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THESE ONLINE APPENDIXES (i) present some additional empirical robustness
checks, (ii) describe some econometric complements (on the attenuation bias
in the R2 of the granular regressions, and on why demeaning by industry-year
averages can be better than demeaning by year averages), and (iii) describe the
time series of the granular residual available online.

APPENDIX D: ROBUSTNESS CHECKS FOR GRANULAR
RESIDUAL REGRESSIONS

I consider possible microlevel improvements in the construction of the gran-
ular residual. Perhaps the loading on the aggregate factors could depend on
size. To explore that possibility, I consider models such as

git = agIit + b
(
lnSi�t−1 − lnSj�t−1;j∈Ii

)
gIit(36)

+ c(lnSi�t−1 − lnSj�t−1;j∈Ii
)2
gIit + εit �

In this model, the loading of firm i can depend not only on the industry aver-
age gIit , but also on the size of the firm. To make coefficients easier to inter-
pret, I recenter by lnSj�t−1, the average log size, so that the mean of the second
term is 0. Table VI reports the first stage of a variety of specifications (with
K = Q = 100). Size controls are only sometimes significant, but their incre-
mental explanatory power is very small compared to the earlier specification
that simply controls for gt and gIit . The second stage is reported in Table VII.
The impact of the size control is very small. Hence, for practical purposes,
one may recommend the two simplest versions of the granular residual, (33)
and (34).

Still, one lesson from Table VI is that large firms have, if anything, a smaller
loading on the common shocks than small firms (column 5). Hence, construct-
ing the granular residual by removing a constant mean slightly overcorrects
large firms and, prima facie, works against finding a high explanatory power of
the granular residual. This bias against the granular residual is, however, small,
as Table VII shows.

Tables VIII and IX show some more regressions. In particular, I useK = 100
andQ= 1000. This is, it evaluates the “ expected” behavior of the top 100 firms
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TABLE VI

EXPLAINING FIRM-LEVEL PRODUCTIVITY GROWTHa

1 2 3 4 5 6

(Intercept) 7.2e−16 −7.9e−17 7.2e−16 0.0014 7.2e−18 0.0019
(0.002) (0.0013) (0.002) (0.0024) (0.0017) (0.0021)

ḡt 1** 1** 0.9** −0.00097 −0.083
(0.076) (0.076) (0.093) (0.068) (0.081)

ḡI(i)�t 1** 1** 0.97**
(0.02) (0.021) (0.022)

(lnSi�t−1 − lnSt−1) 0.0041 0.0076 −0.0031 0.00012
(0.0032) (0.0048) (0.0043) (0.0051)

(lnSi�t−1 − lnSt−1) · ḡt −0.15 −0.42* 0.17 −0.041
(0.12) (0.18) (0.11) (0.16)

(lnSi�t−1 − lnSt−1)
2 −0.0034 −0.0012

(0.0035) (0.0042)

(lnSi�t−1 − lnSt−1)
2 · ḡt 0.26* 0.17

(0.13) (0.12)

(lnSi�t−1 − lnSI(i)�t−1) 0.0068 0.0089
(0.0046) (0.0047)

(lnSi�t−1 − lnSI(i)�t−1) · ḡI(i)�t −0.31** −0.4**
(0.05) (0.057)

(lnSi�t−1 − lnSI(i)�t−1)
2 −0.0053

(0.0045)

(lnSi�t−1 − lnSI(i)�t−1)
2 · ḡI(i)�t 0.16**

(0.05)

N 5700 5700 5700 5700 5700 5700
R2 0.0292 0.305 0.0295 0.0302 0.31 0.312
Adj. R2 0.029 0.305 0.029 0.0293 0.309 0.311

aThis table presents the results of the different regressions of productivity growth git for the top 100 firms as
defined by the previous year’s sales on mean productivity growth measures at the global and industry level. The
column numbers correspond to different specifications for the regressors. They are used in the next table. Standard
errors are given in parentheses.

by examining the behavior of the top 1000 firms. Note that a difficulty is that
in the early part of the sample there are less than 1000 firms; then I take the
maximum number of firms.

The results are similar to Tables VI and VII, except that the R2 of the first
stage (explaining firm-level growth rate) and the second stage (explaining GDP
growth) are a bit lower. That may be due to the fact that the sample is less
homogenous, as we try to control the behavior of large firms by the behavior
of quite smaller firms.
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TABLE VII

EXPLANATORY POWER OF THE GRANULAR RESIDUAL UNDER ALTERNATIVE SPECIFICATIONSa

1 2 3 4 5 6

(Intercept) 0.017** 0.017** 0.018** 0.019** 0.02** 0.019**
(0.0025) (0.0022) (0.0024) (0.0024) (0.0022) (0.0021)

Γt 2.5** 4.5** 2.8** 2.6** 4.2** 4.4**
(0.69) (0.82) (0.68) (0.7) (0.83) (0.84)

Γt−1 2.9** 4.3** 2.7** 2.9** 3.8** 4.6**
(0.67) (0.78) (0.68) (0.68) (0.81) (0.77)

Γt−2 2.1** 2.7** 2.1** 2.1** 2.9** 2.9**
(0.71) (0.79) (0.7) (0.72) (0.82) (0.81)

N 55 55 55 55 55 55
R2 0.382 0.506 0.395 0.388 0.456 0.516
Adj. R2 0.346 0.477 0.359 0.352 0.423 0.487

aThis table reports the regressions of per capita GDP growth on the granular residual plus two lags, using the var-
ious specifications of Table VI to extract the idiosyncratic firm-level shocks. Standard errors are given in parentheses.

APPENDIX E: ECONOMETRIC COMPLEMENTS

E.1. Attenuation Bias in the Granular Residual

I analyze the properties of the granular residual. The conclusion is that it
suffers from attenuation bias, but the bias goes to 0 as the number of firms
K becomes large. On the other hand, taking a large K (or Q) introduces new
difficulties—the homogeneity assumption (37) is likely to be a less good ap-
proximation, as demonstrated in the previous section.

I consider first a one-factor model (no industry shocks). For firm i,

git =Xt + εit�(37)

where Xt is a common shock and εit is an idiosyncratic shock. The granular
residual is

ΓK =

K∑
i=1

Si(gi − g)

Y
�(38)

while the econometrician would like to know the “ideal” granular residual—
a weighted mean of the idiosyncratic shocks of the top K firms,

Γ ∗
K =

K∑
i=1

Siεi

Y
(39)
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TABLE VIII

RESULTS OF THE DIFFERENT REGRESSIONS OF git
a

1 2 3 4 5 6

(Intercept) 3.2e−15 −1.3e−16 3.2e−15 −0.0021 2e−16 −0.0016
(0.001) (0.00079) (0.001) (0.0012) (0.00096) (0.0012)

ḡt 1** 1** 1** −0.00053 0.0097
(0.037) (0.037) (0.045) (0.038) (0.045)

ḡI(i)�t 1** 1** 1**
(0.012) (0.013) (0.015)

(lnSi�t−1 − lnSt−1) 0.00019 −0.0011 −0.0026 −0.0037
(0.00091) (0.001) (0.002) (0.002)

(lnSi�t−1 − lnSt−1) · ḡt −0.051 −0.043 0.15** 0.16**
(0.033) (0.037) (0.034) (0.037)

(lnSi�t−1 − lnSt−1)
2 0.0017** 0.00071

(0.00057) (0.00093)

(lnSi�t−1 − lnSt−1)
2 · ḡt −0.0098 −0.0085

(0.02) (0.021)

(lnSi�t−1 − lnSI(i)�t−1) 0.0033 0.0034
(0.002) (0.002)

(lnSi�t−1 − lnSI(i)�t−1) −0.22** −0.22**
·ḡI(i)�t (0.014) (0.015)

(lnSi�t−1 − lnSI(i)�t−1)
2 7e−04

(0.00099)

(lnSi�t−1 − lnSI(i)�t−1)
2 −2.4e−05

·ḡI(i)�t (0.0093)

N 52,895 52,895 52,895 52,895 52,895 52,895
R2 0.0134 0.113 0.0135 0.0137 0.117 0.117
Adj. R2 0.0134 0.113 0.0134 0.0136 0.117 0.117

aThis table presents the results of the different regressions of productivity growth git for the top 1000 firms as
defined by the previous year’s sales on mean productivity growth measures at the global and industry level. The
column numbers correspond to different specifications for the regressors. They are used in the next table. Standard
errors are given in parentheses.

(the specific choice of the denominator does not matter here, as I investigate
the R2’s, and the R2’s do not change when one multiplies some variables by a
constant).

GDP growth follows, as in the model of the NBER WP version of this paper,

yt =φΓ ∗
Kt + ut�(40)

where ut is a disturbance orthogonal to (εit)i=1�����K . One would like to know
how much R2 of the idiosyncratic shocks of the top K firms explain, that is, the
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TABLE IX

RESIDUAL PRODUCTIVITY GROWTH BASELINE REGRESSIONS, Q= 1000, K = 100a

1 2 3 4 5 6

(Intercept) 0.018** 0.018** 0.016** 0.023** 0.016** 0.023**
(0.0028) (0.0024) (0.003) (0.0029) (0.0027) (0.0027)

Γt 0.9 1.4* 1.3* 1.3* 1.3* 1.4*
(0.54) (0.53) (0.57) (0.58) (0.57) (0.58)

Γt−1 1.9** 2.8** 1.9** 1.7** 2.3** 2.1**
(0.56) (0.54) (0.6) (0.61) (0.6) (0.6)

Γt−2 0.51 0.81 0.55 0.47 0.7 0.64
(0.56) (0.53) (0.59) (0.6) (0.59) (0.6)

N 55 55 55 55 55 55
R2 0.213 0.371 0.222 0.2 0.278 0.255
Adj. R2 0.166 0.334 0.176 0.152 0.236 0.212

aThis table reports the results of regressions of the per capita GDP growth on the granular residual plus two lags,
where the granular residual is computed with Q= 1000 and K = 100 while using estimates of the residual productivity
growth from the previous table. Standard errors are given in parentheses.

R2 of the ideal granular residual:

R2
Γ ∗
K

= cov(yt� Γ ∗
Kt)

2

var(yt) var(Γ ∗
Kt)
�(41)

The empirical analysis only gives the R2 of the granular residual Γ :

R2
ΓK

= cov(yt� ΓKt)2

var(yt) var(ΓKt)
�(42)

Econometrically, the situation is tricky, because economically, Xt is corre-
lated with Γ ∗

K .
A quantity of interest is the squared herfindahl of the top K firms:

HK =

K∑
i=1

S2
i(

K∑
i=1

Si

)2 �(43)

LEMMA 1: The R2 of the granular residual is a downward biased estimate of
the R2 of the ideal granular residual, by a factor 1 − 1

KHK
:

R2
ΓK

=R2
Γ ∗
K

(
1 − 1

KHK

)
�
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PROOF: By rescaling, it is enough to analyze the case where σε = 1. I call∑K

i=1 Si = s and X = K−1
∑K

i=1Xi for a variable X . Then Γ = ∑K

i=1(Si/s −
1/K)εi, which gives, dropping the K subscripts when there is no ambiguity,

Γ ∗
t = Γt + εt with cov(Γt� εt)= 0�

which means that Γ is a noisy proxy for Γ ∗. Also

cov(Γ ∗
t � Γt)= varΓt =

(
H − 1

K

)
� varΓ ∗

t =H�

and

R2
Γ = cov(y�Γt)2

var y · var(Γt)
= φ2 cov(Γt� Γ ∗

t )
2

var y · var(Γt)

=
φ2(varΓ ∗)2

(
1 − 1

HK

)2

var y · var(Γt)

= cov(y�Γ ∗
t )

2

var y · varΓ ∗

(
1 − 1

HK

)2 varΓ ∗

varΓ

= R2
Γ ∗

(
1 − 1

HK

)2
H

H − 1
K

=R2
Γ ∗

(
1 − 1

HK

)
�

Q.E.D.

Empirically, for theK = 100 firms, (1− 1
KHK

)= 2/3. Hence if empirically the
R2
ΓK

= 1/3, the R2 of the ideal granular residual is R2
Γ ∗
K

= 1/2. This bias is an
attenuation bias, as the granular residual is a noisy proxy for the ideal granular
residual.

If the distribution is very concentrated, then HK � 1/K. Formally, the
proof of Proposition 2 shows that if the Pareto exponent of the distribution
is 1 ≤ ζ < 2, then KHK ∝ K2−2/ζ , so limK→∞(KHK)

−1 = 0, and as K → ∞,
R2
Y�ΓK

/R2
Y�Γ ∗

K
→ 1. This is the sense in which, for large K, the granular resid-

ual identifies the explanatory power of the ideal granular residual.
The same reasoning applies, with messier expressions, with the industry-

specific shocks model: git = xt + xIi + εit . The R2 of the industry-demeaned
Γt is a downward estimate R2 of the ideal granular residual Γ ∗�ind. The bias
goes to 0 as the number of firms becomes large.

E.2. Why Controlling for Industry–Year Averages gIit Might Be Better Than
Simply Controlling for the Year Average gt

The paper controls for gt and gIit . It justifies this by saying “The term git−gIit
may be closer to the ideal εit than git −gt , as gIit may control better than gt for
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industry-wide disturbances, for example, industry-wide real price movements.”
In case this is useful, here is some more elaboration on this argument.

Indeed, take a production function Y = F(A1L1� � � � �AnLn) with one
factor—labor—and F fairly general but homogenous of degree 1. Then the
sales are Si = piAiLi; hence the percentage changes (calling X̂ = dX/X) are
Ŝi = p̂i + Âi + L̂i, so the paper’s construct gi is

gi ≡ Ŝi − L̂i = Âi + p̂i�

Thus, gi is indeed TFP growth Âi plus a “cost disturbance” p̂i, which econo-
metrically is akin to some measurement noise (except that, importantly, it can
be correlated with Âi). If the p̂i are very correlated within an industry (that
will be the case with a Dixit–Stiglitz structure inside the industry), p̂i 	 p̂I ,
then gIit 	 p̂I 	 p̂i (if there are many firms with uncorrelated shocks in the
industry) and gi − gIit will be closer to Âi than gi − gt .

This general point being made, here is a clear example in which the de-
meaning by the industry gIit is unambiguously better theoretically than the de-
meaning by gt . Consider an economy with m sectors, where sector I produces
QI = (

∑
j∈I(AjLj)

1/φ)φ for ψ > 1, and GDP is Y = ∏m

I=1Q
αI
I with

∑m

i=1 αI .
Then the price of good QI satisfies pIQI = αIY , so

p̂I + Q̂I = Ŷ �

Also (by optimization in the production of QI), the price of good i ∈ I is pi =
pI(

Qi
QI
)1/φ−1, so the sales of firm i are

Si = piQi = pIQI

(
Qi

QI

)1/φ

�

so

Ŝi = 1
φ
(Q̂i − Q̂I)+ p̂I + Q̂I�

Ŝi = 1
φ
(Q̂i − Q̂I)+ Ŷ �

Note also that

Q̂I =

∑
i∈I
SiQ̂i∑

i∈I
Si
�
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To simplify further, assume that labor cannot be reallocated in the short term
(the more general case is in the NBER WP of this paper), so that L̂i = 0 and
Q̂i = Âi. Then the measure growth rate gi ≡ Ŝi − L̂i satisfies

gi = 1
φ
(Q̂i − Q̂I)+ Ŷ �

Next, consider the g term with many sectors and many firms (but a few big
firms in a few big sectors)

g= Ŷ �
while the industry average is

gIi =
−Q̂I

φ
+ Ŷ �

Denote by si = Si/Y the output share. The g-demeaned granular residual
(equation (33) in the paper) is:

Γ g ≡
∑
i

si(gi − g)=
∑
i

si
1
φ
(Q̂i − Q̂I)(44)

= 1
φ

∑
i

siÂi − 1
φ

∑
I

(∑
i∈I
si

)
Q̂I�

Γ g = 0�

The granular term, purging by g, is just Γ g ≡ 0.
However, the industry-demeaned granular term (equation (34) in the paper)

is

Γ ind ≡
∑
i

si(gi − gIi)=
∑
i

si

(
1
φ
Q̂i

)
= 1
φ

∑
i

siÂi = 1
φ
Γ ∗�(45)

where Γ ∗ = ∑
i siÂi is the ideal granular residual.

The key results are

Γ g = 0� Γ ind = 1
φ
Γ ∗�(46)

Hence, a finite sample, Γ g will be pure noise, whereas Γ ind will contain infor-
mation on the ideal granular residual Γ ∗. Thus, to proxy for the ideal granular
residual Γ ∗, the empirical granular residual Γ ind = ∑K

i=1
Si�t−1
Yt−1

(git − gIit) will be

better suited than the empirical granular residual Γ g = ∑K

i=1
Si�t−1
Yt−1

(git − gt).
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This example is of course not general (I just considered a tractable limit
case), but it illustrates the point that controlling for gIt may control better for
industry-wide disturbances, such as industry-wide real price changes.

APPENDIX F: DESCRIPTION OF THE GRANULAR RESIDUAL TIME SERIES

The online data contains the following series.
Series 1 (“GR, industry-demeaned, K = 100”) is the granular residual Γt

series, as used in the paper (K =Q= 100), using the industry-level demeaning.
Series 2 (“GR, K = 100”) is the granular residual Γt series, as used in the

paper (K =Q= 100), using the gt demeaning.
Series 3 (“Narrative GR”) is the “narrative granular residual” that corre-

sponds solely to the firm–year events selected in the narrative. I define the
narrative granular residual Γ N

t as being 0 if no event is selected, and equal to
Γ N
t = Sit−1(git − gIit)/Yt−1 if a firm i is selected for that year (or I sum over the

firms if several firms are selected).
Series 4 (“GR, K = 5”) is the granular residual based on the top five firms

only, Γt (K = 5�Q= 100), using the industry-level demeaning.
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