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In the main text the true probability measure, P , is the nuisance parameter. In this
supplementary material we examine which contiguous perturbations of the original
fixed P preserve or do not preserve the estimation and coverage properties of the re-
gions constructed in the main text. A useful feature of the local approach is that the
conditions for the robustness of the estimation and coverage properties do not depend
on the way the consistent critical values are generated (e.g., bootstrap or other means).
The conditions are simple to check and apply to any consistent method of estimating a
critical value.
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ROBUSTNESS TO CONTIGUOUS PERTURBATIONS OF P

THE IDEA OF FOCUSING on the local perturbations follows its uses in the con-
fidence interval literature; see notably Dufour (1997) and Pötscher (1991). In-
tuitively, contiguous perturbations of P cannot be statistically detected with
certainty, and we therefore want to make sure that contiguous changes in P do
not affect the coverage properties of confidence regions. An alternative moti-
vation is that, in the asymptotic context, the relevant parameter space for nui-
sance parameters consists of contiguous parameter values, which is a standard
approach in asymptotic efficiency analysis; see van der Vaart (1998, Chap. 8.7).
In fact, minimal coverage under contiguous sequences implies local uniform
coverage, when the local nuisance parameters are allowed to vary over a com-
pact set.

We focus on examining the robustness of the main estimation and inferential
results, the ones stated in Theorems 3.1 and 3.3.

S.1. Regular Cases

Consider a triangular sequence of probability measures {Pn�γ� n = 1�2� � � �},
where γ is an index of a sequence in Γ and {Pn�γ�γ ∈ Γ�n = 1� � � �} ⊆ P . Let
Pn
n�γ denote the law of data w1� � � � �wn under Pn�γ . Each γ ∈ Γ is such that

Pn
n�γ is contiguous to Pn, the law of data w1� � � � �wn under P , namely Pn(An)=

o(1) implies Pn
n�γ(An) = o(1) for any sequence of measurable events An.1 In

what follows, notation ΘI(P) is used to reflect that the identification region ΘI

depends on P , the law of the data. Similarly, notation c(α�P) is used to denote
the dependence of the α-quantile of C on P .

1Throughout this supplement, measurable events An are events that are measurable with re-
spect to (Ω�F) completed with respect to both Pn and Pn

n�γ .
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LEMMA S.1—Conditions for Maintaining Consistency, Rates of Conver-
gence, and Coverage: (1) Assume that Conditions C.1 and C.2 hold, with {Pn�γ}
replacing {P} for each γ ∈ Γ . Then the conclusions of Theorem 3.1 hold. (2) As-
sume that Conditions C.1, C.2, and C.4 hold under {Pn�γ} in place of {P} for any
γ ∈ Γ , with the common limit random variable C, the distribution of which does
not depend on γ. Consider any consistent critical value ĉ →p c(α�P) under {P}.
Then for each γ ∈ Γ , lim infn→∞ Pn�γ{ΘI(Pn�γ) ⊆ Cn(̂c)} ≥ α and = α if P{C >
0} ≥ α.

The first result states that consistency and rates of convergence will be pre-
served under sequences as long as Conditions C.1 and C.2 hold under se-
quences (replacing P with Pn�γ and ΘI with ΘI(Pn�γ) should cause no ambiguity
in the restatement of Conditions C.1 and C.2). The second result of the lemma
addresses coverage properties in the regular case—when the limit of Cn does not
depend on the local sequence. The definition of regularity follows that given
by van der Vaart and Wellner (1996, p. 413). Note that the coverage result is
independent of the way the critical value is estimated.

Conditions of Lemma S.1 are verified in our principal applications as fol-
lows:

CONDITION M.3—Moment Equalities: Suppose that Condition M.1 holds for
each P ∈P and that (a) the partial identification condition (4.1) holds uniformly
in P , (b) G(θ) = limn ∇θEPγ�n[mi(θ)] exists and is continuous over a neighbor-
hood of Θ for each γ ∈ Γ , (c) the Donsker condition (4.2) holds under {Pn�γ}
in place of {P} for each γ ∈ Γ , with the common limit Gaussian process 	(θ),
(d) EPn�γ [mi(θ)] = EP[mi(θ)] + o(1) for each γ ∈ Γ , and (e) dH(ΘI(Pn�γ)�
ΘI(P)) = o(1) for each γ ∈ Γ .

CONDITION M.4—Moment Inequalities: Suppose that Condition M.1 holds
for each P ∈ P and that (a) the partial identification condition (4.5) holds uni-
formly in P , (b) G(θ) = limn ∇θEPγ�n[mi(θ)] exists and is continuous over a
neighborhood of Θ for each γ ∈ Γ , (c) the Donsker condition (4.2) holds under
{Pn�γ} in place of {P} for each γ ∈ Γ , with the common limit Gaussian process
	(θ), (d) EPn�γ [mi(θ)] =EP[mi(θ)]+o(1) for each γ ∈ Γ , and (e) dH(ΘI(Pn�γ)�
ΘI(P)) = o(1) and dH(ΘJ (Pn�γ)�ΘJ (P))= o(1) for each J and each γ ∈ Γ .

Conditions M.3(a) and M.4(a) impose a locally uniform partial identifia-
bility. Sufficient conditions for conditions (c) are well known and are given
in van der Vaart and Wellner (1996, p. 173), including a quadratic-mean-
differentiability condition (van der Vaart and Wellner (1996, p. 406)). The
principal conditions are Conditions M.3(e) and M.4(e), which require that the
perturbations of P affect the identification region smoothly.

LEMMA S.2—Coverage, Consistency, and Rates under Regular Sequences
in Moment Condition Models: (1) Condition M.3 implies conditions of Lem-
ma A.1. (2) Condition M.4 implies conditions of Lemma A.1.
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EXAMPLE 1—Continued: It is helpful to illustrate Condition M.4(a)–(e) via
a simple example. Recall the example of interval-censored Y without covari-
ates, in which case ΘI(P) = [EP[Y1]�EP[Y2]] and suppose Y1 ≤ Y2 P-almost
surely for all P ∈ P and that (Y1�Y2) are uniformly Donsker in P . Conditions
for the Donskerness uniformly in P are well known; see van der Vaart and
Wellner (1996, pp. 168–170). Then Condition M.4(a)–(d) easily follows. To ver-
ify Condition M.4(e), note that by contiguity and uniform integrability implied
by the uniform-in-P Donskerness, (EPn�γ [Y1]�EPn�γ [Y2]) → (EP[Y1]�EP[Y2])�
including the case of [EP[Y1]�EP[Y2]] being a singleton.

Conditions M.3 and M.4 are reasonable in many examples we have consid-
ered, provided the boundary of ΘI (in R

d) is strongly identified. Conditions
M.3 and M.4 are not expected to hold otherwise. Therefore, the models with
weak identification (cf. Dufour (1997)) that are local to nonidentification are
not covered by the framework of regular sequences. This motivates the analysis
in the next section.

S.2. Nonregular Cases

Consider the case where Cn is nonregular. That is, the limit distribution of Cn

under the local sequence {Pn�γ} depends on γ. In this case, the coverage un-
der local sequences depends on whether the distribution of Cn under local se-
quences is stochastically dominated in large samples by the distribution under
fixed sequence {P}. The following lemma addresses nonregular cases, showing
that the main results will be preserved in a greater generality.

LEMMA S.3—Maintaining Partial Consistency and Minimal Coverage Un-
der Nonregular Sequences: (1) Suppose that supΘI(Pn�γ)

Qn =Opn�γ (1/an) under
{Pn�γ}. Then ΘI(Pn�γ) ⊆ Cn(̂c) wp → 1, provided ĉ →p ∞, under {Pn�γ}. (2) Let
there be any estimate ĉ →p c(α�P) under {P}. Suppose that Condition C.4 holds
under the fixed P with the limit real variable C that has α-quantile c(α�P). Sup-
pose that for each γ ∈ Γ and any sequence εn ↓ 0, we have

lim inf
n→∞

Pn�γ

[
Cn ≤ (c(α�P)− εn)∨ 0

] ≥ α�(S.1)

Consider any estimate ĉ →p c(α�P) under {P}, for instance, that was provided in
Section 3 or 4. Then for each γ ∈ Γ ,

lim inf
n→∞

Pn�γ{ΘI(Pn�γ)⊆ Cn(̂c)} ≥ α�(S.2)

Note again that the result is independent of the way the critical value is esti-
mated.
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EXAMPLE 4—Weak Instrumental Variable (IV): The point of this lemma
can be illustrated using a very simple IV example with one regressor:

Y = θ0X + ε� θ0 ∈ Θ (compact) ⊂ R� X = 0 ·Z + v�(S.3)

(ε� v)|Z ∼ N(0�Ω)� Z ∼ N(µ�σ2
Z)�

The identification region is ΘI(P) = Θ, that is, we have complete noniden-
tification. Assume that independent and identically distributed sampling and
other conditions as in Section 4 hold under P . Now consider a sequence of
models where

Y = θ0X + ε� X = (ρ/
√
n)Z + v�(S.4)

(ε� v)|Z ∼ N(0�Ω)� Z ∼ N(0�σ2
Z)�

Let γ = {ρ}. Let Pn
n�γ denote the law of vector (Yi�Xi�Zi� i ≤ n) in (S.4); it

is contiguous to the law Pn. Let Pn�γ denote the law of the infinite indepen-
dent and identically distributed sequence (Yi�Xi�Zi� i < ∞) generated ac-
cording to (S.4). Note that ΘI(Pn�γ) = ΘI(P) = Θ if ρ = 0 and ΘI(Pn�γ) = θ0 ∈
ΘI(P) if ρ 
= 0� This implies that the weak limit of Cn under Pn�γ with ρ 
= 0 is
stochastically smaller than the weak limit of Cn under Pn�γ with ρ = 0, since

sup
θ0

‖	(θ)′W 1/2(θ)‖2 ≤ sup
Θ

‖	(θ)′W 1/2(θ)‖2�(S.5)

Therefore, the α-quantile of the right side is bigger than the α-quantile of
the left side, so (S.1) is satisfied. Therefore, for each ρ ∈ R

d and γ = {ρ},
lim infn→∞ Pn�γ{ΘI(Pn�γ)⊆ Cn(̂c)} ≥ α.

Next we consider more general local parameter sequences γ = {ρn} with
ρn ∈ K for each n, where K is a compact subset of R. Let Γ denote the set
of all these sequences. The limit under each convergent subsequence ρn → ρ
is either the left or the right side of (S.5). Hence, for each sequence {γ} in Γ
and each sequence εn ↘ 0,

lim inf
n→∞

Pn�γ

[
sup

ΘI(Pn�γ)

‖	(θ)′W 1/2(θ)‖2 ≤ (c(α�P)− εn)∨ 0
]

(S.6)

≥ lim inf
n→∞

P
[
sup
Θ

‖	(θ)′W 1/2(θ)‖2 ≤ (c(α�P)− εn)∨ 0
]

≥ α�

This implies by Lemma S.3 that lim infn→∞ Pn�γ{ΘI(Pn�γ) ⊆ Cn(̂c)} ≥ α. Equiv-
alently, for K denoting any nonempty compact subset of R,

inf
K

lim inf
n→∞

inf
ρ∈K

Pn�ρ{ΘI(Pn�ρ) ⊆ Cn(̂c)} ≥ α�(S.7)
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where Pn�ρ corresponds to the law of the model (S.4). This coverage property
is in the spirit of local asymptotic minimax analysis of estimation; see van der
Vaart (1998, Chap. 8.7).

S.3. Proof of Lemma S.1

PROOF OF PART (1): The proof is straightforward by substituting {Pn�γ} in
place of the fixed sequence P in the proof of Theorem 3.1. Q.E.D.

PROOF OF PART (2): We have that ĉ →p c(α�P) under {P}. By contigu-
ity, ĉ →p c(α�P) under {Pn�γ}. Therefore, Pn�γ{ΘI(Pn�γ) ⊆ Cn(̂c)} ≥ Pn�γ[Cn ≤
ĉ] = Pn�γ[Cn ≤ c(α�P) + opn�γ (1)] = P[C ≤ c(α�P)] + o(1) by assumption that
Pn�γ[Cn ≤ c] → P[C ≤ c] for all c ≥ 0, by ĉ ≥ 0, and by continuity of the distrib-
ution function c �→ P[C ≤ c] on [0�∞). Q.E.D.

S.4. Proof of Lemma S.2

PROOF OF PART (1): The proof is straightforward by repeating Steps 1–4 in
the proof of Theorem 4.1, having replaced P with Pn�γ , ΘI with ΘI(Pn�γ), op(1)
with opn�γ (1), and so forth, and then noting that supΘI(Pn�γ)

‖	(θ)′W 1/2(θ)‖2 =
supΘI(P)

‖	(θ)′W 1/2(θ)‖2 + opn�γ (1) by equicontinuity of θ �→ 	(θ)′W 1/2(θ)
and by dH(ΘI(Pn�γ)�ΘI(P)) = o(1) imposed in Condition M.3(e). By Condi-
tion M.3(b), 	(θ) does not depend on γ, and by contiguity, W (θ) does not
either. Hence the limit variable C := supΘI(P)

‖	(θ)′W 1/2(θ)‖2 does not depend
on γ. Q.E.D.

PROOF OF PART (2): The proof is straightforward by repeating Steps 1–4 in
the proof of Theorem 4.1, having replaced P with Pn�γ , ΘI with ΘI(Pn�γ), and
op(1) with opn�γ (1). The exception is that in Step 2, we need to define ξ(θ) =
limn

√
nEP[mi(θ)] under fixed sequence {P}. Note that the key inequality (A.5)

in Lemma A.1 is preserved under sequences {Pn�γ}. In the proof of Lemma A.1,
the convergent subsequence {θn} in ΘI(P) is replaced by the convergent sub-
sequence {θn} in ΘI(Pn�γ), where convergent means θn → θ ∈ ΘI(P). Since we
care only about Cn in this lemma, in repeating the proof of Lemma A.1, we set
λ= 0 and only consider the set V 0

n = V 0
∞ =ΘI(Pn�γ)× {0}. In addition, we note

that for every J , dH(ΘJ (Pn�γ)�ΘJ (P)) = o(1) by Condition M.4(e), so that

max
J

sup
ΘJ (Pn�γ)

∑
j∈J

∣∣(	j(θ)+Gj(θ)
′λ)W 1/2

jj (θ)+ opn�γ (1)
∣∣2

+

= max
J

sup
ΘJ (P)

∑
j∈J

∣∣(	j(θ)+Gj(θ)
′λ)W 1/2

jj (θ)+ opn�γ (1)
∣∣2

+�
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Here we utilized equicontinuity of θ �→ 	(θ)′W 1/2(θ) and the independence of
	(θ) and W (θ) from γ by Condition M.4(b) and contiguity, respectively. The
result of the modified Step 2 can be stated then as

sup
ΘI(Pn�γ)

�n(θ�0)=d max
J

sup
θ∈ΘJ (P)

∑
j∈J

∣∣(	j(θ))W
1/2
jj (θ)+ opn�γ (1)

∣∣2

+�

Hence

C = max
J

sup
θ∈ΘJ (P)

∑
j∈J

∣∣(	j(θ))W
1/2
jj (θ)

∣∣2

+�

which does not depend on γ. Q.E.D.

S.5. Proof of Lemma S.3

PROOF OF PART (1): Under {Pn�γ}, wp → 1, by construction of ĉ, supΘI(Pn�γ)
Qn =

Opn�γ (1/an) < ĉ/an, which implies ΘI(Pn�γ)⊆ Cn(̂c). Q.E.D.

v

PROOF OF PART (2): We have that ĉ →p c(α�P) under {P}. By contigu-
ity, ĉ →p c(α�P) under {Pn�γ}. Hence Pn�γ{ΘI(Pn�γ) ⊆ Cn(̂c)} ≥ Pn�γ{Cn ≤ ĉ} ≥
Pn�γ{Cn ≤ (c(α�P)− εn)∨ 0} for some εn ↓ 0. The conclusion follows from the
assumption that lim infn→∞ Pn�γ{Cn ≤ (c(α�P)− εn)∨ 0} ≥ α. Q.E.D.
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