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Abstract

The egalitarian equivalent, ee, of a societal distribution of outcomes
with mean m is the outcome level such that the evaluator is indifferent
between the distribution of outcomes and a society in which everyone
obtains an outcome of ee. For an inequality averse evaluator, 𝑒𝑒 < 𝑚. In
this paper, I extend the optimal treatment choice framework in Manski
(2024) to the case where the welfare evaluation is made using egalitarian
equivalent measures, and derive optimal treatment rules for the Bayesian,
maximin and minimax regret inequality averse evaluators. I illustrate
how the methodology operates in the context of the JobCorps education
and training program for disadvantaged youth (Schochet, Burghardt, and
McConnell (2008)) and in Meager (2022)’s Bayesian meta analysis of the
microcredit literature.

1 Introduction
Starting with the work of Manski (2000), Manski (2004) and following Wald
(1939), Wald (1945), Wald (1971), a large and growing literature in economics
has considered the problem of optimal policy learning and treatment assign-
ment, rooted in statistical decision theory. For example, according to Bayesian
statistical decision theory, a researcher represents uncertainty about treatment
effects using a prior, identifies a function that maps incomes to welfare, and
selects the policy or treatment that leads to the highest expected welfare, where
the expectation is taken with respect to that prior. An alternative decision-
theoretic approach avoids the specification of priors and instead studies rules
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for learning which policies would be uniformly satisfactory in terms of welfare
(Manski (2004), Manski (2005), Manski (2007b), Manski (2007a); Schlag (2006);
Hirano and Porter (2009); Stoye (2009), Stoye (2012); Tetenov (2012), Manski
and Tetenov (2016), and Kitagawa and Tetenov (2018)).

The optimal policy learning or treatment assignment problem has also been con-
sidered in parallel literatures developed in both statistics (Luedtke and Laan
(2016), Qian and Murphy (2011), Zhang et al. (2012), Zhao et al. (2012)),
machine learning (Beygelzimer and Langford (2009), Dudík, Langford, and Li
(2011), Li et al. (2012), Jiang and Li (2016), Thomas and Brunskill (2016),
Kallus and Zhou (2018), Strehl et al. (2010), Swaminathan and Joachims
(2015)), and recently at the intersection of all these fields (Athey and Wager
(2021)).

Despite all these developments, the primary approach for policy evaluation and
treatment assignment used both in academia, industry and policy circles remains
estimating average treatment effects of randomized A/B experiments assessed
using the theory of hypothesis testing. Unfortunately, it is well-known that
treatment selection based on this approach is problematic: First, the approach
offers no rationale for the conventionally used Type I error probabilities (5% or
less) and Type II error probabilities (10% to 20%); second, the approach pays
no attention to the magnitude and distribution of losses to welfare when errors
occur (Manski and Tetenov (2016)). Policymakers selecting from among differ-
ent policy options need to account for their distributional impacts, and existing
analyses of randomized policy experiments often either neglect distributional
issues or lack an economic framework for evaluating them.

The literature on welfare economics is ideally suited for providing the requi-
site economic framework, but it has seldom informed the theory and practice
of program evaluation. A notable exception is Kitagawa and Tetenov (2021),
who write: “[The] rich and insighful works in welfare economics have not yet
well linked to econometrics and empirical analysis for policy design.” In the
proposed project, and in line with the aim of Kitagawa and Tetenov (2021), I
establish connections between the theoretical welfare economics literature and
statistical decision theory.1 While Kitanawa and Tetenov focus on the class
of rank-dependent Social Preferences (SP) (Blackorby and Donaldson (1978))
and assume that their welfare criterion is point-identified by the sampling pro-
cess, here my focus is specifically on the special case of additively separable SP
(Atkinson (1970)) but consider sampling processes that allows for both point
and partial identification, as in Manski (2024). One should then view these
lines of research as complementary.

The present work is part of a series of papers that seek to develop an integrated
statistical framework for analyzing distributional impacts in interventions, build-
ing on modern welfare economic theory. First, Fleurbaey and Zambrano (2024)

1An early reference is Dehejia (2005). See also the literature reviewed in Section 1.1 of
Kitagawa and Tetenov (2021).
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develops a methodology that can help an evaluator decide among different kinds
of SP under certainty, guided by the tradeoffs between the well-being of indi-
viduals the evaluator would find acceptable. Once the nature of the tradeoffs
is precisely identified, this determines the specific SP one should use. Second,
Zambrano (2024) extends work by Fleurbaey (2010) and identifies the normative
assumptions that an inequality averse social planner, drawing inferences based
on data, would want to maintain in their evaluation of the treatment effects.
The main result in Zambrano (2024) indicates that these assumptions deter-
mine the specific cardinal representation of the SP under certainty that should
be brought into the decision problem under uncertainty: the egalitarian equiva-
lent (ee) representation, a concept similar to the certainty equivalent in expected
utility theory. Third, Flores, Kairy, and Zambrano (2024) focuses on developing
the methodology for properly estimating inequality sensitive treatment effects,
and their bounds, together with corresponding uncertainty estimates for these.

In this paper, I extend the optimal treatment choice apparatus described in
Manski (2024) to the case where the welfare evaluation is made using the egali-
tarian equivalent measures described above, and explore the optimal treatment
rules that arise (Section 3.1.1, Theorem 3.1 and Theorem 5.1). I also created
a companion website to the paper, available at https://osf.io/wv5jt/, which
contains interactive visuals, apps and narratives that explain and motivate our
results in simple and intuitive terms.

2 Preliminaries
Consider a fixed and finite population of 𝑛 individuals, where each individual
𝑖 has a known income 𝑦𝑖 ≥ 0. For ease of exposition, this Section considers
income as an index of individual advantage, but the results extend immediately
to any cardinal, interpersonally comparable variable. In particular, it is possible
to adjust income for nonmarket aspects of quality of life that individuals enjoy
or endure, and use this adjusted income (usually called “equivalent income”) as
the relevant index instead of ordinary income.

An evaluator has SP that can be represented by a social welfare function
𝑊(𝑦1, ..., 𝑦𝑛) ∶= ∑𝑛

𝑖=1 𝑓 (𝑦𝑖) (Atkinson (1970)), where 𝑓 is an increasing
function with values taking an interval in ℝ ∪ {−∞, +∞}. Within this class
of SP, selecting 𝑓 pins down the specific SP of the evaluator. This class of SP
is sometimes called generalized-utilitarian, where 𝑓 being and affine function
corresponds to the utilitarian SP and 𝑓 being strictly concave corresponds to
the prioritarian SP. See, e.g., Adler (2022) for discussion.

It is well-known that a given SP has many different cardinal representations. For
instance, for any monotone transformation 𝑔, 𝑊(𝑦1, ..., 𝑦𝑛) and 𝑔 (𝑊(𝑦1, ..., 𝑦𝑛))
generate the same ranking over income distributions. One such representation
is the egalitarian equivalent representation ℰℰ(𝑦1, ..., 𝑦𝑛) ∶= 𝑓−1 (𝑊(𝑦1, ..., 𝑦𝑛)),
which denotes the level of income 𝑒𝑒 = ℰℰ(𝑦1, ..., 𝑦𝑛) such that, the evaluator
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would be indifferent between the distribution (𝑦1, ..., 𝑦𝑛) and (𝑒𝑒, ..., 𝑒𝑒⏟
𝑛−𝑡𝑖𝑚𝑒𝑠

). It is

less known, however, that the choice of representation may matter in practice,
that is, in the context of solving an empirical welfare maximization problem.

To investigate this matter, Zambrano (2024) considers an evaluator that faces
uncertainty about what income distribution arises with a given treatment. As-
sume that the evaluator represents the uncertainty through a finite set of states
of the world, 𝑆 = {𝑠1, ..., 𝑠𝑚}. Each treatment is associated with an income dis-
tribution 𝑦𝑠 under each state of the world and a prospect, 𝑦, collects the income
distributions induced by a given treatment across the 𝑚 states of the world.

The evaluator’s problem is then to rank the prospects 𝑦 = (𝑦𝑠
𝑖 )𝑖∈𝑁,𝑠∈𝑆, where

𝑦𝑠
𝑖 describes the income attained by individual 𝑖 in state 𝑠, 𝑦𝑖 = (𝑦𝑠

𝑖 )𝑠∈𝑆, and
𝑦𝑠 = (𝑦𝑠

𝑖 )𝑖∈𝑁 . Let Υ ⊆ ℝ𝑛𝑚 denote the relevant set of such prospects over which
the evaluation must be made. In this setting, the SP (a complete, transitive,
binary relation) over the set Υ is denoted 𝑅, with strict preference 𝑃 and
indifference 𝐼 .
In what follows it will be useful to refer to the preferences over prospects the
evaluator has for the special case when 𝑛 = 1, and preferences over the re-
stricted set Υ1 ⊆ ℝ𝑚 are denoted by ⪰. One can think of these preferences
as those held by an evaluator that is unconcerned by distributional considera-
tions, and that treats society as though it consists of a single or representative
individual. Therefore, when comparing two treatments, this evaluator is solely
concerned with the effects this treatment has on this one individual. We take
these preferences as known, perhaps arising from considerations regarding how
the single-person decision problem under uncertainty or ambiguity should be
approached (see, e.g., Stoye (2011) for discussion).

Theorem 3.1 in Zambrano (2024), following Fleurbaey (2010), shows that, un-
der standard continuity, dominance, and Pareto conditions, the following is
true: if, in the absence of inequality, the evaluator acts as though there is only
one (representative) individual then, in the presence of both inequality and un-
certainty, the evaluator chooses among treatments by comparing the profiles
(ℰℰ(𝑦1), ..., ℰℰ(𝑦𝑚)) among treatments according to ⪰.

The interpretation is that the social evaluation can be done as the single-person
evaluation, but one applies the single-person decision methodology under un-
certainty or ambiguity to the 𝑚−dimensional vector of egalitarian equivalents
(ℰℰ(𝑦1), ..., ℰℰ(𝑦𝑚)). Therefore, given some SP about known distributions of
income in society, one incorporates those into an optimal treatment assignment
framework under uncertainty and ambiguity, given a set of states of the world,
by first aggregating across individuals for each state, using the egalitarian equiv-
alent function, and then aggregating across states in whichever way the evaluator
normally does so in single-person problems.

This is significant because it turns out that the choice of representation of the
evaluator’s preferences can be consequential in cases with statistical uncertainty:
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Table 1: Comparing Two Prospects

(a) GM calculations

Prospect 𝑎 Prospect 𝑏
State 1 State 2 State 1 State 2

𝑦1 4 2 3 1
𝑦2 6 2 8 1
𝑦3 5 2 10 1

—— —— —— ——
GM 4.93 2 6.21 1

E[GM] 3.95 4.48
(b) AM of logs calculations

Prospect 𝑎 Prospect 𝑏
State 1 State 2 State 1 State 2

log 𝑦1 1.31 0.69 1.1 0
log 𝑦2 1.79 0.69 2.08 0
log 𝑦3 1.61 0.69 2.30 0

—— —— —— ——
AML 1.60 0.69 1.83 0

E[AML] 1.29 1.22

one would obtain different rankings over treatments depending on what repre-
sentation one was using. Understanding this is crucial before we embark on the
development of a theory of inequality averse optimal treatment assignment, so
let’s examine an example in some detail that makes precisely this point.

2.1 Illustration
Consider a situation, reproduced from Zambrano (2024), with three individuals,
two states of the world, and two prospects. Prospect 𝑎 is given by [ 4 2

6 2
5 2

] whereas

Prospect 𝑏 is given by [ 3 1
8 1

10 1
], where rows correspond to individuals and columns

corresponds to states.

Consider, in addition, an inequality averse evaluator who summarizes the distri-
bution of income in any given state by the geometric mean (GM). This means
that, given a prospect 𝑦, the evaluator computes, for each state 𝑠, the magnitude
(𝑦𝑠

1𝑦𝑠
2𝑦𝑠

3) 1
3 . Assume further that the evaluator is a risk neutral Bayesian decision

maker, with priors of ( 2
3 , 1

3 ) on states 1 and 2 respectively. Then this evaluator
would prefer Prospect 𝑏 over Prospect 𝑎 (the expected certainty equivalent for
prospect 𝑎 is 3.95 whereas for prospect 𝑏 is 4.48). Table 1a summarizes these
calculations.

5



However, an equivalent representation of those geometric mean social prefer-
ences in any given state is the arithmetic mean of the logs (AML) of the incomes.
If we were to use this representation, this means that, given a prospect 𝑦, the
evaluator computes, for each state 𝑠, the magnitude 1

3 (ln 𝑦𝑠
1 + ln 𝑦𝑠

2 + ln 𝑦𝑠
3), and

the expected welfare is then 1.29 for Prospect 𝑎 and 1.22 for Prospect 𝑏. The
change in representation would thus make us change how we order the prospects.
Table 1b summarizes these calculations.

In a situation like the one described in Table 1, the choices made by a minimax
regret evaluator also vary depending on whether one uses the GM or the AML as
the representation for the social preferences, but the choices made by a maximin
evaluator will not depend on the choice of representation. I introduce and discuss
these preferences methods in the context of the welfare evaluation problem under
uncertainty and ambiguity in Section 3.

When contemplating which representation to use, it bears noticing that work-
ing with the AML representation of the evaluator’s social preferences under
certainty amounts to imputing a degree of risk aversion to the evaluation that
the evaluator does not really have. This can be seen most easily in the case
of a risk neutral Bayesian evaluator in a single-person evaluation. In this case,
using the AML representation amounts to applying a concave transformation
of the data coming from a single individual before taking expectations, and this
would make the decision maker act as though they are risk averse.2 The GM
representation, on the other hand, makes no such imputation.

3 Egalitarian Equivalent Optimal Statistical De-
cisions

Statistical decision theory adds to the above structure by assuming that the
evaluator observes data generated by some sampling distribution and uses these
data to guide their decision. The main difference between this earlier work
and my current analysis is that social preferences in the present context are
represented in accordance with Theorem 3.1 in Zambrano (2024). This turns
out to be of crucial importance under partial identification and a decision must
be made under uncertainty or ambiguity. I consider here the choices made by
an evaluator with preferences over prospects as in Section 2 who is considering
two treatments, 𝑑 ∈ {𝑎, 𝑏} (e.g. control and treatment), which respectively lead
to the prospects 𝑦(𝑎) and 𝑦(𝑏) in Υ.

Let 𝑓 be a continuous, monotone, strictly concave function. Then the egali-
tarian equivalent of the income distribution associated with 𝑦𝑠(𝑑) is 𝑒𝑒𝑠(𝑑) ∶=
ℰℰ(𝑦𝑠(𝑑)) = 𝑓−1 ( 1

𝑛 ∑𝑛
𝑖=1 𝑓(𝑦𝑠

𝑖 (𝑑))) for 𝑑 ∈ {𝑎, 𝑏}.
Assume that the evaluator observes data 𝑍𝑡 = (𝑍1, … , 𝑍𝑡) that are independent
and identically distributed with 𝑍𝑗 ∼ 𝑃𝑠 on some space 𝒵. Let 𝒫 = {𝑃𝑠 ∶ 𝑠 ∈ 𝑆}.

2With Bernoulli utility function given by the log function.
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As in Section 3 in Manski (2024), I first consider decision making with the
knowledge that econometricians have assumed in identification analysis. Then
the evaluator knows at state 𝑠 the probability distribution 𝑃𝑠 ∈ 𝒫 but not nec-
essarily the underlying state. In this context, a treatment rule is a mapping
𝛿 ∶ 𝒫 → [0, 1], which gives the probability of a (future) individual being as-
signed to treatment 𝑏, given knowledge of 𝑃𝑠. Then the egalitarian equivalent
of treatment rule 𝛿 in state 𝑠, given 𝑃𝑠, is

𝑒𝑒𝑠(𝛿(𝑃𝑠)) = 𝑓−1 [𝛿(𝑃𝑠) ( 1
𝑛

𝑛
∑
𝑖=1

𝑓 (𝑦𝑖𝑠(𝑏))) + (1 − 𝛿(𝑃𝑠)) ( 1
𝑛

𝑛
∑
𝑖=1

𝑓 (𝑦𝑖𝑠(𝑎)))]

which simplifies to 𝑒𝑒𝑠(𝛿(𝑃𝑠)) = 𝑓−1 [𝛿(𝑃𝑠)𝑓(𝑒𝑒𝑠(𝑏)) + (1 − 𝛿(𝑃𝑠))𝑓(𝑒𝑒𝑠(𝑎))] .
For expositional clarity, I label the point-mass assignments 𝑒𝑒𝑠(0) and 𝑒𝑒𝑠(1)
by 𝑒𝑒𝑠(𝑎) and 𝑒𝑒𝑠(𝑏), respectively.
As a consequence of 3.1 in Zambrano (2024), the treatment assignment problem
boils down to selecting 𝛿(𝑃𝑠) in order to obtain the most favorable profile

(𝑒𝑒1(𝛿(𝑃𝑠)), ..., 𝑒𝑒𝑚(𝛿(𝑃𝑠)))

according to the preferences ⪰ over the restricted set Υ1 discussed in Section 2,
and given 𝑃𝑠. Let 𝜋 be a prior probability distribution on 𝑆 and, for each 𝑃𝑠 ∈ 𝒫,
let 𝑆(𝑃𝑠) ⊂ 𝑆 denote the truncated state space obtained with knowledge of 𝑃𝑠.
Below I consider three versions of ⪰, and investigate the characteristics of the
optimal treatment rules according to these criteria.

max
𝛿(𝑃𝑠)∈[0,1]

𝐸𝜋 [𝑒𝑒𝑠(𝛿(𝑃𝑠))|𝑆(𝑃𝑠)] (1)

max
𝛿(𝑃𝑠)∈[0,1]

min
𝑠∈𝑆(𝑃𝑠)

𝑒𝑒𝑠(𝛿(𝑃𝑠)) (2)

min
𝛿(𝑃𝑠)∈[0,1]

max
𝑠∈𝑆(𝑃𝑠)

[max{𝑒𝑒𝑠(𝑎), 𝑒𝑒𝑠(𝑏)} − 𝑒𝑒𝑠(𝛿(𝑃𝑠))] (3)

Equation 1 corresponds to the Bayesian criterion, Equation 2 corresponds to
the maximin criterion and Equation 3 corresponds to the minimax regret cri-
terion, and where the regret of a treatment rule at a state is defined as the
diffference between the most favorable welfare obtainable given knowledge of
the state and the welfare associated with the treatment rule at that state. Each
of these treatment rules encode a different way of incorporating uncertainty and
ambiguity into the analysis of welfare. A maximin evaluator selects the treat-
ment rule with the largest worst-case welfare across states; a minimax regret
evaluator anticipates the worst regret of a treatment rule across states, and
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focuses on selecting the treatment rule with the smallest worst regret; and a
Bayesian evaluator allows what happens to welfare in the entire state space to
inform the evaluation of a treatment rule, weighted by the relative likelihood of
the different states, as captured by the evaluator’s prior on the state space. For
any of these, I assume, for simplicity, that ties are broken in favor of treatment
𝑎.

3.1 The Role of Identification
Two cases of interest arise. In the first case, 𝑆(𝑃𝑠) = {𝑠}. In this case, we say
that the true state is point identified. The true state is partially identified if
𝑆(𝑃𝑠) is a proper non-singleton subset of 𝑆. Define

𝜏𝑒𝑒(𝑠) ∶= 𝑒𝑒𝑠(𝑏) − 𝑒𝑒𝑠(𝑎), (4)

the egalitarian equivalent treatment effect (EETE) at 𝑠.

3.1.1 Point Identification Results

If the true state is point identified, Equation 1 and Equation 2 both reduce
to the optimization problem max𝛿(𝑃𝑠)∈[0,1] 𝑒𝑒𝑠(𝛿(𝑃𝑠)). Equation 3 reduces
to min𝛿(𝑃𝑠)∈[0,1][max{𝑒𝑒𝑠(𝑎), 𝑒𝑒𝑠(𝑏)} −𝑒𝑒𝑠(𝛿(𝑃𝑠))] which is equivalent to
max𝛿(𝑃𝑠)∈[0,1] 𝑒𝑒𝑠(𝛿(𝑃𝑠)). In any of these three cases, the optimal solution is
therefore the same: 𝛿(𝑃𝑠) = 1 (𝜏𝑒𝑒(𝑠) > 0), that is, to assign individuals to
treatment 𝑏 if 𝜏𝑒𝑒(𝑠) > 0 and to treatment 𝑎 otherwise. In this case, true
egalitarian equivalent welfare at every state 𝑠 is maximized.

Remark. For fixed 𝑠, maximizing 𝑒𝑒𝑠(𝛿(𝑃𝑠)) is equivalent to maximizing

𝛿(𝑃𝑠) ( 1
𝑛

𝑛
∑
𝑖=1

𝑓 (𝑦𝑖𝑠(𝑏))) + (1 − 𝛿(𝑃𝑠)) ( 1
𝑛

𝑛
∑
𝑖=1

𝑓 (𝑦𝑖𝑠(𝑎))) .

Therefore, when the true state is point identified, the subtlety about what rep-
resentation of social preferences one should bring into the decision analysis does
not arise. All representations lead to the same answer, just as all three decision
criteria lead to the same answer. Both of these conclusions need to be modified
when the true state is partially identified.

3.1.2 Partial Identification Results

If the true state is partially identified, all these criteria generally yield different
answers, and those answers may be sensitive to what representation of the eval-
uator’s social preferences under certainty one chooses to adopt. The first point
was already made by Manski (2024). The second point is novel.

Suppose there exist states 𝑠𝑤, 𝑠𝑎 and 𝑠𝑏 such that 𝑒𝑒𝑠𝑤(𝑎) = 𝑒𝑒𝑠𝑏(𝑎) =
min𝑠∈𝑆(𝑃𝑠) 𝑒𝑒𝑠(𝑎), 𝑒𝑒𝑠𝑤(𝑏) = 𝑒𝑒𝑠𝑎(𝑏) = min𝑠∈𝑆(𝑃𝑠) 𝑒𝑒𝑠(𝑏), and 𝑒𝑒𝑠𝑑(𝑑) =
max𝑠∈𝑆(𝑃𝑠) 𝑒𝑒𝑠(𝑑) for 𝑑 ∈ {𝑎, 𝑏}.
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The interpretation is that state 𝑠𝑤 is a worst state for both treatments, state 𝑠𝑎
is a best state for treatment 𝑎 and a worst state for treatment 𝑏, and state 𝑠𝑏
is a best state for treatment 𝑏 and a worst state for treatment 𝑎. Assuming the
existence of these states is not needed for the result below, but the assumption
facilitates exposition.

Theorem 3.1 below extends the results in Sections 5-1-5.3 of Manski (2024) to
the present setting.

Theorem 3.1. Assume that the true state 𝑠 is partially identified, the set
{(𝑒𝑒𝑠(𝑎), 𝑒𝑒𝑠(𝑏))}𝑠∈𝑆(𝑃𝑠) is bounded, and that 𝑠𝑤, 𝑠𝑎, 𝑠𝑏 ∈ 𝑆(𝑃𝑠). Then

• The solution to the Bayesian decision problem is

𝛿𝐵(𝑃𝑠) = 1 (𝐸𝜋 [𝜏𝑒𝑒(𝑠)|𝑆(𝑃𝑠)] > 0) .

• The solution to the maximin decision problem is

𝛿𝑀(𝑃𝑠) = 1 (𝜏𝑒𝑒(𝑠𝑤) > 0) .

• The solution to the minimax regret decision problem is 𝛿𝑅(𝑃𝑠) ∈ (0, 1) such
that

𝑒𝑒𝑠𝑎(𝑎) − 𝑒𝑒𝑠𝑎(𝛿𝑅(𝑃𝑠)) = 𝑒𝑒𝑠𝑏(𝑏) − 𝑒𝑒𝑠𝑏(𝛿𝑅(𝑃𝑠)).

All proofs are in the Appendix.

3.2 Application: The Choice Between a Status Quo Treat-
ment and an Innovation When Outcomes Are Binary
under Partial Identification

In this Section, I aim to illustrate how the optimal treatment rules used by
inequality averse evaluators compare to those used by their inequality neutral
counterparts in a concrete setting under partial identification. My starting point
below is a variation on the binary outcome example in Manski (2004), p. 1226,
and Manski (2019), p. 301, also studied in Stoye (2009), p. 72.

An evaluator with preferences over prospects in Υ as in Section 2 is considering
two treatments, 𝑑 ∈ {𝑎, 𝑏}, with 𝑦𝑠

𝑖 (𝑑) ∈ {𝑝, ̄𝑝} for 𝑑 = 𝑎, 𝑏 and 𝑝, ̄𝑝 ∈ (0, 1]. The
evaluator knows the outcome distribution of the status quo treatment, 𝑦(𝑎), but
does not know the outcome distribution of the innovation, 𝑦(𝑏). Let 𝑃(𝑦𝑠) =
1
𝑛 ∑𝑛

𝑖=1 1{𝑦𝑠
𝑖 =�̄�}, 𝑝(𝑎) = 𝑃(𝑦(𝑎)) and 𝑝𝑠(𝑏) = 𝑃(𝑦𝑠(𝑏)) for 𝑠 = 1, ..., 𝑚. Further,

assume that 𝑠𝑎, 𝑠𝑏 ∈ 𝑆, where 0 = 𝑃(𝑦𝑠𝑎(𝑏)) < 𝑝(𝑎) < 𝑃(𝑦𝑠𝑏(𝑏)) = 1.
Let ℰℰ(𝑥1, ..., 𝑥𝑛) = 𝑓−1( 1

𝑛 ∑𝑛
𝑖=1 𝑓(𝑥)), with 𝑓 continuous, strictly increasing,

strictly concave, with 𝑓(𝑝) = 0 and 𝑓( ̄𝑝) = 1. Then the egalitarian equivalent of
the outcome distribution associated with 𝑦𝑠 is ℰℰ(𝑦𝑠) = 𝑓−1(𝑃 (𝑦𝑠)𝑓( ̄𝑝) + (1 −
𝑃(𝑦𝑠))𝑓(𝑝)) = 𝑓−1(𝑃 (𝑦𝑠)).
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In this context, the interpretation is that ℰℰ(𝑦𝑠) is the notional level of the
outcome variable such that, if everyone in society had that outcome level, then
the evaluator would be indifferent between that notional society and the actual
society, where 𝑃(𝑦𝑠) of the individuals have an outcome of ̄𝑝 and 1 − 𝑃(𝑦𝑠) of
the individuals have an outcome of 𝑝.
Let 𝛿 be the fraction of the population to be assigned to the treatment. Then
the egalitarian equivalent of treatment rule 𝛿 in state 𝑠 is 𝑒𝑒𝑠(𝛿) = 𝑓−1(𝑝(𝑎) +
(𝑝𝑠(𝑏) − 𝑝(𝑎))𝛿), where I simply write 𝑒𝑒(𝑎) for 𝑒𝑒𝑠(𝑎).
As in Section 3 above, the evaluation boils down to the statistical comparison
of the profiles (𝑒𝑒1(𝛿), ..., 𝑒𝑒𝑚(𝛿)) as one varies 𝛿 from zero to one. I now show
how the three statistical decision theories discussed above would approach this
evaluation.

3.2.1 The Bayesian Evaluators

An inequality averse (𝐼𝐴) Bayesian evaluator would choose 𝛿 to maximize
∑𝑚

𝑠=1 𝑒𝑒𝑠(𝛿)𝜋(𝑠) for some prior 𝜋 on 𝑆. For reference, in this context an in-
equality neutral (𝐼𝑁) Bayesian evaluator chooses 𝛿 to maximize ∑𝑚

𝑠=1(𝑝(𝑎) +
(𝑝𝑠(𝑏) − 𝑝(𝑎))𝛿)𝜋(𝑠). The solution to the 𝐼𝑁 Bayesian evaluator’s problem is:
𝛿∗

𝑖𝑛 = 1 if 𝐸𝜋[𝑝(𝑏)] ∶= ∑𝑚
𝑠=1 𝑝𝑠(𝑏)𝜋(𝑠) > 𝑝(𝑎) and 𝛿∗

𝑖𝑛 = 0 if 𝐸𝜋[𝑝(𝑏)] ≤ 𝑝(𝑎)
(Manski (2004), p. 1228). The following is true:

Proposition 3.1. If the 𝐼𝑁 Bayesian evaluator accepts the innovation, so will
the 𝐼𝐴 Bayesian evaluator. However, the converse need not hold. Furthermore,
if either Bayesian evaluator accepts the innovation, they set 𝛿 = 1, and if they
don’t accept it, they set 𝛿 = 0.

Figure 1 provides the intuition for the 𝑚 = 2 case, given a prior 𝜋 over the two
states. The axes measure the proportions 𝑃(𝑦) in both states of the world for
any prospect 𝑦. The gray line denotes all prospects 𝑦 with 𝐸𝜋[𝑃 (𝑦)] = 𝑝(𝑎).
Therefore, the 𝐼𝑁 Bayesian evaluator accepts any prospect in the shaded gray
area. The blue line denotes all prospects 𝑦 with 𝐸𝜋[ℰℰ(𝑦)] = 𝑒𝑒(𝑎). Therefore,
the 𝐼𝐴 Bayesian evaluator accepts any prospect in the shaded blue area. The
segment connecting 𝑝(𝑎) (corresponding to 𝛿 = 0) to 𝑝(𝑏) (corresponding to
𝛿 = 1) contains all the treatment rules the evaluator chooses from. Thus, in the
top panel all the feasible treatment rules are in the yellow segment, and both
Bayesian evaluators set 𝛿∗

𝑖𝑛 = 1. In the middle panel, all the feasible treatment
rules are in the green segment, the 𝐼𝑁 Bayesian evaluator rejects the treatment,
setting 𝛿∗

𝑖𝑛 = 0, but the 𝐼𝐴 Bayesian evaluator accepts the treatment, setting
𝛿∗

𝑖𝑎 = 1. In the bottom panel, all the feasible tretament rules are in the orange
segment, and both evaluators reject the treatment, setting 𝛿∗

𝑖𝑛 = 𝛿∗
𝑖𝑎 = 0.

3.2.2 The Minimax Regret Evaluators

A minimax regret evaluator would choose 𝛿 to minimize 𝑅(𝛿) ∶= 𝑚𝑎𝑥𝑠∈𝑆𝑅(𝛿, 𝑠),
where the 𝐼𝐴 evaluator defines 𝑅(𝛿, 𝑠) by 𝑅𝑖𝑎(𝛿, 𝑠) ∶= max{𝑒𝑒(𝑎), 𝑒𝑒𝑠(𝑏)} −

10



Figure 1: The Bayesian evaluators
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𝑒𝑒𝑠(𝛿) whereas 𝑅(𝛿, 𝑠) for the 𝐼𝑁 evaluator simplifies to 𝑅𝑖𝑛(𝛿, 𝑠) ∶= (1 −
𝛿)[𝑝𝑠(𝑏) − 𝑝(𝑎)]1{𝑝𝑠(𝑏)≥𝑝(𝑎)} + 𝛿[𝑝(𝑎) − 𝑝𝑠(𝑏)]1{𝑝𝑠(𝑏)≤𝑝(𝑎)}. The solution to the
𝐼𝑁 minimax regret problem is: 𝛿∗

𝑖𝑛 = 1 − 𝑝(𝑎). (Stoye (2009), p. 73).

Proposition 3.2. The 𝐼𝐴 minimax regret evaluator chooses to treat a larger
fraction of the population with the innovation than the 𝐼𝑁 minimax regret eval-
uator.

Figure 2 provides the intuition for the result. In the left panel, the dashed yellow
line corresponds to 𝑅𝑖𝑛(𝛿, 𝑠𝑎), the dashed blue line corresponds to 𝑅𝑖𝑛(𝛿, 𝑠𝑏),
the dashed gray line corresponds to 𝑅𝑖𝑛(𝛿). This function is minimized at
𝛿∗

𝑖𝑛 = 1−𝑝(𝑎). In the right panel, the solid yellow line corresponds to 𝑅𝑖𝑎(𝛿, 𝑠𝑎),
the solid blue line corresponds to 𝑅𝑖𝑎(𝛿, 𝑠𝑏), the solid gray line corresponds to
𝑅𝑖𝑎(𝛿). This function is minimized at 𝛿∗

𝑖𝑎 > 1 − 𝑒𝑒(𝑎). Since 𝑒𝑒(𝑎) < 𝑝(𝑎), the
result follows.

Remark. Regret here is non-linear in 𝛿, as in Kitagawa, Lee, and Qiu (2024).
The difference between their setting and the present setting is that, in their set-
ting, they apply a non-linear transformation to an otherwise standard measure
of inequality neutral regret, whereas here the non-linearity stems directly from
the attitudes towards inequality of the evaluator. I view these lines of work as
complementary, and looking further into their similarities and differences is left
for future work.

Figure 2: The minimax regret evaluators

3.2.3 The Maximin Evaluators

An 𝐼𝐴 maximin evaluator chooses 𝛿 to maximize 𝑚𝑖𝑛𝑠∈𝑆{𝑒𝑒𝑠(𝛿)}, whereas the
𝐼𝑁 maximin evaluator maximizes instead 𝑚𝑖𝑛𝑠∈𝑆{(𝑝(𝑎)+(𝑝𝑠(𝑏)−𝑝(𝑎))𝛿)}. The
solution for the 𝐼𝑁 maximin evaluator is 𝛿∗ = 0 (Manski (2004), p. 1228) but,
because 𝑓−1 is monotone, both problems share the same solution.

Remark. In any of the three cases considered above (Bayesian, minimax regret,
or maximin), one obtains the same solution when ranking prospects by applying
the decision criteria to either (𝑦𝑠

𝑖 )𝑖∈𝑁,𝑠∈𝑆 or (𝑓(𝑦𝑠
𝑖 ))𝑖∈𝑁,𝑠∈𝑆 whereas this is not so
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when one applies the decision criteria to (ℰℰ(𝑦𝑠))𝑠∈𝑆. This is not only a reminder
that the choice of representation of the social preferences under certainty matters
(the main point of the illustration in Section 2), but it also highlights that certain
representations will make inequality aversion play no role in the analysis, even
as we intend for it to do so.

3.3 Application: Minimizing Egalitarian Equivalent Re-
gret at JobCorps

JobCorps (Schochet, Burghardt, and McConnell (2008)) is a widely studied
education and training program for disadvantaged youth. Despite it being a
randomized intervention, estimating the effect of the program on applicant’s
wages is difficult due to the fact that the evaluator only observes wages for
those individuals who are employed. The implication of this, in the context of
the present paper, is that, to the extent that the outcome variable of interest
for the evaluator is wages, one may not be able to point identify at state 𝑠
the objects 𝑒𝑒𝑠(𝑎) and 𝑒𝑒𝑠(𝑏) and therefore 𝜏𝑒𝑒(𝑠) is also not point identified
at 𝑠. However, partial identification may be achievable, under relatively mild
assumptions.

Flores, Kairy, and Zambrano (2024) adapts the bounds analysis of Horowitz
and Manski (2000), Lee (2009), and Chen and Flores (2015) in order to arrive
at a relevant set of lower and upper bounds for 𝑒𝑒𝑠(𝑎) and 𝑒𝑒𝑠(𝑏). While the
goal in Flores, Kairy, and Zambrano (2024) is to use those magnitudes to obtain
bounds on the 𝐸𝐸𝑇 𝐸, below I use them to determine the optimal treatment
assignment according to the minimax regret criterion when the evaluator is
inequality averse. I abstract from estimation problems in this sub-section and
treat these bounds as recoverable in a large sample and therefore known.3

In order to arrive at inequality sensitive estimations of the effect of the treatment,
one needs to specify the function 𝑓 that captures the attitudes towards inequality
of the evaluator. In this application, I consider an evaluator with 𝑓(𝑦) = 𝑦1−𝛾

1−𝛾 ,
where 𝛾 ≥ 0 is an inequality aversion parameter. I allow for two kinds of
evaluators: 𝛾 = 0 and 𝛾 = 2. To interpret these choices, consider that, when
𝛾 = 2, the evaluator would wish, in a two-person evaluation, to protect at
least 50% of an individual’s wage regardless of what happens to the wages of
the other individual. For reference, the egalitarian equivalent measure that
corresponds to 𝛾 = 2 is the harmonic mean, and 𝛾 → 1 and 𝛾 = 0 correspond,
respectively, to the egalitarian equivalent measures given by the geometric and
arithmetic means. Either of those last two choices corresponds to a level of
protected wages equal to zero. Loosely, values of 𝛾 greater than one essentially
protect those with the lowest wages from losing everything should the better off
in terms of wages gain disproportionately from an intervention. See Fleurbaey
and Zambrano (2024) for details.

3The proper estimation metodology of these effects, together with their bounds and uncer-
tainty estimates is the focus of Flores, Kairy, and Zambrano (2024).
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Table 2: Egalitarian Equivalent Bounds

(a) Inequality neutral evaluator: 𝛾 = 0

𝑒𝑒𝐿(𝑎) 𝑒𝑒𝑈(𝑎) 𝑒𝑒𝐿(𝑏) 𝑒𝑒𝑈(𝑏)
Horowitz and Manski 5.4 10.7 6.1 12

Lee 7.9 7.9 7.5 8.7
Chen and Flores 7.9 7.9 8.3 8.7

(b) Inequality averse evaluator: 𝛾 = 2

𝑒𝑒𝐿(𝑎) 𝑒𝑒𝑈(𝑎) 𝑒𝑒𝐿(𝑏) 𝑒𝑒𝑈(𝑏)
Horowitz and Manski 4.1 9 3.8 8.6

Lee 6.6 6.6 6.5 7.7
Chen and Flores 6.6 6.6 6.8 7.7

Figure 3: Minimizing Egalitarian Equivalent Regret at JobCorps
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Table 2 reports Horowitz and Manski, Lee, and Chen and Flores bounds for
𝑒𝑒𝑠(𝑎) and 𝑒𝑒𝑠(𝑏), for 𝛾 = 0 and 𝛾 = 2, when the outcome variable is hourly
wages at week 208 after random assignment. Those bounds can then be used
to obtain the corresponding optimal treatment assignments, using Theorem 3.1.
Figure 3 describes how these assignments are obtained. In each graph, the
blue line denotes 𝑅(𝛿, 𝑠𝑏) ∶= 𝑒𝑒𝑠𝑏(𝑏) − 𝑒𝑒𝑠𝑏(𝛿), with 𝑅(0, 𝑠𝑏) = 𝑒𝑒𝑈(𝑏) − 𝑒𝑒𝐿(𝑎)
(computed using the estimates in Table 2), and 𝑅(1, 𝑠𝑏) = 0. In turn, the yellow
line denotes 𝑅(𝛿, 𝑠𝑎) ∶= 𝑒𝑒𝑠𝑎(𝑎) − 𝑒𝑒𝑠𝑎(𝛿) with 𝑅(0, 𝑠𝑎) = 0 and 𝑅(1, 𝑠𝑎) =
𝑒𝑒𝑈(𝑎)−𝑒𝑒𝐿(𝑏) (also computed using the estimates in Table 2). The intersecion
of these lines in the four leftmost graphs in Figure 3 corresponds to the treatment
rule that minimizes worst regret. On the two graphs on the right in Figure 3,
regret is always worst along 𝑅(𝛿, 𝑠𝑏), as the blue line is uniformly above the
yellow line, and in those two cases worst regret is minimized at 𝛿 = 1. Table 3
reports the resulting optimal treatment assignments.

Table 3: Optimal Treatment Assignment, 𝛿, under Partial Identification

Horowitz and
Manski Lee Chen and Flores

𝛾 = 0 0.59 0.66 1
𝛾 = 2 0.42 0.95 1

To better understand the results from Table 3 note that, as we move, for each
row, from the leftmost to the rightmost column in the table, the fraction of
individuals assigned to treatment 𝑏 grows, until the fraction reaches 1. The
reason why this happens is that the move from the leftmost to the rightmost
column in Table 3 corresponds to a progressive reduction in the size of the
identified set, until it no longer contains zero (Chen and Flores (2015)).

From Table 3 we also learn that, unlike in the application discussed in Sec-
tion 3.2, it is not always the case that the inequality averse evaluator assigns
a comparative larger fraction of the population to treatment 𝑏, relative to the
inequality neutral evaluator. The differences between these applications stem
from the following: In the application from Section 3.2, the introduction of in-
equality aversion increases the worst regret of treatment 𝑎 but decreases the
worst regret of treatment 𝑏, as shown on the right panel in Figure 2. This has
the unambiguous effect, as discussed in Section 3.2.2, of increasing the fraction
assigned to treatment 𝑏 as inequality aversion grows. In the present application,
however, inequality aversion may increase or decrease the worst regret of either
treatment. This is so because worst regret is computed as the difference of two
egalitarian equivalent measures, each of which shrink with inequality aversion.
Which of the two measures shrinks faster then determines whether worst regret
grows or shrinks for a given treatment option as inequality aversion increases.

Let’s take a look at how this plays out in practice in the context of the JobCorps
application. First, consider the case of the Horowitz and Manski bounds. Given
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those bounds, the worst regret from treatment 𝑎 shrinks from $12 − $5.4 = $6.6
per hour to $8.6−$4.1 = $4.5 per hour as we move from 𝛾 = 0 to 𝛾 = 2 (Table 2).
This is driven by the fact that 𝑒𝑒𝑈(𝑏) drops by more ($12 − $8.6 = $3.4) than
what 𝑒𝑒𝐿(𝑎) drops by ($5.4 − $4.1 = $1.3) as we move from 𝛾 = 0 to 𝛾 = 2. On
the other hand, the worst regret from treatment 𝑏 grows from $10.7−$6.1 = $4.6
per hour to $9 − $3.8 = $5.2 per hour as we move from 𝛾 = 0 to 𝛾 = 2. This
is driven by the fact that 𝑒𝑒𝑈(𝑎) drops by less ($10.7 − $9 = $1.7) than what
𝑒𝑒𝐿(𝑏) drops by ($6.1 − $3.8 = $2.3) as we move from 𝛾 = 0 to 𝛾 = 2. The
drop in worst regret for treatment 𝑎, coupled with the rise in worst regret for
treatment 𝑏, as we move from 𝛾 = 0 to 𝛾 = 2, therefore causes the optimal
treatment assignment to move from 𝛿 = 0.59 to 𝛿 = 0.42 (Table 3).

The case with Lee bounds illustrates the opposite situation, where the worst
regret from treatment 𝑎 grows from $8.7−$7.9 = $0.8 per hour to $7.7−$6.6 =
$1.1 per hour as we move from 𝛾 = 0 to 𝛾 = 2 (Table 2). On the other hand,
the worst regret from treatment 𝑏 shrinks from $7.9 − $7.5 = $0.4 per hour
to $6.6 − $6.5 = $0.1 per hour as we move from 𝛾 = 0 to 𝛾 = 2. The worst
regret for treatment 𝑏 is much lower than the worst regret for treatment 𝑎 for
𝛾 = 0, which is why the optimal treatment assignment in this case is above 0.5,
at 𝛿 = 0.66 (Table 3). The rise in worst regret for treatment 𝑎 coupled with the
drop in worst regret for treatment 𝑏, as we move from 𝛾 = 0 to 𝛾 = 2, causes the
optimal treatment assignment to move further up, from 𝛿 = 0.66 to 𝛿 = 0.95.
Finally, the case with the Chen and Flores bounds nicely illustrates that both
the inequality neutral and inequality averse evaluators may agree in many cases
of interest. In particular, whenever both the upper and lower bounds of the
egalitarian equivalent treatment effect share the same sign, both evaluators will
assign the same treatment: treatment 𝑎 if they share a negative sign, and treat-
ment 𝑏 if they share a positive sign. Given the treatment effect bounds implied
by Table 2, both evaluators will assign everyone to treatment 𝑏 in this case
(Table 3).

4 Finite Sample Analysis
In this Section, I consider the situation where the evaluator does not know the
sampling distribution but observes finite data, 𝑍𝑡 ∈ 𝒵𝑡, that are informative
about 𝑠. A statistical treatment rule 𝛿 ∶ 𝒵𝑡 → [0, 1], gives the probability of
a (future) individual being assigned to treatment 𝑏, given 𝑍𝑡. To the extent
that knowledge of finite data does not shrink the state space, the only decision
problem worth revisiting is that of the Bayesian evaluator, which becomes

max
𝛿(𝑍𝑡)∈[0,1]

𝐸𝜋 [𝑒𝑒𝑠(𝛿(𝑍𝑡))|𝑍𝑡] (5)

and has as solution 𝛿𝐵(𝑍𝑡) = 1 (𝐸𝜋 [𝜏𝑒𝑒(𝑠)|𝑍𝑡] > 0), a solution analogous to that
obtained in Theorem 3.1 for the Bayesian evaluator.
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4.1 Application: A Bayesian Meta Analysis of the Micro-
credit Literature

To illustrate how the solution of the problem described by Equation 5 can be
used in practice, I now turn to an application where the evaluator is Bayesian
and has access to the outcome of several related randomized experiments. In
particular, I examine Meager (2022), who estimates posterior distributions of
the effect of microcredit interventions on profit, consumption and other variables
using data from randomized trials that expand access to microcredit in seven
countries. I take the distribution of consumption before and after treatment to
be the primary object of analysis and for this reason I focus below on the five
countries in Meager’s meta study for which consumption data is available.

Meager reports considerable treatment effect heterogeneity, with large segments
of the distribution of consumption nearly unaffected by the policy (from the 5-
th to the 75-th percentiles), together with large yet uncertain differences on
the upper tails of the distribution of consumption of the treatment and con-
trol groups, especially within the group of households with previous business
experience. Meager states that, given that the treatment will probably increase
inequality, “the social welfare effects of microcredit are likely to be complex.”
(Meager (2022), p. 1821). A description of Meager’s consumption model for
non-zero consumption levels follows.

Let 𝑑𝑖𝑘 ∈ {𝑎, 𝑏} denote the treatment assignment to individual 𝑖 in site 𝑘, where
𝑘 = 1, ..., 5. Let MvN represent the multivariate normal distribution, and let 𝐼
denotes the identity matrix. We then have:

A Bayesian hierarchical model

𝑦𝑖𝑘(𝑑𝑖𝑘) ∼ LogNormal(𝜇𝑘 + 𝜁𝑘1𝑏(𝑑𝑖𝑘), 𝜎𝑘𝜆1𝑏(𝑑𝑖𝑘)
𝑘 ) for 𝑘 = 1, ..., 5;

0.1𝜇𝑘, 0.1𝜁𝑘, log(𝜎𝑘), log(𝜆𝑘) ∼ MvN(0, 10𝐼) for 𝑘 = 1, ..., 5.

The interpretation is that, for every site 𝑘, consumption is lognormally dis-
tributed, with log-mean 𝜇𝑘 and log-standard deviation 𝜎𝑘 for 𝑦𝑖𝑘(𝑎), and log-
mean 𝜇𝑘 + 𝜁𝑘 and log-standard deviation 𝜎𝑘𝜆𝑘 for 𝑦𝑖𝑘(𝑏).4 Let 𝑦𝑘(𝑑) denote
the vector of consumption in site 𝑘 given treatment 𝑑 ∈ {𝑎, 𝑏}. Then, with this
structure in place, I am able to obtain a closed form solution for the egalitarian
equivalent of 𝑦𝑘(𝑑):

ℰℰ(𝑦𝑘(𝑑)) = 𝑒𝜇𝑘+𝜁𝑘1𝑏(𝑑)+ 1
2 (1−𝛾)(𝜎𝑘𝜆1𝑏(𝑑)

𝑘 )
2

. (6)

I consider here, as in Section 3.3, an evaluator with inequality aversion parame-
4This description is contained in the file tailored-hierarchical-pdf-log-normal-1-

tail.stan, which can be found in the repository for Meager (2022), available at https:
//bitbucket.org/rmeager/aggregating-distributional-treatment-effects/src/master/.
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ter of 𝛾 = 2. I then compute mean treatment effects and egalitarian equivalent
treatment effects using Meager’s Markov Chain Monte Carlo (MCMC) output,
denoted ̂𝜋, which contains three chains with four thousand draws per chain,5
and where I am able to use Equation 6 to calculate the egalitarian equivalent
measures in every draw.6

Figure 4 reports the posterior distributions of the treatment effects 𝜏(𝑦𝑘) ∶=
𝐸[𝑦𝑘(𝑏)] − 𝐸[𝑦𝑘(𝑎)] and 𝜏𝑒𝑒(𝑦𝑘) ∶= ℰℰ(𝑦𝑘(𝑏)) − ℰℰ(𝑦𝑘(𝑎)), and Table 4 reports
estimates for ̂𝜏 (𝑘) ∶= 𝐸�̂�[𝜏(𝑦𝑘)] and ̂𝜏𝑒𝑒(𝑘) ∶= 𝐸�̂�[𝜏𝑒𝑒(𝑦𝑘)] for the five countries
(𝑘 = 1, ..., 5), where the expectations are computed using the MCMC draws ̂𝜋.
Table 4 also reports the posterior probabilities, 𝑃�̂�[𝜏(𝑦𝑘) > 0] and 𝑃�̂�[𝜏𝑒𝑒(𝑦𝑘) >
0], that the average and egalitarian equivalent treatment effects are positive
according to those draws.

Figure 4: Posterior distributions of the mean treatment effects (𝜏) and the
egalitarian equivalent treatment effects (𝜏𝑒𝑒). All units are 2009 USD PPP per
two weeks.

5These draws are contained in the file microcredit_consumption_lognormal_tailored
_hierarchical_pdf_output_5000_iters.RData, which can be found in the paper’s repository
reported above.

6The mean income measures can also be calculated in every MCMC draw using Equation 6
with 𝛾 = 0.
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Table 4: Microcredit treatment effect Bayesian estimates

𝐸�̂�[𝜏 ] 𝑃�̂�[𝜏 > 0] 𝐸�̂�[𝜏𝑒𝑒] 𝑃�̂�[𝜏𝑒𝑒 > 0]
Bosnia 13.82 82.5% -3.11 14.3%
India 3.00 83.1% -1.20 29.1%
Mexico 5.65 97.5% -3.76 2.7%
Mongolia 8.58 88.1% -1.35 35.0%
Morocco -2.57 22.7% 2.55 82.4%

Using the results from Table 4 one reaches the conclusion that incorporating
inequality considerations into the analysis can plausibly reverse the policy rec-
ommendation one would make if one focuses solely on what happens on aver-
age across the distribution of outcomes, and sharpen the recommendations one
would make if one focuses on the quantile treatment effects without further
aggregation. To see this, Table 5 presents Meager (2022)’s Bayesian quantile
treatment effect estimates on consumption.

We see that the treatment effects on mean consumption reported in Table 4 are
driven by large changes that take place at the top quantiles of the distribution
of consumption in Table 5, whereas the egalitarian equivalent treatment effect
estimates reported in Table 4 are driven by small changes that take place at the
bottom quantiles of the distribution of consumption in Table 5. The egalitarian
equivalent treatment effect approach executes a principled aggregation of the
treatment effect heterogeneity across quantiles, according to the attitudes to-
wards inequality of the evaluator, and the aggregation tools developed through
Theorem 3.1 in Zambrano (2024) and Theorem 3.1 in the present paper.

Remark. For comparison, consider how one would analyze the data generated
above using conventional tools from the randomized evaluation literature. The
most straightforward analysis would be a differences in means comparison. In
this case, the point estimates (with standard errors in parentheses) of the dif-
ferences in means 𝐸[𝑦(𝑏)] − 𝐸[𝑦(𝑎)] for the five sites are (in 2009 USD PPP per
two weeks): Bosnia -1.59 (14.14), India 4.55 (3.85) (India), Mexico 5.51 (2.90),
Mongolia 50.45 (15.67) and Morocco -2.93 (4.26). One would reject the hypoth-
esis that the treatments have the same effect on average income at the 5% level
in the case of Mongolia, and would not reject the hypothesis in the other four
countries.7

5 Large Sample Analysis in the Limit of Exper-
iments Framework

Given a statistical treatment rule, and before the realization of the sample data,
the profile (𝑒𝑒1(𝛿(𝑍𝑡)), ..., 𝑒𝑒𝑚(𝛿(𝑍𝑡))) is a random vector. In order to study this

7This set of results is illustrated in Figure 3, Panel D, in Meager (2019).
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Table 5: Bayesian quantile treatment effects on consumption (from Table 1 in
Meager (2022))

profile, ex ante, we therefore need to extend the preferences of the evaluator over
Υ1 to account for the additional sources of uncertanity (sampling uncertanity)
that the evaluator faces. As in Manski (2004) (and following Wald (1971)), one
can measure the performance of 𝛿(⋅) in state 𝑠 by its expected welfare across
samples, which in this case means 𝐸𝑠 [𝑒𝑒𝑠(𝛿(𝑍𝑡))] ∶= ∫ 𝑒𝑒𝑠(𝛿(𝑍𝑡))𝑑𝑃 𝑡

𝑠(𝑍𝑡). Not
knowing the true state, the evaluator then assesses 𝛿(⋅) by the state-dependent
expected egalitarian equivalent vector (𝐸𝑠 [𝑒𝑒𝑠(𝛿(𝑍𝑡))])𝑠∈𝑆. Let Γ denote the
set of statistical treatment rules and and assume that 𝑆 is an open subset of ℝ𝐽 ,
𝐽 > 0. Let 𝜋 here denote a prior measure on 𝑆.
The ex-ante versions of Equation 1, Equation 2 and Equation 3 in this setting
are

sup
𝛿(⋅)∈Γ

𝐸𝜋 [𝐸𝑠 [𝑒𝑒𝑠(𝛿(𝑍𝑡))]] (7)

sup
𝛿(⋅)∈Γ

inf
𝑠∈𝑆

𝐸𝑠 [𝑒𝑒𝑠(𝛿(𝑍𝑡))] (8)

inf
𝛿(⋅)∈Γ

sup
𝑠∈𝑆

[max{𝑒𝑒𝑠(𝑎), 𝑒𝑒𝑠(𝑏)} − 𝐸𝑠 [𝑒𝑒𝑠(𝛿(𝑍𝑡))]] (9)

I focus below on obtaining asymptotically optimal solutions to Equation 7 and
Equation 9. To do so, I consider a sequence of experiments {𝑃 𝑡

𝑠 , 𝑠 ∈ 𝑆} as the
sample size 𝑡 grows.
Let 𝑠0 be such that 𝜏𝑒𝑒(𝑠0) = 0, noting that the presence of sampling uncertainty
may make it difficult to distinguish between treatments in terms of their egali-
tarian equivalents if the true state is close to 𝑠0. Following Hirano and Porter
(2009), I reparametrize the state space and consider parametric sequences of the
form 𝑠0 + ℎ√

𝑡 for ℎ ∈ ℝ𝐽 . The intuition behind the choice is the following: for ̈𝑠
such that 𝑒𝑒 ̈𝑠(𝑎) ≠ 𝑒𝑒 ̈𝑠(𝑏), the treatment that is better at ̈𝑠 will be better for all
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local alternatives ̈𝑠 + ℎ√
𝑡 asymptotically. Therefore, a local reparametrization

centered around 𝑠0 ensure that we are looking a the cases where it is hardest
to determine which is the better treatment even as the sample size grows large.
In what follows, I will employ the following assumptions, which are standard
in the limit of experiments framework (Le Cam (2012), Van der Vaart (1998),
Hirano and Porter (2020)):

• DQM′. A sequence of experiments {𝑃 𝑡
𝑠 , 𝑠 ∈ 𝑆} satisfies DQM′ at 𝑠0 if

there exists a score function 𝑠 ∶ 𝒵 → ℝ𝐽 , with nonsingular Fisher infor-
mation matrix 𝐼0 = 𝐸𝑠0

[𝑠𝑠′], such that ∫[𝑑𝑃
1
2

𝑠0+ℎ(𝑍)− 𝑑𝑃
1
2𝑠0(𝑍) − 1

2 ℎ′𝑠(𝑍)
𝑑𝑃

1
2𝑠0(𝑍)]2 = 𝑜(||ℎ||2) as ℎ → 0.

• C. A sequence of statistical treatment rules 𝛿𝑡 in the experiments {𝑃 𝑡
𝑠 , 𝑠 ∈

𝑆} satisfies C if 𝐸𝑠0+ ℎ√
𝑡

[𝛿𝑡(𝑍𝑡)] has a well defined limit for all ℎ ∈ ℝ𝐽 .

• h-BRE. An estimator ̂𝑠𝑡 of 𝑠 satisfies h-BRE if, for all ℎ ∈ ℝ𝐽 ,√
𝑡 ( ̂𝑠𝑡 − 𝑠0 − ℎ√

𝑡 ) ⇝ 𝑁(0, 𝐼−1
0 ) under the sequence of probability

measures 𝑃 𝑡
𝑠0+ ℎ√

𝑡
.

• L. A prior measure 𝜋 on 𝑆 satisfies L if it admits a density with respect
to Lebesgue measure that is continuous and positive at 𝑠0.

The result below is a consequence of Proposition 3.1 and Theorems 3.2, 3.4 and
3.5 in Hirano and Porter (2009):

Theorem 5.1. Assume that 𝑠0 ∈ 𝑆, the sequence of experiments {𝑃 𝑡
𝑠 , 𝑠 ∈ 𝑆}

satisfies DQM′, the sequence of statistical treatment rules 𝛿𝑡 in the experiments
{𝑃 𝑡

𝑠 , 𝑠 ∈ 𝑆} satisfies C, the prior measure Π on 𝑆 satisfies L and the estimator
̂𝑠𝑡 of 𝑠 satisfies h-BRE. Then the feasible statistical treatment rule 𝛿∗

𝑡 (𝑍𝑡) =
1 (𝜏𝑒𝑒( ̂𝑠𝑡) > 0) is asypmtotically Bayes and minimax regret optimal.

The interpretation is that, under the structure provided by the assumptions in
Theorem 5.1, one can act as if all relevant uncertanity has been resolved in large
samples, and make a decision that would be optimal if the point estimate ̂𝑠𝑡 of
𝑠 were accurate.

5.1 Application: Microcredits Reexamined
Below I revisit the application in Section 4.1 under the assumptions behind
Theorem 5.1, and taking the sample sizes of the five RCTs to be large. From
Meager’s MCMC output we can obtain Bayesian point estimates of the profile
(𝜇𝑘, 𝜁𝑘, 𝜎𝑘, 𝜆𝑘) from the Bayesian hierarchical model from Section 4.1, and for
the five countries (𝑘 = 1, ..., 5). Plugging these estimates into Equation 6, we
can then obtain estimates of ℰℰ(𝑦𝑘(𝑑)), 𝑑 ∈ {𝑎, 𝑏}, and then of 𝜏𝑒𝑒(𝑠). Table 6
below reports the results from this analysis.
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Table 6: Microcredit treatment effect large sample Bayesian estimates

𝑁𝑎 𝑁𝑏 𝜏 ( ̂𝜇, ̂𝜁, �̂�, �̂�) 𝜏𝑒𝑒 ( ̂𝜇, ̂𝜁, �̂�, �̂�)
Bosnia 427 520 13.76 -3.11
India 3247 3579 3.00 -1.20
Mexico 8296 8260 5.65 -3.76
Mongolia 260 701 8.72 -1.35
Morocco 2771 2716 -2.57 2.55

These results are essentially identical to those reported in Table 4 and the con-
clusions one reaches about the optimal treatment assignment for each of these
countries are therefore the same.

6 Summary
My aim with this paper is to contribute towards the development of an inte-
grated theory of how account for inequality in the distribution of treatment
effects in experimental and observational settings. To adopt the tools devel-
oped above in an applied setting, the recommended workflow would be as fol-
lows: First, use the results in Fleurbaey and Zambrano (2024) to help determine
which SP under certainty to bring into the analysis. Second, use Theorem 3.1
in Zambrano (2024) to determine how to extend that SP to a world where risk,
uncertainty or ambiguity play a prominent role. Third, use the tools in Flores,
Kairy, and Zambrano (2024) to properly estimate egalitarian equivalent treat-
ment effects, and bounds, together with corresponding uncertainty estimates
for these. Fourth, and last, use the results in Section 3.1.1, Theorem 3.1 and
Theorem 5.1, to identify the optimal treatment assignment rule needed for the
statistical decision problem that an inequality sensitive evaluator may want to
solve.

An important missing ingredient in the present analysis is that I make no use of
covariate information. Introducing covariates is known to help the evaluator ob-
tain better bounds on treatment effects (as in Lee (2009) and Semenova (2023)),
but it also opens up the question as to whether the evaluator wishes to account
solely for the inequality generated by a treatment conditional on covariates, or
also incorporate the inequality generated by a treatment across the multiple
values that the covariates may take. Taking a look at both of these important
issues is left for future work.

7 Appendix
7.1 Proof of Theorem 3.1
First, consider the solution to the Bayesian decision problem.
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Since 𝑓−1 is strictly convex, for each 𝑠 ∈ 𝑆 and 𝛿(𝑃𝑠) ∈ (0, 1):

𝑓−1 [𝛿(𝑃𝑠)𝑓(𝑒𝑒𝑠(𝑏)) + (1 − 𝛿(𝑃𝑠))𝑓(𝑒𝑒𝑠(𝑎))] < 𝛿(𝑃𝑠) ⋅ 𝑒𝑒𝑠(𝑏)+(1−𝛿(𝑃𝑠)) ⋅ 𝑒𝑒𝑠(𝑎).

Take the expectation of both sides:

𝐸𝜋 [𝑓−1 [𝛿(𝑃𝑠)𝑓(𝑒𝑒𝑠(𝑏)) + (1 − 𝛿(𝑃𝑠))𝑓(𝑒𝑒𝑠(𝑎))] |𝑆(𝑃𝑠)] <
𝛿(𝑃𝑠) ⋅ 𝐸𝜋 [𝑒𝑒𝑠(𝑏)|𝑆(𝑃𝑠)] + (1 − 𝛿(𝑃𝑠)) ⋅ 𝐸𝜋 [𝑒𝑒𝑠(𝑎)|𝑆(𝑃𝑠)] .

It follows that

𝐸𝜋 [𝑓−1 [𝛿(𝑃𝑠)𝑓(𝑒𝑒𝑠(𝑏)) + (1 − 𝛿(𝑃𝑠))𝑓(𝑒𝑒𝑠(𝑎))] |𝑆(𝑃𝑠)] <
max{𝐸𝜋 [𝑒𝑒𝑠(𝑏)|𝑆(𝑃𝑠)] , 𝐸𝜋 [𝑒𝑒𝑠(𝑎)|𝑆(𝑃𝑠)]}. (10)

Therefore, if 𝐸𝜋 [𝜏𝑒𝑒(𝑠)|𝑆(𝑃𝑠)] > 0, then 𝐸𝜋 [𝑒𝑒𝑠(𝑏)|𝑆(𝑃𝑠)] > 𝐸𝜋 [𝑒𝑒𝑠(𝑎)|𝑆(𝑃𝑠)]
and Equation 10 implies that 𝛿𝐵(𝑃𝑠) = 1. On the other hand, if
𝐸𝜋 [𝜏𝑒𝑒(𝑠)|𝑆(𝑃𝑠)] ≤ 0, then 𝐸𝜋 [𝑒𝑒𝑠(𝑏)|𝑆(𝑃𝑠)] ≤ 𝐸𝜋 [𝑒𝑒𝑠(𝑎)|𝑆(𝑃𝑠)] and
Equation 10, together with our tie-breaking rule, implies that 𝛿𝐵(𝑃𝑠) = 0.
Now, consider the solution to the maximin decision problem.

Since 𝑠𝑤 ∈ 𝑆(𝑃𝑠), and 𝑠𝑤 is a worst state for both treatments, the problem
amounts to maximizing

𝑒𝑒𝑠𝑤(𝛿(𝑃𝑠)) = 𝑓−1 [𝛿(𝑃𝑠)𝑓(𝑒𝑒𝑠𝑤(𝑏)) + (1 − 𝛿(𝑃𝑠))𝑓(𝑒𝑒𝑠𝑤(𝑎))] ,

which is equivalent to maximizing 𝑓(𝑒𝑒𝑠𝑤(𝑎)) + 𝛿(𝑃𝑠) (𝑓(𝑒𝑒𝑠𝑤(𝑏)) − 𝑓(𝑒𝑒𝑠𝑤(𝑎))).
Therefore, if 𝑒𝑒𝑠𝑤(𝑏) > 𝑒𝑒𝑠𝑤(𝑎) then 𝑓(𝑒𝑒𝑠𝑤(𝑏))−𝑓(𝑒𝑒𝑠𝑤(𝑎)) > 0 and 𝛿𝑀(𝑃𝑠) = 1.
On the other hand, if 𝑒𝑒𝑠𝑤(𝑏) ≤ 𝑒𝑒𝑠𝑤(𝑎) then 𝑓(𝑒𝑒𝑠𝑤(𝑏)) − 𝑓(𝑒𝑒𝑠𝑤(𝑎)) ≤ 0 and
this fact, together with our tie-breaking rule, implies that 𝛿𝑀(𝑃𝑠) = 0.
Last, consider the solution to the minimax regret decision problem.

Consider states 𝑠′ ∈ 𝑆(𝑃𝑠) such that 𝑒𝑒𝑠′(𝑎) > 𝑒𝑒𝑠′(𝑏). Let 𝑅𝑎(𝛿, 𝑠′) ∶=
𝑒𝑒𝑠′(𝑎) − 𝑒𝑒𝑠′(𝛿) Notice that 𝑅𝑎(𝛿, 𝑠′) is strictly increasing in 𝛿, 𝑅𝑎(0, 𝑠′) = 0
and 𝑅𝑎(1, 𝑠′) = 𝑒𝑒𝑠′(𝑎) − 𝑒𝑒𝑠′(𝑏) > 0. Notice also that, for fixed 𝛿, 𝑅𝑎(𝛿, 𝑠′) is
greatest when 𝑠′ = 𝑠𝑎.

Now consider states 𝑠″ ∈ 𝑆(𝑃𝑠) such that 𝑒𝑒𝑠″(𝑏) > 𝑒𝑒𝑠″(𝑎). Let 𝑅𝑏(𝛿, 𝑠″) ∶=
𝑒𝑒𝑠″(𝑏) − 𝑒𝑒𝑠″(𝛿). Notice that 𝑅𝑏(𝛿, 𝑠″) is strictly decreasing in 𝛿, 𝑅𝑏(0, 𝑠″) =
𝑒𝑒𝑠″(𝑏) − 𝑒𝑒𝑠″(𝑎) > 0 and 𝑅𝑏(1, 𝑠″) = 0. Notice also that, for fixed 𝛿, 𝑅𝑏(𝛿, 𝑠″)
is greatest when 𝑠″ = 𝑠𝑏.

The objective function to be minimized can therefore be written as
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max
𝑠∈{𝑠𝑎,𝑠𝑏}

[max{𝑒𝑒𝑠(𝑎), 𝑒𝑒𝑠(𝑏)} − 𝑒𝑒𝑠(𝛿(𝑃𝑠))]

which is continuous in 𝛿 and therefore attains a minimum in the interval [0,1].

Now consider the function 𝐻(𝛿) = 𝑅𝑏(𝛿, 𝑠𝑏) − 𝑅𝑎(𝛿, 𝑠𝑎). It readily follows that
that 𝐻(0) > 0 and 𝐻(1) < 0. Since 𝐻 is continuous, there is 𝛿𝑅(𝑃𝑠) ∈ (0, 1)
such that 𝐻(𝛿𝑅(𝑃𝑠)) = 0.
Given all this, notice that 𝛿 < 𝛿𝑅(𝑃𝑠) cannot be minimax regret optimal, since
in this case worst regret is given by 𝑅𝑏(𝛿, 𝑠𝑏) > 0, which can be lowered by
slightly increasing 𝛿, given that 𝑅𝑏(𝛿, 𝑠𝑏) is strictly decreasing. Similarly, notice
that 𝛿 > 𝛿𝑅(𝑃𝑠) cannot be minimax regret optimal, since in this case worst
regret is given by 𝑅𝑎(𝛿, 𝑠𝑎) > 0, which can be lowered by slightly decreasing 𝛿,
given that 𝑅𝑎(𝛿, 𝑠𝑎) is strictly increasing. Therefore, by the definition of 𝐻(𝛿),
𝛿𝑅(𝑃𝑠) such that

𝑒𝑒𝑠𝑎(𝑎) − 𝑒𝑒𝑠𝑎(𝛿𝑅(𝑃𝑠)) = 𝑒𝑒𝑠𝑏(𝑏) − 𝑒𝑒𝑠𝑏(𝛿𝑅(𝑃𝑠)).

is minimax regret optimal, which is what we wanted to show.

7.2 Proof of Proposition 3.1
Assume the 𝐼𝑁 evaluator accepts the innovation. Then, from Manski (2004),
p. 1228, we know that 𝐸𝜋[𝑝(𝑏)] > 𝑝(𝑎) and 𝛿𝑖𝑛 = 1. We want to show that
𝐸𝜋[𝑓−1(𝑝𝑠(𝑏))] > 𝐸𝜋[𝑓−1(𝑝(𝑎) + 𝛿 ⋅ (𝑝𝑠(𝑏) − 𝑝(𝑎)))] for 𝛿 ∈ [0, 1). To see this,
notice first that, for 𝛿 = 0, we have 𝐸𝜋[𝑓−1(𝑝(𝑎))] < 𝐸𝜋[𝑓−1(𝑝𝑠(𝑏))], which is
true because 𝐸𝜋[𝑝𝑠(𝑏)] > 𝑝(𝑎) and 𝑓−1 is strictly increasing. Now, since 𝑓−1 is
strictly convex, for each 𝑠 ∈ 𝑆 and 𝛿 ∈ (0, 1):

𝑓−1(𝛿 ⋅ 𝑝𝑠(𝑏) + (1 − 𝛿) ⋅ 𝑝(𝑎)) < 𝛿 ⋅ 𝑓−1(𝑝𝑠(𝑏)) + (1 − 𝛿) ⋅ 𝑓−1(𝑝(𝑎)).

Take the expectation of both sides:

𝐸𝜋[𝑓−1(𝑝(𝑎) + 𝛿 ⋅ (𝑝𝑠(𝑏) − 𝑝(𝑎)))] < 𝐸𝜋[𝛿 ⋅ 𝑓−1(𝑝𝑠(𝑏)) + (1 − 𝛿) ⋅ 𝑓−1(𝑝(𝑎))],

and notice that

𝐸𝜋[𝛿 ⋅ 𝑓−1(𝑝𝑠(𝑏)) + (1 − 𝛿) ⋅ 𝑓−1(𝑝(𝑎))] = 𝛿 ⋅ 𝐸𝜋[𝑓−1(𝑝𝑠(𝑏))] + (1 − 𝛿) ⋅ 𝑓−1(𝑝(𝑎)),

which means that

𝐸𝜋[𝑓−1(𝑝(𝑎) + 𝛿 ⋅ (𝑝𝑠(𝑏) − 𝑝(𝑎)))] < 𝛿 ⋅ 𝐸𝜋[𝑓−1(𝑝𝑠(𝑏))] + (1 − 𝛿) ⋅ 𝑓−1(𝑝(𝑎)).
(11)
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Since 𝐸𝜋[𝑝𝑠(𝑏)] > 𝑝(𝑎), we obtain that 𝑓−1(𝐸𝜋[𝑝𝑠(𝑏)]) > 𝑓−1(𝑝(𝑎)). Then, by
Jensen’s inequality,

𝐸𝜋[𝑓−1(𝑝𝑠(𝑏))] > 𝑓−1(𝐸𝜋[𝑝𝑠(𝑏)]) > 𝑓−1(𝑝(𝑎)) (12)

Combining Equation 11 and Equation 12, we obtain

𝐸𝜋[𝑓−1(𝑝(𝑎) + 𝛿 ⋅ (𝑝𝑠(𝑏) − 𝑝(𝑎)))] <
𝛿 ⋅ 𝐸𝜋[𝑓−1(𝑝𝑠(𝑏))] + (1 − 𝛿) ⋅ 𝐸𝜋[𝑓−1(𝑝𝑠(𝑏))] = 𝐸𝜋[𝑓−1(𝑝𝑠(𝑏))],

Therefore, we have shown that 𝐸𝜋[𝑓−1(𝑝𝑠(𝑏))] > 𝐸𝜋[𝑓−1(𝑝(𝑎)+𝛿⋅(𝑝𝑠(𝑏)−𝑝(𝑎)))]
for all 𝛿 ∈ [0, 1), which completes the proof.

7.3 Proof of Proposition 3.2
The solution to the 𝐼𝑁 minimax regret problem is: 𝛿∗

𝑖𝑛 = 1 − 𝑝(𝑎). (Stoye
(2009), p. 73). The solution to the 𝐼𝐴 minimax regret problem is 𝛿∗

𝑖𝑎 such that

̄𝑝 − 𝑓−1(𝑝(𝑎) + (1 − 𝑝(𝑎))𝛿∗
𝑖𝑎) = 𝑓−1(𝑝(𝑎)) − 𝑓−1(𝑝(𝑎)(1 − 𝛿∗

𝑖𝑎)) (13)

for all 𝑝(𝑎) ∈ (0, 1).
Notice that 𝛿 = 0 cannot be the solution, since

̄𝑝 − 𝑓−1(𝑝(𝑎)) > 𝑓−1(𝑝(𝑎)) − 𝑓−1(𝑝(𝑎)).

Similarly, 𝛿 = 1 cannot be the solution since

0 = ̄𝑝 − 𝑓−1(1) < 𝑓−1(𝑝(𝑎)) − 𝑓−1(0) = 𝑓−1(𝑝(𝑎)) − 𝑝

Therefore 𝛿∗
𝑖𝑎 ∈ (0, 1).

Consider the following function of two variables:

𝑔(𝑦, 𝑏) = 𝑓−1(𝑦 + 𝑏) − 𝑓−1(𝑦), 𝑏 > 0, 𝑦 ∈ (0, 1).

Because 𝑓 is strictly increasing and strictly concave, the derivatives of 𝑔 with
respect to both 𝑦 and 𝑏 are positive for 𝑏 > 0 and 𝑦 ∈ (0, 1):

𝑔′
𝑏 = 𝑓−1′(𝑦 + 𝑏) > 0,

𝑔′
𝑦 = 𝑓−1′(𝑦 + 𝑏) − 𝑓−1′(𝑦) > 0.
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Now consider a level curve in the (𝑦, 𝑏) plane on which the function 𝑔 is constant:

𝑔(𝑦, 𝑏) = const.

Differentiating, we get:

𝑓 ′
𝑦 𝑑𝑦 + 𝑓 ′

𝑏 𝑑𝑏 = 0.

From the above equations, on the level curve:

𝑑𝑦
𝑑𝑏 < 0.

This implies:

𝑔(𝑦1, 𝑏1) = 𝑔(𝑦2, 𝑏2) and 𝑦1 < 𝑦2 ⇒ 𝑏1 > 𝑏2.

Now, let:

𝑦1 = 𝑎 > 𝑦2 = 𝑎(1 − 𝛿∗
𝑖𝑎), 𝑏1 = 1 − 𝑎, 𝑏2 = 𝛿∗

𝑖𝑎.

From these equations:

1 − 𝑎 < 𝛿∗
𝑖𝑎.

7.4 Proof of Theorem 5.1
Below I follow the argument and presentation in Hirano and Porter (2020),
pp. 333-334, adapted to the present setting. Assume that the sequence of ex-
periments {𝑃 𝑡

𝑠 , 𝑠 ∈ 𝑆} satisfies DQM′ at 𝑠0 and that the sequence of statistical
treatment rules 𝛿𝑡 in the experiments {𝑃 𝑡

𝑠 , 𝑠 ∈ 𝑆} satisfies C. Under these as-
sumptions, we know from Proposition 3.1 in Hirano and Porter (2009) that there
is a statistical treatment rule 𝛿 ∶ ℝ𝐽 → [0, 1] such that

lim
𝑡→∞

𝐸𝑠0+ ℎ√
𝑡

[𝛿𝑡(𝑍𝑡)] = ∫ 𝛿(𝜉)𝑑𝑁(𝜉|ℎ, 𝐼−1
0 )

for all ℎ ∈ ℝ𝐽 , where 𝑁(𝜉|ℎ, 𝐼−1
0 ), a Gaussian distribution with mean ℎ and

variance 𝐼−1
0 , is the limit experiment for the original problem. In this limit

experiment, one observes a single draw from 𝑍 ∼ 𝑁(ℎ, 𝐼−1
0 ) and makes decisions

based on this draw. Since 𝜏𝑒𝑒(𝑠0) = 0, it follows that
√

𝑡 𝜏𝑒𝑒 (𝑠0 + ℎ√
𝑡 ) →

∇𝜏𝑒𝑒(𝑠0)′ ⋅ ℎ as 𝑡 → ∞. Hirano and Porter (2009) (pp. 1691 and 1693) show
that the solutions to the Bayesian and the minimax statistical decision problems
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in the limit experiment are the same and are based on the known linear function
∇𝜏𝑒𝑒(𝑠0)′ ⋅ 𝑍 of the estimator 𝑍 of ℎ. In particular, the solution, 𝛿∗, to both
problems in the limit experiment is given by:

𝛿∗(𝑍) = 1 (∇𝜏𝑒𝑒(𝑠0)′ ⋅ 𝑍 > 0) .

If one also assumes that the estimator ̂𝑠𝑡 of 𝑠 satisfies h-BRE, the feasible
statistical treatment rule

𝛿∗
𝑡 (𝑍𝑡) = 1 (𝜏𝑒𝑒( ̂𝑠𝑡) > 0)

will have limiting distributions that match 1 (∇𝜏𝑒𝑒(𝑠0)′ ⋅ 𝑍 > 0) (Hirano and
Porter (2009), p. 1692). Theorem 3.5 in Hirano and Porter (2009) then shows
that 1 (𝜏𝑒𝑒( ̂𝑠𝑡) > 0) is asypmtotically minimax regret optimal. If, in addition,
one assumes that the prior measure 𝜋 on 𝑆 satisfies L, Theorem 3.2 in Hirano
and Porter (2009) shows that 1 (𝜏𝑒𝑒( ̂𝑠𝑡) > 0), is asymptotically Bayes optimal
as well.

References
Adler, Matthew D. 2022. “Theory of Prioritarianism.” In Prioritarianism in

Practice, edited by Matthew D. Adler and Ole F. Norheim. Cambridge,
United Kingdom ; New York, NY: Cambridge University Press.

Athey, Susan, and Stefan Wager. 2021. “Policy Learning With Observational
Data.” Econometrica 89 (1): 133–61. https://doi.org/10.3982/ECTA15732.

Atkinson, Anthony B. 1970. “On the Measurement of Inequality.” Journal
of Economic Theory 2 (3): 244–63. https://doi.org/10.1016/0022-0531(70)
90039-6.

Beygelzimer, Alina, and John Langford. 2009. “The Offset Tree for Learning
with Partial Labels.” In Proceedings of the 15th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, 129–38. Paris France:
ACM. https://doi.org/10.1145/1557019.1557040.

Blackorby, Charles, and David Donaldson. 1978. “Measures of Relative Equality
and Their Meaning in Terms of Social Welfare.” Journal of Economic Theory
18 (1): 59–80. https://doi.org/10.1016/0022-0531(78)90042-X.

Chen, Xuan, and Carlos A. Flores. 2015. “Bounds on Treatment Effects in
the Presence of Sample Selection and Noncompliance: The Wage Effects
of Job Corps.” Journal of Business & Economic Statistics 33 (4): 523–40.
https://www.jstor.org/stable/43701561.

Dehejia, Rajeev H. 2005. “Program Evaluation as a Decision Problem.” Journal
of Econometrics 125 (1-2): 141–73. https://doi.org/10.1016/j.jeconom.2004.
04.006.

Dudík, Miroslav, John Langford, and Lihong Li. 2011. “Doubly Robust Pol-
icy Evaluation and Learning.” In Proceedings of the 28th International

27

https://doi.org/10.3982/ECTA15732
https://doi.org/10.1016/0022-0531(70)90039-6
https://doi.org/10.1016/0022-0531(70)90039-6
https://doi.org/10.1145/1557019.1557040
https://doi.org/10.1016/0022-0531(78)90042-X
https://www.jstor.org/stable/43701561
https://doi.org/10.1016/j.jeconom.2004.04.006
https://doi.org/10.1016/j.jeconom.2004.04.006


Conference on International Conference on Machine Learning, 1097–1104.
ICML’11. Madison, WI, USA: Omnipress.

Fleurbaey, Marc. 2010. “Assessing Risky Social Situations.” Journal of Political
Economy 118 (4): 649–80. https://doi.org/10.1086/656513.

Fleurbaey, Marc, and Eduardo Zambrano. 2024. “Protected Income and In-
equality Aversion.” arXiv. https://doi.org/10.48550/arXiv.2408.04814.

Flores, Carlos, Michelle Kairy, and Eduardo Zambrano. 2024. “Egalitarian
Equivalent Treatment Effect Estimation.”

Hirano, Keisuke, and Jack Porter. 2009. “Asymptotics for Statistical Treat-
ment Rules.” Econometrica 77 (5): 1683–1701. https://doi.org/10.3982/
ECTA6630.

Hirano, Keisuke, and Jack R. Porter. 2020. “Asymptotic Analysis of Statistical
Decision Rules in Econometrics*.” In Handbook of Econometrics, edited
by Steven N. Durlauf, Lars Peter Hansen, James J. Heckman, and Rosa
L. Matzkin, 7:283–354. Handbook of Econometrics, Volume 7A. Elsevier.
https://doi.org/10.1016/bs.hoe.2020.09.001.

Horowitz, Joel L., and Charles F. Manski. 2000. “Nonparametric Analysis
of Randomized Experiments with Missing Covariate and Outcome Data.”
Journal of the American Statistical Association 95 (449): 77–84. https://
doi.org/10.2307/2669526.

Jiang, Nan, and Lihong Li. 2016. “Doubly Robust Off-Policy Value Evalua-
tion for Reinforcement Learning.” In Proceedings of The 33rd International
Conference on Machine Learning, 652–61. PMLR. https://proceedings.mlr.
press/v48/jiang16.html.

Kallus, Nathan, and Angela Zhou. 2018. “Policy Evaluation and Optimization
with Continuous Treatments.” arXiv. https://doi.org/10.48550/arXiv.1802.
06037.

Kitagawa, Toru, Sokbae Lee, and Chen Qiu. 2024. “Treatment Choice with
Nonlinear Regret.” arXiv. https://doi.org/10.48550/arXiv.2205.08586.

Kitagawa, Toru, and Aleksey Tetenov. 2018. “Who Should Be Treated? Empir-
ical Welfare Maximization Methods for Treatment Choice.” Econometrica
86 (2): 591–616. https://doi.org/10.3982/ECTA13288.

———. 2021. “Equality-Minded Treatment Choice.” Journal of Business &
Economic Statistics 39 (2): 561–74. https://doi.org/10.1080/07350015.2019.
1688664.

Le Cam, Lucien. 2012. Asymptotic Methods in Statistical Decision Theory.
Springer Science & Business Media.

Lee, David S. 2009. “Training, Wages, and Sample Selection: Estimating Sharp
Bounds on Treatment Effects.” The Review of Economic Studies 76 (3):
1071–1102. https://www.jstor.org/stable/40247633.

Li, Lihong, Wei Chu, John Langford, Taesup Moon, and Xuanhui Wang. 2012.
“An Unbiased Offline Evaluation of Contextual Bandit Algorithms with Gen-
eralized Linear Models.” In Proceedings of the Workshop on On-Line Trading
of Exploration and Exploitation 2, 19–36. JMLR Workshop; Conference Pro-
ceedings. https://proceedings.mlr.press/v26/li12a.html.

Luedtke, Alexander R., and Mark J. van der Laan. 2016. “Statistical Inference

28

https://doi.org/10.1086/656513
https://doi.org/10.48550/arXiv.2408.04814
https://doi.org/10.3982/ECTA6630
https://doi.org/10.3982/ECTA6630
https://doi.org/10.1016/bs.hoe.2020.09.001
https://doi.org/10.2307/2669526
https://doi.org/10.2307/2669526
https://proceedings.mlr.press/v48/jiang16.html
https://proceedings.mlr.press/v48/jiang16.html
https://doi.org/10.48550/arXiv.1802.06037
https://doi.org/10.48550/arXiv.1802.06037
https://doi.org/10.48550/arXiv.2205.08586
https://doi.org/10.3982/ECTA13288
https://doi.org/10.1080/07350015.2019.1688664
https://doi.org/10.1080/07350015.2019.1688664
https://www.jstor.org/stable/40247633
https://proceedings.mlr.press/v26/li12a.html


for the Mean Outcome Under a Possibly Non-Unique Optimal Treatment
Strategy.” The Annals of Statistics 44 (2): 713–42. https://www.jstor.org/
stable/43818626.

Manski, Charles F. 2000. “Identification Problems and Decisions Under Am-
biguity: Empirical Analysis of Treatment Response and Normative Analy-
sis of Treatment Choice.” Journal of Econometrics 95 (2): 415–42. https:
//doi.org/10.1016/S0304-4076(99)00045-7.

———. 2004. “Statistical Treatment Rules for Heterogeneous Populations.”
Econometrica 72 (4): 1221–46. https://doi.org/10.1111/j.1468-0262.2004.
00530.x.

———. 2005. Social Choice with Partial Knowledge of Treatment Response.
Econometric Institute Lectures. Princeton: Princeton University Press.

———. 2007a. Identification for Prediction and Decision. Cambridge, Mass:
Harvard University Press.

———. 2007b. “Minimax-Regret Treatment Choice with Missing Outcome
Data.” Journal of Econometrics, Endogeneity, instruments and identifica-
tion, 139 (1): 105–15. https://doi.org/10.1016/j.jeconom.2006.06.006.

———. 2019. “Treatment Choice With Trial Data: Statistical Decision Theory
Should Supplant Hypothesis Testing.” The American Statistician 73 (sup1):
296–304. https://doi.org/10.1080/00031305.2018.1513377.

———. 2024. “IDENTIFICATION AND STATISTICAL DECISION
THEORY.” Econometric Theory, May, 1–17. https://doi.org/10.1017/
s0266466624000197.

Manski, Charles F., and Aleksey Tetenov. 2016. “Sufficient Trial Size to Inform
Clinical Practice.” Proceedings of the National Academy of Sciences 113 (38):
10518–23. https://doi.org/10.1073/pnas.1612174113.

Meager, Rachael. 2019. “Understanding the Average Impact of Microcredit
Expansions: A Bayesian Hierarchical Analysis of Seven Randomized Exper-
iments.” American Economic Journal: Applied Economics 11 (1): 57–91.
https://doi.org/10.1257/app.20170299.

———. 2022. “Aggregating Distributional Treatment Effects: A Bayesian Hier-
archical Analysis of the Microcredit Literature.” American Economic Review
112 (6): 1818–47. https://doi.org/10.1257/aer.20181811.

Qian, Min, and Susan A. Murphy. 2011. “Performance Guarantees for Indi-
vidualized Treatment Rules.” The Annals of Statistics 39 (2): 1180–210.
https://www.jstor.org/stable/29783670.

Schlag, Karl H. 2006. “ELEVEN - Tests Needed for a Recommendation.” Work-
ing {Paper}. European University Institute. https://cadmus.eui.eu/handle/
1814/3937.

Schochet, Peter Z, John Burghardt, and Sheena McConnell. 2008. “Does Job
Corps Work? Impact Findings from the National Job Corps Study.” Amer-
ican Economic Review 98 (5): 1864–86. https://doi.org/10.1257/aer.98.5.
1864.

Semenova, Vira. 2023. “Generalized Lee Bounds.” arXiv. https://doi.org/10.
48550/arXiv.2008.12720.

Stoye, Jörg. 2009. “Minimax Regret Treatment Choice with Finite Samples.”

29

https://www.jstor.org/stable/43818626
https://www.jstor.org/stable/43818626
https://doi.org/10.1016/S0304-4076(99)00045-7
https://doi.org/10.1016/S0304-4076(99)00045-7
https://doi.org/10.1111/j.1468-0262.2004.00530.x
https://doi.org/10.1111/j.1468-0262.2004.00530.x
https://doi.org/10.1016/j.jeconom.2006.06.006
https://doi.org/10.1080/00031305.2018.1513377
https://doi.org/10.1017/s0266466624000197
https://doi.org/10.1017/s0266466624000197
https://doi.org/10.1073/pnas.1612174113
https://doi.org/10.1257/app.20170299
https://doi.org/10.1257/aer.20181811
https://www.jstor.org/stable/29783670
https://cadmus.eui.eu/handle/1814/3937
https://cadmus.eui.eu/handle/1814/3937
https://doi.org/10.1257/aer.98.5.1864
https://doi.org/10.1257/aer.98.5.1864
https://doi.org/10.48550/arXiv.2008.12720
https://doi.org/10.48550/arXiv.2008.12720


Journal of Econometrics 151 (1): 70–81. https://doi.org/10.1016/j.jeconom.
2009.02.013.

———. 2011. “Statistical Decisions Under Ambiguity.” Theory and Decision
70 (2): 129–48. https://doi.org/10.1007/s11238-010-9227-2.

———. 2012. “Minimax Regret Treatment Choice with Covariates or with
Limited Validity of Experiments.” Journal of Econometrics, Annals Issue on
“Identification and Decisions,” in Honor of Chuck Manski’s 60th Birthday,
166 (1): 138–56. https://doi.org/10.1016/j.jeconom.2011.06.012.

Strehl, Alex, John Langford, Sham Kakade, and Lihong Li. 2010. “Learning
from Logged Implicit Exploration Data.” arXiv. https://doi.org/10.48550/
arXiv.1003.0120.

Swaminathan, Adith, and Thorsten Joachims. 2015. “Counterfactual Risk
Minimization: Learning from Logged Bandit Feedback.” arXiv. https:
//doi.org/10.48550/arXiv.1502.02362.

Tetenov, Aleksey. 2012. “Statistical Treatment Choice Based on Asymmetric
Minimax Regret Criteria.” Journal of Econometrics, Annals Issue on “Iden-
tification and Decisions,” in Honor of Chuck Manski’s 60th Birthday, 166
(1): 157–65. https://doi.org/10.1016/j.jeconom.2011.06.013.

Thomas, Philip, and Emma Brunskill. 2016. “Data-Efficient Off-Policy Policy
Evaluation for Reinforcement Learning.” In Proceedings of The 33rd Inter-
national Conference on Machine Learning, edited by Maria Florina Balcan
and Kilian Q. Weinberger, 48:2139–48. Proceedings of Machine Learning Re-
search. New York, New York, USA: PMLR. https://proceedings.mlr.press/
v48/thomasa16.html.

Van der Vaart, A. W. 1998. Asymptotic Statistics. Cambridge Series in Sta-
tistical and Probabilistic Mathematics. Cambridge: Cambridge University
Press. https://doi.org/10.1017/CBO9780511802256.

Wald, Abraham. 1939. “Contributions to the Theory of Statistical Estimation
and Testing Hypotheses.” The Annals of Mathematical Statistics 10 (4):
299–326. https://doi.org/10.1214/aoms/1177732144.

———. 1945. “Statistical Decision Functions Which Minimize the Maximum
Risk.” The Annals of Mathematics 46 (2): 265. https://doi.org/10.2307/
1969022.

———. 1971. Statistical Decision Functions. 2d ed. Bronx, N.Y: Chelsea Pub.
Co.

Zambrano, Eduardo. 2024. “Social Preferences Under Uncertainty and Ambi-
guity.”

Zhang, Baqun, Anastasios A. Tsiatis, Marie Davidian, Min Zhang, and Eric
Laber. 2012. “Estimating Optimal Treatment Regimes from a Classification
Perspective.” Stat 1 (1): 103–14. https://doi.org/10.1002/sta.411.

Zhao, Yingqi, Donglin Zeng, A. John Rush, and Michael R. Kosorok. 2012. “Es-
timating Individualized Treatment Rules Using Outcome Weighted Learn-
ing.” Journal of the American Statistical Association 107 (499): 1106–18.
https://www.jstor.org/stable/23427417.

30

https://doi.org/10.1016/j.jeconom.2009.02.013
https://doi.org/10.1016/j.jeconom.2009.02.013
https://doi.org/10.1007/s11238-010-9227-2
https://doi.org/10.1016/j.jeconom.2011.06.012
https://doi.org/10.48550/arXiv.1003.0120
https://doi.org/10.48550/arXiv.1003.0120
https://doi.org/10.48550/arXiv.1502.02362
https://doi.org/10.48550/arXiv.1502.02362
https://doi.org/10.1016/j.jeconom.2011.06.013
https://proceedings.mlr.press/v48/thomasa16.html
https://proceedings.mlr.press/v48/thomasa16.html
https://doi.org/10.1017/CBO9780511802256
https://doi.org/10.1214/aoms/1177732144
https://doi.org/10.2307/1969022
https://doi.org/10.2307/1969022
https://doi.org/10.1002/sta.411
https://www.jstor.org/stable/23427417

	Introduction
	Preliminaries
	Illustration

	Egalitarian Equivalent Optimal Statistical Decisions
	The Role of Identification
	Point Identification Results
	Partial Identification Results

	Application: The Choice Between a Status Quo Treatment and an Innovation When Outcomes Are Binary under Partial Identification
	The Bayesian Evaluators
	The Minimax Regret Evaluators
	The Maximin Evaluators

	Application: Minimizing Egalitarian Equivalent Regret at JobCorps

	Finite Sample Analysis
	Application: A Bayesian Meta Analysis of the Microcredit Literature

	Large Sample Analysis in the Limit of Experiments Framework
	Application: Microcredits Reexamined

	Summary
	Appendix
	Proof of Theorem 
	Proof of Proposition 
	Proof of Proposition 
	Proof of Theorem 

	References

