Risk for Price: Using Generalized Demand System for Asset Pricing

Yu Li Shanghai Jiao Tong University

August, 2024

Consumption-CAPM

Introduction • 00000

- Consumption quantity fails to explain asset returns
- Small volatility of consumption v.s. equity premium
- (Mehra and Prescott, 1985; Hansen and Singleton, 1983)
 - empirical: garbage (Savov, 2011), noise (Kroencke, 2017), non-marketable goods (Belo et al, 2021)
- Cross-section: covariance with consumption can't explain the returns
- (Mankiw and Shapiro, 1986)
 - supplementary to nondurable (Yogo, 2006)
- Old puzzle is unsolved

u Li Price-CCAPM August, 2024

Price for Consumption-CAPM

Observation

Introduction

Consumption prices + expenditure ⇒ consumer's utility from basket

Solution

- Detailed price improves measuring stochastic discount factor (SDF)
 - ⇒ Decompose consumer's marginal utility into prices

Yu Li Price-CCAPM August, 2024

New Finding: Price Explains Returns

Use detailed price to describe SDF

Introduction

- ▶ 2 sectors within consumption ⇒ expenditure, prices (goods, services)
- ▶ Estimate consumer's Euler Equation of asset holding
- Smaller pricing error across equity portfolios: $0.71\% \Rightarrow 0.39\%$
 - ▶ Testing assets: size, book-market, profitability, investment, momentum, earning-price

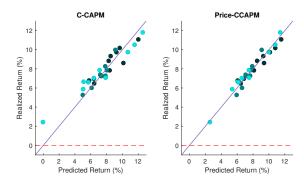


Figure 1: Fitness of Asset Pricing Models

Li Price-CCAPM August, 2024

Solution using Detailed Prices

Theory

Introduction 000000

- Use indirect utility function to describe consumer preference Example:IDU

5/40

- SDF ⇒ prices and expenditure
- Decomposition of SDF is general
- Composition of consumption basket changes with expenditure
 - ⇒ Weights of price in SDF deviate CPI
 - ⇒ Consumption-CAPM cannot describe SDF
 - ⇒ Detailed price improves measuring SDF

Estimation

- Inference implementation is simple
- Flexible application for economy of multiple sectors

Price-CCAPM August, 2024

Estimation Outcome

Introduction

Economy with goods and services, pricing kernel is

$$\begin{split} \mathrm{d}\tilde{m}_{t+1} &\approx -\,b_e \cdot \underbrace{\left(\mathrm{d}e_{t+1} - \mathrm{d}p_{s,t+1}\right)}_{\text{d}\tilde{e}, \text{ Expenditure adjusted by Price of Services}} \\ &- b_g \cdot \omega_{g,t} \cdot \underbrace{\left(\mathrm{d}p_{g,t+1} - \mathrm{d}p_{s,t+1}\right)}_{\text{d}\tilde{p}_g, \text{ Relative Price of Goods}}, \end{split} \tag{1}$$

6/40

- Small risk-aversion coefficient
 - Expenditure has risk price $\hat{b}_e = 28.80$
- Prices contribute to risk premium
 - Price of goods has risk price $\hat{b}_g = -71.29$
- Cross-section of expected returns
 - ▶ High explanation: small MAE 0.39%
 - ► Fama-French 5-Factor Model 0.79%
- Extended estimation of 4 sectors: Food and non-food within goods and services
 - ▶ Smaller risk-aversion $\hat{b}_e = 14.70$.
 - ▶ Model fitness is improved to 0.18%.

Yu Li Price-CCAPM August, 2024

Difference to Literature

Introduction 00000

- C-CAPM with heterogeneous commodities
 - ► (Piazzesi et al., 2007; Dittmar et al., 2020);
 - Durable (Yogo, 2006; Gomes et al., 2009; Belo, 2010; Yang, 2011; Eraker et al., 2016);
 - No suitable quantity index: (Ait-Sahalia et al., 2004; Lochstoer, 2009; Pakoš, 2011)

This paper: (1) accurate measure of SDF using dis-aggregated prices; (2) approximation is robust to multiple families of utility function

- · Asset pricing of commodity price
 - ► Consumer's price: (Lochstoer, 2009: Roussanov et al., 2021):
 - ▶ Other price: (Belo, 2010; Papanikolaou, 2011; Favilukis and Lin, 2016)
- Measuring systematic risk
 - Equity issuance cost shock (Belo et al., 2019), capital share risk (Lettau et al., 2019), firm entry-cost shock (Loualiche et al., 2016), fund flow (Dou et al., 2022)

This paper: impact of shocks over consumer's marginal utility ⇒ summarized by prices

Yu Li Price-CCAPM August, 2024

Guideline

- Introduction
- 2 Theory
- Empirical Examination
 - Description
 - Estimation
 - Comparison
- Explanation
 - Quantity Index
 - Quantities
- Further Application
- 6 Summary

Economy Environment

- \bullet Dynamic endowment economy with stream of consumption $\tilde{C} = \{\tilde{C}_j\}_{j \in \mathcal{J}}$
- Commodity market: sector j has price P_j
- Financial market: risky securities and risk-free bond
- Representative consumer decides
 - ightharpoonup consumption basket \vec{C}_t
 - ightharpoonup risky securities $\vec{\theta}_{t+1}$ and risk-free bond B_{t+1}

Competitive Equilibrium

Li Price-CCAPM August, 2024

Consumer's Preference

 \bullet Indirect utility function $V(\vec{P},E)$ over price \vec{P} and expenditure E is

$$V(\vec{P}, E) = \max_{\vec{C}} \underbrace{u(C_1, C_2, \dots, C_J)}_{\text{direct utility function over quantities}}$$

$$s.t. \quad \sum_{j \in \mathcal{J}} P_j \cdot C_j \le E.$$
(2)

10 / 40

- Impact of price over consumer's utility
 - $\blacksquare \ u(\vec{C}) \overset{\vec{P}}{\Rightarrow} \text{optimal } \vec{C}^* \Rightarrow \text{utility}$
 - $V(\vec{P}, E) \Rightarrow \text{utility}$

ullet Sufficient Statistic: consumption price $ec{P}$ and expenditure E describe consumer's utility.

Poturn to Provious

Yu Li Price-CCAPM August, 2024

Equivalent Problem with Expenditure

ullet Consumer maximizes the life-time utility with consumption basket $ec{C}$

$$\sup_{\tilde{C},\hat{\theta},\tilde{B}} \quad \lim_{T \to \infty} \mathbb{E}[\sum_{t=0}^{T} \beta^t \cdot u(\vec{C}_t)]$$

s.t. Budget Constraint with $\sum_{j \in \mathcal{J}} P_{j,t} \cdot C_{j,t}$ and holding of financial assets $\vec{\theta}_{t+1}, B_{t+1}$, (3)

Other Constraints.

ullet Given commodity price $ec{P}\Rightarrow$ equivalent optimization problem of expenditure E

$$\sup_{\tilde{E},\tilde{\theta},\tilde{B}} \lim_{T \to \infty} \mathbb{E}[\sum_{t=0}^{T} \beta^{t} \cdot V(\vec{P}_{t}, E_{t})]$$
(4)

s.t. Budget Constraint with E_t and holding of financial assets $\vec{\theta}_{t+1}, B_{t+1},$ Other Constraints.

Dynamic Decision

u Li Price-CCAPM August, 2024 11/40

 Theory
 Empirical Examination
 Explanation
 Further Application
 Summary
 Reference

 0000 0000
 00000000
 0000
 000
 00
 00

Euler Equation

Consumer's marginal utility of expenditure equals shadow price of budget constraint.

Definition (SDF)

Define the real stochastic discount factor \tilde{M} as

$$\tilde{M}(\vec{P_t}, E_t) := \underbrace{\mathcal{D}_E V(\vec{P_t}, E_t)}_{\text{Marginal Utility of Expenditure}} \cdot \mathbf{P}_t.$$
 (5)

where P_t is the consumer price index.

- Expected excess return is determined by the covariance to variation in real SDF.
- Given consumer's optimal expenditure decision and asset holding, real total return $\tilde{R}_{k,t+1}$ and $\tilde{R}_{f,t+1}$ of risky security k and risk-free bond in period t+1 satisfy

$$\mathbb{E}[[1 + \log(\frac{\tilde{M}_{t+1}}{\tilde{M}_t})] \cdot \underbrace{(\tilde{R}_{k,t+1} - \tilde{R}_{f,t+1})}_{\text{Excess Return in Security } k} | \mathcal{I}_t] = 0.$$
 (6)

Li Price-CCAPM August, 2024 12/40

Price-Model of Consumption-CAPM

Theorem (Decomposition of SDF)

In the economy with consumption sectors \mathcal{J} , the first-order approximated change in real stochastic discount factor $\mathrm{d}\tilde{m} = \log(\frac{\tilde{M}_{t+1}}{\mathrm{c}\tilde{M}})$ is

$$d\tilde{m} = -\underbrace{b_e}_{\textit{Risk Price of Expenditure}} \cdot d\tilde{e} - \sum_{j \in \mathcal{J}} \underbrace{b_j}_{\textit{Risk Price of Price } P_j} \cdot \omega_j \cdot d\tilde{p}_j + o(h). \tag{7}$$

with high-order term o(h). The risk price vector \vec{b} is

$$b_e = \gamma; \quad b_j = -\gamma + \sum_{i \in \mathcal{J}} \eta_{j,i} - \sum_{k \in \mathcal{J}} \omega_k \cdot \sum_{i \in \mathcal{J}} \eta_{k,i}. \tag{8}$$

Notations

• $d\tilde{p}_i$ is change in price P_i adjusted by P_I , $d\tilde{e}$ for real expenditure.

Li Price-CCAPM August, 2024 13/40

Shares in Consumption Basket

- \bullet Composition of consumption basket: $\omega_j = \frac{P_j \cdot C_j}{E}$, for each sector j
- Share elasticity ⇒ adjustment of shares to prices and expenditure

Lemma

Given consumption sectors n and ℓ , change in the relative share $\mathcal{S}_{n,\ell} = \frac{\omega_n}{\omega_\ell}$ can be decomposed into the price effect and the expenditure effect,

$$ds_{n,\ell} = (1 - \eta_{n,n} + \eta_{\ell,n}) \cdot dp_n - (1 - \eta_{\ell,\ell} + \eta_{n,\ell}) \cdot dp_\ell - \sum_{i \neq n,\ell} (\eta_{n,i} - \eta_{\ell,i}) \cdot dp_i$$

$$+ \underbrace{\sum_{i \in \mathcal{J}} (\eta_{n,i} - \eta_{\ell,i}) \cdot de}_{\text{expenditure effect}} + o(h). \tag{9}$$

The $ds_{n,\ell}$ is the log-growth of relative share between sector n and ℓ . The term o(h) is a higher-order term.

u Li Price-CCAPM August, 2024 14/40

Explanation of Asymmetric Risk Price

- General situation: expenditure changes composition in consumption basket
- Decreased expenditure
 - ⇒ share of necessity commodity in consumption basket goes up
- Asymmetric risk price

$$b_n - b_\ell = \sum_{i \in \mathcal{J}} \eta_{n,i} - \sum_{i \in \mathcal{J}} \eta_{\ell,i}$$
Relative share $\frac{\omega_n}{\omega_\ell}$ w.r.t Expenditure (10)

- High price of necessity commodity
 - ⇒ consumer's marginal utility increases more

Price-CCAPM 15 / 40 August, 2024

Cross-section of Returns

Corollary (Euler Equation with Price)

For security k, the excess return $R_{k,t+1}^e$ satisfies

$$\mathbb{E}_{t}[R_{k,t+1}^{e}] \approx b_{e} \cdot \mathbb{E}_{t} \left[d\tilde{e}_{t+1} \cdot R_{k,t+1}^{e} \right] + \sum_{j \in \mathcal{J}} b_{j} \cdot \omega_{j,t} \cdot \mathbb{E}_{t} \left[d\tilde{p}_{j,t+1} \cdot R_{k,t+1}^{e} \right].$$
 (11)

- Expected excess return of financial assets is determined by the covariance between excess return and consumption prices.
- Risk price \vec{b} determines the contribution of each covariance term.
 - \triangleright Explicitly estimate b_i for price of commodity j.

Yu Li Price-CCAPM August, 2024 16 / 40

Guideline

- Introductio
- 2 Theory
- Empirical Examination
 - Description
 - Estimation
 - Comparison
- Explanation
 - Quantity Index
 - Quantities
- 5 Further Application
- 6 Summary

Yu Li Price-CCAPM August, 2024 17/40

- Economy with goods and services, set of sector is $\mathcal{J} = \{g, s\}$.
- The pricing kernel is approximated as

$$\begin{split} \mathrm{d}\tilde{m}_{t+1} &\approx -\,b_e \cdot \underbrace{\left(\mathrm{d}e_{t+1} - \mathrm{d}p_{s,t+1}\right)}_{\mathrm{d}\tilde{e}, \text{ Expenditure adjusted by Price of Services}} \\ &- b_g \cdot \omega_{g,t} \cdot \underbrace{\left(\mathrm{d}p_{g,t+1} - \mathrm{d}p_{s,t+1}\right)}_{\mathrm{d}\tilde{p}_g, \text{ Relative Price of Goods}}, \end{split} \tag{12}$$

ullet Sample moment of Euler Equation in risky asset k is

$$g_{\mathcal{T},k} = \mathbb{E}_{\mathcal{T}}[R_{k,t+1}^e + d\tilde{m}_{t+1}(\vec{b}) \cdot R_{k,t+1}^e]$$
(13)

• GMM estimates parameters $\vec{b}=(b_e,b_g).$

Li Price-CCAPM August, 2024 18/40

Data Description

- Main Data: NIPA Table 2.3.4, Table 2.3.5, 1964-2019 Annual
- Consumption sectors:
 - ▶ good: food grocery, apparel, other non-durable goods
 - service: food-away, recreation, health care, financial service, and other service
- Price index: price implied by chained quantity index (Fisher Index)
- Financial assets: 30 portfolios sorted by Size, Book-Market, Profitability, Investment, Momentum, Earning-price ratio.

Li Price-CCAPM August, 2024

Time-series Factors in Pricing Kernel

• Relative price of goods has weak correlation to consumption expenditure

Table 1: Descriptive Statistic

Panel (A): Time Series - Statistic				
$egin{array}{l} \mathrm{d} ilde{e} \ (s.e.) \ \mathrm{d} ilde{p}_g \ (s.e.) \end{array}$	Mean(pct) 1.27 (0.21) -1.33 (0.24)	SE(pct) 1.28 (0.13) 1.38 (0.23)	AR(1) 0.36 (0.12) 0.47 (0.13)	
Panel (B): Correlation				
$Corr(z,\mathrm{d} ilde{p}_g) \ (s.e.)$	$\mathrm{d} ilde{e}$ 0.26 (0.18)	dc_{nd} -0.17 (0.17)		

Plot

Yu Li Price-CCAPM August, 2024 20 / 40

Estimation Outcome

Table 2: Estimation of Pricing Kernel

Expenditure b_e 28.80 $[t]$ $[1.95]$			
[t] [1.95]			Risk Price
	Expenditure	b_e	
	Price(Goods)	$egin{array}{c} [t] \ b_g \end{array}$	[1.95] - 71.29
$\begin{bmatrix} t \end{bmatrix} \begin{bmatrix} -2.31 \end{bmatrix}$	i rice(doods)		
MAE(%) 0.39		MAE(%)	0.39
RMSE(%) 0.44		RMSE(%)	0.44
J-pval 91.48		J-pval	91.48

t-stat in bracket.

Asset-pricing equation for expected return

$$\mathbb{E}_{t}[R_{k,t+1}^{e}] \approx b_{e} \cdot \mathbb{E}_{t} \left[d\tilde{e}_{t+1} \cdot R_{k,t+1}^{e} \right] + b_{g} \cdot \omega_{g,t} \cdot \mathbb{E}_{t} \left[d\tilde{p}_{g,t+1} \cdot R_{k,t+1}^{e} \right]. \tag{14}$$

MAE Interpretation

Yu Li Price-CCAPM August, 2024 21 / 40

Other Asset Pricing Models

- CAPM, excess return of market portfolio
- FF-5, Fama-French 5-factor model
- C-ND, C-CAPM with nondurable quantity (index)

$$\mathrm{d}\tilde{m}_{t+1} \approx -b_c \cdot \mathrm{d}c_{nd,t+1}. \tag{15}$$

• C-D, nondurable quantity + durable stock

$$d\tilde{m}_{t+1} \approx -b_{nd} \cdot dc_{nd,t+1} \underbrace{-b_{dur} \cdot dc_{dur,t+1}}_{\text{Quantity Change of Durable}}.$$
 (16)

- P-ND, Price-CCAPM in previous estimation
- P-D, durable stock affects marginal utility of non-durable expenditure,

$$d\tilde{m} \approx -b_e \cdot d\tilde{e} - b_g \cdot \omega_g \cdot d\tilde{p}_g - b_{dur} \cdot dc_{dur}. \tag{17}$$

Durable

Yu Li Price-CCAPM August, 2024 22 / 40

Fitness of Models

• Fitness of model estimation is improved when we use model P-ND.

Table 3: Fitness of Asset Pricing Models

	Traded-I	actors	Quar	itity	Pric	es
	CAPM	FF-5	C-ND	C-D	P-ND	P-D
MAE(%)	1.58	0.79	0.71	0.66	0.39	0.27
RMSE(%)	2.20	1.37	0.87	0.83	0.44	0.36

MAE Simplified Estimation

Yu Li Price-CCAPM August, 2024 23 / 40

Fitness of Models

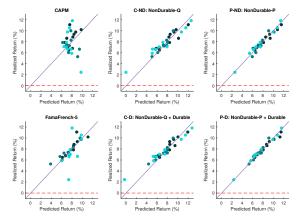


Figure 2: Fitness of Asset Pricing Models

X-axis is Model-Predicted Excess Return. Y-axis is Realized Average Excess Return.

Yu Li Price-CCAPM August, 2024 24 / 40

25 / 40

Robustness Check

- Alternative testing assets
 - ► Size-BM 25
 - ► Industry 30
- Definition of price
 - Share-weighted price index
 - Simple-average price index
- Classification of consumption sector
- Long sample during 1935-2019 Subsample
- Sample including 2021-2022 Covid
- Time-invariant expected growth Simplified Estimation

Price-CCAPM August, 2024

Guideline

- Introduction
- Theory
- Empirical Examination
 - Description
 - Estimation
 - Comparison
- Explanation
 - Quantity Index
 - Quantities
- 5 Further Application
- 6 Summary

Yu Li Price-CCAPM August, 2024 26 / 40

Comparing Quantity and Prices

- Detailed prices help accurately measure the consumer's marginal utility
 - General description of consumer preference
 - Asymmetric risk prices
- Estimation of parameterized consumer preference
 - Quantity index (special case of homothetic preference)
 - Improper weights assumed for detailed prices
 - Quantity of goods and quantity of services (non-homothetic preference)
 - * Stone-Geary Preference has inconsistent point estimate
 - ★ Direct utility function is not tractable

fu Li Price-CCAPM August, 2024

Consumption-CAPM is for Special Situation

Analytical Example: Cobb-Douglas utility function

$$u(C_g, C_s) = \frac{1}{1 - \gamma} \cdot (C_g^{\omega_g} \cdot C_s^{1 - \omega_g})^{1 - \gamma}, \tag{18}$$

• Composite commodity is identical with quantity index,

$$\mathbf{C} = C_g^{\omega_g} \cdot C_s^{1-\omega_g} = \frac{E}{P_g^{\omega_g} \cdot P_s^{1-\omega_g}}.$$
 (19)

Consumption-CAPM using (Tornqvist) quantity index,

$$d\tilde{m} = -\gamma \cdot d\mathbf{c}. \tag{20}$$

• Equivalently a special case,

$$d\tilde{m} = -\gamma \cdot [de - \sum_{j \in \mathcal{J}} \omega_j \cdot dp_j]. \tag{21}$$

Yu Li Price-CCAPM August, 2024 28 / 40

Comparison with Quantity Index

Table 4: Quantity Index

Ī		C-ND	P-ND
	b_c	51.16	-
	[t]	[4.31]	-
	b_e	- 1	28.80
	[t]	-	[1.95]
	b_g	-	-71.29
	[t]	-	[-2.31]
	.	0.74	0.00
	MAE(%)	0.71	0.39
	RMSE(%)	0.87	0.44
	J-pval	96.23	91.48
-			

Size_RM 2F

• Model C-ND with quantity index

$$u(C_{nd}) = \frac{C_{nd}^{1-\gamma}}{1-\gamma}.$$
 (22)

Risk price b_c (risk-aversion γ) is estimated as 51.16.

- Model P-ND with price Risk price b_e (risk-aversion γ) is estimated as 28.80.
- Model C-ND ⇒ P-ND
- Fitness is improved

Comparing Weights Interpretation Seasonality Fisher index

u Li Price-CCAPM August, 2024 29 / 40

Using Quantities to Describe Marginal Utility

- Describe consumer's marginal utility using quantities.
- Example: non-separable preference that generalizes (Ait-Sahalia et al., 2004).

$$u(C_g, C_s) = \frac{1}{1 - \gamma} \cdot (C_g^{\rho g} + C_s^{\rho s})^{\frac{1 - \gamma}{\rho s}}, \tag{23}$$

- \bullet $\rho_q > \rho_s$, larger share of goods in low-income state.
- Marginal utility of services is not a simple linear expression using quantities

$$d\tilde{m}^{s} \approx -\frac{\rho_{g}}{\rho_{s}} \cdot \left[\gamma - (\rho_{s} - 1)\right] \cdot \frac{\frac{\omega_{g}}{\rho_{g}}}{\frac{\omega_{g}}{\rho_{g}} + \frac{\omega_{s}}{\rho_{s}}} \cdot dc_{g} - \left\{\left[\gamma - (\rho_{s} - 1)\right] \cdot \frac{\frac{\omega_{g}}{\rho_{g}}}{\frac{\omega_{g}}{\rho_{g}} + \frac{\omega_{s}}{\rho_{s}}} + \gamma\right\} \cdot dc_{s}.$$
 (24)

Price-CCAPM August, 2024 30 / 40

Estimation using Quantities is Inaccurate

Approximate linear pricing kernel with quantities of Goods & Services

$$d\tilde{m} \approx -b_{c_g} \cdot dc_g - b_{c_s} \cdot dc_s. \tag{25}$$

31 / 40

Inaccurate point estimate in first stage estimation,

Table 5: Quantities

	Risk Price		
	1st-Stage	2nd-Stage	
$egin{array}{c} b_{c_g} \ [t] \ b_{c_s} \ [t] \end{array}$	45.04 [1.09] 6.34 [0.22]	37.22 [5.66] 10.61 [2.74]	
MAE(%) RMSE(%)	0.53 0.65		
J-pval		91.31	

Li Price-CCAPM August, 2024

Stone-Geary Preference

Table 6: Habit Model

	Zero-Hal	oit Sector	
	Good	Service	
$\begin{array}{c} b_{cg} \\ [t] \\ b_{cs} \end{array}$	182.54 [2.56]	33.79	
[t]		[2.70]	
$b_{pg} \\ [t]$	108.92 [1.60]	-13.12 [-0.81]	
	GMM Stats		
MAPE RMSE J-pval	2.91 4.04 95.91	0.53 0.64 95.73	

ullet Zero-Habit in the sector of services, positive habit X_s in the sector of goods

$$u(C_g, C_s) = \frac{[(C_g - X_g)^{\overline{\omega}_g} \cdot C_s^{1 - \overline{\omega}_g}]^{1 - \gamma}}{1 - \gamma}$$
 (26)

· pricing kernel is

$$d\tilde{m} \approx -\gamma \cdot dc_s - (1 - \gamma) \cdot \overline{\omega}_g \cdot (dp_g - dp_s).$$
 (27)

- Inaccurate point estimate of parameters
- Alternative specification

$$u(C_g, C_s) = \frac{\left[C_g^{\overline{\omega}_g} \cdot (C_s - X_s)^{1 - \overline{\omega}_g}\right]^{1 - \gamma}}{1 - \gamma}$$
 (28)

ullet Abnormally large point estimate b_{c_a} fpr γ

ı Li Price-CCAPM August, 2024 32 / 40

Other examples

- Other examples of non-homothetic preference
 - (Muellbauer, 1976): expenditure changes consumption basket when there is price-habit,

$$V(\vec{P}, E) = \frac{1}{1 - \gamma} \cdot \left[\frac{E}{v(\vec{P})} \right]^{1 - \gamma} + \hat{h}(\vec{P}). \tag{29}$$

33 / 40

with $v(\vec{P}) = P_g^{\overline{\omega}g} \cdot P_s^{1-\overline{\omega}g}$ and price-habit $\hat{h}(\vec{P}) = \frac{\xi}{\epsilon} \cdot (\frac{P_g}{P_s})^{\epsilon}$.

▶ (Comin et al., 2021): quantities contribute to utility differently,

$$1 = C_q^{\rho} \cdot u^{-\rho g} + C_s^{\rho} \cdot u^{-\rho s}.$$

utility $u(C_g, C_s)$ is solution to a non-linear equation of quantities, generalized CES.

• Marginal utility of services is not a tractable function over quantities.

/u Li Price-CCAPM August, 2024

Guideline

- Introductio
- Theory
- 3 Empirical Examinatio
 - Description
 - Estimation
 - Comparison
- Explanation
 - Quantity Index
 - Quantities
- 5 Further Application
- 6 Summary

Pricing Kernel in a Four-sector Economy

- Price-CCAPM can be extended for multiple sectors.
 - ▶ Detailed prices better capture the risk exposure across equity assets.
- 4 sectors: food goods, non-food goods, food services, non-food services
 - Product-level data: NIPA Table 2.4.4, 2.4.5.
 - lacktriangle Estimates $(b_{gf},b_{gn},b_{sf},b_e)$ in extended pricing kernel,

$$\begin{split} \mathrm{d}\tilde{m} &\approx -b_{gf} \cdot \omega_{gf} \cdot \underbrace{\left(\mathrm{d}p_{gf} - \mathrm{d}p_{sn}\right) - b_{gn} \cdot \omega_{gn} \cdot \underbrace{\left(\mathrm{d}p_{gn} - \mathrm{d}p_{sn}\right)}_{\text{Non-Food Goods}} \\ &- b_{sf} \cdot \omega_{sf} \cdot \underbrace{\left(\mathrm{d}p_{sf} - \mathrm{d}p_{sn}\right) - b_{e} \cdot \left(\mathrm{d}e - \mathrm{d}p_{sn}\right)}_{\text{Food Services}}. \end{split} \tag{30}$$

with non-food services as the numeraire.

u Li Price-CCAPM August, 2024 35 / 40

Estimation in a Four-sector Economy

Table 7: Detailed Consumption Sectors

		Risk Price
Expenditure	$rac{b_e}{[t]}$	14.70 [1.74]
Prices:		
Food Goods	b_{gf}	-78.10
Non-Food Goods	$egin{array}{c} oxed{[t]} \ b_{gn} \ oxed{[t]} \end{array}$	[-2.60] -88.46 [-2.44]
Food Services	$b_{sf} \ [t]$	302.37 [2.02]
	MAE(%)	0.18
	RMSE(%) J-pval	0.21 88.08

- Estimated risk-aversion is 14.70
 - ▶ Prices ⇒ variation in SDF
- Goods: similar risk price.
- Food goods and services
 - Grocery is necessity.
 - Dining service is luxury.
- Fitness of estimation is improved.

Plot

u Li Price-CCAPM August, 2024 36 / 40

Explanation of Zoo of Anomalies

- Post 1960s: zoo of cross-section anomalies
- Estimation using 114 groups of anomaly portfolios during 1968-2019
- Price-CCAPM provides explanation for most of groups

Table 8: Average Fitness of Asset Pricing Models

	Traded Factor		Quantity		Prices	
	CAPM	Q-5	C-ND	C-D	P-ND	P-D
(Average) MAE(%) (Average) RMSE(%)	2.20 2.74	0.24 0.30	0.73 0.92	0.67 0.86	0.22 0.27	0.21 0.26

u Li Price-CCAPM August, 2024

Guideline

- Introductio
- Theory
- Empirical Examinatio
 - Description
 - Estimation
 - Comparison
- Explanation
 - Quantity Index
 - Quantities
- **5** Further Application
- 6 Summary

Summary

- This paper uses detailed price to describes consumer's marginal utility
 - o decomposition uses general indirect utility function
 - suits for multiple types of consumer preference
- Estimation in an economy of goods and services
 - o new pricing kernel explains the cross-section of expected return
 - o price of goods has negative risk price
 - o strong correlation between equity return and relative price
- Detailed consumption prices help measure SDF
 - theoretical prediction: price of necessity commodity has more negative risk price
 - empirical examination: asymmetric risk prices for different sectors

Yu Li Price-CCAPM August, 2024 39 / 40

Reference

- Yacine Ait-Sahalia, Jonathan A Parker, and Motohiro Yogo. Luxury goods and the equity premium. The Journal of Finance, 59(6):2959–3004, 2004.
 Frederico Belo. Production-based measures of risk for asset pricing. Journal of Monetary Economics, 57(2):146–163, 2010.
- [3] Frederico Belo, Xiaoji Lin, and Fan Yang. External equity financing shocks, financial flows, and asset prices. The Review of Financial Studies, 32(9): 3500–3543. 2019.
- [4] Diego Comin, Danial Lashkari, and Martí Mestieri. Structural change with long-run income and price effects. Econometrica, 89(1):311–374, 2021.
- [5] Robert F Dittmar, Christian Schlag, and Julian Thimme. Non-substitutable consumption growth risk. Available at SSRN 3289249, 2020.
- [6] Winston Wei Dou, Leonid Kogan, and Wei Wu. Common fund flows: Flow hedging and factor pricing. Technical report, National Bureau of Economic Research, 2022.
- [7] Bjørn Eraker, Ivan Shaliastovich, and Wenyu Wang. Durable goods, inflation risk, and equilibrium asset prices. The Review of Financial Studies, 29 (1):193–231, 2016.
- [8] Jack Favilukis and Xiaoji Lin. Does wage rigidity make firms riskier? evidence from long-horizon return predictability. Journal of Monetary Economics, 78:80–95, 2016.
- [9] Joao F Gomes, Leonid Kogan, and Motohiro Yogo. Durability of output and expected stock returns. Journal of Political Economy, 117(5):941–986, 2009.
- [10] Lars Peter Hansen and Kenneth J Singleton. Stochastic consumption, risk aversion, and the temporal behavior of asset returns. Journal of political economy. 91(2):249–265. 1983.
- [11] Tim A Kroencke. Asset pricing without garbage. The Journal of Finance, 72(1):47-98, 2017.
- [12] Martin Lettau, Sydney C Ludvigson, and Sai Ma. Capital share risk in us asset pricing. The Journal of Finance, 74(4):1753–1792, 2019.
- [13] Lars A Lochstoer. Expected returns and the business cycle: Heterogeneous goods and time-varying risk aversion. The Review of Financial Studies, 22 (12):5251–5294, 2009.
- [14] Erik Loualiche et al. Asset pricing with entry and imperfect competition. Journal of Finance, forthcoming, 2016.
- [15] N Gregory Mankiw and Matthew D Shapiro. Risk and return: Consumption beta versus market beta. The Review of Economics and Statistics, pages 452–459, 1986.
- [16] Rajnish Mehra and Edward C Prescott. The equity premium: A puzzle. Journal of monetary Economics, 15(2):145-161, 1985.
- [17] John Muellbauer. Community preferences and the representative consumer. Econometrica: Journal of the Econometric Society, pages 979–999, 1976.
- [18] Michal Pakoš. Estimating intertemporal and intratemporal substitutions when both income and substitution effects are present: the role of durable goods. Journal of Business & Economic Statistics, 29(3):439–454, 2011.
- [19] Dimitris Papanikolaou. Investment shocks and asset prices. Journal of Political Economy, 119(4):639-685, 2011.
- [20] Monika Piazzesi, Martin Schneider, and Selale Tuzel. Housing, consumption and asset pricing. Journal of Financial Economics, 83(3):531-569, 2007.
- [21] Nikolai L Roussanov, Yang Liu, and Xiang Fang. Getting to the core: Inflation risks within and across asset classes. Jacobs Levy Equity Management Center for Quantitative Financial Research Paper, 2021.
- [22] Alexi Savov. Asset pricing with garbage. The Journal of Finance, 66(1):177-201, 2011.
- [23] Wei Yang. Long-run risk in durable consumption. Journal of Financial Economics, 102(1):45-61, 2011.
- [24] Motohiro Yogo. A consumption-based explanation of expected stock returns. The Journal of Finance, 61(2):539-580, 2006.

Yu Li Price-CCAPM August, 2024 40 / 40

Special Case

ullet Zero price-habit $\hat{h}(\vec{P})=0$, the indirect utility function is

$$V(P_g, P_s, E) = \frac{1}{1 - \gamma} \cdot \left[\frac{E}{P_q^{\overline{\omega}_g} \cdot P_s^{1 - \overline{\omega}_g}} \right]^{1 - \gamma}$$
(31)

 \Rightarrow utility function is

$$u(C_g, C_s) = \frac{1}{1 - \gamma} \cdot \left[C_g^{\overline{\omega}_g} \cdot C_s^{1 - \overline{\omega}_g} \right]^{1 - \gamma}. \tag{32}$$

1/48

return

Price-CCAPM August, 2024

Calculating Example

- Calibration:
 - \blacktriangleright tomorrow: boom and down states $\{h, d\}$
 - identical expenditure, prices are different
 - ▶ today: observed share is $\omega_q = 0.40$
 - **b** boom state: $P_{q,h} = 1$ and $P_{s,h} = 1$
 - down state: $P_{g,d}^{g,n} = 1.02$ and $P_{s,d} = 0.9869$
- Identical Consumer Price Index,

$$\mathbf{P}_d = \mathbf{P}_h = 1. \tag{33}$$

• Identical quantity index,

$$\mathbf{C}_d = \mathbf{C}_h. \tag{34}$$

2/48

u Li Price-CCAPM August, 2024

Compare the Marginal Utility

0000

- High price of goods in down state, low price of services
- High marginal utility in down state

$$(\underbrace{P_{g,d}^{\overline{\omega}g} \cdot P_{s,d}^{1-\overline{\omega}g}}_{\text{High}})^{-(1-\gamma)} \cdot E^{-\gamma} > (\underbrace{P_{g,h}^{\overline{\omega}g} \cdot P_{s,h}^{1-\overline{\omega}g}}_{\text{Low}})^{-(1-\gamma)} \cdot E^{-\gamma}. \tag{35}$$

3/48

- High stochastic discount factor $M_d > M_h$.
- $\gamma = 10$, $\overline{\omega}_g \omega_g = 0.2 \Rightarrow \log(\frac{M_d}{M_L}) \approx 6.8\%$.
 - $\qquad \qquad \textbf{Comparing the stochastic discount factor, } \ \frac{M_d}{M_h} = (\frac{P_{g,d}/P_{g,h}}{P_{g,d}/P_{g,h}})^{-(1-\gamma)\cdot(\overline{\omega}_g-\omega_g)}.$

Price-CCAPM August, 2024

Caveat in Quantity Index

- Identical quantity index $\mathbf{C}_d = \mathbf{C}_h$
- ullet Different stochastic discount factor $M_d>M_h$
 - ▶ high price of goods ⇒ high stochastic discount factor
- Detailed prices provide the accurate measure for SDF

Li Price-CCAPM August, 2024

Competitive Equilibrium

- Consumer has optimal decision
 - ightharpoonup given commodity price \vec{P} and security prices
 - chooses optimal stream of basket \tilde{C} and financial asset positions $\{\tilde{\theta}, \tilde{B}\}$.
- Commodity markets clear
 - ightharpoonup consumer's demand equals the exogenous supply in each sector j.
- Financial asset markets clear
 - zero supply and demand in risk-free bond;
 - consumer owns all share of risky securities.

Return to Model Env

u Li Price-CCAPM August, 2024

Consumer Problem with DU

ullet Consumer maximizes the life-time utility with consumption basket $ec{C}$

$$\begin{split} \overline{U}_{0}(\vec{\theta}_{0}) &= \sup_{\vec{C}, \vec{\theta}, \vec{B}} \lim_{T \to \infty} \mathbb{E}[\sum_{t=0}^{T} \beta^{t} \cdot u(\vec{C}_{t})] \\ s.t. &\sum_{k} \theta_{k,t} \cdot (P_{k,t}^{s} + D_{k,t}) + B_{t} = \sum_{j} P_{j,t} \cdot C_{j,t} + \sum_{k} \theta_{k,t+1} \cdot P_{k,t}^{s} + \frac{B_{t+1}}{R_{f,t+1}}, \quad (\text{P-DU}_{t}) \\ C_{j,t} &\geq 0; &\sum_{k} \theta_{k,t+1} \cdot P_{k,t}^{s} + \frac{B_{t+1}}{R_{f,t+1}} \geq \underline{a}. \end{split}$$

Notations

- ightharpoonup Commodity price P_i and consumption quantity C_i
- Price P_k^s and payout D_k for financial security k
- ▶ Risk-free rate R_f

Li Price-CCAPM August, 2024

Consumer Problem with IDU

ullet Consumer maximizes the life-time utility with consumption expenditure E

$$\begin{split} \overline{V}_0^{\text{New}}(\vec{\theta}_0) &= \sup_{\tilde{E}, \tilde{\theta}, \tilde{B}} \lim_{T \to \infty} \mathbb{E}[\sum_{t=0}^T \beta^t \cdot V(\vec{P}_t, E_t)] \\ s.t. &\sum_k \theta_{k,t} \cdot (P_{k,t}^s + D_{k,t}) + B_t = E_t + \sum_k \theta_{k,t+1} \cdot P_{k,t}^s + \frac{B_{t+1}}{R_{f,t+1}}, \\ E_t \geq 0; &\sum_k \theta_{k,t+1} \cdot P_{k,t}^s + \frac{B_{t+1}}{R_{f,t+1}} \geq \underline{a}. \end{split} \tag{P-IDU}$$

Li Price-CCAPM August, 2024

Equivalent Dynamic Problem

Lemma (Equivalence)

Optimization problem of quantities (P-DU) yields equivalent value as the optimization problem of expenditure (P-IDU). For each optimal policy C^{\ast} in problem (P-DU), E^{\ast} such that

$$E_t^* = \sum_{j \in \mathcal{J}} P_{j,t} \cdot C_{j,t}^*, \quad \forall t, z^t$$

is an optimal policy in the optimization problem (P-IDU).

i Price-CCAPM August, 2024

Decomposition (a)

• Roy Identity (Shephard's lemma)

$$\omega_j = -\frac{\mathcal{D}_j V(\vec{P}, E) \cdot P_j}{\mathcal{D}_E V(\vec{P}, E) \cdot E}.$$

• $\mathcal{D}_j V(\vec{P}, E)$ is the first-order partial derivative to price P_j .

Li Price-CCAPM August, 2024

Decomposition (b)

• Indirect Utility Function is H.D.0 (Homogeneous of Degree Zero)

$$\mathcal{D}_E V(\vec{P}, E) \cdot E = -\sum_{j \in \mathcal{J}} \mathcal{D}_j V(\vec{P}, E) \cdot P_j.$$

- Replace the right-hand-side
 - ⇒ Marginal Utility of Expenditure for utility-flow is decomposed as

$$\begin{split} \operatorname{d} \log \mathcal{D}_E V(\vec{P}, E) &= \sum_{j \in \mathcal{J}} \omega_j \cdot (\operatorname{d} p_j - \operatorname{d} e) \\ &+ \sum_{j \in \mathcal{J}} \sum_{k \in \mathcal{J}} \omega_k \cdot [\frac{\mathcal{D}_{k,j} V(\vec{P}, E)}{\mathcal{D}_k V(\vec{P}, E)} \cdot \frac{P_j}{E}] \cdot (\operatorname{d} p_j - \operatorname{d} e) + o(h). \end{split}$$

return

i Price-CCAPM August, 2024 10 / 48

Risk Price for Expenditure

Risk price for total consumption expenditure,

$$b_e = \underbrace{\gamma}_{\text{Relative Risk-aversion Coefficient}}.$$
 (36)

ullet Expenditure share ω captures the quantitative importance of sector.

$$b_e = -\sum_{j \in \mathcal{J}} \omega_j \cdot \underbrace{b_j}_{\text{Risk Price for Price } P_j}.$$
(37)

lacktriangle Same change in price \vec{P} and expenditure $E\Rightarrow$ utility is the same.

Li Price-CCAPM August, 2024 11 / 48

Special Situation of Symmetric Risk Price

Example with Constant Elasticity of Substitution

$$u(\vec{C}) = \frac{1}{1 - \gamma} \cdot (C_1^{\rho} + C_2^{\rho} \cdot \dots + C_J^{\rho})^{\frac{1 - \gamma}{\rho}}, \tag{38}$$

• No expenditure-effect in the relative share $\mathcal{S}_{k,j}=rac{\omega_k}{\omega_j}$ for all pairs (k,j),

$$ds_{k,j} = \frac{\rho}{\rho - 1} \cdot dp_k - \frac{\rho}{\rho - 1} \cdot dp_j, \tag{39}$$

Matrix of share elasticity,

$$\eta = (\gamma + \frac{1}{\rho - 1}) \cdot \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix}$$
 (40)

return

i Price-CCAPM August, 2024 12 / 48

Special Situation of Symmetric Risk Price

• Example with Constant Elasticity of Substitution,

$$u(\vec{C}) = \frac{1}{1 - \gamma} \cdot (C_1^{\rho} + C_2^{\rho} \cdots + C_J^{\rho})^{\frac{1 - \gamma}{\rho}}.$$
 (41)

- Use the CPI as price of numeraire
- Symmetric risk price across commodities $b_j = \gamma$,

$$d\tilde{m} = -\gamma \cdot [de - \sum_{j \in \mathcal{J}} \omega_j \cdot dp_j]$$
variation in CPI

13 / 48

• As if we consider the single-sector economy with composite commodity $(\sum_{j\in\mathcal{J}}C_j^{\rho})^{\frac{1}{\rho}}$

Yu Li Price-CCAPM August, 2024

Using Quantities to Describe Marginal Utility

- It is difficult to describe consumer's marginal utility using quantities.
- Example: non-separable preference similar with (1).

$$u(C_g, C_s) = \frac{1}{1 - \gamma} \cdot (C_g^{\rho g} + C_s^{\rho s})^{\frac{1 - \gamma}{\rho_s}}, \tag{43}$$

 $\rho_q > \rho_s$: larger share of goods in low-income state.

Marginal utility of services: no simple linear expression using quantities

$$d\tilde{m}^{s} \approx -\frac{\rho_{g}}{\rho_{s}} \cdot \left[\gamma - (\rho_{s} - 1)\right] \cdot \frac{\frac{\omega_{g}}{\rho_{g}}}{\frac{\omega_{g}}{\rho_{g}} + \frac{\omega_{s}}{\rho_{s}}} \cdot dc_{g} - \left\{\left[\gamma - (\rho_{s} - 1)\right] \cdot \frac{\frac{\omega_{g}}{\rho_{g}}}{\frac{\omega_{g}}{\rho_{g}} + \frac{\omega_{s}}{\rho_{s}}} + \gamma\right\} \cdot dc_{s}.$$
 (44)

• $\frac{C_g^{\rho g}}{C_g^{\rho g} + C_s^{\rho s}}$ is reduced as expression of shares $\frac{\frac{\omega_g}{\rho_g}}{\frac{\omega_g}{\rho_g} + \frac{\omega_s}{\rho_s}}$.

Yu Li Price-CCAPM August, 2024 14/48

Derive Marginal Utility using Quantities: CES

• Example: Constant Elasticity of Substitution (CES).

$$u(C_g, C_s) = \frac{1}{1 - \gamma} \cdot (C_g^{\rho} + C_s^{\rho})^{\frac{1 - \gamma}{\rho}}, \tag{45}$$

Marginal utility of quantity in services,

$$\mathrm{d}\tilde{m}^{s} \approx -\gamma \underbrace{\left(\omega_{g} \cdot \mathrm{d}c_{g} + \omega_{s} \cdot \mathrm{d}c_{s}\right)}_{\text{weighted change in quantities}} - \underbrace{\left(\omega_{g} \cdot (\rho - 1) \cdot \left(\mathrm{d}c_{g} - \mathrm{d}c_{s}\right)\right)}_{\text{CPI v.s. } P_{s}}. \tag{46}$$

 \bullet Substitute $C_g=rac{\omega_g \cdot E}{P_g}$, the real pricing kernel (numeraire price as CPI) is,

$$d\tilde{m} = -\gamma \cdot [de - d\log(\mathbf{P})]. \tag{47}$$

Yu Li Price-CCAPM August, 2024 15 / 48

Equivalent Pricing Kernel using Quantities

Analytical Example: Cobb-Douglas utility function

$$u(C_g, C_s) = \frac{1}{1 - \gamma} \cdot (C_g^{\omega_g} \cdot C_s^{1 - \omega_g})^{1 - \gamma}, \tag{48}$$

Composite commodity is,

$$\mathbf{C} = C_g^{\omega_g} \cdot C_s^{1-\omega_g}. \tag{49}$$

Consumption-CAPM,

$$d\tilde{m} = -\gamma \cdot d\mathbf{c}. \tag{50}$$

Equivalent pricing kernel using quantities,

$$d\tilde{m} = -\gamma \cdot \left[\sum_{j \in \mathcal{J}} \omega_j \cdot dc_j \right]. \tag{51}$$

• Other homothetic preference: pricing kernel has the same approximated variation

Yu Li Price-CCAPM August, 2024 16/48

Chained quantity index

- Chained quantity index is similar with the (Tornqvist) quantity index.
- Change of chained quantity index is

$$\frac{E_{g,t+1} \cdot \frac{P_{g,t_0}}{P_{g,t+1}} + E_{s,t+1} \cdot \frac{P_{s,t_0}}{P_{s,t+1}}}{E_{g,t} \cdot \frac{P_{g,t_0}}{P_{g,t}} + E_{s,t} \cdot \frac{P_{s,t_0}}{P_{s,t}}} = \sum_{j \in \{g,s\}} \frac{E_{j,t} \cdot \frac{P_{j,t_0}}{P_{j,t}}}{E_{g,t} \cdot \frac{P_{g,t_0}}{P_{g,t}} + E_{s,t} \cdot \frac{P_{s,t_0}}{P_{s,t}}} \cdot \frac{E_{j,t+1}/P_{j,t+1}}{E_{j,t}/P_{j,t}}$$
(52)

Prices are normalized as 1 in bench-year t_0 .

- Weight for quantities,
 - $\qquad \qquad \textbf{ Chained quantity index: price-adjusted expenditure } \frac{E_{j,t} \cdot \frac{P_{j,t_0}}{P_{j,t}}}{E_{g,t} \cdot \frac{P_{g,t_0}}{P_{g,t}} + E_{s,t} \cdot \frac{P_{s,t_0}}{P_{s,t}}}$
 - \blacktriangleright (Tornqvist) quantity index: nominal expenditure $\frac{E_{j,t}}{E_{g,t}+E_{s,t}}.$
- Chained quantity index: easy comparison to bench-year t_0 .

Return to Example Return to Torngvist index

Yu Li Price-CCAPM August, 2024

Indirect Utility Function - Durable

suppose the durable stock K affects the utility flow

$$u = u(\vec{C}, K).$$

the indirect utility function is

$$V(\vec{P}, E; K) = \max_{\vec{C} \in \mathcal{X}} \quad u(C_1, C_2, \dots, C_I; K)$$

$$s.t. \quad \sum_{i \in \mathcal{T}} P_i \cdot C_i \leq E.$$

Marginal utility of nondurable expenditure changes with the state variable of durable stock K.

Price-CCAPM August, 2024 18 / 48

Time-series Factors in Pricing Kernel

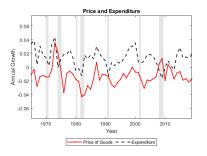


Figure 3: Time Series of Economic Outcomes

Price of goods and (total) expenditure are adjusted by price of services.

Poturn to Description

Yu Li Price-CCAPM August, 2024 19 / 48

Table 2: Estimation of Pricing Kernel

	Subgro	ups of Testin	g Assets	ALL
	Size-BM	Profit-IK	MoM-EP	Mix-30
		Risk	Price	
b_e	25.15	40.79	27.12	28.80
[t]	[2.05]	[2.74]	[1.34]	[1.95]
b_g	-71.94	-62.93	-74.44	-71.29
[t]	[-3.11]	[-1.90]	[-1.97]	[-2.31]
MAE(%)	0.33	0.36	0.36	0.39
RMSE(%)	0.41	0.42	0.37	0.44
J-pval	25.15	45.57	40.40	91.48

t-stat in bracket.

Return to Robustness Estimation

Yu Li Price-CCAPM August, 2024 20 / 48

Fitness of Estimation

- Evaluation of model fitness
 - MAE (Mean Absolute Error).

$$\text{MAE} = \frac{1}{K} \sum_{k} \left| \underbrace{\frac{1}{T} \cdot \sum_{t=1}^{T} R_{k,t+1}^{e}}_{\text{Realized Average Excess Return}} - \underbrace{\left[\frac{1}{T} \cdot \sum_{t=1}^{T} -\text{d}\tilde{m}_{t+1}(\vec{b}^{*}) \cdot R_{k,t+1}^{e}\right]}_{\text{Model-Predicted Excess Return}} \right|. \tag{53}$$

► RMSE (Root Mean Square Error)

RMSE =
$$\sqrt{\frac{1}{K} \sum_{k} \left| \frac{1}{T} \cdot \sum_{t=1}^{T} (1 + d\tilde{m}_{t+1}^{*}) \cdot R_{k,t+1}^{e} \right|^{2}}$$
 (54)

Return to Estimation Outcome Return to

D.

u Li Price-CCAPM August, 2024 21 / 48

Weights of Prices in SDF

 \bullet Price of goods: SDF 101% (CPI 40%)

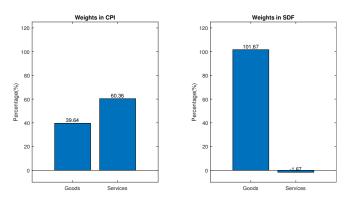


Figure 4: Weights of Prices

Time-series average weights during 1965-2019.

Yu Li Price-CCAPM August, 2024 22 / 48

Robust Estimation

- Estimation using Size-BM 25 and Industry 30
 - Point estimates are similar
 - Fitness is good

Table 9: Estimation using Other Testing Assets

	Specification of Testing Assets							
	Mi	× 30	Size-	BM 25	Industry 30			
	1st-Stage	2nd-Stage	1st-Stage	2nd-Stage	1st-Stage	2nd-Stage		
$egin{array}{c} b_e \ [t] \ b_g \ [t] \end{array}$	28.80 [1.95] -71.29 [-2.31]	30.75 [14.08] -72.26 [-15.89]	30.05 [2.61] -68.26 [-2.90]	33.72 [13.06] -63.83 [-11.68]	33.27 [4.38] -69.95 [-3.04]	33.88 [24.98] -67.92 [-17.21]		
MAE(%) RMSE(%) J-pval	0.39 0.44	91.48	0.38 0.51	81.48	0.84 0.99	94.03		

Subset Summary

Price-CCAPM

Robust Estimation when using Size-BM 25

- Estimation using Size-BM 25
 - Point estimates are similar
 - model P-ND has small error

Table 10: Estimation Outcome using Quantity Index

	C-ND	P-ND
b_c	50.88	_
[t]	[4.74]	-
b_e	-	30.05
[t]	-	[2.61]
b_g	-	-68.26
[t]	-	[-2.90]
MAE(%)	0.79	0.38
RMSÈ(%)	0.95	0.51
J-pval `	95.51	81.48

Price-CCAPM August, 2024 24 / 48

- Estimation using consumption data of quarterly frequency
 - seasonality exacerbates the weak correlation

Estimation Outcome using Quantity Index

	Quarter-1	Quarter-2	Quarter-3	Quarter-4				
		Panel (A): Risk Price						
$egin{array}{c} b_c \ [t] \end{array}$	136.63 [1.20]	16.47 [0.17]	74.42 [2.13]	132.82 [4.53]				
		Panel (B): Stats						
MAE(%) RMSE(%) J-pval	0.35 0.42 88.64	0.48 0.65 83.30	0.83 1.02 88.32	0.39 0.47 84.52				

Return is quarterly frequency.

Annual

Yu Li Price-CCAPM August, 2024 25 / 48

Table 11: Fitness of Asset Pricing Models: 1935-2019

		Sample Period						
	1935	-1989	1950	-2004	1965	1965-2019		
	1st-Stage	2nd-Stage	Panel (A): 1st-Stage	Risk Price 2nd-Stage	1st-Stage	2nd-Stage		
$egin{array}{c} b_e \ [t] \ b_g \ [t] \end{array}$	31.56 [3.69] -47.41 [-2.68]	31.64 [26.79] -45.67 [-11.06]	35.41 [3.19] -65.65 [-2.85]	39.59 [12.49] -62.79 [-13.66]	30.05 [2.61] -68.26 [-2.90]	33.72 [13.06] -63.83 [-11.68]		
			Panel (B): Stats				
MAE(%) RMSE(%) J-pval	0.70 0.95	82.51	0.32 0.38	96.93	0.38 0.51	81.48		

Return to Robustness Estimatio

Yu Li Price-CCAPM August, 2024 26 / 48

Estimation Outcome: Covid-period included

Table 12: Fitness of Asset Pricing Models: 1965-2022

		Specification of Model						
	Traded	Factor	Qua	ntity	Pr	ice		
	CAPM	FF-5	C-ND	C-D	P-ND	P-D		
MAE(%)	1.39	0.62	1.27	0.46	0.54	0.19		
RMSE(%)	1.98	1.14	1.53	0.66	0.71	0.29		
J-pval	90.70	76.76	95.34	92.88	89.06	92.60		

Return to Robustness Estimation

Yu Li Price-CCAPM August, 2024 27 / 48

Estimation of Euler Equation

Components in Euler Equation

$$\mathbb{E}_{t}[R_{k,t+1}^{e}] = -\mathbb{E}_{t}[\mathrm{d}\tilde{m}_{t+1}] \cdot \mathbb{E}_{t}[R_{k,t+1}^{e}] - \mathbb{E}_{t}\left[(\mathrm{d}\tilde{m}_{t+1} - \mathbb{E}_{t}[\mathrm{d}\tilde{m}_{t+1}]) \cdot (R_{k,t+1}^{e} - \mathbb{E}_{t}[R_{k,t+1}^{e}])\right]$$
(55)

with

$$d\tilde{m}_{t+1} - \mathbb{E}_t[d\tilde{m}_{t+1}] = -b_e \cdot (d\tilde{e}_{t+1} - \mathbb{E}_t[d\tilde{e}_{t+1}]) - b_g \cdot \omega_{g,t} \cdot (d\tilde{p}_{g,t+1} - \mathbb{E}_t[d\tilde{p}_{g,t+1}])$$
(56)

- Time-varying drift term $\mathbb{E}_t[\mathrm{d}\tilde{e}_{t+1}]$ and $\mathbb{E}_t[\mathrm{d}\tilde{p}_{q,t+1}]$.
- No available direct measure: eg. unconditional mean generates high error.

28 / 48 Price-CCAPM August, 2024

Estimation Outcome: Time-invariant Expected Growth

- ullet Covariance of slow-moving component $\mathbb{E}_t[ec{f}_{t+1}]$ is not considered.
- Risk price \vec{b} is identified using equation

$$\mathbb{E}_{t}[R_{k,t+1}^{e}] = \frac{\vec{b}}{1 + \mathbb{E}_{t}[d\tilde{m}_{t+1}]} \cdot \mathbb{E}_{t} \left[(\vec{f}_{t+1} - \underbrace{\mathbb{E}_{t}[\vec{f}_{t+1}]}_{\text{Assumed to be Constant}}) \cdot R_{k,t+1}^{e} \right]. \tag{57}$$

Specification of Model

with $\frac{1}{1+\mathbb{E}_t[\mathrm{d} ilde{m}_{t+1}]}$ measured using the gross risk-free rate $ilde{R}_{f,t+1}.$

• Simplified linear model P^L -ND has MAE 1.15% (C-ND has large MAE 7.85%)

	Specification of Woder						
	Traded Factor		Quantity		Price		
	CAPM	FF-5	C-ND	C-D	P^L -ND	P^L -D	
MAE (%)	1.67	1.20	7.85	1.68	1.15	1.10	
RMSE (%)	2.32	1.96	8.01	2.15	1.43	1.42	

Return to Robustness Estimation

Yu Li Price-CCAPM August, 2024 29 / 48

Table 13: Risk Price, Fama-French 5-Factor Model

	Specification of Testing Assets								
	Mi	× 30	Size-l	BM 25	Industry 30				
	1st-Stage	2nd-Stage	1st-Stage	2nd-Stage	1st-Stage	2nd-Stage			
b_{MKT}	2.38	2.51	2.51	2.65	2.64	2.78			
$\begin{bmatrix} t \end{bmatrix} b_{Size}$	[3.77] 1.72	[10.82] 1.64	[4.39] 1.28	[10.04] 1.20	[4.02] 0.88	[7.94] 0.68			
[t]	[2.15]	[5.36]	[1.32]	[2.92]	[0.69]	[1.45]			
b_{BM}	-3.44	-3.06	-2.24	-1.82	-5.86	-4.88			
[t]	[-2.05]	[-4.45]	[-1.07]	[-2.99]	[-2.13]	[-6.31]			
b_{Profit}	6.56	6.69	5.79	6.28	5.18	5.30			
$\begin{bmatrix} t \end{bmatrix}$	[4.28] 7.42	[11.59] 7.33	[2.39] 6.97	[9.33] 7.37	[2.96] 9.36	[10.62] 8.21			
b_{Invest} [t]	[4.36]	[9.10]	[3.16]	[10.67]	[2.05]	[6.91]			
MAE(%)	0.79		0.65		1.09				
RMSE(%)	1.37		0.81		1.37				
J-pval (81.07		59.85		84.45			

P-ND

Sufficient Statistic for Systematic Risk

- Multiple fundamental shocks ⇒ fluctuation in prices and expenditure
- \bullet Sufficient statistic \Rightarrow small improvement when supplementing a proxy of shock,

$$d\tilde{m} \approx -b_e \cdot d\tilde{e} - b_g \cdot \omega_g \cdot d\tilde{p}_g - b_x \cdot \underbrace{x}_{\text{Shock proxy}}.$$
 (58)

31 / 48

Table 14: Estimation with Supplementary Proxy of Shock

		Specification of Additional Shock Proxy						
	MKT	Size	Value	Profit	Invest	MoM		
$egin{array}{c} b_e \ [t] \ b_g \ [t] \end{array}$	32.15	23.80	31.15	26.21	30.94	27.05		
	[3.05]	[1.05]	[2.35]	[1.51]	[2.36]	[2.55]		
	-58.75	-82.35	-69.70	-73.76	-68.68	-72.72		
	[-3.70]	[-1.64]	[-2.41]	[-2.23]	[-2.51]	[-2.69]		
$egin{array}{c} b_x \ [t] \end{array}$	0.26	-0.55	-0.40	0.53	-0.53	0.10		
	[0.38]	[-0.58]	[-0.72]	[0.69]	[-0.53]	[0.18]		
MAE(%)	0.35	0.31	0.28	0.37	0.32	0.38		
RMSE(%)	0.41	0.39	0.38	0.43	0.40	0.44		
J-pval	88.68	89.82	89.19	88.99	88.90	88.99		

IST

/u Li Price-CCAPM August, 2024

Shock extracted from Prices

- Investment-Specific Technology shock from (Papanikolaou,2011): 1965-2008
- Other proxies: 1965-2019

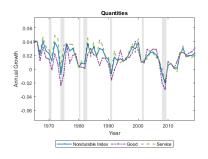
Table 15: Estimation with Supplementary Proxy of Shock

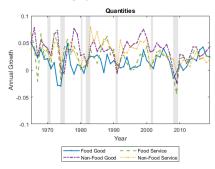
		Specification of Additional Shock Proxy								
		Pric	e		Qua	ntity				
	IST	Equipment	Durable	Energy	Hour	Unf-C				
$egin{array}{c} b_e \ [t] \ b_g \ [t] \end{array}$	32.13	32.34	34.24	28.21	40.87	29.85				
	[4.17]	[3.18]	[3.69]	[1.75]	[3.92]	[1.20]				
	-55.94	-62.82	-63.48	-66.34	-59.33	-74.99				
	[-4.46]	[-3.65]	[-3.81]	[-3.17]	[-2.71]	[-3.95]				
$b_x \ [t]$	9.16	-6.25	11.36	-0.91	-8.74	-1.96				
	[0.73]	[-0.41]	[0.43]	[-0.33]	[-0.82]	[-0.13]				
MAPE	0.42	0.36	0.35	0.38	0.37	0.38				
RMSE	0.51	0.48	0.46	0.49	0.42	0.44				
J-pval	92.28	74.36	75.68	75.38	89.70	89.62				

Note: Unf-C is for Unfiltered consumption quantity (index).

Sectors within Consumption

• Quantity of goods & quantity of services: correlation is high, but not synchronized




Figure 5: Time Series of Quantity Outcomes.

Return to Estimation

Li Price-CCAPM August, 2024

Food within Consumption Sectors

Food-category and non-food behave differently.

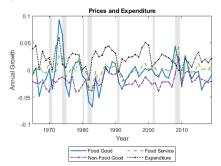


Figure 8(a): Quantities.

Figure 8(b): Prices and Expenditure.

34 / 48

Return to Estimation

Yu Li Price-CCAPM August, 2024

Food within Consumption Sectors

Descriptive Statistic			
	Mean(pct)	SE(pct)	AR(1)
$\begin{aligned} de &- \mathrm{d} p_{sn} \\ (s.e.) \\ \mathrm{d} p_{gf/sn} \\ (s.e.) \\ \mathrm{d} p_{gn/sn} \\ (s.e.) \\ \mathrm{d} p_{sf/sn} \\ (s.e.) \end{aligned}$	2.17 (0.23) -0.76 (0.44) -2.03 (0.20) 0.02 (0.20)	1.51 (0.16) 2.72 (0.48) 1.20 (0.17) 1.32 (0.20)	0.27 (0.13) 0.39 (0.11) 0.29 (0.12) 0.25 (0.16)

Return to Estimation

Yu Li Price-CCAPM August, 2024

Food within Consumption Sectors

	Correlation	ı	
$\begin{aligned} & Corr(de-\mathrm{d}p_{sn},z) \\ & (s.e.) \\ & Corr(\mathrm{d}p_{gf/sn},z) \\ & (s.e.) \\ & Corr(\mathrm{d}p_{gn/sn},z) \\ & (s.e.) \end{aligned}$	$\mathrm{d}p_{gf/sn}$ 0.41 (0.12)	$dp_{gn/sn}$ 0.06 (0.16) 0.32 (0.12)	$dp_{sf/sn}$ 0.34 (0.16) 0.74 (0.07) 0.51 (0.16)

Return to Estimation

Yu Li Price-CCAPM August, 2024 36 / 48

Cross-section of Risk Exposure

- ullet Fama-Macbeth Regression using time-series factors $ec{f}_{t+1}=(\mathrm{d} ilde{e}_{t+1},\mathrm{d} ilde{p}_{g,t+1})$
 - ▶ 1st step: $R_{k,t+1}^e = a_k + \vec{\beta}_k \cdot \vec{f}_{t+1}$ ▶ 2nd step: $\mathbb{E}_t[R_{k-t+1}^e] = \vec{\beta}_k \cdot \vec{\lambda}$
- Model **P-ND** has dispersed $\vec{\beta}$ in 1st step of Fama-Macbeth regression.

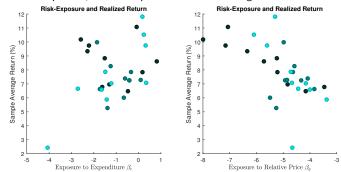


Figure 6: Risk Exposure to Time-series Factors

37 / 48

Yu Li Price-CCAPM August, 2024

Cross-section of Risk Exposure

• Value and small firms have larger risk exposure to relative price of goods.

Table 16: Distribution of Risk Exposure

	Estimation Outcomes in 1st Step				
ВМ	Growth	2	3	4	Value
$\begin{array}{c} \beta_e \\ [t] \\ \beta_g \\ [t] \end{array}$	-1.63	-1.30	0.17	0.81	-0.09
	[-0.71]	[-0.64]	[0.08]	[0.36]	[-0.03]
	- 3.46	-4.83	-5.22	-5.72	- 7.07
	[-1.59]	[-2.51]	[-2.64]	[-2.66]	[-2.76]
$\mu \ \sigma$	6.78	6.97	7.84	8.61	11.08
	19.47	16.96	16.37	18.48	20.72
Size	Small	2	3	4	Big
$egin{array}{c} eta_e \ [t] \ eta_g \ [t] \end{array}$	-2.58	-2.22	-2.29	-1.51	-0.48
	[-0.77]	[-0.80]	[-0.91]	[-0.66]	[-0.23]
	- 7.99	-7.16	-6.34	-5.24	- 4.16
	[-2.51]	[-2.73]	[-2.65]	[-2.40]	[-2.08]
$\mu \ \sigma$	10.18	9.75	9.34	8.84	6.48
	28.53	22.83	20.69	19.24	17.06

Industr

Yu Li Price-CCAPM August, 2024

Cross-section of Risk Exposure: Industry portfolios

- Service such as Meals (Restaurant) and Games (Recreation) have larger risk exposure to relative price of goods.
- Merchandise commodities with weaker risk exposure.

Table 17: Distribution of Risk Exposure

	Estimation Outcomes in 1st Step					
	Meals	Games	Fin	Carry	Autos	ElcEq
$\begin{array}{c} \beta_e \\ [t] \\ \beta_g \\ [t] \end{array}$	-2.14 [-0.60] -7.84 [-2.32]	-1.88 [-0.60] -7.79 [-2.63]	0.39 [0.15] -7.46 [-2.95]	-0.71 [-0.22] -7.37 [-2.40]	-5.61 [-2.01] -7.00 [-2.64]	-1.57 [-0.55] -6.95 [-2.54]
	Beer	Food	FabPr	Oil	Steel	Paper
$\begin{array}{c} \beta_e \\ [t] \\ \beta_g \\ [t] \end{array}$	-1.16 [-0.41] -4.97 [-1.86]	-1.46 [-0.61] -4.84 [-2.14]	-0.22 [-0.10] -3.91 [-1.82]	1.93 [0.87] -3.59 [-1.70]	2.16 [1.00] -3.54 [-1.72]	-1.33 [-0.70] -3.42 [-1.90]

Li Price-CCAPM August, 2024

Inferred Risk Premium

• 2nd step estimation: negative risk premium $\lambda_g = -1.64\%$.

Table 18: Risk Premium

	Risk Premium		
$\lambda_e \ [t]$	0.54 [1.26]	0.65 [1.55]	
λ_g $[t]$	- 1.64 [-3.91]	-1.11 [-2.05] 2.90	
$\begin{bmatrix} \alpha \\ [t] \end{bmatrix}$	-	[0.93]	
$OLS\text{-}R^2$	0.43		
$GLS\text{-}R^2$	0.15		
$COLS ext{-}R^2$		0.53	
$CGLS\text{-}R^2$		0.15	

t-stat in bracket.

Yu Li Price-CCAPM August, 2024 40 / 48

Asymmetric Risk Exposure

- Spread portfolio return correlates with systematic risk measured by price-model.
- Example: anomalies of Momentum

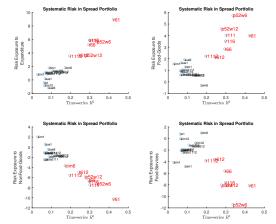


Figure 7: Estimation Outcome for Spread Portfolio

X-axis reports R^2 for regression $R^s_{k,t+1}=a_k+\vec{\beta}_k\cdot\vec{f}_{t+1}.$ Y-axis reports $\vec{\beta}_k.$

Yu Li Price-CCAPM August, 2024

Infer SDF with Aggregate Outcome

- Sufficient Statistic: aggregate consumption outcome describes SDF heterogeneous-consumer economy given the complete financial market.
 - ightharpoonup aggregate share $\vec{\omega}$
 - ▶ aggregate expenditure E
 - ⇒ Reconstruct the effective representative consumer.

u Li Price-CCAPM August, 2024 42 / 48

Representative Consumer in Generalized Economy

- \bullet Multiple consumers with preference $V(\vec{P},E).$
- ullet In equilibrium, we observe the consumer's expenditure distribution $\{E^{(n),*}\}$.
- Equilibrium-implied Negishi Weight (Welfare Weight) is constructed period-by-period as $\alpha^*(n) = \frac{\mathcal{D}_e V(\vec{P}, E^{(1),*})}{\mathcal{D}_e V(\vec{P}, E^{(n),*})}.$ with consumer (1) as the unconstrained financial market investor.
- Construct the representative consumer's IDU implied by the equilibrium,

$$V(\vec{P}, \mathbf{E}; \alpha^*) \equiv \max_{E} \quad \frac{1}{N} \cdot \sum_{n \in \mathcal{N}} \alpha^*(n) \cdot V(\vec{P}, E(n))$$

$$s.t. \quad \frac{1}{N} \cdot \sum_{n \in \mathcal{N}} E(n) \le \mathbf{E}.$$
(59)

43 / 48

- ullet Stationary welfare weights $lpha^* \Rightarrow$ Time-invariant representative consumer
- Change of individual consumer's marginal utility is identical with representative consumer.
- Decomposition of SDF uses $V(\vec{P}, \mathbf{E}; \alpha^*)$.

Yu Li Price-CCAPM August, 2024

Representative Consumer: Analytical Example

• Individual consumer has identical indirect utility function,

$$V(\vec{P}, E(n)) = \frac{1}{1 - \gamma} \cdot \left[\frac{E(n)}{v(\vec{P})} \right]^{1 - \gamma} + \hat{h}(\vec{P}).$$
 (60)

- Stationary welfare weights $\{\alpha^*(n)\}_n$
- Representative consumer has different preference

$$V(\vec{P}, \mathbf{E}; \alpha^*) = \frac{1}{1 - \gamma} \cdot \left[\frac{\mathbf{E}}{v(\vec{P})} \right]^{1 - \gamma} + \frac{1}{\Phi(\alpha^*)} \cdot \hat{h}(\vec{P}).$$
 (61)

with multiplier coefficient as

$$\Phi(\alpha^*) = \left[\sum_{n \in \mathcal{N}} \alpha^*(n)^{\frac{1}{\gamma}}\right]^{\gamma} \cdot \sum_{n \in \mathcal{N}} \frac{1}{\alpha^*(n)}.$$

- Price-CCAPM: SDF is derived using $V(\vec{P}, \mathbf{E}; \alpha^*)$ return
- ullet Caveat: we cannot use per-capita expenditure ${f E}$ and individual consumer's function to calculate the SDF.
- Special case of $\hat{h}(\vec{P})=0$: collective preference identical with individual

u Li Price-CCAPM August, 2024 44/48

What determines Asymmetric Risk Price?

- Asymmetric risk price ⇒ Price-CCAPM works better than CCAPM
- What explains (observed) asymmetric risk price?
- Consumer preference: share elasticity
- Classical asset pricing theories
 - Limited stock market participation
 - Epstein-Zin preference and long-run-risk

ru Li Price-CCAPM August, 2024 45 / 48

Infer SDF with Aggregate Outcome

- Generalization: observed representative consumer is time-varying, when financial market is incomplete due to borrowing constraints or transaction restriction.
- Fundamental Shocks:
 - \rightarrow the fluctuation of consumption price is observed,
 - \rightarrow the welfare redistribution across consumers simultaneously occurs.
- Time-varying representative consumer ⇒ excessive risk price in consumption prices.

Yu Li Price-CCAPM August, 2024 46 / 48

- Intuition: decomposing the variation from (\vec{P}, \mathbf{E}) and the welfare weights α^* .
 - \blacktriangleright High fitness in estimation suggests high correlation between prices \vec{P} and welfare weights α^* .

Corollary (Time-varying Representative Consumer's SDF)

Given the effective Negishi-weight distribution $\{\alpha(n)\}_n$ along the equilibrium path, the change in real marginal utility of expenditure for the representative consumer approximately equals

$$d\tilde{m} = -\underbrace{\sum_{j \in \mathcal{J}} b_{j}(\alpha) \cdot \omega_{j} \cdot (dp_{j} - dp_{J}) - b_{e}(\alpha) \cdot (d\mathbf{e} - dp_{J})}_{\text{Direct Channel}} + \underbrace{\frac{1}{N} \cdot \sum_{n} s(n) \cdot d \log[\alpha(n)]}_{\text{Indirect Channel}} + o(\hat{h}).$$
(62)

where $\mathrm{d}\alpha$ is the directional derivative of welfare weight, $\vec{\omega}$ is the aggregate expenditure share, \mathbf{e} is the (log) aggregate total consumption expenditure, and the vector $b(\alpha)$ is in similar construction with stationary representative consumer. The expenditure-ratio s(n) is the ratio of consumer (n)'s -expenditure and aggregate-expenditure.

Yu Li Price-CCAPM August, 2024 47 / 48

Explanation from Classical Asset Pricing Theories

- Limited stock market participation
 - Fitness improvement: high prices also increases stockholder's marginal utility
 - Point estimates (NIPA): b_e is over-estimated, b_a is under-estimated.
 - ⇒ Empirical challenge in observing the unconstrained consumer.
- Path-dependent preference and long-run-risk
 - lacktriangle Point estimates: high price of goods predicts low quantities growth in the long-run \Rightarrow large $|b_g|$.
 - ⇒ No direct empirical evidence.

u Li Price-CCAPM August, 2024 48/48