
Econometrica Supplementary Material

SUPPLEMENT TO “MATCHING ON THE ESTIMATED
PROPENSITY SCORE”

(Econometrica, Vol. 84, No. 2, March 2016, 781–807)

BY ALBERTO ABADIE AND GUIDO W. IMBENS

THE FIRST PART OF THIS SUPPLEMENT CONTAINS additional proofs. The second
part reports the results of a Monte Carlo study that confirms the theoretical
properties of the propensity score matching estimators derived in the article.

S.1. ADDITIONAL PROOFS

We first state and prove a number of preliminary results. For real numbers
a, �a� is the largest integer less than or equal to a, and �a� is the smallest
integer greater than or equal to a. If a is an integer, then �a� = �a�; otherwise,
�a� = �a� + 1.

LEMMA S.1: Consider two independent samples of sizes n0 and n1 from con-
tinuous distributions F0 and F1 with common support: X0�1� � � � �X0�n0 ∼ i.i.d. F0

and X1�1� � � � �X1�n1 ∼ i.i.d. F1. Let N = n0 + n1. Assume that the support of F0

and F1 is an interval inside [0�1]. Let f0 and f1 be the densities of F0 and F1,
respectively. Suppose that for any x in the supports of F0 and F1, f1(x)/f0(x) ≤ r̄.
For 1 ≤ i ≤ n1 and 1 ≤ m ≤ M ≤ n0, let |Un0�n1�i|(m) be the mth order statistic of
{|X1�i −X0�1|� � � � � |X1�i −X0�n0 |}. Then, for n0 ≥ 3,

E
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|Un0�n1�i|(m)
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n1
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�

PROOF: Consider N balls assigned at random among n bins of equal prob-
ability. It is known that the mean of the number of bins with exactly m balls is
equal to

n

(
N
m

)(
1
n

)m(
1 − 1

n

)N−m

(see Johnson and Kotz (1977)). Because f1(x)/f0(x) ≤ r̄, for any measurable
set A,

Pr(X1�i ∈ A)=
∫
A

f1(x)dx=
∫
A

(
f1(x)

f0(x)

)
f0(x)dx≤ r̄ Pr(X0�i ∈ A)�
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Divide the support of F0 and F1 in �n3/4
0 � cells of equal probability, 1/�n3/4

0 �,
under F0. Let ZM�n0 be the number of such cells that are not occupied by at
least M observations from the sample: X0�1� � � � �X0�n0 . Let μM�n0 = E[ZM�n0].
Notice that n0 ≥ 3 implies �n3/4

0 � ≥ 2. Then,

μM�n0 =
M−1∑
m=0
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n3/4
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⌊
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1 − 1⌊
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⌋)n0−m

≤ MnM−1/4
0
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1 − 1

n3/4
0

)n0

�

Using Markov’s inequality,

Pr(ZM�n0 > 0) = Pr(ZM�n0 ≥ 1)

≤ μM�n0 ≤MnM−1/4
0

(
1 − 1

n3/4
0

)n0

�

Notice that for any positive a, we have that a− 1 ≥ log(a). Therefore, for any
b < N , we have that log(1 − b/N) ≤ −b/N and (1 − b/N)N ≤ exp(−b). As a
result, we obtain(

1 − 1

n3/4
0

)n0

=
(

1 − n1/4
0

n0

)n0

≤ exp
(−n1/4

0

)
�

Putting together the last two displayed equations, we obtain the following ex-
ponential bound for Pr(ZM�n0 > 0):

Pr(ZM�n0 > 0)≤MnM−1/4
0 exp

(−n1/4
0

)
�

Notice that |Un0�n1�i|(m) ≤ 1. For 0 ≤ n ≤ �n3/4
0 �, let cn0�n be the point in the sup-

port of F0 such that cn0�n = F−1
0 (n/�n3/4

0 �); then,

E

[
M∑

m=1

|Un0�n1�i|(m)

∣∣∣ZM�n0 = 0

]

≤
�n3/4

0 �∑
n=1

M(cn0�n − cn0�n−1)Pr(cn0�n−1 ≤X1�i ≤ cn0�n|ZM�n0 = 0)
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≤ Mr̄⌊
n3/4
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⌋ �n3/4
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≤ Mr̄⌊
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0

⌋ �
Now,
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N
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E
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M
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⌊
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0
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�

Q.E.D.

LEMMA S.2: Suppose that the propensity score p(X) = Pr(W = 1|X) is con-
tinuously distributed, with continuous density, f (p), and interval support, [p�p],
with p> 0 and p< 1. Let fw(p) be the density of the propensity score conditional
on W = w, where w ∈ {0�1}. Then, the densities f1(p) and f0(p) are continu-
ous and share a common support. Moreover, the ratio f1(p)/f0(p) is continuous,
uniformly bounded, and uniformly bounded away from zero for all p such that
f (p) > 0.

PROOF: Applying Bayes’s Theorem, for all 0 ≤ p ≤ 1,

fw(p) = f (p)Pr
(
W = w|p(X)= p

)
Pr(W = w)

= p

Pr(W =w)
f(p)�
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Therefore, the functions f1(p) and f0(p) are continuous, and the supports of
f1(p) and f0(p) are equal to the support of f (p). Now, for any p such that
f (p) > 0, we obtain

f1(p)

f0(p)
= p

1 −p

Pr(W = 0)
Pr(W = 1)

<
p

1 −p

1 −p

p
�

Similarly,

f0(p)

f1(p)
<

1 −p

p

p

1 −p
�

Therefore, we obtain η̄ = (p(1 −p))/((1 −p)p) > 1, and

1
η̄
<

f1(p)

f0(p)
< η̄� Q.E.D.

LEMMA S.3—Inverse Moments of the Doubly Truncated Binomial Distri-
bution: Let N0 be a binomial variable with parameters (N� (1 − p)) that is left-
truncated for values smaller than M and right-truncated for values greater than
N − M , where M <N/2. Let N1 = N − N0. Then, for any r > 0, there exists a
constant Cr , such that

E

[(
N

N0

)r]
≤ Cr and E

[(
N

N1

)r]
≤ Cr

for all N > 2M .

PROOF: Here, we prove the first assertion of the lemma. The proof of the
second assertion is analogous. Let N1 = N − N0. Let q̄ be a scalar greater
than 1. Then,

E
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N

N0

)r]
= E

[(
N

N0

)r

1[N/N0>q̄]

]
+E

[(
N

N0

)r

1[N/N0≤q̄]

]
≤

(
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M

)r

Pr
(
N
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> q̄
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+ q̄r

=
(
N

M
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Pr
(
N1 >

(
1 − 1

q̄

)
N

)
+ q̄r �
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Notice that

Pr
(
N1 >

(
1 − 1

q̄

)
N

)
=

x≤N−M∑
x>(1−1/q̄)N�x≥M

(
N
x

)
px(1 −p)N−x

x≤N−M∑
x≥M

(
N
x

)
px(1 −p)N−x

�

For N > 2M , the denominator can be bounded away from zero. Therefore, for
some positive constant C, and q̄ > 1/(1 −p),

Pr
(
N1 >

(
1 − 1

q̄

)
N

)
≤ C

x≤N−M∑
x>(1−1/q̄)N�x≥M

(
N
x

)
px(1 −p)N−x

≤ C
∑

x>(1−1/q̄)N

(
N
x

)
px(1 −p)N−x

≤ C exp
{−2(1 − 1/q̄−p)2N

}
�

by Hoeffding’s Inequality (e.g., van der Vaart and Wellner (1996, p. 459)).
Therefore, E[(N/N0)

r] is uniformly bounded for N > 2M . Q.E.D.

For a sample of scalars X1� � � � �XN from a cumulative distribution function
F : [a�b] �→ [0�1], let F̂ be the empirical cumulative distribution function:

F̂(x) = 1
N

N∑
i=1

1[Xi≤x]�

Let F̂−1 be the empirical inverse cumulative distribution function:

F̂−1(q) = inf
a≤x≤b

{
x : F̂(x) ≥ q

}
�

Let ξ1:N� � � � � ξN:N be the order statistics for a random sample of size N from
the uniform distribution. Let Ĝ and Ĝ−1 be the empirical cumulative distribu-
tion function for that sample and its inverse.

LEMMA S.4: Suppose F : [a�b] �→ [0�1] is a continuous and strictly increasing
cumulative distribution function with F(a) = 0. Then,

(i) sup0≤q≤1 |F̂−1(q)− F−1(q)| a�s�→ 0�

(ii) maxi=1:N |F−1(ξi:N)− F−1(i/N)| a�s�→ 0�



6 A. ABADIE AND G. W. IMBENS

(iii) for any two integers J and M :

max
i=J+1:N−M

∣∣F−1(ξi+M:N)− F−1(ξi−J:N)
∣∣ a�s�→ 0�

PROOF: First, notice that F−1 is uniformly continuous, because it is a con-
tinuous function defined on a compact set (e.g., Rudin (1976, Theorems 4.17
and 4.19)). Because F̂−1 has the same distribution as F−1 ◦ Ĝ−1 and

sup
0≤q≤1

∣∣Ĝ−1(q)− q
∣∣ a�s�→ 0

(see Shorack and Wellner (1986, p. 95)), the result in part (i) is implied by
uniform continuity of F−1 as follows. Fix δ > 0. Because F−1 is uniformly con-
tinuous, then for each δ > 0, there exists an ε > 0 such that if |p− q| < ε, then
|F−1(p) − F−1(q)| < δ. With probability 1, for each ε > 0 there exists N(ε)
such that, for N ≥N(ε),

sup
0≤q≤1

∣∣Ĝ−1(q)− q
∣∣< ε�

Therefore, with probability 1, there exists N(ε) such that, for N ≥ N(ε),

sup
0≤q≤1

∣∣F−1
(
Ĝ−1(q)

) − F−1(q)
∣∣< δ�

which proves (i). Part (ii) is directly implied by (i) and by the fact that F̂−1 has
the same distribution as F−1 ◦ Ĝ−1. To prove (iii), notice that

max
i=J+1:N−M

∣∣F−1(ξi+M:N)− F−1(ξi−J:N)
∣∣

≤ max
i=J+1:N−M

∣∣F−1(ξi+M:N)− F−1
(
(i+M)/N

)∣∣
+ max

i=J+1:N−M

∣∣F−1(ξi−J:N)− F−1
(
(i− J)/N

)∣∣
+ max

i=J+1:N−M

∣∣F−1
(
(i+M)/N

) − F−1
(
(i− J)/N

)∣∣�
Result (ii) implies that the first two terms on the right-hand side of the last
equation converge almost surely to zero. Then, uniform continuity of F−1 im-
plies that the last term on the right-hand side of the last equation converges to
zero, which proves (iii). Q.E.D.

LEMMA S.5: Let Y1� � � � �YN+1 be independent and distributed as standard ex-
ponential (equivalently, �(1�1), where � denotes the Gamma distribution with
parameters (1�1)). Let Sj = ∑j

i=1 Yi and SN+1�j = ∑j

i=1 Yi/
∑N+1

i=1 Yi, for 1 ≤ j ≤
N + 1. Let k denote a positive integer. Then:
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(i) Sj has a Gamma distribution with parameters (j�1) and moments

E
[
(Sj)

k
] = (j + k− 1)!

(j − 1)! ;

(ii) SN+1�j has a Beta distribution with parameters (j�N − j + 1) and moments

E
[
(SN+1�j)

k
] = (j + k− 1)!N!

(j − 1)!(N + k)! �

PROOF: See, for example, Poirier (1995, pp. 98–106). Q.E.D.

LEMMA S.6: Suppose F : [a�b] �→ [0�1] is a strictly increasing and abso-
lutely continuous cumulative distribution function with F(a) = 0 and derivative
f (x). Suppose m : [a�b] �→ R is nonnegative and continuous (hence, bounded on
[a�b]). Then, for any nonnegative integer, M ,

N−M∑
i=M+1

m
(
F−1(ξi:N)

)
(ξi+M:N − ξi−M:N)

p→ 2M
∫ b

a

m(s)f (s)ds

and

N−M∑
i=M+1

m
(
F−1(ξi:N)

)
N(ξi+M:N − ξi−M:N)2

p→ 2M(2M + 1)
∫ b

a

m(s)f (s)ds�

PROOF: We first prove three results:

N−M∑
i=M+1

(
m

(
F−1(ξi:N)

) −m
(
F−1(i/N)

))
(ξi+M:N − ξi−M:N)= op(1)�(S.1)

N−M∑
i=M+1

m
(
F−1(i/N)

)
(ξi+M:N − ξi−M:N)(S.2)

− 2M
N

N−M∑
i=M+1

m
(
F−1(i/N)

) = op(1)�

and

1
N

N−M∑
i=M+1

m
(
F−1(i/N)

) −
∫ b

a

m(s)f (s)ds = o(1)�(S.3)
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which together imply the first result in the lemma.
First consider (S.1). For N large enough, we have M + 1 ≤ N −M . Let k be

an integer such that −M ≤ k ≤M − 1. It is enough to prove

N−M∑
i=M+1

(
m

(
F−1(ξi:N)

) −m
(
F−1(i/N)

))
(ξi+k+1:N − ξi+k:N)= op(1)�

Then, equation (S.1) follows from summation from k = −M to k = M − 1.
Because m is uniformly continuous on [a�b], then for any ε > 0, there ex-
ists a δ > 0 such that if x1 and x2 belong to [a�b] and |x2 − x1| < δ, then
|m(x2) − m(x1)| < ε. Consider ε > 0. Then, there exists a δ > 0 such that,
applying Lemma S.4(ii), we obtain

Pr
(

max
i=1�����N

∣∣m(
F−1(ξi:N)

) −m
(
F−1(i/N)

)∣∣< ε
)

≥ Pr
(

max
i=1�����N

∣∣F−1(ξi:N)− F−1(i/N)
∣∣ < δ

)
→ 1�

Because this derivation holds for any ε > 0, we obtain

max
i=1�����N

∣∣m(
F−1(ξi:N)

) −m
(
F−1(i/N)

)∣∣ p→ 0�(S.4)

Therefore,∣∣∣∣∣
N−M∑
i=M+1

(
m

(
F−1(ξi:N)

) −m
(
F−1(i/N)

))
(ξi+k+1:N − ξi+k:N)

∣∣∣∣∣
< max

i=1�����N

∣∣m(
F−1(ξi:N)

) −m
(
F−1(i/N)

)∣∣∣∣∣∣∣
N−M∑
i=M+1

(ξi+k+1:N − ξi+k:N)

∣∣∣∣∣
p→ 0�

which proves (S.1). Now consider (S.2). As before, it is enough to prove

N−M∑
i=M+1

m
(
F−1(i/N)

)
(ξi+k+1:N − ξi+k:N)− 1

N

N−M∑
i=M+1

m
(
F−1(i/N)

)
= op(1)�
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for −M ≤ k ≤ M − 1. For i = 1� � � � �N + 1, define the spacings δNi = ξi:N −
ξi−1:N (with ξ0:N = 0 and ξN+1:N = 1). The left-hand side of the last equation
can be expressed as

N−M∑
i=M+1

m
(
F−1(i/N)

)(
δNi+k+1 − 1

N

)
�

We will show that the last equation converges to zero in probability by showing
that its mean and variance converge to zero. Using Lemma S.5, the repre-
sentation of uniform spacings via exponential variables (see, e.g., Shorack and
Wellner (1986, p. 721)), we obtain

E[δNi+k+1] = 1
N + 1

�(S.5)

var(δNi+k+1)= N

(N + 1)2(N + 2)
<

1
N2 �

Notice also that for any k� l ∈ {1� � � � �N} with k < l, x ∈ [0�1], and y ∈
[0�1 − x], we have

Pr

(
l∑

j=k+1

δNj ≤ y
∣∣∣ k∑

j=1

δNj = x

)
= Pr(ξNl − ξNk ≤ y|ξNk = x)�

The distribution of ξNl − ξNk conditional on ξNk = x is the same as the distri-
bution of (l − k)th order statistic in a sample of size N − k from a uniform
distribution on [0�1 −x]. As a result, the probability of the event ξNl −ξNk ≤ y

conditional on ξNk = x is non-decreasing in x. Therefore,
∑l

j=k+1 δNj is neg-
atively regression-dependent on

∑k

j=1 δNj (see, e.g., Lehmann (1966)). By ex-
changeability, this result extends to any two sums SN�QN of disjoint sets of
uniform spacings. Then, negative regression dependence implies that for any
non-decreasing function, e():

cov
(
e(SN)� e(QN)

)
< 0�(S.6)

Because m is bounded on [a�b],

E

[
N−M∑
i=M+1

m
(
F−1(i/N)

)(
δi+k+1:N − 1

N

)]

= −1
N(N + 1)

N−M∑
i=M+1

m
(
F−1(i/N)

) → 0�
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Because m is nonnegative,

var

(
N−M∑
i=M+1

m
(
F−1(i/N)

)(
δi+k+1:N − 1

N

))

≤
N−M∑
i=M+1

m
(
F−1(i/N)

)2
var

(
δi+k+1:N − 1

N

)

≤ 1
N2

N−M∑
i=M+1

m
(
F−1(i/N)

)2 → 0�

Therefore, (S.2) holds. Finally, consider (S.3):

lim
N→∞

1
N

N−M∑
i=M+1

m
(
F−1(i/N)

) =
∫ 1

0
m

(
F−1(y)

)
dy =

∫ b

a

m(s)f (s)d(s)�

Next we will prove

N−M∑
i=M+1

(
m

(
F−1(ξi:N)

) −m
(
F−1(i/N)

))
N(ξi+M:N − ξi−M:N)2 = op(1)�(S.7)

N−M∑
i=M+1

m
(
F−1(i/N)

)
N(ξi+M:N − ξi−M:N)2(S.8)

−2M(2M + 1)
N

N−M∑
i=M+1

m
(
F−1(i/N)

) = op(1)�

which along with (S.3) imply the second result in the lemma. Because of equa-
tion (S.4), to prove equation (S.7) it is sufficient to prove that

N−M∑
i=M+1

N(ξi+M:N − ξi−M:N)2

is bounded in probability. By Lemma S.5, for N ≥ 2M ,

E

[
N−M∑
i=M+1

N(ξi+M:N − ξi−M:N)2

]

=N
2M(2M + 1)

(N + 1)(N + 2)
(N − 2M) → 2M(2M + 1)�
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Also, because of equation (S.6), exchangeability, and the Cauchy–Schwarz in-
equality,

var

(
N−M∑
i=M+1

N(ξi+M:N − ξi−M:N)2

)

= var

(
N−M∑
i=M+1

N(δNi+M + · · · + δNi−M+1)
2

)

≤
N−M∑
i=M+1

var
(
N(δNi+M + · · · + δNi−M+1)

2
)

+
N−M∑
i=M+1

N+1∧i+2M−1∑
0∨i−2M+1

j �=i

cov
(
N(δNi+M + · · · + δNi−M+1)

2�

N(δNj+M + · · · + δNj−M+1)
2
)

≤
N−M∑
i=M+1

var
(
N(δNi−M+1 + · · · + δNi+M)

2
)

+ (4M − 2)
N−M∑
i=M+1

var
(
N(δNi−M+1 + · · · + δNi+M)

2
)
�

Lemma S.5 implies

var
(
N(δNi−M+1 + · · · + δNi+M)

2
)
<N2E

[
(δNi−M+1 + · · · + δNi+M)

4
]

= N2 (2M + 3)!N!
(2M − 1)!(N + 4)! �

Therefore,

var

(
N−M∑
i=M+1

N(ξi+M:N − ξi−M:N)2

)
→ 0�

which proves (S.7). Using Lemma S.5, notice that the expectation of the left-
hand side of equation (S.8) is

N−M∑
i=M+1

E

[
m

(
F−1(i/N)

)(
N(ξi+M:N − ξi−M:N)2 − 2M(2M + 1)

N

)]
(S.9)

=
(

2M(2M + 1)N
(N + 1)(N + 2)

− 2M(2M + 1)
N

) N−M∑
i=M+1

m
(
F−1(i/N)

) → 0�
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Using equation (S.6), Cauchy–Schwarz inequality, exchangeability of the
uniform spacings, and boundedness of m, we obtain that for some con-
stant Cm,

var

(
N−M∑
i=M+1

m
(
F−1(i/N)

)(
N(ξi+M:N − ξi−M:N)2

))

≤ C2
m

N−M∑
i=M+1

var
(
N(δNi+M + · · · + δNi−M+1)

2
)

+
N−M∑
i=M+1

m
(
F−1(i/N)

)N+1∧i+2M−1∑
0∨i−2M+1

j �=i

m
(
F−1(j/N)

)
× cov

(
N(δNi+M + · · · + δNi−M+1)

2�N(δNj+M + · · · + δNj−M+1)
2
)

≤ C2
m

N−M∑
i=M+1

var
(
N(δNi−M+1 + · · · + δNi+M)

2
)

+ (4M − 2)C2
m

N−M∑
i=M+1

var
(
N(δNi−M+1 + · · · + δNi+M)

2
)

→ 0�

which proves (S.8). Q.E.D.

LEMMA S.7: Let X be a scalar random variable with interval support [a�b],
distribution function G, and density function g that is continuous on [a�b]. For
a random sample X1� � � � �XN , let Xj:N be the jth order statistic. We will adopt
the convention Xj:N = a if j < 1 and Xj:N = b if j > N . Let VNk be the rank of
observation k in the sample. Let PNk be the probability that observation k will be
a match for an out-of sample observation with continuous density f :

PNk =
∫ (XVNk :N+XVNk+M:N)/2

a

f (x)dx1[VNk≤M](S.10)

+
∫ (XVNk :N+XVNk+M:N)/2

(XVNk :N+XVNk−M:N)/2
f (x)dx1[M+1≤VNk≤N−M]

+
∫ b

(XVNk :N+XVNk−M:N)/2
f (x)dx1[N−M+1≤VNk]�
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Assume that f/g is bounded on [a�b]. Let σ2 be a bounded function with domain
[a�b]. Then,

N∑
k=1

σ2(Xk)

(
PNk − f (Xk)

g(Xk)

G(XVNk+M:N)−G(XVNk−M:N)
2

)
p→ 0(S.11)

and

N∑
k=1

σ2(Xk)N

(
P2
Nk −

(
f (Xk)

g(Xk)

G(XVNk+M:N)−G(XVNk−M:N)

2

)2)
p→ 0�(S.12)

PROOF: Fix k ∈ {1�2� � � � �N} (e.g., k= 1). Notice that

NPNk −N

∫ (XVNk :N+XVNk+M:N)/2

(XVNk :N+XVNk−M:N)/2
f (x)dx = op(1)�

Let

Z(1)
Nk = σ2(Xk)N

(
PNk − f (Xk)

g(Xk)

G(XVNk+M:N)−G(XVNk−M:N)
2

)
�

Given that f and g are continuous, there are mean values X̄f�k�N�M and X̄g�k�N�M

(in ((XVNk:N +XVNk−M:N)/2� (XVNk:N +XVNk+M:N)/2) and (XVNk−M:N�XVNk+M:N),
respectively), such that

0 = σ2(Xk)N

(
PNk − f (X̄f�k�N�M)

g(X̄g�k�N�M)

G(XVNk+M:N)−G(XVNk−M:N)
2

)
+ op(1)

= Z(1)
Nk + σ2(Xk)

(
f (Xk)

g(Xk)
− f (X̄f�k�N�M)

g(X̄g�k�N�M)

)

× N
(
G(XVNk+M:N)−G(XVNk−M:N)

)
2

+ op(1)

= Z(1)
Nk + op(1)Op(1)+ op(1)�

The last equality follows from equation (S.5) and the continuous mapping the-
orem. Therefore, Z(1)

Nk

p→ 0. Next, we will show that E[|Z(1)
Nk|] is bounded uni-

formly in N . Let Pb
Nk, Pm

Nk, and Pt
Nk be the three terms on the right-hand side

of equation (S.10), arranged in the same order as in the equation. By Cauchy’s
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generalization of the Mean Value Theorem, there is X̄N�M in (0�X2M:N), such
that

NPb
Nk ≤ NF(X2M:N)= F(X2M:N)

G(X2M:N)
NG(X2M:N)

≤ f (X̄N�M)

g(X̄N�M)
NG(X2M:N)�

Because f/g is bounded and because for any positive integer r,

E
[(
NG(X2M:N)

)r] =Nr (2M + r − 1)!N!
(2M − 1)!(N + r)! <

(2M + r − 1)!
(2M − 1)! �

we obtain that E[|NPb
Nk|r] is bounded by a constant that does not depend on N

or k. Similarly, by Cauchy’s generalization of the Mean Value Theorem, there
is X̄k�N�M in (XVNk−M:N�XVNk+M:N), such that

NPm
Nk ≤ N

∫ XVNk :N+XVNk+M:N)/2

(XVNk :N+XVNk−M:N)/2
f (x)dx

≤ N

∫ XVNk+M:N

XVNk−M:N
f (x)dx

= F(XVNk+M:N)− F(XVNk−M:N)
G(XVNk+M:N)−G(XVNk−M:N)

×N
(
G(XVNk+M:N)−G(XVNk−M:N)

)
= f (X̄k�N�M)

g(X̄k�N�M)
N

(
G(XVNk+M:N)−G(XVNk−M:N)

)
�

Because f/g is bounded and because for any positive integer r,

E
[(
N

(
G(XVNk+M:N)−G(XVNk−M:N)

))r] ≤ Nr (2M + r − 1)!N!
(2M − 1)!(N + r)!

<
(2M + r − 1)!
(2M − 1)! �

we obtain that E[|NPm
Nk|r] is bounded by a constant that does not depend on N .

Using an analogous argument, it can be shown that for any positive integer, r,
E[|NPt

Nk|r] is bounded by a constant that does not depend on N . As a result,
E[|NPm

Nk|r] is bounded by a constant that does not depend on N . Because σ2 is
bounded, applying Minkowski’s Inequality, we obtain that, for r > 0, E[|Z(1)

Nk|r]
is uniformly bounded in N . This, in combination with the fact that Z(1)

Nk

p→ 0,
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implies E[|Z(1)
Nk|] → 0. Now, exchangeability of Z(1)

Nk for any given N implies
that E[|Z(1)

N1|] =E[|Z(1)
N2|] = · · · = E[|Z(1)

NN |]. Using Markov’s Inequality,

εPr

(∣∣∣∣∣ 1
N

N∑
k=1

Z(1)
Nk

∣∣∣∣∣> ε

)
≤ E

[∣∣∣∣∣ 1
N

N∑
k=1

Z(1)
Nk

∣∣∣∣∣
]

≤ 1
N

N∑
k=1

E
[∣∣Z(1)

Nk

∣∣]
= E

[∣∣Z(1)
N1

∣∣] → 0�

which proves equation (S.11). The proof of equation (S.12) is analogous.
Q.E.D.

LEMMA S.8: Assume that (i) (W1�X1)� � � � � (WN�XN) are independent and
identically distributed; (ii) X has a continuous distribution, and W has a binary
distribution with Pr(W = 1) ∈ (0�1); (iii) for w = 0�1, the cumulative distribution
functions of X given W = w, Fw, are absolutely continuous with derivative fw;
(iv) there exists a constant Ch such that, for h = f1/f0, we have (1/Ch) ≤ h ≤ Ch.
Let M be a positive integer not greater than the minimum of N1 = ∑N

i=1 Wi and
N0 =N −N1. Let KM(i) be the number of times observation i is used as a match
when each unit is matched with replacement to the closest M units in the oppo-
site treatment group, and k be any positive integer. Then, E[KM(i)

k|Wi = w] is
uniformly bounded in N by a finite constant.

PROOF: Let Vi denote the rank of Xi among the NWi
units with Wj = Wi, so

that Vi ∈ {1� � � � �max(N0�N1)}. Also, let Xw�(j) be the jth order statistic of X-
values among the Nw units with Wi = w. Let Xw be the Nw vector with the
stacked covariate values for units with Wi = w. For 1 ≤ v ≤ Nw, define the
probability that unit i is a match for unit j, conditional on Wi = w, Wj = 1 −w,
Xw, Vi = v, N0 = n0, and N1 = n1:

p(M�n0� n1�w�v�Xw)

= Pr
(
i ∈JM(j)|N0 = n0�N1 = n1�Wi =w�Wj = 1 −w�Vi = v�Xw

)
�

First we prove that for all n0 ≥M , n1 ≥ M , w ∈ {0�1}, and v ∈ {1� � � � � nw},

E
[(
nwp(M�n0� n1�w�v�Xw)

)k]
<Ck

h

(2M + k− 1)!
(2M − 1)! �(S.13)

where the expectation on the left-hand side integrates over the distribution of
Xw, which has length equal to nw. Let us first focus on the case with w = 1 and
M + 1 ≤ v ≤ n1 −M . Then

p(M�n0� n1�1� v�Xw)

= Pr
(
X1�(v−M) +X1�(v)

2
≤Xj ≤ X1�(v+M) +X1�(v)

2

∣∣∣X1�Wj = 0
)
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≤ Pr(X1�(v−M) ≤ Xj ≤X1�(v+M)|X1�Wj = 0)

= F0(X1�(v+M)|X1)− F0(X1�(v−M)|X1)�

By continuity of F1 and F0, boundedness of h, Cauchy’s version of the Mean
Value Theorem, exchangeability of uniform spacings, and Lemma S.5, we ob-
tain

E
[(
n1p(M�n0� n1�1� v�X1)

)k]
≤E

[(
n1

(
F0(X1�(v+M))− F0(X1�(v−M))

))k]
= nk

1E

[(
F0(X1�(v+M))− F0(X1�(v−M))

F1(X1�(v+M))− F1(X1�(v−M))

× (
F1(X1�(v+M))− F1(X1�(v−M))

))k]
≤ Ck

hn
k
1E

[
(ξv+M:n1 − ξv−M:n1)

k
]

= nk
1C

k
h

(2M + k− 1)!
(2M − 1)!

n1!
(n1 + k)!

<Ck
h

(2M + k− 1)!
(2M − 1)! �

For the case with w = 1 and v ≤M , we have

p(M�n0� n1�w�v�Xw) = Pr
(
Xj ≤ X1�(v) +X1�(v+M)

2

∣∣∣X1�Wj = 0
)

≤ Pr(Xj ≤X1�(v+M)|X1�Wj = 0)

≤ F0(X1�(2M)|X1)�

Using the same argument as before, the expectation of (n1p(M�n0� n1�1�
v�Xw))

k can be bounded by Ck
h(2M +k−1)!/(2M −1)!. The argument for the

case with v + M ≥ N + 1 is similar and is omitted. This proves (S.13). Condi-
tional on X1�N0 = n0�N1 = n1�Wi = 1, and Vi = v, the random variable KM(i)
follows a binomial distribution with parameters (n0�p(M�n0� n1�1� v�X1)).
Therefore,

E
[
KM(i)

k|X1�N0 = n0�N1 = n1�Wi = 1� Vi = v
]

(S.14)

=
k∑

r=0

S(k� r)n0!
(
p(M�n0� n1�1� v�X1)

)r
(n0 − r)!

≤
k∑

r=0

S(k� r)

(
n0

n1

)r(
n1p(M�n0� n1�1� v�X1)

)r
�
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where S(k� r) is a Stirling number of the second kind (see Johnson, Kotz, and
Kemp (1993)). Taking expectations over X1, we obtain

E
[
KM(i)

k|N0 = n0�N1 = n1�Wi = 1� Vi = v
]

(S.15)

≤
k∑

r=0

S(k� r)

(
n0

n1

)r

Cr
h

(2M + r − 1)!
(2M − 1)! �

Because the bound does not depend on v, it applies also to E[KM(i)
k|N0 = n0�

N1 = n1�Wi = 1]. Now, from Lemma S.3, it follows that

E
[
KM(i)

k|Wi = 1
] ≤

k∑
r=0

S(k� r)CrC
r
h

(2M + r − 1)!
(2M − 1)! �

The same argument applies to E[KM(i)
k|Wi = 0]. Q.E.D.

LEMMA S.9: (W1�X1)� � � � � (WN�XN) are independent and identically dis-
tributed, where X has a continuous distribution on [a�b], and W has a binary
distribution with Pr(W = 1) ∈ (0�1). Let PNk be the probability that observation
k is used as a match for any particular observation in the opposite treatment arm,
conditional on W and XWk

. Assume that f1/f0 is bounded and bounded away from
zero; then, for all δ > 0,

max
k=1�����N

PNk = op

(
N−1+δ

)
�

PROOF: For the proof, we focus on the case when Wk = 0. The derivations
for the treated observations are analogous. Let {P0�(1)� � � � �P0�(N0)} be the catch-
ment probabilities for {X0�(1)� � � � �X0�(N0)}. If k is such that k ≥ M + 1 and
k≤ N0 −M , then

P0�(k) =
∫ (X0�(k+M)+X0�(k))/2

(X0�(k−M)+X0�(k))/2
f1(x)dx�

Now apply the change of variables z = F0(x) to obtain

P0�(k) =
∫ F0((X0�(k+M)+X0�(k))/2)

F0((X0�(k−M)+X0�(k))/2)

f1

(
F−1

0 (z)
)

f0

(
F−1

0 (z)
) dz

≤
∫ F0(X0�(k+M))

F0(X0�(k−M))

f1

(
F−1

0 (z)
)

f0

(
F−1

0 (z)
) dz�

Using the assumption that f1/f0 is bounded by some constant C, we obtain

P0�(k) ≤ C
(
F0(X0�(k+M))− F0(X0�(k−M))

)
�
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The derivation k < M + 1 and k > N0 − M is similar, so it is omitted. Now
the result follows from the fact that the maximal uniform spacing is op(N

−1+δ)
for all δ > 0 (see, e.g., Theorem 1 in Shorack and Wellner (1986, p. 726)).

Q.E.D.

LEMMA S.10: Assume that the conditions of Lemma S.9 hold. In addition,
assume that σ2(w�x) = var(Y |W =w�X = x) is uniformly bounded. Then, (i)

1
Nw

N∑
i:Wi=w

σ2(w�Xi)KM(i)− 1
Nw

N∑
i:Wi=w

σ2(w�Xi)N1−wPNi = op(1)�

and (ii)

1
Nw

N∑
i:Wi=w

σ2(w�Xi)KM(i)
2

− 1
Nw

N∑
i:Wi=w

σ2(w�Xi)
(
N2

1−wP
2
Ni +N1−wPNi(1 − PNi)

)
= op(1)�

PROOF: Here we prove (ii) only. The proof of (i) is analogous but slightly
less involved. In the proof we adopt w = 0. The proof for w = 1 is identical after
switching treatment subscripts. Reorder the sample units so those units with
Wi = 0 come first, W1 = · · · = WN0 = 0. For 1 ≤ k ≤ N0, 1 ≤ l ≤ N0, and k �= l,
let μr�k = E[Kr

M(k)|W�X0] and μr�s�k�l = E[Kr
M(k)K

s
M(l)|W�X0]. We first prove

the results for the single match case, with M = 1. Notice that, if M = 1, then
conditional on W and X0, the vector (K1(1)� � � � �K1(N0)) has a multinomial
distribution with parameters N1 and P0�1� � � � �P0�N0 . The moment generating
function of this distribution is

M(t1� � � � � tN0) =
(

N0∑
k=1

P0�ke
tk

)N1

�

Then,

μ2�k =N1P0�k +N1(N1 − 1)P2
0�k�

μ2�2�k�l = N1(N1 − 1)P0�kP0�l

+N1(N1 − 1)(N1 − 2)
(
P2

0�kP0�l + P0�kP
2
0�l

)
+N1(N1 − 1)(N1 − 2)(N1 − 3)P2

0�kP
2
0�l�
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Therefore,

μ2�2�k�l −μ2�kμ2�l = −N0P0�kP0�l − 2N0(N0 − 1)
(
P2

0�kP0�l + P0�kP
2
0�l

)
− 2N0(N0 − 1)(2N0 − 3)P2

0�kP
2
0�l

≤ 0�

Now,

E

[(
1
N0

N0∑
i=1

σ2(0�Xi)
(
K2

1(i)−μ2�i

))2∣∣∣W�X0

]

= 1
N2

0

N0∑
i=1

N0∑
j=1

σ2(0�Xi)σ
2(0�Xj)

×E
[(
K2

1(i)−μ2�i

)(
K2

1(j)−μ2�j

)|W�X0

]
= 1

N2
0

N0∑
i=1

σ4(0�Xi)
(
μ4�i −μ2

2�i

)
+ 1

N2
0

N0∑
i=1

∑
j �=i

σ2(0�Xi)σ
2(0�Xj)(μ2�2�i�j −μ2�iμ2�j)

≤ 1
N2

0

N0∑
i=1

σ4(0�Xi)μ4�i�

Therefore, from equation (S.15), we obtain

E

[(
1
N0

N0∑
i=1

σ2(0�Xi)
(
K2

1(i)−μ2�i

))2∣∣∣W]

≤ Cσ4
1
N0

E[μ4�i|W]

≤ Cσ4

N

(
1 + N1

N0

) 4∑
r=0

S(4� r)
(
N0

N1

)r

Cr
h(r + 1)!�

where Cσ4 is a bound on σ4(w�x) for w ∈ {0�1} and x in the support of X .
Now, Lemma S.3 implies

E

[(
1
N0

N0∑
i=1

σ2(0�Xi)
(
K2

1(i)−μ2�i

))2]
→ 0�

which yields (ii) for the case of w = 0 and M = 1.



20 A. ABADIE AND G. W. IMBENS

Now consider the case with M > 1:

E

[(
1
N0

N0∑
i=1

σ2(0�Xi)
(
K2

M(i)−μ2�i

))2∣∣∣W�X0

]
(S.16)

= 1
N2

0

N0∑
i=1

σ4(0�Xi)
(
μ4�i −μ2

2�i

)
+ 1

N2
0

N0∑
i=1

∑
j �=i

σ2(0�Xi)σ
2(0�Xj)(μ2�2�i�j −μ2�iμ2�j)�

The proof that the expectation of the first term on the left-hand side of equa-
tion (S.16) converges to zero is the same as for the case of M = 1. However,
if M > 1, then it is not the case that all elements of the second term on the
left-hand side of equation (S.16) are negative. If M > 1, an observation i,
with Wi = 0 and M + 1 ≤ Vi = v ≤ N0 − M , is a match for all observations
in the opposite treatment arm that have covariate value in the catchment in-
terval

AM(i)=
(
X0�(v+M) +X0�(v)

2
�
X0�(v−M) +X0�(v)

2

)
�

which overlaps with the catchment intervals of other 2(M − 1) untreated ob-
servations. The catchment intervals of an untreated observation with Vi ≤ M
or Vi > N0 − M overlap with less than 2(M − 1) catchment intervals of other
untreated observations. As a result, relative to the proof for M = 1, overlap-
ping catchment intervals create terms, μ2�2�i�j −μ2�iμ2�j , that are not necessarily
negative. The number of such potentially nonnegative terms is smaller than
2(M − 1)N0. Let Iij be an indicator function that takes value equal to 1 if the
catchment intervals of observations i and j overlap, and value zero otherwise.
Let KM(i� j) be the number of treated observations with covariate values in
AM(i)∪AM(j). Then,

1
N2

0

N0∑
i=1

∑
j �=i

σ2(0�Xi)σ
2(0�Xj)

×E
[(
K2

M(i)−μ2�i

)(
K2

M(j)−μ2�j

)|W�X0

]
≤ 1

N2
0

N0∑
i=1

∑
j �=i

σ2(0�Xi)σ
2(0�Xj)

× (
E

[
K2

M(i)K
2
1(j)|W�X0

] −μ2�iμ2�j

)
Iij
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≤ 1
N2

0

N0∑
i=1

∑
j �=i

σ2(0�Xi)σ
2(0�Xj)E

[
K2

M(i)K
2
1(j)|W�X0

]
Iij

≤ Cσ4

N2
0

N0∑
i=1

∑
j �=i

E
[
K4

M(i� j)|W�X0

]
Iij�

Using the same argument as in Lemma S.8, it can be seen that

E
[
K4

M(i� j)|W� Iij = 1
] ≤

4∑
k=0

ck

(
N1

N0

)k

�

for some positive constants, ck. Now, Lemma S.3 yields the result. Q.E.D.

LEMMA S.11: Suppose that the assumptions of Lemma S.10 hold. Assume also
that the density of X is continuous on [a�b]. Finally, assume that, for w = 0�1,
σ2(w�x) is continuous on [a�b]. Let p∗ = Pr(W = 1); then, for w = 0�1, (i)

1
Nw

∑
i:Wi=w

σ2(w�Xi)KM(i)

p→ ME

[
σ2(w�Xi)

(
p∗

1 −p∗

)1−2w
f1−w(Xi)

fw(Xi)

∣∣∣Wi = w

]
�

and (ii)

1
Nw

∑
i:Wi=w

σ2(w�Xi)KM(i)
2

p→ ME

[
σ2(w�Xi)

(
p∗

1 −p∗

)1−2w
f1−w(Xi)

fw(Xi)

∣∣∣Wi = w

]
+ M(2M + 1)

2

×E

[
σ2(w�Xi)

((
p∗

1 −p∗

)1−2w
f1−w(Xi)

fw(Xi)

)2∣∣∣Wi =w

]
�

PROOF: The result follows from Lemmas S.6, S.7, and S.10. Q.E.D.

PROOF OF PROPOSITION 1: Let

DN = 1√
N

N∑
i=1

(
μ̄

(
1�p(Xi)

) − μ̄
(
0�p(Xi)

) − τ
)

= 1√
N

N∑
i=1

(2Wi − 1)
(

1 + KM(i)

M

)(
Yi − μ̄

(
Wi�p(Xi)

))
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and

RN = 1√
N

N∑
i=1

(2Wi − 1)

×
(
μ̄

(
1 −Wi�p(Xi)

) − 1
M

∑
j∈JM(i)

μ̄
(
1 −Wi�p(Xj)

))
�

Notice that
√
N

(̂
τ∗
N − τ

) = DN +RN�

We will first show that DN
d→N(0�σ2). Notice that

DN =
2N∑
k=1

ξN�k�

where

ξN�k = 1√
N

(
μ̄

(
1�p(Xk)

) − μ̄
(
0�p(Xk)

) − τ
)

for 1 ≤ k≤N , and

ξN�k = 1√
N
(2Wk−N − 1)

×
(

1 + KM(k−N)

M

)(
Yk−N − μ̄

(
Wk−N�p(Xk−N)

))
for N + 1 ≤ k ≤ 2N . Consider the σ-fields FN�k = σ{W1� � � � �Wk�p(X1)� � � � �
p(Xk)} for 1 ≤ k ≤ N and FN�k = σ{W1� � � � �WN�p(X1)� � � � �p(XN)�Y1� � � � �
Yk−N} for N + 1 ≤ k≤ 2N . Then for each N ≥ 1,{

i∑
j=1

ξN�j�FN�i�1 ≤ i ≤ 2N

}

is a martingale. To obtain the result of the proposition, we apply the Central
Limit Theorem for martingale arrays (e.g., Billingsley (1995)). The following
three conditions are sufficient:

2N∑
k=1

E
[|ξN�k|2+δ

] → 0 for some δ > 0,(S.17)

N∑
k=1

E
[
ξ2
N�k|FN�k−1

] p→ E
[(
μ̄

(
1�p(X)

) − μ̄
(
0�p(X)

) − τ
)2]

�(S.18)
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and

2N∑
k=N+1

E
[
ξ2
N�k|FN�k−1

]
(S.19)

p→ E

[
σ̄2

(
1�p(X)

)( 1
p(X)

+ 1
2M

(
1

p(X)
−p(X)

))]
+E

[
σ̄2

(
0�p(X)

)
×

(
1

1 −p(X)
+ 1

2M

(
1

1 −p(X)
− (

1 −p(X)
)))]

�

Equation (S.17) is the Lyapunov condition (which is sufficient for the usual
Lindeberg condition to hold). Because the functions μ̄(w�p) are continuous
on a compact support, these functions are also bounded. Let Cμ̄ be a bound on
maxw�p μ̄(w�p) for w ∈ {0�1} and p ∈ [p�p]. We obtain

N∑
k=1

E
[|ξN�k|2+δ

] ≤
(
2Cμ̄ + |τ|)2+δ

Nδ/2 → 0�

Now, let Cσ̄2+δ be a bound on E[|Yi − μ̄(Wi�P(Xi))|2+δ|Wi�P(Xi)]. Now, using
the Law of Iterated Expectation and the fact that KM(i) has bounded moments
(Lemma S.8), we obtain

2N∑
k=N+1

E
[|ξN�k|2+δ

] ≤
Cσ̄2+δE

[(
1 + KM(i)

M

)2+δ]
Nδ/2 → 0�

This proves equation (S.17). Equation (S.18) is easy to prove because the data
are i.i.d. To prove equation (S.19), notice that

2N∑
k=N+1

E
[
ξ2
N�k|FN�k−1

] = 1
N

N∑
i=1

(
1 + KM(i)

M

)2

σ̄2
(
Wi�p(Xi)

)
�

Now, Lemma S.11 implies the result in equation (S.19) after some algebra.
To finish the proof of part (i), we will show that RN

p→ 0. We can write RN =
RN�0 +RN�1, where

RN�w = 1√
N

N∑
i:Wi=w

(
μ̄

(
1 −Wi�p(Xi)

) − 1
M

∑
j∈JM(i)

μ̄
(
1 −Wi�p(Xj)

))
�
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We prove RN�1 = op(1). The proof for RN�0 = op(1) is analogous, so we omit
it. By Markov’s Inequality, it is enough to show that E[|RN�1|] → 0. Without
loss of generality and to simplify notation, we reorder the observations in the
sample, so that the observations with Wi = 1 come first. Because the function
μ̄ has a derivative bounded by Cμ̄, we obtain that, for N0 = n0 (with N0 = n0�
M ≤ n0 ≤N −M) and n1 = N − n0,

E
[|RN�1||N0 = n0

]
≤ 1√

N

n1∑
i=1

1
M

∑
j∈JM(i)

E
[∣∣μ̄(

0�p(Xi)
) − μ̄

(
0�p(Xj)

)∣∣|N0 = n0

]
≤ Cμ̄√

N

n1∑
i=1

1
M

∑
j∈JM(i)

E
[∣∣p(Xi)−p(Xj)

∣∣|N0 = n0

]
�

Now, Lemmas S.1 and S.2 imply that there is some r̄ > 0 such that

E
[|RN�1||N0 = n0

] ≤ Cμ̄r̄
n1

N1/2
⌊
n3/4

0

⌋ +M
n1

N1/2 n
M−1/4
0 exp

(−n1/4
0

)
�

Because n3/4
0 /�n3/4

0 � and nM+1/2
0 exp(−n1/4

0 ) are bounded for all n0 ≥ 1, there
exists some constant C such that

E
[|RN�1||N0 = n0

] ≤ C

N1/4

(
n1

N

N3/4

n3/4
0

)
�

Therefore,

E
[|RN�1|

] ≤ C

N1/4 E

[(
N

N0

)3/4∣∣∣M ≤N0 ≤N −M

]
�

which converges to zero because of the result in Lemma S.3. This completes
the proof of part (i). To prove part (ii), first notice that

√
N(̂τ∗

t�N − τt)=Dt�N +
Rt�N , where

Dt�N =
√
N

N1

N∑
i=1

Wi

(
μ̄

(
1�p(Xi)

) − μ̄
(
0�p(Xi)

) − τt
)

+
√
N

N1

N∑
i=1

(
Wi − (1 −Wi)

KM(i)

M

)(
Yi − μ̄

(
Wi�p(Xi)

))



MATCHING ON THE ESTIMATED PROPENSITY SCORE 25

and

Rt�N =
√
N

N1

N∑
i=1

Wi

(
μ̄

(
0�p(Xi)

) − 1
M

∑
j∈JM(i)

μ̄
(
0�p(Xj)

))
�

Because Rt�N = (N/N1)RN�1, N/N1
p→ 1/E[p(X)] and RN�1

p→ 0, we obtain

Rt�N

p→ 0. Therefore, we need to show that Dt�N
d→N(0�σ2

t ). Notice that

Dt�N =
2N∑
k=1

ξt�N�k�

where

ξt�N�k =
√
N

N1
Wk

(
μ̄

(
1�p(Xk)

) − μ̄
(
0�p(Xk)

) − τt
)

for 1 ≤ k≤N , and

ξt�N�k =
√
N

N1

(
Wk−N − (1 −Wk−N)

KM(k−N)

M

)
× (

Yk−N − μ̄
(
Wk−N�p(Xk−N)

))
for N + 1 ≤ k ≤ 2N . Consider the σ-fields Ft�N�k = σ{W1� � � � �WN�p(X1)� � � � �
p(Xk)} for 1 ≤ k ≤ N and Ft�N�k = σ{W1� � � � �WN�p(X1)� � � � �p(XN)�Y1� � � � �
Yk−N} for N + 1 ≤ k≤ 2N . Then for each N ≥ 1,{

i∑
j=1

ξt�N�j�Ft�N�i�1 ≤ i ≤ 2N

}

is a martingale. To obtain the result of the proposition, we apply the Martingale
Central Limit Theorem. The following three conditions are sufficient:

2N∑
k=1

E
[|ξt�N�k|2+δ

] → 0 for some δ > 0,(S.20)

N∑
k=1

E
[
ξ2
t�N�k|Ft�N�k−1

]
(S.21)

p→ 1

E
[
p(X)

]2E
[
p(X)

(
μ̄

(
1�p(X)

) − μ̄
(
0�p(X)

) − τt
)2]

�
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and

2N∑
k=N+1

E
[
ξ2
t�N�k|Ft�N�k−1

]
(S.22)

p→ 1

E
[
p(X)

]2E
[
p(X)σ̄2

(
1�p(X)

)]
+ 1

E
[
p(X)

]2E

[
σ̄2

(
0�p(X)

)
×

(
p2(X)

1 −p(X)
+ 1

M
p(X)+ 1

2M
p2(X)

1 −p(X)

)]
�

Equation (S.20) follows from the same arguments employed for equation
(S.17) and from the fact that the moments of N/N1 are bounded (Lemma S.3).
In particular,

N∑
k=1

E
[|ξt�N�k|2+δ

] ≤
N∑

k=1

E

[
N(2+δ)/2

N2+δ
1

(
2Cμ̄ + |τt |

)2+δ

]

=
(
2Cμ̄ + |τt |

)2+δ

Nδ/2 E

[(
N

N1

)2+δ]
p→ 0�

Using the Law of Iterated Expectation and the fact that KM(i) has bounded
moments, and the Cauchy–Schwarz inequality, we obtain

2N∑
k=N+1

E
[|ξt�N�k|2+δ

] ≤
Cσ̄2+δE

[(
N

N1

)2+δ(
1 + KM(i)

M

)2+δ]
Nδ/2 → 0�

It is easy to show that

2N∑
k=N+1

E

[
N

N2
1

Wk−N

(
Yk−N − μ̄

(
1�p(Xk−N)

))2
∣∣∣Ft�N�k−1

]

=
(
N

N1

)2 1
N

N∑
i=1

Wiσ̄
2
(
1�p(Xi)

)
p→ 1

E
[
p(X)

]2E
[
p(X)σ̄2

(
1�p(X)

)]
�
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In addition,

2N∑
k=N+1

E

[
N

N2
1

(1 −Wk−N)

(
KM(k−N)

M

)2

× (
Yk−N − μ̄

(
Wk−N�p(Xk−N)

))2
∣∣∣Ft�N�k−1

]

=
(
N

N1

)2 1
N

N∑
i=1

(1 −Wi)

(
KM(i)

M

)2

σ̄2
(
0�p(Xi)

)
�

Now, Lemma S.11 implies the result in equation (S.22). Q.E.D.

PROOF OF LEMMA 1: Assumption 4(i) implies that there exist finite con-
stants CL and CU such that CL ≤ x′θ ≤ CU for any θ ∈ int(Θ) and x in the
support of X . Because f is continuous and everywhere positive, it follows that
it is bounded away from zero on the compact interval [CL�CU ] (see, e.g., Rudin
(1976, Theorem 4.16)). Similarly, F(1−F) is bounded and bounded away from
zero on [CL�CU ]. Therefore, there exist positive constants cU and cL such that
cL ≤ f 2(x′θ)/(F(x′θ)(1 − F(x′θ))) ≤ cU , for any θ ∈ int(Θ) and x in the sup-
port of X . Then, for θ ∈ int(Θ) and any nonzero v ∈ R

k, we obtain

E

[
‖X‖2 f 2

(
X ′θ

)
F

(
X ′θ

)(
1 − F

(
X ′θ

))]
<∞

and

v′E
[
X

f 2
(
X ′θ

)
F

(
X ′θ

)(
1 − F

(
X ′θ

))X ′
]
v ≥ cLv

′E
[
XX ′]v > 0�

As a result, Iθ is finite and positive definite for all θ ∈ int(Θ). By Assump-
tion 4(i) and (ii), f 2/(F(1 − F)) is continuous and bounded in [CL�CU ] and
‖X‖ is bounded. By the Dominated Convergence Theorem, we obtain that
Iθ is continuous on int(Θ). This, along with continuous differentiability of F ,
implies that the parameterization θ �→ Pθ is regular on int(Θ) (see Proposi-
tion 2.1.1 in Bickel et al. (1998)).

Now, Proposition 2.1.2 in Bickel et al. (1998) implies that, under PθN ,

ΛN

(
θ∗|θN

) = −h′ΔN(θN)− 1
2
h′IθNh+ op(1)�

Continuity of Iθ implies the result in equation (1). Also for regular parametric
models, equation (2) is derived in the proof of Proposition 2.1.2 in Bickel et al.
(1998).
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Suppose that θ̂N is asymptotically linear. That is, under Pθ∗ ,
√
N

(
θ̂N − θ∗) = I−1

θ∗ ΔN

(
θ∗) + op(1)�

By contiguity (see, e.g., Proposition 2.1.3 in Bickel et al. (1998)), we obtain that
the previous equation holds also under PθN . Therefore, under PθN ,

√
N(θ̂N − θN)= −h+ I−1

θ∗ ΔN

(
θ∗) + op(1)�

Now, equation (3) follows from equation (15) in Proposition 2.1.2 in Bickel et
al. (1998). Therefore, if θ̂N is asymptotically linear, then equation (3) holds. To
prove asymptotic linearity of θ̂N , notice first that, given that F(x′θ) is continu-
ously differentiable and bounded away from zero and 1 on int(Θ) for all x in
the support of X , and that Iθ exists and is continuous, Lemma 7.6 in van der
Vaart (1998) implies that {Pθ : θ ∈ int(Θ)} is differentiable in quadratic mean.
Moreover, given that f (x′θ)/F(x′θ) and f (x′θ)/(1 − F(x′θ)) are uniformly
bounded by a constant for all θ ∈ int(Θ) and x in the support of X , and that
Iθ∗ is nonsingular, then by Theorem 5.39 in var der Vaart (1998), consistency
of θ̂N implies that equation (3) holds. Now, given that E[XX ′] is nonsingular,
F(x′θ) is continuous in θ for all x in the support of X and bounded away from
zero and 1, and Θ is compact, Theorem 2.5 in Newey and McFadden (1994)
implies θ̂N

p→ θ∗. Q.E.D.

In the setting of Section 3, the following lemma provides primitive conditions
for Assumption 5.

LEMMA S.12: Let X0 be the first coordinate of X and let X1 be the sub-vector
of the last k− 1 coordinates of X . Assume that the distribution of X0 conditional
on (X1�Y1) (respectively, (X1�Y0)) admits a density, fX0|X1�Y1(x0�x1� y1) (respec-
tively, fX0|X1�Y0(x0�x1� y0)), with respect to the Borel measure, λ. Assume that
fX0|X1�Y1(x0�x1� y1) and fX0|X1�Y0(x0�x1� y0) are bounded and continuous func-
tions of x0. For N = 1�2� � � � , let X ′θN = X0θ0N + X ′

1θ1N . Assume that θN → θ∗

such that θ∗
0 �= 0. Let r(y�w�x) be a bounded function from R

k+2 to R, continu-
ous in the first coordinate of x. Then

EθN

[
r(Y�W �X)|W�F

(
X ′θN

)] → E
[
r(Y�W �X)|W�F

(
X ′θ∗)]�

almost surely.

PROOF: Because F is strictly increasing, we have

Eθ

[
r(Y�W �X)|W�F

(
X ′θ

)] = Eθ

[
r(Y�W �X)|W�X ′θ

]
�

Therefore, it is enough to prove

EθN

[
r(Y�W �X)|W�X ′θN

] →E
[
r(Y�W �X)|W�X ′θ∗]�
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almost surely. Notice also that

Eθ

[
r(Y�W �X)|W�F

(
X ′θ

)]
=W Eθ

[
r(Y�W �X)|W = 1�F

(
X ′θ

)]
+ (1 −W )Eθ

[
r(Y�W �X)|W = 0�F

(
X ′θ

)]
�

It is, therefore, enough to prove convergence of EθN [r(Y�W �X)|W = 1�X ′θN]
and EθN [r(Y�W �X)|W = 0�X ′θN]. We will prove convergence for EθN [r(Y�
W �X)|W = 1�X ′θN]; the proof for EθN [r(Y�W �X)|W = 0�X ′θN] is analo-
gous. Let r1(y�x) = r(y�1�x). Given that W is independent of (Y1�X) con-
ditional on the propensity score, we obtain

EθN

[
r(Y�W �X)|W = 1�X ′θN

]
=EθN

[
r1(Y1�X)|W = 1�X ′θN

]
=EθN

[
r1(Y1�X)|X ′θN

]
=E

[
r1(Y1�X)|X ′θN

]
�

Similarly, E[r(Y�W �X)|W = 1�X ′θ∗] = E[r1(Y1�X)|X ′θ∗]. Hence, we aim to
prove

E
[
r1(Y1�X)|X ′θN

] → E
[
r1(Y1�X)|X ′θ∗]�

almost surely. More precisely, if we make gθ(X) = E[r1(Y1�X)|X ′θ], we aim
to prove gθN (X)→ gθ∗(X) as θN → θ∗, almost surely.

Let fY1�X1(y�x1) be the density of (Y1�X1) with respect to some σ-finite mea-
sure, μ. ((Y1�X1) may include variables that are not continuously distributed.)
Other densities are denoted analogously. By the change of variables formula,
if θ0 �= 0,

fX ′θ�Y1�X1(z� y�x1) = 1
|θ0|fY1�X0�X1

(
y�

z − x′
1θ1

θ0
�x1

)
= 1

|θ0|fX0|X1�Y1

(
z − x′

1θ1

θ0
�x1� y

)
fY1�X1(y�x1)

is the density of (X ′θ�Y1�X
′
1)

′ with respect to λ × μ. Because r1(y�x) =
r(y�1�x), the function r1 is bounded and continuous in the first coordinate
of x. With a slight notational abuse, we will write r1(Y�X0�X1) = r1(Y�X).
Then, by continuity and boundedness of r1 and fX0|X1�Y1 , and the Dominated
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Convergence Theorem, we obtain that, for all x in the support of X ,(∫
r1

(
y�

x′θN − x′
1θ1N

θ0N
�x1

)
× fX0|X1�Y1

(
x′θN − x′

1θ1N

θ0N
�x1� y

)
fY1�X1(y�x1)dμ

)
/(∫

fX0|X1�Y1

(
x′θN − x′

1θ1N

θ0N
�x1� y

)
fY1�X1(y�x1)dμ

)
�

which is a version of gθN (x), converges to(∫
r1

(
y�

x′θ∗ − x′
1θ

∗
1

θ∗
0

�x1

)
× fX0|X1�Y1

(
x′θ∗ − x′

1θ
∗
1

θ∗
0

�x1� y

)
fY1�X1(y�x1)dμ

)
/(∫

fX0|X1�Y1

(
x′θ∗ − x′

1θ
∗
1

θ∗
0

�x1� y

)
fY1�X1(y�x1)dμ

)
�

which is a version of gθ∗(x). Q.E.D.

S.2. MONTE CARLO EVIDENCE

In this section, we report the results of a simulation exercise designed to
investigate the sampling distribution of propensity score matching estimators
and the quality of the approximation to that distribution that is proposed in
this article. The Monte Carlo results in this section illustrate the effect of ad-
justing standard errors and confidence intervals for the estimation error in the
propensity score and confirm our theoretical results.

We report results for five designs and for the four type of estimators consid-
ered in Section 2. In all cases, we use N = 5000 observations, two covariates,
and 2000 Monte Carlo replications. For each design and each estimand (ATE
or ATET), we calculate two estimators. The first estimator is based on match-
ing on the true propensity score, τ̂∗

N = τ̂N(θ
∗) for ATE and τ̂∗

t�N = τ̂t�N(θ
∗) for

ATET. The second estimator is based on matching on the estimated propensity
score, τ̂N = τ̂N(θ̂N) for ATE and τ̂t�N = τ̂t�N(θ̂N) for ATET.

We estimate standard errors in three different ways. For estimators that
match on the true propensity score, we construct standard errors using the
formulas derived in Abadie and Imbens (2006) for the case when matching
is done directly on covariates. Those formulas are valid because in this case,
matching is done using a covariate, which is the true propensity score. For the
case when matching is done on the estimated propensity score, we first esti-
mate standard errors without adjusting for estimation of the propensity score.
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That is, these are the standard errors that are obtained when the estimated
propensity score is used for matching and for the estimation of the standard
errors, but the fact that the propensity score is estimated is ignored in the cal-
culation of the standard errors. These standard errors correspond to σ̂/

√
N for

ATE and σ̂t/
√
N for ATET, where σ̂ and σ̂t are given in Section 4. For the case

of matching on the estimated propensity score, we also calculate the standard
errors σ̂adj/

√
N and σ̂adj�t/

√
N , which adjust for estimation of the propensity

score. For each estimator/standard error pair, we evaluate the performance of
(nominally) asymptotic 95 percent confidence intervals constructed by adding
and subtracting 1�96 times the standard error to the estimator.

Design I: Two covariates, X1 and X2, are both uniformly distributed on
[−1/2�1/2] and independent of each other. The potential outcomes are gen-
erated by Y(0) = 3X1 − 3X2 + U0 and Y(1) = 5 + 5X1 + X2 + U1, and U0

and U1 are independent standard Normal random variables, independent of
(W �X1�X2). The treatment variable, W , is related to (X1�X2) through the
propensity score, which is logistic

Pr(W = 1|X1 = x1�X2 = x2)= exp(x1 + 2x2)

1 + exp(x1 + 2x2)
�

ATE and ATET estimators use one match (M = 1).
Design II: X1 and X2 are distributed as in Design I. Potential outcomes are

generated by Y(0) = 10X1 + U0 and Y(1) = 5 − 10X1 + U1, where U0 and
U1 are standard Normal random variables independent of each other and of
(W �X1�X2). The treatment variable, W , is related to (X1�X2) through the
propensity score, which is logistic

Pr(W = 1|X1 = x1�X2 = x2)= exp(2x2)

1 + exp(2x2)
�

In this design, average treatment effect varies widely as a function of X , so
∂τt(θ

∗)/∂θ is large. In addition, in this design each value of the propensity
score is associated with a unique value for the covariates, and therefore both c
and ct are equal to zero. ATE and ATET estimators use one match (M = 1).

Design III: In this design, we modify Design I by using four matches (M = 4)
on the estimated or true propensity score rather than a single match. The re-
mainder of the design, including the potential outcome distributions and the
assignment mechanism, is identical to that in Design I.

Design IV : This design is identical to Design II, except the estimated
propensity score is misspecified as

exp
(
(x2 + 1/2)2

)
1 + exp

(
(x2 + 1/2)2

) �
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Notice that this specification is still a valid balancing score (Rosenbaum and
Rubin (1983)) because the log odds ratio is a monotone function of the covari-
ates.

Design V : In this design, we change the distribution of the covariates. With
probability 0.7, X1 has a uniform distribution on the interval [−1/2�0], and
with probability 0.3, it has a uniform distribution on the interval [0�1/2]. With
probability 0.6, X2 has a truncated exponential distribution on the interval
[−1/2�0], and with probability 0.4, it has a truncated exponential distribution
on the interval [0�1/2]. Hence the distribution of the covariates is discontinu-
ous at zero.

In Table S.I, we present Monte Carlo results for the ATE, and in Table S.II,
we present Monte Carlo results for the ATET. In Design I, the standard devia-
tion of the estimator based on matching on the true propensity score is equal to
0.055 for ATE and 0.064 for ATET (row 1). The average standard errors across
simulations are 0.055 for ATE and 0.065 for ATET, very close to the standard
deviations. Asymptotic 95 percent confidence intervals provide coverage close
to nominal (row 3). As predicted by the theoretical results, matching on the es-
timated propensity score leads to a smaller standard deviation for ATE, 0�057
(row 4), than matching on the true propensity score. For this design, the same
is true for ATET: estimation of the ATET parameter matching of the estimated
propensity score is more precise than matching on the true propensity score.
Row 5 reports average standard errors when the fact that the propensity score
was estimated is ignored in the construction of the standard errors. Row 6 re-
ports average standard errors that adjust for the estimation of the propensity
score. Standard errors that do not account for the estimation of the propensity

TABLE S.I

MONTE CARLO RESULTS FOR AVERAGE TREATMENT EFFECTa

Design

I II III IV V

Panel A: Matching on the True Propensity Score (PS)
Standard deviation 0.055 0.106 0.052 0.054 0.053
Average standard error 0.055 0.106 0.052 0.054 0.053
Coverage rate of 95% confidence interval 0.947 0.950 0.943 0.946 0.943

Panel B: Matching on the Estimated PS
Standard deviation 0.045 0.105 0.039 0.045 0.044
Average standard error:

Ignoring estimation of the PS 0.055 0.106 0.046 0.054 0.053
Accounting for estimation of the PS 0.045 0.106 0.039 0.044 0.044

Coverage rate of 95% confidence interval:
Ignoring estimation of PS 0.985 0.950 0.981 0.986 0.981
Accounting for estimation of the PS 0.951 0.950 0.947 0.949 0.946

aN = 5000, number of replications = 2000.
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TABLE S.II

MONTE CARLO RESULTS FOR AVERAGE TREATMENT EFFECT ON THE TREATEDa

Design

I II III IV V

Panel A: Matching on the True Propensity Score (PS)
Standard deviation 0.064 0.123 0.058 0.059 0.063
Average standard error 0.065 0.123 0.057 0.059 0.063
Coverage rate of 95% confidence interval 0.950 0.942 0.946 0.948 0.949

Panel B: Matching on the Estimated PS
Standard deviation 0.057 0.143 0.048 0.051 0.055
Average standard error:

Ignoring estimation of the PS 0.065 0.122 0.057 0.059 0.063
Accounting for estimation of the PS 0.057 0.145 0.049 0.050 0.055

Coverage rate of 95% confidence interval:
Ignoring estimation of PS 0.972 0.899 0.970 0.978 0.972
Accounting for estimation of the PS 0.953 0.952 0.949 0.945 0.952

aN = 5000, number of replications = 2000.

score are severely biased, as they approximate the standard deviation of the
estimator for the case when the propensity score is known (in row 1). In con-
trast, the adjusted standard errors closely approximate the standard deviation
of the estimators that match on the estimated propensity score (in row 4). Ac-
cordingly, using unadjusted standard errors to construct confidence intervals
leads to over-coverage, while confidence intervals constructed using adjusted
standard errors produce coverage rates that are close to nominal.

Our theoretical results predict that, in Design II, both the adjusted and un-
adjusted standard errors for ATE should perform well. The reason is that c = 0,
so adjusting the ATE standard errors is not necessary. Moreover, our theoret-
ical results predict that, in this design, the adjustment to the ATET standard
errors for first step estimation of the propensity score is positive. The reason
is that, in this design, ct = 0 but ∂τt(θ∗)/∂θ �= 0, which implies that matching
on the estimated propensity score produces estimators with higher variance
than matching on the true propensity score. Accordingly, confidence intervals
for ATET constructed using matching on the estimated propensity score and
unadjusted standard errors lead to under-coverage. The simulation results are
consistent with these predictions.

In Design III, with the number of matches equal to four instead of one,
the precision of the estimator improves. There remains a bias in the standard
errors that are based on ignoring the estimation of the propensity score. In De-
sign IV, the propensity score is misspecified. However, the misspecified propen-
sity score is still a valid balancing score, and thus matching on it continues to
remove the bias from all covariates. Coverage rates of the confidence intervals
are still close to nominal levels. In the fifth and last design, the distributions of
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the covariates include discontinuity points. This appears to have little effect on
the performance of the confidence intervals.

ADDITIONAL REFERENCES

ABADIE, A., AND G. W. IMBENS (2006): “Additional Proofs for ‘Large Sample Properties of
Matching Estimators for Average Treatment Effects’,” Web Appendix. [30]

JOHNSON, N., AND S. KOTZ (1977): Urn Models and Their Applications. New York: Wiley. [1]
JOHNSON, N., S. KOTZ, AND A. KEMP (1993): Univariate Discrete Distributions. New York: Wiley.

[17]
LEHMANN, E. L. (1966): “Some Concepts of Dependence,” Annals of Mathematical Statistics, 37

(5), 1137–1153. [9]
POIRIER, D. J. (1995): Intermediate Statistics and Econometrics: A Comparative Approach. Cam-

bridge, MA: MIT Press. [7]
RUDIN, W. (1976): Principles of Mathematical Analysis. New York: McGraw-Hill. [6,27]
SHORACK, G. R., AND J. A. WELLNER (1986): Empirical Processes With Applications to Statistics.

New York: Wiley. [6,9,18]
VAN DER VAART, A. W., AND J. A. WELLNER (1996): Weak Convergence and Empirical Processes.

New York: Springer-Verlag. [5]

John F. Kennedy School of Government, 79 John F. Kennedy Street, Cambridge,
MA 02138, U.S.A. and NBER; alberto_abadie@harvard.edu

and
Stanford Graduate School of Business, 655 Knight Way, Stanford, CA 94305-

7298, U.S.A. and NBER; imbens@stanford.edu.

Co-editor Elie Tamer handled this manuscript.

Manuscript received December, 2012; final revision received August, 2015.

http://www.e-publications.org/srv/ecta/linkserver/setprefs?rfe_id=urn:sici%2F0012-9682%28201603%2984%3A2%2B%3C1%3ASTMOTE%3E2.0.CO%3B2-T
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:2/2&rfe_id=urn:sici%2F0012-9682%28201603%2984%3A2%2B%3C1%3ASTMOTE%3E2.0.CO%3B2-T
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:3/3&rfe_id=urn:sici%2F0012-9682%28201603%2984%3A2%2B%3C1%3ASTMOTE%3E2.0.CO%3B2-T
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:4/4&rfe_id=urn:sici%2F0012-9682%28201603%2984%3A2%2B%3C1%3ASTMOTE%3E2.0.CO%3B2-T
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:5/5&rfe_id=urn:sici%2F0012-9682%28201603%2984%3A2%2B%3C1%3ASTMOTE%3E2.0.CO%3B2-T
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:6/6&rfe_id=urn:sici%2F0012-9682%28201603%2984%3A2%2B%3C1%3ASTMOTE%3E2.0.CO%3B2-T
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:7/7&rfe_id=urn:sici%2F0012-9682%28201603%2984%3A2%2B%3C1%3ASTMOTE%3E2.0.CO%3B2-T
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:8/8&rfe_id=urn:sici%2F0012-9682%28201603%2984%3A2%2B%3C1%3ASTMOTE%3E2.0.CO%3B2-T
mailto:alberto_abadie@harvard.edu
mailto:imbens@stanford.edu
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:4/4&rfe_id=urn:sici%2F0012-9682%28201603%2984%3A2%2B%3C1%3ASTMOTE%3E2.0.CO%3B2-T
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:5/5&rfe_id=urn:sici%2F0012-9682%28201603%2984%3A2%2B%3C1%3ASTMOTE%3E2.0.CO%3B2-T
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:7/7&rfe_id=urn:sici%2F0012-9682%28201603%2984%3A2%2B%3C1%3ASTMOTE%3E2.0.CO%3B2-T
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:8/8&rfe_id=urn:sici%2F0012-9682%28201603%2984%3A2%2B%3C1%3ASTMOTE%3E2.0.CO%3B2-T

	Additional Proofs
	Monte Carlo Evidence
	Additional References
	Author's Addresses

