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Introduction
• Discontinuous changes in regression surfaces can reveal fundamental insights into underlying problem structure 

• Especially when both location and size of discontinuity are unknown 

• Location: treatment assignment mechanisms, structural breaks, change points… 

• Size: causal effects of treatment (under extra assumptions), magnitude of regime shift, etc. 

• This paper: statistical method for estimating regression surface together with discontinuities in any dimension 

• Statistical reformulation of celebrated Mumford-Shah functional from computer vision  

• No pointwise smoothness assumptions on discontinuity set 

• Segmentation: balances function estimation, denoising, and thresholding 

• Examples:   

• Confidential assignment algorithms: loan/financial aid disbursement (Argyle et al., 2020; Carneiro et al., 2019), school admission (Brunner et al., 2021),  
customer segmentation for marketing (Hartmann et al., 2011), bandit algorithms (Li et. al., 2010) 

• Behavioral discontinuities: tax brackets ("fuzzy" thresholds) (Saez, 2010; Alvero and Xiao, 2023), racial segregation (Card et al., 2008), tipping points 
Hospital Stress Responses (Kuntz et al., 2015)  

• Complex Systems/Tipping Points: Climate Change (Scheffer et al., 2009), Financial Markets (Hansen, 2017)  

• Geographic Discontinuities: Broadcast Signal Penetration (Sonin and Wright, 2022; Kern and Hainmueller, 2009; Olken, 2009), Epidemic Spread (Ambrus 
et al., 2020) 



Existing approaches
• Change point detection: Page (1954), Killick et al. (2012), Porter and Yu (2015), Donoho and Johnstone (1994), Harchaoui et al. (2008). 

• Focus on estimating discontinuity locations, less emphasis on estimating jump sizes. 

• Structural breaks: Andrews (1993), Bai and Perron (2003), Delgado and Hidalgo (2000). 

• Time as a primary input variable — one-dimensional. 

• Extensions to multivariate domains (Park, 2022; Herlands et al., 2018, 2019; Zhu et al., 2014; Madrid Padilla et al, 2022) 

• No statistical results, focus on discontinuity locations 

• Multivariate discontinuities in economics: Cheng (2023), Narita and Yata (2021), Abdulkadiroglu et al. (2022), Cattaneo and Titiunik 
(2022). 

• Regression surfaces with jumps: Qiu and Yandell (1997), Korostelev and Tsybakov (1993), O’Sullivan and Qian (1994), Muller and Song 
(1994), Donoho (1999), Li and Ghosal (2017), Qiu (1998). 

• Multidimensional jump estimation under strong assumptions on discontinuity set. 

• Fused Lasso: Tibshirani et al. (2005), Rinaldo (2009), Harchaoui and Lévy-Leduc (2010). 

• Piecewise constant functions on multivariate domains.



Our contribution
• Statistical convergence results for convex estimator 

• Jointly estimate discontinuity locations and size with regression surface  

• Identification results: identify true jump locations and sizes at limit 

• For general discontinuity set in any dimension 

• Application to internet shutdowns, implemented in PyTorch library
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Regression framework
•  units 

•  potentially multivariate regressor  

•  outcome of interest (can be extended to ) 

• Regression model: 

 

• Goal: estimate regression surface  including location and jump sizes of discontinuity set 

i = 1,…, n

Xi ∈ ℝd

Yi ∈ ℝ ℝd

Yi = f(Xi) + εi, 𝔼[εi |Xi] = 0, εi ∼ i.i.d.

f(x) Sf



Multivariate discontinuities
Definition Let , we say that  is a function of bounded variation in  if the distributional 
derivative  is representable by a finite Radon measure in , i.e. if  

 

for some -valued Radon measure  in . 

Definition Let . Then  is an approximate jump point of  if there exists ,  
such that 

Then we denote the set of jump points of function  as 

u ∈ L1(𝒳) u 𝒳 ⊂ ℝd

Du 𝒳

∫𝒳
u div φdx = −

d

∑
i=1

∫𝒳
φidDiu ∀φi ∈ C1

c (𝒳)

ℝn Du = (D1u, …, Ddu) 𝒳

u ∈ L1
loc(𝒳) x ∈ 𝒳 u a ≠ b ∈ ℝ ν ∈ Sd−1

u Su

Ambrosio, Fusco, Pallara, 2000 



Free Discontinuity Regression via the Mumford-Shah functional
Our statistical version of the Mumford-Shah functional is defined as: 

 

where  is the support of ,   is the density of ,   is its discontinuity set, and  is the Hausdorff measure in 
d-1 dimensions.  

Natural improvement of naive edge detection approaches. Benefits: 

1. one-step denoising + thresholding  

2. imposes boundary regularity using global function information 

3. explicitly estimates the discontinuity set

E(u) = λ ∫𝒳
( f − u)2 fX(x) dx

Regression

+ ∫𝒳\Su

|∇u |2 fX(x) dx

Roughness penalty
away from discontinuity

+ νℋd−1 (Su)
Boundary regularity

 penalty

𝒳 u(x) fX(x) X Su ℋd−1

Mumford & Shah, 1989 



Convexifying the problem
The MS functional is not convex  local solutions and bad artifacts, issue in particular for statistical inference! 

Solution: Convexification via the calibration method (Alberti, Bouchitté, dal Maso 2003; Pock et al 2009) 

Additional convexification: replace     where 

⟹

1u with v ∈ C

C = {v ∈ SBV(𝒳 × ℝ) v : 𝒳 × ℝ → [0,1], lim
t→−∞

v(x, t) = 1, lim
t→+∞

v(x, t) = 0}

E(u) = sup
p∈K ∫𝒳×ℝ

p ⋅ D1u with 1u := 1u(x)>t(x, t)

K = p ∈ C0 (𝒳 × ℝ, ℝd+1) : pt(x, t) ≥
px(x, t)

2

4 fX(x)
− λ fX(x)(t − f(x))2

and ∫
t2

t1

px(x, s)ds ≤ ν

Alberti, Bouchitté & dal Maso, 2003 



(d) Estimated boundary

Convexifying the problem
Example of “functional lifting”

(a) Original image (b) Lifted estimate 

(c) Estimated isosurface 



Convexifying the problem
Example of “functional lifting”



Identification
We prove that we identify both the location of the discontinuity as well as the jump sizes in the limit as  

Assumption 2 (i)   on its support ; (ii)  and bounded almost everywhere; (iii)  

. 

Assumption 3 For any  it holds  for all . Moreover, for any set  with  there exists a 

constant  such that  for all  

Theorem Let Assumptions 2 and 3 hold. Then for fixed  and in the limit as  every sequence of solutions  to the 
optimization problem satisfies  -almost everywhere. Moreover, the jump set  converges in Hausdorff 

distance to the graph   of , i.e. 

This problem complements existing deep results for the classical MS functional (Morini 2001, Richardson 1992), but is more general, because 
we get convergence of the entire graph in Hausdorff distance. Existing results show identification of the discontinuity set . 

λ → + ∞

fX(x) ≥ c > 0 𝒳 f ∈ SBV(𝒳)

∫𝒳
∇f

2
dx + ℋd−1(Sf ) < + ∞

x ∈ Sf ℋd−1 (Sf ∩ Bρ(x)) > 0 ρ > 0 A ⊂ 𝒳 dist(A, Sf ) > 0

0 < L < + ∞ f(x) − f(y) ≤ L |x − y | x, y ∈ A .

ν > 0 λ → + ∞ v*(λ)
lim

λ→+∞
∇v*(λ) = 0 ℒd+1 Jv*(λ)

Γf f

Sf

lim
λ→+∞

dH(Jv*, Γf ) = 0.



Empirical implementation
Random data points on grid. 

Solve this problem using a primal-dual gradient descent-ascent algorithm 
(Chambolle and Pock, 2011).

K̂Nn = p = (px, pt)T ∈ Y : pt(i1, …, id, k) ≥
px(i1, …, id, k)

2

4 ̂fX,Nn(i1, …, id)
− λ ̂fX,Nn(i1, …, id) ( k

S
− ̂fNn(i1, …, id))

2

,
1
N ∑

k1≤k≤k2

px(i1, …, id, k) ≤ ν ,

C̃N = {u ∈ X : v(i1, …, id, k) ∈ [0,1], v(i1, …, id,1) = 1,v(i1, …, id, S) = 0}

min
v∈C̃N

max
p∈K̂Nn

⟨p, DNv⟩N p↑

p↑

x̄k
̂fNn(x̄k) = ∑

i:Xi∈Qk

wiYi

Qk

Yi

̂fX,Nn(x̄k) =
1
nh

n

∑
i

K ( x̄k − Xi

h )



Obtaining the boundary
Existing methods back out the discontinuity set by thresholding the gradient of the optimal : 

.  

How to pick a good  in practice? Hyperparameter selection via a version of Stein’s Unbiased Risk Estimate (SURE), see 
also Lucas et. al. (2023) for classical MS.  

u*

Ju = {(i, j) : |∇u*(i, j) | ≥ ν}

ν



Statistical consistency
We prove consistency via -convergence (dal Maso, 2012).  

Assumption 5: The density  is bounded away from zero on its compact support . The function  is bounded. 

Theorem: Let Assumption 1 hold and let   with    as  .  Then    

          

  -converges in the weak*-topology in probability to   

 

This is the first convergence result for convexified MS and complements recent convergence results in this area: 

Chambolle & Pock (2021), Caroccia et. al. (2020), García-Trillos & Slepcev (2016), Chambolle et.al. (2017) 

Together with compactness criterion (simple) this proves consistency of the minimizer.

Γ

fX 𝒳 f(x) ∈ BV ([0,1]d+1)
N(n) → 0 Nn → + ∞ n → + ∞

̂ENn(v) = sup
p∈K̂Nn

⟨p, DNv⟩N

Γ

E(v) = {supp∈K ∫
[0,1]d+1 p ⋅ Dv if v ∈ C

+∞ else
.



Hyperparameter tuning
• Data-driven choice for : SURE (Stein, 1981) 
• Data-generating process: 

 

• Given an estimator  for , the SURE is, 

 

• Stein’s lemma proves that  is an unbiased estimator of the mean squared error, 

 

• In practice, we compute  using a Monte-Carlo perturbation approach 

, 

which gives an asymptotically unbiased estimator of the divergence. 

• Implemented in parallel in the Python Ray library, currently takes 4-12 hours

θ = (λ, ν)

f̃ = f + ε, ε ∼ N(0,σ2) ∈ ℝn

̂uθ( f̃ ) f

η( ̂uθ( f̃ )) = 1
N

∥ f̃ − ̂uθ( f̃ )∥2 − σ2 + 2σ2 divf ̂uθ( f̃ ) .

̂uθ( f̃ )

MSE( ̂uθ( f )) := 1
N

∥ ̂uθ( f ) − y∥2.

divf ̂uθ( f̃ )

divy {fλ(y)} = lim
ε→0

Eb′ 
b′ T (

fλ (y + εb′ ) − fλ(y)
ε )



Practical implementation 
Details

• Implemented in PyTorch with support for Nvidia (CUDA), Intel, and Apple Silicon GPU acceleration 

• Extensions to R, STATA in progress 

• Benchmark:  

• Nvidia Tesla A100 Tensor Core GPU 

• =90,000;  = 12,750 (25%); S=32 

• Execution time: 69.37 seconds 

• Can be improved by using approximations of the cost function (“sublabel”) (Mollenhoff and Cremers, 
2017) 

N Ngridn



Simulations





Application: Internet Shutdowns

• Various district governments of Rajasthan state, India shut down mobile internet on September 26, 2021 from 6am 
to 6pm to prevent cheating on the Rajasthan Eligibility Exam for Teachers (REET). 

• Mobile network coverage in India is much better than WiFi/wired: major disruption of economic activity 

• WiFi 0.08% of wireless connectivity, wired connection only 3.74% of total internet subscriptions 

• Estimated 80,000 shops closed in Jaipur alone (The Economist, 2021) 

• Mobile payments ubiquitous (UPI), large digital economy, disruption of business operations, rural businesses no wired connection 

• Estimate impact on mobile device signal using mobile device data from Veraset, a mobility data provider 

• 126 million pings in area on day of shutdown 

• 3.8 million unique devices (10% of mobile population) 

• Perfect setting for our estimator: 

• Unknown discontinuity: diffuse area, not all districts that shut down issued official mandate, disconnected at point of contact 

• Multivariate assignment: latitude-longitude 

• Effect on connectivity can serve as first-stage for downstream outcomes, we focus on economic activity



Application: Internet Shutdowns

• Main outcomes:  

  

• Index of total pings inside 5x5 km grid cells, relative to prior month average in same time window 

• Measure economic impact: share of pings inside 40x40 km grid cells that fall in “economic areas” 

• “Economic areas”: commercial or public OSM POI + SafeGraph shops — 108K polygons 

• Idea: use remaining “cached” pings from satellite that get uploaded once internet connection is restored 

• Assumption: disruption of numerator (economic pings) and denominator (total pings) is same 

• 1) economic activity of mobile users with continuous background location is representative: ~67% of 
Android users have it 

• 2) set of apps that cache background location is not skewed: by construction (continuous) + sourced from 
1,000+ mobile apps (SDK)

Pingsi :=
Pingsit0

1
3 ∑t0−1

t=t0−3 Pingsit

,



Application: Internet Shutdowns 
Mobile Signal



Application: Internet Shutdowns 
Mobile signal: treatment Effect Curve

• Average drop of 100% relative to month average 

• Increase in activity in connected areas: COVID rebound 

• Overall: shutdown highly effective at disrupting mobile signal 

• 25% of signal inside shutdown area remains due to satellite caching



Application: Internet Shutdowns



Application: Internet Shutdowns 
Economic Activity: Treatment Effect Curve

• Correlation of at least 0.7 between mobility data and economic 
activity (Dong et. Al. 2017):  

25%+ drop in economic activity 

• 50% higher than highest prevalent estimate!  

• Based on old, single estimate of “digital multiplier” 

• Likely increased drastically since then 

• Digital disruptions can affect non-digitized sections of 
economy as well through its “enabling role” (Cybersecurity and 
Infrastructure Security Agency, n.d.)

• Average effect of 35% of monthly average (0-5% baseline increase)



Conclusion

• Free discontinuity problem is a penalized regression estimation problem with unknown 
discontinuity in multiple dimensions 

• Connection to Mumford-Shah functional, convexified via standard lifting approach 
(calibrations) 

• First mathematical and statistical identification and consistency results 

• Hyperparameter choice via SURE 

• Uncertainty quantification via conformal inference on grid  

• Application to economic effects of internet shutdowns finds much stronger short-term 
effects than existing research 

• Lots of applications in sciences (several applied papers in progress…) 
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