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THIS 1S A SUPPLEMENT that contains some omitted details from a “Corrigendum to
‘Communication and Equilibrium in Discontinuous Games of Incomplete Informa-
tion’.”

We thank Andreas Blume for pointing out an error in a claim that we made in Exam-
ple 1, and Eric Balder for pointing out that the proof of a lemma contains an assertion
that is far from obvious and that two steps of the main proof contain typos and mis-
statements that make the steps difficult to follow. We offer corrections here.

In Example 1 we claim that no equilibrium exists for any type-independent tie-
breaking rule. Andreas Blume has pointed out the following counterexample to that
claim. Consider a tie-breaking rule where all ties are broken in favor of bidder 1.! Bid-
der 2 bids 3.5 for all types. Bidder 1 bids 3.5 if his type is .5 or higher, and bids 3.5 — ¢,
when of type # < .5. For small ¢ > 0, this is an equilibrium. The error in our proof of
the nonexistence claim comes in the assertion that if there exists an equilibrium, then
there exists one in weakly increasing strategies. To justify that assertion, we appealed to
Proposition 1 of Maskin and Riley (2002), to which the above is also a counterexample.?

A slight modification of our Example 1 resurrects the claim that there does not exist
an equilibrium for any type-independent tie-breaking rule. Consider exactly the same
setting except for the following: with probability 1 — & there is one item available that is
awarded to the high bidder at the high price; and with probability 0 < & < 1/200 there
are two items available, in which case the auctioneer randomly draws a number x from
a uniform distribution on [0, 6] and gives an item to each bidder whose bid exceeds x
at a price of 0.3 With this modification, whenever there exists an equilibrium there
also exists one in weakly increasing strategies. This follows from the observation that if
one type of a bidder weakly prefers a high bid to a low one, then a higher type of the
bidder will strictly prefer the higher bid to the lower one, as now any increase in bids
increases the probability of obtaining an object. The remaining proof shows that in any
equilibrium the bottoms of the supports of the bidding strategies must be identical and
must be bid by both bidders with positive probability. A contradiction is then reached
by showing that for any choice of this lowest bid that results in a positive probability of
ties, at least one bidder would deviate.

A detailed proof is as follows: With this perturbation, monotonicity is easy to see:
Consider any pair of bids b’, b” with b” > b’, and consider player 1. Because types are

'The claim that there are no equilibria is true if the tie-breaking rule gives both bidders a
positive probability of winning an object.

The statement of Proposition 1 in earlier working paper versions of Maskin and Riley (2002)
asserts monotonicity only when there is a strictly positive probability of winning, and is correct.

3This has some flavor of an Amsterdam auction (see Goeree and Offerman (2004)) in that its
effect is to make bidders care about their bids even in the presence of asymmetries (here, in the
tie-breaking).
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independent, and because we are considering a tie-breaking rule that does not depend
on player types, the set of events (on the types and bids of the other player, the outcome
of any randomizations by the seller in the event of ties, and the randomization over
whether a second object is available) in which player 1 wins with b” but loses with &/,
and the probabilities over those events are unaffected by ¢;,. But then, if b” does at least
aswell as b’ for #; = ¢/, then it does strictly better for #, = ¢’ for any ¢” > ¢'. This follows
since, given the perturbation, b” has a strictly higher probability than &’ of winning, and
own type only enters expected utility calculations multiplied by probability of winning,
while the rest of the expected utility calculation is independent of own type.

Thus, there is no loss in assuming the bidding strategies b, b, are monotone, in the
sense that if # > ¢;, then every bid in the support of b;(#)) is at least as large as every
bid in the support of b;(#). It follows immediately that there is an at most countable set
of signals #; for which the support of b;(t;) is not a singleton. For such #;, replace b; by
the infimum of the support of b;(#). The modified bid functions b;, b, again constitute
an equilibrium. Thus we have an equilibrium in monotone, pure behavioral strategies.
Altering bids at signals 0, 1 if necessary, there is no loss in assuming that by, b, are
continuous at 0, 1.

Note first then, that b;(0) = b,(0) = b. For instance, if b;(0) < b,(0), then a small
increase in bid never hurts, and helps if there happens to be a second object (the value
of which is always positive).

Imagine that b > 4%. The average value of the object, even if allocated optimally to
the player with larger ¢, is 5 +2/3 — 4(1/3) = 42, since 2/3 and 1/3 are the expected
higher and lower values of two draws from the uniform distribution. So, conditional
on there being one object, at least 1/12 is lost. On the other hand, when there are two
objects, each player earns at most 6 (the maximum possible value of the object), for
an expectation of 128. Since 6 < 1/200, someone is thus losing money on average, and
would be better off to bid 0 always. Hence, b < 43.

Suppose that one player, say player 2, bids b with probability 0. Let b’ € (b, 4%) be
such that b, < b’ = 1, < 1/32. When there are two objects, b’ is a better bid than any
lower bid. Let P’ > 0 be the probability that player 2 bids less than b'. When there
is a single object and bidding b’ wins, the object is worth at least 5 + 0 — 4(1/32) =
4% to player 1, and so profits conditional on there being a single object are at least
P'/8 > 0. But, for types near 0, 1’s equilibrium bid is arbitrarily close to b (and so is
less than b') and wins with probability arbitrarily close to 0, since 2 bids in some small
neighborhood of b with arbitrarily small probability. So, an interval of 1’s types has a
profitable deviation, a contradiction.

Thus, both players bid b with positive probability. For each i, let 7, = supp{¢|
bi(t)<b}>0.

Assume that ties at b are broken with probability p € (0, 1) in favor of player 1.
Let ¢ and t’, ¢ < t’, be two values of ¢ for which b;(¢) = b. It follows that 5 + ¢ —
4E(t|by(t,) = b) > b, else 1 would be better to bid b — & with ¢ (note that by taking
& small enough, the cost of lowering the bid in the event there are two objects can
be made arbitrarily small). But then, 5 + t" — 4E(#,|b,(%,) = b) > b, and so 1 should
deviate to b + e with #”. This is a contradiction.

So, all ties at b are broken in favor of one player, say player 1. Thus, with t = 7, — &,
player 2 never wins when there is a single object, while by bidding & more, he can
also win when # € [0, 7). For this not to be a profitable deviation, it must be that b >
5+7,—4(En|t; < 7) =5+ 7, — 27. Note that this implies that 7, > 1/8, since b <42.
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Suppose that 7, < 1. Pick = 7, 4+ &, and consider replacing b,(¢) (which is by defi-
nition greater than b) by any bid b’ in (b, b,(¢)). When this changes a win into a loss,
t; > 71, and hence, v, is at best 5 + 7, + € — 41, < b, and so the change is profitable. At
least (1 — 8)/8 of the time, there was a single object and #; < 7. In this event, b’ still
wins, and pays b,(#) — b’ less. Finally, lowering the bid costs at most 6 (the maximal
value of the object) at most 6(b,(¢) — b')/6 of the time (as this is the probability that
there is a second object and the “reserve” is between b’ and b,(¢)). As 6 < 1/200,
(1—6)/8 > 8, and so this is a profitable deviation, a contradiction. Thus, 7, = 1.

Since 7, =1, E(t,|b, =b) =1/2. Hence, b <3 =5+ 0—4(1/2); otherwise 1 is better
to bid b — & with #; near 0. But then, player 2 can profitably bid b 4+ ¢ when he has
t above 0, a contradiction. Thus, there is no equilibrium to this game.

There are other modified versions of the auction that also have no equilibria with
type-independent tie-breaking rules, but the details of formulating such examples are
very delicate.

In the proof of Lemma 2 part (i) we state that “we may implicitly define a unique
element w(E) = {2 by requiring that ¢ - u(E) = A,(E) for every ¢ € £*.” As it is not
obvious why this is true, we provide a fuller proof of part (i) of Lemma 2 here.

PROOF OF LEMMA 2(i): To show that M (X, (2) is weak-* compact, we must show
that every net in M (X, 2) has a weak-* convergent subnet. To this end, let {u,} C
M (X, Q) be a net. For each integer k > 1 and each k-tuple @ = (¢4, ..., o) € (£9)F,
consider the net {® - u,} of R¥-valued measures (equivalently, of k-tuples of scalar
measures). Since the range of each u, lies in (2, the range of each @ - u, lies in @({2),
which is a compact convex subset of R*. Hence, we can find a subnet {uz} of {u,} such
that, for each @, the net {® - ug} converges weak-* to some R*-valued measure Agp.
Because each of the measures @ - ug has its range in @({2), which is a compact convex
set, so does the limit measure A4. That is, for each Borel set E C X, we have Ay (E) €
@ ((2). Hence, for each Borel set E C X, the set

Eos=P'Mp(E)NN={weN:DP(w) = Ap(E)}

is not empty. Since @ is continuous and (2 is compact, E is also compact. Note that if
b e (5*)/(’ Ve (8*)5, then ((I)’ 11',) c (5*)k+£ and

EsNEy =P ' (A(E)) NV Ay (E)) = (P, V) " (A@,4)(E)) = E@w).

Hence, the family of sets {Eq: @ € (£*)*, some k} has the finite intersection property.
Because the sets E4 are compact, there is an element of (2 that belongs to all of them.
Because € is locally convex, continuous linear functionals separate points of £, so there
is a unique such element. Define w(E) to be this unique element of (2.

By construction, ¢ - u(E) = A, (E) for each Borel set E C X, so weak countable ad-
ditivity of u follows immediately from weak countable additivity of each A,. Weak-*
convergence of {ug} to u is immediate from the definition and construction. We have
shown that every net in M (X, 2) has a weak-* convergent subnet, so the proof is com-
plete.

The last paragraph on page 1735 contains several typographical errors (¢;’s should
be a}’s) and a misstatement of (36). Delete from the beginning of the paragraph (“Fix
an arbitrary...”) through equation (37) and substitute the following.
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Fix an arbitrary (s}, aj) € H. Continuity of «; (in outcomes and types) and continuity of ¥
on Tl.k guarantees that there is a compact neighborhood L of Ah(s}, a}) in Tik such that if
(si;a;) €S; x A; and t;, t, € Tk, then

1
(36) |Eui(siy ailo_i, t;, 0) — Eui(s;, ailo_i, t, 9)| I
J

Continuity of & on H means that we can choose a compact neighborhood K of (s}, a}
in H such that #(K) C L. Applying (36), then (35), and then (36) again yields that

1
37 Eui(s;, ailo_i, t;, 0) > Eu,(s;, a;lo_;, h(s;, a;), 6) — 1
]

3
> Eu;(oi|lo_;, h(s;, a;), 0) + —
4j

1
> Eu;(oi|lo_i, t;, 0) + —.
2

The B’s and B’s in Step 5 are missing subscripts that make the argument hard to
follow. On page 1737, delete the two sentences starting “Define B:” and “For each r,
define B’...” and substitute the following

For each r and each type/action pair (5;,a;) € S} x A!, define B
B(r,el,[.i)(s—i, a_i,s_;)) =0, a;s_;,a_;) and B(Ei,z«i) AL = 0 by

A — 0O by

"
(Si,a;)

B, an(s_is a_i, s_) = O, @i, 5_i, a_;).

Note that 3 is a selection from B, ;).

o
Correspondingly, two paragraphs later replace “g™a”; — £” with “ B(?}"",a;m&: = &7
Finally, in the last paragraph on page 1737 replace “there is a selection 8 from B” with
“there is a selection B8 from B, ,,).”
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