𝜆𝑙1𝑒𝑙1 , and 𝐵∗𝑒𝑙1 = ∑∞
𝑙2=1⟨𝑒𝑙1 , 𝐵𝑒𝑙2⟩𝑒𝑙2 , we

have

∑
∞

𝑙1=1
⟨𝑒𝑙1 , 𝐴𝐵(𝐴𝐵)𝑘−1𝑒𝑙1⟩ = ∑

∞

𝑙1=1
𝜆𝑙1⟨𝐵∗𝑒𝑙1 , (𝐴𝐵)𝑘−1𝑒𝑙1⟩

= ∑
∞

𝑙1=1
𝜆𝑙1⟨∑

∞

𝑙2=1
⟨𝑒𝑙1 , 𝐵𝑒𝑙2⟩𝑒𝑙2 , (𝐴𝐵)𝑘−1𝑒𝑙1⟩

= ∑
∞

𝑙1=1
∑
∞

𝑙2=1
𝜆𝑙1⟨𝑒𝑙1 , 𝐵𝑒𝑙2⟩⟨𝑒𝑙2 , (𝐴𝐵)𝑘−1𝑒𝑙1⟩, 𝒫(2)

Assume the statement 𝒫(1) is true with 𝑙 < 𝑘 − 1. Let us now marginalize out,
first 𝐴 then 𝐵 in (𝐴𝐵)𝑘−𝑙+1, for (𝑙 + 1)‐th time, by summing over an index
𝑙𝑚+1. Using the same arguments as above, that is 𝐴∗𝑒𝑙𝑚 = 𝜆𝑙𝑚𝑒𝑙𝑚  and 𝐵∗𝑒𝑙𝑚 =
∑∞

𝑙𝑚+1
⟨𝑒𝑙𝑚 , 𝐵𝑒𝑙𝑚+1

⟩𝑒𝑙𝑚+1
, we have
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∑
∞

𝑙=1
⟨𝑒𝑙, (𝐴𝐵)𝑘𝑒𝑙⟩

= ∑
∞

𝑙1=1
… ∑

∞

𝑙𝑚=1
{(∏

𝑙−1

𝑗=1
𝜆𝑙𝑗)(∏

𝑙−1

𝑗
⟨𝑒𝑙𝑗𝐵𝑒𝑙𝑗+1

⟩)⟨𝑒𝑙𝑚 , 𝐴𝐵(𝐴𝐵)𝑘−𝑙𝑒𝑙1⟩}, 𝒫(𝑚)

= ∑
∞

𝑙1=1
… ∑

∞

𝑙𝑚=1
{(∏

𝑙−1

𝑗=1
𝜆𝑙𝑗)𝜆𝑙𝑚(∏

𝑙−1

𝑗
⟨𝑒𝑙𝑗𝐵𝑒𝑙𝑗+1

⟩)⟨𝐵∗𝑒𝑙𝑚 , (𝐴𝐵)𝑘−𝑙𝑒𝑙1⟩}

= ∑
∞

𝑙1=1
… ∑

∞

𝑙𝑚=1
∑
∞

𝑙𝑚+1=1
{(∏

𝑙

𝑗=1
𝜆𝑙𝑗)(∏

𝑙−1

𝑗
⟨𝑒𝑙𝑗𝐵𝑒𝑙𝑗+1

⟩)⟨𝑒𝑙𝑚𝐵𝑒𝑙𝑚+1
⟩⟨𝑒𝑙𝑚+1

, (𝐴𝐵)𝑘−𝑙𝑒𝑙1⟩}

which proves 𝒫(𝑚 + 1).

The proof is concluded by a 𝑘‐induction. □

3An operator 𝑇  on a Hilbert space ℋ is said to be trace-class if it is compact (meaning it maps bounded
sets to relatively compact sets, having the property of taking any bounded sequence to a sequence with a
convergent subsequence) and the sum of its eigenvalues is finite. Formally, if 𝑇  has a complete orthonormal
set of eigenvectors {𝑒𝑙}𝑙≥1 with corresponding eigenvalues {𝜆𝑙}𝑙≥1, then 𝑇  is trace-class if and only if

∑
∞

𝑙=1
|𝜆𝑙| < ∞

The trace of this operator is defined as

Tr(𝑇 ) = ∑
∞

𝑙=1
𝜆𝑙

4A trace-class perturbation operator refers to a situation in which a small or infinitesimal change to an
operator is made, and this change itself is a trace-class operator. If the perturbation Δ (the change you
introduce) is a trace-class operator, a few key points are relevant:
• Stability: Trace-class operators are compact, which implies they do not drastically change the overall

structure of the spectrum of an operator. This stability can be important for understanding the qualitative
behavior of solutions or eigenstates under perturbation.

• Finite Trace: The fact that the sum of the absolute values of the eigenvalues of Δ is finite ensures that
the perturbation does not introduce unbounded energy or drastic changes that could make the system ill-
behaved.

• Spectral Theory: In the context of spectral theory, trace-class perturbations can lead to explicit formulas
for the change in eigenvalues or the resolvent of the operator, which is crucial for understanding the
dynamics of the perturbed system.
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Lemma 3. Let 𝛾 > 0 and 𝑆 a trace-class operator3. Denote {𝜆𝑙}𝑙≥1 and {𝑒𝑙}𝑙≥1
respectively the positive eigenvalues and the corresponding eigenvectors of 𝑆. Consider
𝑑𝑟(𝑇 , 𝛾) for 𝑟 = 1, 2, with 𝑇  a compact operator. If Δ is a trace-class perturbation
operator4 such that

‖(𝑆 + 𝛾𝐼)−1Δ‖ < 1

and

‖Δ‖𝒞1
= ∑

∞

𝑙=1
‖Δ𝑒𝑙‖ < 𝛾

then

|𝑑𝑟(𝑆 + Δ, 𝛾) − 𝑑𝑟(𝑆, 𝛾)| ≤
𝛾−1 ‖Δ‖𝒞1

1 − 𝛾−1 ‖Δ‖𝒞1

, for 𝑟 = 1, 2 (22)

If 𝑑2(𝑆, 𝛾)‖𝑆−1/2Δ𝑆−1/2‖HS < 1, then

|𝑑1(𝑆 + Δ, 𝛾) − 𝑑1(𝑆, 𝛾)| ≤
𝑑2(𝑆, 𝛾)‖𝑆−1/2Δ𝑆−1/2‖

HS
1 − 𝑑2(𝑆, 𝛾)‖𝑆−1/2Δ𝑆−1/2‖

HS

(23)

|𝑑2(𝑆 + Δ, 𝛾) − 𝑑2(𝑆, 𝛾)| ≤
‖𝑆−1/2Δ𝑆−1/2‖

HS
1 − ‖𝑆−1/2Δ𝑆−1/2‖

HS

(24)

Proof :  If ‖(𝑆 + 𝛾𝐼)−1Δ‖ < 1, then we may write

(𝑆 + Δ + 𝛾𝐼)−1(𝑆 + Δ) = (𝐼 + (𝑆 + 𝛾𝐼)−1Δ)−1(𝑆 + 𝛾𝐼)−1(𝑆 + Δ)

= ∑
∞

𝑘=0
(−1)𝑘{(𝑆 + 𝛾𝐼)−1Δ}𝑘(𝑆 + 𝛾𝐼)−1(𝑆 + Δ)

= (𝑆 + 𝛾𝐼)−1𝑆 + ∑
∞

𝑘=1
(−1)𝑘{(𝑆 + 𝛾𝐼)−1Δ}𝑘((𝑆 + 𝛾𝐼)−1𝑆 − 𝐼)

Note that the first equality holds true because:

(𝐼 + (𝑆 + 𝛾𝐼)−1Δ)−1(𝑆 + 𝛾𝐼)−1(𝑆 + Δ + 𝛾𝐼)

= (𝐼 + (𝑆 + 𝛾𝐼)−1Δ)−1 + (𝐼 + (𝑆 + 𝛾𝐼)−1Δ)−1(𝑆 + 𝛾𝐼)−1Δ

Let

𝐴 = 𝐼 + (𝑆 + 𝛾𝐼)−1Δ

and

𝐵 = (𝑆 + 𝛾𝐼)−1Δ
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we have,

𝐴 − 𝐵 = 𝐼

and by the Sherman-Morrison-Woodbury formula,

(𝐴 − 𝐵)−1 = 𝐴−1 + 𝐴−1𝐵(𝐴 − 𝐵)−1

we have

(𝐼 + (𝑆 + 𝛾𝐼)−1Δ)−1 + (𝐼 + (𝑆 + 𝛾𝐼)−1Δ)−1(𝑆 + 𝛾𝐼)−1Δ = 𝐼

Hence

(𝑆 + Δ + 𝛾𝐼)−1 = (𝐼 + (𝑆 + 𝛾𝐼)−1Δ)−1(𝑆 + 𝛾𝐼)−1

The second equality comes from the Neuman Series,

(𝐼 − 𝑇 )−1 = ∑
∞

𝑘=0
𝑇 𝑘

and its variation:

(𝐼 + 𝑇 )−1 = (𝐼 − (−𝑇))−1 = ∑
∞

𝑘=0
(−1)𝑘𝑇 𝑘

In our case, 𝑇 = (𝑆 + 𝛾𝐼)−1Δ.

Finally, the third equality comes from:

∑
∞

𝑘=0
(−1)𝑘{(𝑆 + 𝛾𝐼)−1Δ}𝑘(𝑆 + 𝛾𝐼)−1(𝑆 + Δ)

= ∑
∞

𝑘=0
(−1)𝑘{(𝑆 + 𝛾𝐼)−1Δ}𝑘(𝑆 + 𝛾𝐼)−1𝑆 + ∑

∞

𝑘=0
(−1)𝑘{(𝑆 + 𝛾𝐼)−1Δ}𝑘(𝑆 + 𝛾𝐼)−1Δ

= (𝑆 + 𝛾𝐼)−1𝑆 + ∑
∞

𝑘=1
(−1)𝑘{(𝑆 + 𝛾𝐼)−1Δ}𝑘(𝑆 + 𝛾𝐼)−1𝑆 + ∑

∞

𝑘=0
(−1)𝑘{(𝑆 + 𝛾𝐼)−1Δ}𝑘+1

= (𝑆 + 𝛾𝐼)−1𝑆 + ∑
∞

𝑘=1
(−1)𝑘{(𝑆 + 𝛾𝐼)−1Δ}𝑘(𝑆 + 𝛾𝐼)−1𝑆 + ∑

∞

𝑘=1
(−1)𝑘{(𝑆 + 𝛾𝐼)−1Δ}𝑘(−𝐼)

= (𝑆 + 𝛾𝐼)−1𝑆 + ∑
∞

𝑘=1
(−1)𝑘{(𝑆 + 𝛾𝐼)−1Δ}𝑘((𝑆 + 𝛾𝐼)−1𝑆 − 𝐼)

Since the trace is continuous in the space of trace-class operators, and using
‖(𝑆 + 𝛾𝐼)−1𝑆 − 𝐼‖ < 1, we get, by linearity of the trace,
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|𝑑1(𝑆 + Δ, 𝛾) − 𝑑1(𝑆, 𝛾)| = |Tr{(𝑆 + Δ + 𝛾𝐼)−1(𝑆 + Δ)} − Tr{(𝑆 + 𝛾𝐼)−1(𝑆)}|

= ∑
∞

𝑘=1
|Tr{{(𝑆 + 𝛾𝐼)−1Δ}𝑘{(𝑆 + 𝛾𝐼)−1𝑆 − 𝐼}}|

≤ ∑
∞

𝑘=1
|Tr{{(𝑆 + 𝛾𝐼)−1Δ}𝑘}|

(25)

Now applying Lemma 2 with 𝐵 = Δ, and 𝐴 = (𝑆 + 𝛾𝐼)−1, we obtain

Tr{((𝑆 + 𝛾𝐼)−1Δ)𝑘} = ∑
∞

𝑙=1
⟨𝑒𝑙, ((𝑆 + 𝛾𝐼)−1Δ)𝑘𝑒𝑙⟩

= ∑
∞

𝑙1=1
… ∑

∞

𝑙𝑘=1
{(∏

𝑘

𝑗=1
(𝜆𝑙𝑗 + 𝛾)

−1
)(∏

𝑘

𝑗=1
⟨𝑒𝑙𝑗 , Δ𝑒𝑙𝑗+1

⟩)}

Since for all 1 ≤ 𝑗 ≤ 𝑘, we have |⟨𝑒𝑙𝑗 , Δ𝑒𝑙𝑗+1
⟩| ≤ ‖Δ𝑒𝑙𝑗‖ and (𝜆𝑙𝑗 + 𝛾)

−1
≤ 𝛾−1, the

upper bound in Equation 25 is the sum of a geometric series whose ratio is

𝛾−1 ∑
∞

𝑙=1
‖Δ𝑒𝑙‖ = 𝛾−1‖Δ‖𝒞1

where 𝛾−1‖Δ‖𝒞1
< 1 by assumption, which completes the proof in Equation 22 when

𝑟 = 1. A similar reasoning as above allows to prove Equation 22 when 𝑟 = 2.

Now, let’s prove the upper bound in Equation 23. Using that

|Tr{((𝑆 + 𝛾𝐼)−1Δ)𝑘}| = |Tr[{(𝑆1/2(𝑆 + 𝛾𝐼)−1𝑆1/2)(𝑆−1/2Δ𝑆−1/2)}𝑘]|

and apply Lemma 2 again, but with 𝐵 = 𝑆−1/2Δ𝑆−1/2, and 𝐴 = 𝑆1/2(𝑆 + 𝛾𝐼)−1𝑆1/2,
yielding

Tr{((𝑆 + 𝛾𝐼)−1Δ)𝑘} = ∑
∞

𝑙=1
⟨𝑒𝑙, ((𝑆 + 𝛾𝐼)−1Δ)𝑘𝑒𝑙⟩

= ∑
∞

𝑙1=1
… ∑

∞

𝑙𝑘=1
{(∏

𝑘

𝑗=1
(𝜆𝑙𝑗 + 𝛾)

−1
𝜆𝑙)(∏

𝑘

𝑗=1
⟨𝑒𝑙𝑗 , (𝑆

−1/2Δ𝑆−1/2)𝑒𝑙𝑗+1
⟩)}

Then, using that

|⟨𝑒𝑙𝑗 , (𝑆
−1/2Δ𝑆−1/2)𝑒𝑙𝑗+1

⟩| ≤ ‖(𝑆−1/2Δ𝑆−1/2)𝑒𝑙𝑗‖

and applying Hölder inequality5, we obtain

5Let (Ω, ℱ, ℙ) be a measure space and let 𝑝, 𝑞 ∈ [1, ∞) with 1/𝑝 + 1/𝑞 = 1. Then for all measurable real
or complex valued functions 𝑓  and 𝑔 on Ω,

‖𝑓𝑔‖1 ≤ ‖𝑓‖𝑝‖𝑔‖𝑞

where ‖𝑓‖𝑝 = ∫
Ω
|𝑓|𝑝 𝑑ℙ. In case of a counting measure, we have
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|Tr{((𝑆 + 𝛾𝐼)−1Δ)𝑘}|

≤ {∑
∞

𝑙=1
(𝜆𝑙 + 𝛾)−2𝜆2

𝑙 }
𝑘/2

{∑
∞

𝑙1=1
… ∑

∞

𝑙𝑘=1
(∏

𝑘

𝑗=1
⟨𝑒𝑙𝑗 , (𝑆

−1/2Δ𝑆−1/2)𝑒𝑙𝑗+1
⟩2)}

1/2

≤ (𝑑2(𝑆, 𝛾))𝑘‖𝑆−1/2Δ𝑆−1/2‖𝑘
HS

Finally, going back to Equation 25, the upper bound is the sum of a geometric series
whose ratio is 𝑑2(𝑆, 𝛾)‖𝑆−1/2Δ𝑆−1/2‖HS, where 𝑑2(𝑆, 𝛾)‖𝑆−1/2Δ𝑆−1/2‖HS < 1 by as-
sumption, which completes the proof of Equation 23. As for Equation 24, observe that

|𝑑2(𝑆 + Δ, 𝛾) − 𝑑2(𝑆, 𝛾)| ≤ ∑
∞

𝑘=1
‖{(𝑆 + 𝛾𝐼)−1Δ}𝑘{(𝑆 + 𝛾𝐼)−1𝑆 − 𝐼}‖

HS

≤ ∑
∞

𝑘=1
‖{(𝑆 + 𝛾𝐼)−1Δ}𝑘‖

HS

≤ ∑
∞

𝑘=1
‖{𝑆−1/2Δ𝑆−1/2}‖𝑘

HS

where we used the inequality ‖𝐴𝐵‖HS ≤ ‖𝐴‖HS ‖𝐵‖HS, and ‖(𝑆 + 𝛾𝐼)−1𝑆 − 𝐼‖ ≤ 1
and ‖(𝑆 + 𝛾𝐼)−1𝑆‖ ≤ 1 □

Lemma 4. Let Σ𝐴 and Σ𝐵 be two compact and self-adjoint operators in the RKHS ℋ.
Assume that for 𝑓 ∈ ℋ,

‖Σ−1/2
𝐴 𝑓‖ℋ < ∞

‖Σ−1/2
𝐵 𝑓‖ℋ < ∞

Then,

|‖Σ−1/2
𝐴 𝑓‖2

ℋ − ‖Σ−1/2
𝐵 𝑓‖2

ℋ| ≤ ‖Σ−1/2
𝐴 𝑓‖

ℋ
‖Σ−1/2

𝐵 𝑓‖
ℋ

‖Σ−1/2
𝐴 (Σ𝐴 − Σ𝐵)Σ−1/2

𝐵 ‖

Proof :  Let

𝐴 ≔ Σ𝐴

𝐵 ≔ Σ𝐴 − Σ𝐵

𝐴 − 𝐵 ≔ Σ𝐵

Using the Sherman-Morrison-Woodbury formula argument, we have

(𝐴 − 𝐵)−1 = 𝐴−1 + 𝐴−1𝐵(𝐴 − 𝐵)−1

∑
𝑛

𝑘=1
|𝑥𝑘𝑦𝑘| ≤ (∑

𝑛

𝑘=1
|𝑥𝑘|𝑝)

1
𝑝

(∑
𝑛

𝑘=1
|𝑦𝑘|𝑞)

1
𝑞
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Thus,

|‖Σ−1/2
𝐴 𝑓‖2

ℋ − ‖Σ−1/2
𝐵 𝑓‖2

ℋ| = |⟨𝑓, 𝐴−1𝑓⟩ℋ − ⟨𝑓, (𝐴 − 𝐵)−1𝑓⟩ℋ|

= |⟨𝑓, Σ−1
𝐴 (Σ𝐴 − Σ𝐵)Σ−1

𝐵 𝑓⟩ℋ|

=
(1)

|⟨Σ−1/2
𝐴 𝑓, Σ−1/2

𝐴 (Σ𝐴 − Σ𝐵)Σ−1
𝐵 𝑓⟩ℋ|

≤
(2)

‖Σ−1/2
𝐴 𝑓‖

ℋ
‖Σ−1/2

𝐴 (Σ𝐴 − Σ𝐵)Σ−1/2
𝐵 Σ−1/2

𝐵 𝑓‖
ℋ

≤
(3)

‖Σ−1/2
𝐴 𝑓‖

ℋ
‖Σ−1/2

𝐵 𝑓‖
ℋ

‖Σ−1/2
𝐴 (Σ𝐴 − Σ𝐵)Σ−1/2

𝐵 ‖

here, equality (1) arises from the self-adjoint property of Σ−1/2
𝐴 ; inequality (2) is a direct

consequence of the Cauchy-Schwarz inequality; inequality (3) is due to the fact that for
any operator 𝑇  in ℋ, we have

‖ 𝑇 𝑓 ‖ℋ ≤ ‖𝑇 ‖ ‖𝑓‖ℋ

□

Lemma 5. Let 𝑞𝑧(⋅) ∈ ℋ, indexed by 𝑧, be a member of an RHKS ℋ, and Σ be a compact
and self-adjoint operator in this RKHS. Then,

𝔼‖Σ−1/2𝔼𝑛(𝑞𝑧(⋅))‖
2
ℋ

= 1
𝑛

Tr{Σ−1𝔼(𝑞𝑧(⋅) ⊗ 𝑞𝑧(⋅))} − 1
𝑛

Tr{Σ−1𝔼(𝑞𝑧(⋅)) ⊗ 𝔼(𝑞𝑧(⋅))}

+ Tr{Σ−1𝔼(𝑞𝑧(⋅)) ⊗ 𝔼(𝑞𝑧(⋅))}

Proof :

𝔼‖Σ−1/2𝔼𝑛(𝑞𝑧(⋅))‖
2
ℋ

= Tr{Σ−1𝔼(𝔼𝑛(𝑞𝑧(⋅)) ⊗ 𝔼𝑛(𝑞𝑧(⋅)))}

Note that

𝔼(𝔼𝑛(𝑞𝑧(⋅)) ⊗ 𝔼𝑛(𝑞𝑧(⋅))) = 𝔼( 1
𝑛2 ∑

𝑖
∑

𝑗
𝑞𝑧𝑖

(⋅) ⊗ 𝑞𝑧𝑗
(⋅))

= 1
𝑛2 [𝑛𝔼(𝑞𝑧(⋅) ⊗ 𝑞𝑧(⋅)) + 𝑛(𝑛 − 1)𝔼(𝑞𝑧(⋅)) ⊗ 𝔼(𝑞𝑧(⋅))]

The second equality comes from the fact that in the double summation, when 𝑖 = 𝑗,
we have 𝑛 pairs of 𝑞𝑧𝑖

(⋅) ⊗ 𝑞𝑧𝑖
(⋅); and when 𝑖 ≠ 𝑗, we have 𝑛(𝑛 − 1) pairs of 𝑞𝑧𝑖

(⋅) ⊗
𝑞𝑧𝑗

(⋅).

Thus,
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Tr{Σ−1𝔼(𝔼𝑛(𝑞𝑧(⋅)) ⊗ 𝔼𝑛(𝑞𝑧(⋅)))} = 1
𝑛

Tr{Σ−1𝔼(𝑞𝑧(⋅) ⊗ 𝑞𝑧(⋅))}

−1
𝑛

Tr{Σ−1𝔼(𝑞𝑧(⋅)) ⊗ 𝔼(𝑞𝑧(⋅))}

+ Tr{Σ−1𝔼(𝑞𝑧(⋅)) ⊗ 𝔼(𝑞𝑧(⋅))}

□

B.2 Results on Eigenvalues

Lemma 6. Let 𝐴 be a self-adjoint compact operator on ℋ, and let {𝜓𝑙}𝑙≥1 be an
orthonormal basis of ℋ consisting of a sequence of eigenfunctions of 𝐴 corresponding
to the eigenvalues {𝜆𝑙(𝐴)} of this latter operator, so that

⟨𝜓𝑙, 𝐴𝜓𝑙⟩ℋ = 𝜆𝑙(𝐴)

Then

|𝜆𝑙(𝐴)| ≤ ‖𝐴𝜓𝑙‖ℋ

In addition, for any orthonormal basis {𝜑𝑙}𝑙≥1 of ℋ, we have

∑
∞

𝑙=1
|𝜆𝑙(𝐴)| ≤ ∑

∞

𝑙=1
‖𝐴𝜑𝑙‖ℋ

Proof :

For any orthonormal basis {𝜑𝑞}𝑞≥1
, we have

𝐴𝜓𝑙 = ∑
𝑞

⟨𝐴𝜓𝑙, 𝜑𝑞⟩ℋ𝜑𝑞

= ∑
𝑞

⟨𝜓𝑙, 𝐴𝜑𝑞⟩ℋ𝜑𝑝

where the last equality arises from the self-adjoint property of 𝐴. Then,

|𝜆𝑙(𝐴)| = |⟨𝜓𝑙, 𝐴𝜓𝑙⟩ℋ| ≤ ∑
∞

𝑞=1
|⟨𝜑𝑞, 𝐴𝜓𝑙⟩ℋ||⟨𝜑𝑞, 𝜓𝑙⟩ℋ|

≤ (∑
∞

𝑞=1
|⟨𝜑𝑞, 𝐴𝜓𝑙⟩ℋ|2)

1/2

(∑
∞

𝑞=1
|⟨𝜑𝑞, 𝜓𝑙⟩ℋ|2)

1/2

= ‖𝐴𝜓𝑙‖ℋ

where the first inequality comes from the triangle inequality. The second inequality
comes from the Hölder inequality. The third equality comes the Parseval’s identity:

1 = ‖𝜑𝑞‖
2
ℋ

= ∑
𝑙≥1

⟨𝜑𝑞, 𝜓𝑙⟩
2
ℋ
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Similarly,

∑
∞

𝑙=1
|𝜆𝑙(𝐴)| = ∑

∞

𝑙=1
|⟨𝜓𝑙, 𝐴𝜓𝑙⟩ℋ| ≤ ∑

∞

𝑞=1
∑
∞

𝑙=1
|⟨𝐴𝜑𝑞, 𝜓𝑙⟩ℋ||⟨𝜑𝑞, 𝜓𝑙⟩ℋ|

≤ ∑
∞

𝑞=1
(∑

∞

𝑙=1
|⟨𝐴𝜑𝑞, 𝜓𝑙⟩ℋ|2)

1/2

(∑
∞

𝑙=1
|⟨𝜑𝑞, 𝜓𝑙⟩ℋ|2)

1/2

= ∑
∞

𝑞=1
‖𝐴𝜑𝑞‖ℋ

□

Lemma 7. Assume A1. Let {𝑋𝑛
1 , …, 𝑋𝑛

𝑛} be a triangular array of i.i.d random variables,
whose mean element and covariance operator are respectively (𝜇𝑛, Σ𝑛). If, for all 𝑛, all
the eigenvalues 𝜆𝑙(Σ𝑛) of Σ𝑛 are non-negative, and if there exists 𝐷 > 0 such that for
all 𝑛, we have

∑
∞

𝑙=1

√𝜆𝑙(Σ𝑛) < 𝐷

and the residual random variable is bounded in probability: 𝜀 = 𝑂𝑝(1).

Then,

∑
∞

𝑙=1
|𝜆𝑙(Σ𝑛 − Σ𝑛)| = 𝑂𝑝(𝑛−1/2)

Proof :  Lemma 6 shows that, for any orthonormal basis {𝑒𝑙}𝑙≥1 in the RKHS ℋ:

∑
∞

𝑙=1
|𝜆𝑙(Σ𝑛 − Σ𝑛)| ≤ ∑

∞

𝑙=1
‖(Σ𝑛 − Σ𝑛)𝑒𝑙‖ℋ

We take the orthonormal family of eigenvectors {𝑒𝑙}𝑙≥1 of the covariance operator Σ𝑛.
Then, it suffices to show that ∑∞

𝑙=1 ‖(Σ𝑛 − Σ𝑛)𝑒𝑙‖ℋ = 𝑂𝑝(𝑛−1/2). Note that,

(Σ𝑛 − Σ𝑛)𝑒𝑙 = 𝑛−1 ∑
𝑛

𝑖=1
𝜁𝑙,𝑛,𝑖

where

𝜁𝑙,𝑛,𝑖 ≔ 𝜀2
𝑖 𝑘(𝑋𝑖, ⋅)𝑒𝑙(𝑋𝑖) − 𝔼𝑛(𝜀2𝑘(𝑋1, ⋅)𝑒𝑙(𝑋1))

Thus,

51



{𝔼𝑛‖(Σ𝑛 − Σ𝑛)𝑒𝑙‖
2
ℋ}

1/2
=

{{
{
{{

𝔼𝑛‖𝑛−1 ∑
𝑛

𝑖=1
𝜁𝑙,𝑛,𝑖‖

2

ℋ}}
}
}}

1/2

= 𝐴1

Let’s consider 𝐴1. We have,

𝐴2
1 = 𝑛−1𝔼𝑛(‖𝜁𝑙,𝑛,𝑖‖2

ℋ) ≤ 𝑛−1𝔼𝑛{‖𝜀2𝑘(𝑋1, ⋅)‖2
ℋ | 𝑒𝑙(𝑋1)|2} ≤ 𝑛−1𝐶 |𝑘|∞ 𝔼𝑛⟦𝑒𝑙(𝑋1)|2]

By the Minkowski inequality6, this shows that

{{
{
{{

𝔼𝑛(∑
∞

𝑙=1
‖(Σ𝑛 − Σ𝑛)𝑒𝑙‖)

2

ℋ}}
}
}}

1/2

≤ 2𝐶 |𝑘|1/2∞ 𝑛−1/2 ∑
∞

𝑙=1
{𝔼𝑛[|𝑒𝑙(𝑋1)|2]}

1/2

Let’s investigate {𝔼𝑛[|𝑒𝑙(𝑋1)|2]}
1/2. Recall that

𝔼𝑛[|𝑒𝑙(𝑋1)|2] = ⟨𝑒𝑙, Σ𝑛𝑒𝑙⟩ℋ = 𝜆𝑙(Σ𝑛)

Thus, ∑∞
𝑙=1 {𝔼𝑛[|𝑒𝑙(𝑋1)|2]}

1/2 = ∑∞
𝑙=1

√𝜆𝑙(Σ𝑛) < 𝐷 by assumption. Finally, putting
everything together, we have

∑
∞

𝑙=1
|𝜆𝑙(Σ𝑛 − Σ𝑛)| ≤ 2 |𝑘|1/2∞ 𝑛−1/2 ∑

∞

𝑙=1
{𝔼𝑛⟦𝑒𝑙(𝑋1)|2]}

1/2 = 𝑂𝑝(𝑛−1/2)

□

Lemma 8. Assume A1. Let {𝑍1,𝑛, …, 𝑍𝑛,𝑛} be a triangular array, whose elements and
covariance operators are respectively (𝜇𝑛, Σ𝑛).

If

sup
𝑛≥0

∑
∞

𝑙=1

√𝜆𝑙(Σ𝑛) < ∞

then

‖Σ𝑛 − Σ𝑛‖HS = 𝑂𝑝(𝑛−1/2)

6The Minkowski inequality establishes that the 𝐿𝑝 spaces are normed vector space. Let 𝑆 be a measurable
space, let 1 ≤ 𝑝 < ∞ and let 𝑓  and 𝑔 be elements of 𝐿𝑝(𝑆), and we have the triangle inequality:

‖𝑓 + 𝑔‖𝑝 ≤ ‖𝑓‖𝑝 + ‖𝑔‖𝑝

The Minkowski inequality can be specialized to sequences and vectors by using the counting measure:

(∑
𝑛

𝑘=1
|𝑥𝑘 + 𝑦𝑘|𝑝)

1/𝑝

≤ (∑
𝑛

𝑘=1
|𝑥𝑘|𝑝)

1/𝑝

+ (∑
𝑛

𝑘=1
|𝑦𝑘|𝑝)

1/𝑝
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Proof :  This lemma is a direct consequence of Lemma 7. Specifically, applying Lemma 7
states:

∑
∞

𝑙=1
|𝜆𝑙(Σ𝑛) − 𝜆𝑙(Σ𝑛)| = 𝑂𝑝(𝑛−1/2)

Now, using that

‖Σ𝑛 − Σ𝑛‖HS ≤ ∑
∞

𝑙=1
| 𝜆𝑙(Σ𝑛 − Σ𝑛)|

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
using the fact that ‖𝜆‖𝑞 ≤ ‖𝜆‖𝑝 , for all 𝑞>𝑝

≤ ∑
∞

𝑙=1
‖(Σ𝑛 − Σ𝑛)𝑒𝑝‖ℋ

Then,

‖Σ𝑛 − Σ𝑛‖HS = 𝑂𝑝(𝑛−1/2)

□
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