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THIS SUPPLEMENTAL MATERIAL contains two parts. Section S.1 complements Ap-
pendix B of the paper by providing an exhaustive proof of Proposition 1 with all technical
details included. Section S.2 provides the proof of Proposition 4.

To avoid confusion in the numbering of equations and sections between the main text
and this supplement, all numbers in the Supplemental Material will be prefixed by “S.”
Conversely, numbers without prefix refer to an equation or a section of the main text.

S.1. PROOF OF PROPOSITION 1

S.1.1. Deriving a System of Distributivity Equations

Necessity of the axioms is obvious, so we focus on sufficiency. We adopt the same no-
tational conventions as in the main text. From Lemma 1, the preference relation � has a
recursive representation (U�W �I). It is w.l.o.g. to assume that U(D) = [0�1]. Fix some
integer m> 2. Let W0 := [0�1]m and

W1 := {(
W (c�x1)� � � � �W (c�xm)

) : c ∈ C�(x1� � � � � xm) ∈W0

}
�

W2 := {(
W (c�x1)� � � � �W (c�xm)

) : c ∈ C�(x1� � � � � xm) ∈W1

}
�

Note that W0 ⊃W1 ⊃W2.
Now fix a vector (π1� � � � �πm) ∈ (0�1)m such that

∑
i πi = 1. For every vector (x1� � � � �

xm) ∈ [0�1]m, let (π1�x1; � � � ;πm�xm) be the lottery in M([0�1]) that gives xk with proba-
bility πk. Define a function G0 :W0 → [0�1] by

G0(x1� � � � � xm) := I
(
(π1�x1; � � � ;πm�xm)

)
� ∀(x1� � � � � xm) ∈ [0�1]m� (S.1)

which is the certainty equivalent of the lottery (π1�x1; � � � ;πm�xm). For k ∈ {1�2}, define
a function Gk :Wk → [0�1] inductively by letting

Gk+1

(
W (c�x1)� � � � �W (c�xm)

) :=W
(
c�Gk(x1� � � � � xm)

)
� (S.2)

The functions Gk, k ∈ {1�2}, are well-defined by Monotonicity. For every c ∈ C, let Fc

denote the function x �→ W (c�x) from [0�1] into [0�1]. Each function Fc is continuous
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and strictly increasing. With this notation, equation (S.2) becomes, for k= 1�2,{
G1

(
Fc(x1)� � � � �Fc(xm)

) = FcG0(x1� � � � � xm)� c ∈C�(x1� � � � � xm) ∈W1�

G2

(
Fc(x1)� � � � �Fc(xm)

) = FcG1(x1� � � � � xm)� c ∈C�(x1� � � � � xm) ∈W2�
(S.3)

which is a system of generalized distributivity equations. The two equations in (S.3) are
related through the function G1, which appears in both.

We now derive standard distributivity equations from the generalized distributivity
equations in (S.3). To simplify our notation, let β := W (c�1). If Fc(0) > β, let c∗ be such
that Fc∗(0) = β. Alternatively, if Fc(0) ≤ β, let c∗ := c. In each case, we have F−1

c [0�β] =
[0�F−1

c (β)] 
= ∅ for every c < c∗. Take c < c∗, k ∈ {0�1}, and (x1� � � � � xm) ∈ [0�F−1
c (β)]m ∩

Wk. Applying F−1
c to both sides of equation (S.3) implies F−1

c Gk+1(Fc(x1)� � � � �Fc(xm)) =
F−1
c FcGk(x1� � � � � xm). Combining the last equation for an arbitrary c with the same equa-

tion for c = c yields

Gk

(
F−1
c Fc(x1)� � � � �F

−1
c Fc(xm)

) = F−1
c FcGk(x1� � � � � xm)� (S.4)

Defining fc := F−1
c Fc , equation (S.4) becomes, for c < c∗, (x1� � � � � xm) ∈ [0�F−1

c (β)]m ∩
Wk,

Gk

(
fc(x1)� � � � � fc(xm)

) = fcGk(x1� � � � � xm)� k = 0�1� (S.5)

which are distributivity equations similar to (29).

S.1.2. Constructing an Iteration Group

The proof requires some mathematical machinery from Lundberg (1982). First, given a
proper interval A ⊂ R, let D(A) be the set of all continuous, strictly increasing functions
f whose domain and range are intervals contained in A and whose graphs disconnect
A2. Given λ ∈ R ∪ {+∞}, a collection {f α}α∈(−λ�λ) ⊂ D(A) is an iteration group on A if
f α+α′ = f αf α′ for all α�α′�α+α′ ∈ (−λ�λ).1 When no confusion arises, we suppress λ and
the interval A and write {f α} for an iteration group. A few remarks about the definition
of an iteration group are in order. First, f 0 is necessarily the identity function on A.
Moreover, if 1 ∈ (−λ�λ) and α is any other integer in (−λ�λ), then f α is the α-iterate
of the function f 1. In fact, let f := f 1. We know how to define the α-iterate of f for
any integer α. One can think of an iteration group as a way to define an α-iterate of the
function f for any real number α, while ensuring (i) that the definition is consistent with
the usual definition of an iterate for integer α, and (ii) that the different “iterates,” f α� f α′ ,
and f α+α′ , do in fact “iterate.” We should also point out that the index α has no meaning
beyond encoding this second property. Formally, let γ 
= 1 be any real number and, for
every α ∈ (−λ�λ), define gαγ := f α. Then, {gα̃}α̃∈(−γλ�γλ) is an iteration group on A and
{gα̃} = {f α}. Thus, {gα̃} is just a relabeling of {f α}. When we specify an iteration group
{f α}, we assume that the group is non-trivial, that is, that f α 
= f 0 for at least one α 
= 0. If
the group is non-trivial, then f α 
= f 0 for all α 
= 0. It should also be observed that λ <+∞
whenever A is a bounded interval. For example, if f 1(x) > x for all x ∈ A, then the graph
of f n lies outside of A × A for all n large enough, so that f n /∈ D(A). Finally, when we

1When A is a proper subset of R, Lundberg (1982) called the iteration group truncated. We have no occasion
to distinguish between truncated and untruncated groups and use the term iteration group to denote both.
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specify an iteration group {f α}α∈(−λ�λ) on a bounded interval A, we assume that the group
is maximal, that is, there is no other iteration group {gα}α∈(−λ′�λ′) ⊂D(A) such that λ′ > λ
and gα = f α for all α ∈ (−λ�λ).

Let (fn)n be a sequence of functions fn ∈D(A). A function f ∈D(A) is the closed limit
of (fn)n, which we denote as fn →L f , if the graph of f is the closed limit of the graphs of
the functions fn.2 If A is a closed interval and the graphs of fn and f are closed, then fn →L

f if and only if the graphs of fn converge to the graph of f in the Hausdorff metric. We
write fn →H f to denote the latter type of convergence. The sequence (fn)n� fn ∈ D(A),
generates the iteration group {f α} on A if for every α ∈ (−λ�λ), there exists a sequence
(pn)n of integers such that f pn

n →L f
α.

We come back to the proof of the theorem. Let j be the identity function on [0�1]. Fix a
sequence (cn)n such that cn ∈ (c� c∗) for every n and the sequence decreases monotonically
to c. Let (fcn)n be the associated sequence of functions where fcn = F−1

c Fcn for every n.
We note several properties of the sequence (fcn)n. First, fcn > fcn+1 > j for every n. Sec-
ond, each function fcn has domain Domn := [0�F−1

cn
(β)] and range [fcn(0)�1]. It follows

that the graph of each function fcn disconnects [0�1]2 so that fcn ∈D([0�1]). Another im-
mediate implication is that Domn →H [0�1]. The latter implies that for every x ∈ (0�1),
there is k> 0 such that fcn(x) is defined for all n≥ k. The sequence (fck(x)� fck+1(x)� � � �)
converges to x and the next lemma shows that the convergence is in fact uniform.

LEMMA S.1—Uniform Convergence: fcn →H j.

PROOF: Let Grn denote the graph of fcn . Let E′ be a limit point of the sequence (Grn)n
in the Hausdorff metric. Let E := {(x�x) : x ∈ [0�1]}, that is, E is the diagonal of the unit
square [0�1]2. It is also the graph of the identity function j. For every a ∈ (0�1) and every
n large enough, the functions fcn are defined on the interval [0� a]. Since the functions fcn
converge monotonically to the identity function, we can apply Dini’s theorem to conclude
that the convergence is uniform when the functions are restricted to the interval [0� a].
But the uniform convergence of functions is equivalent to the Hausdorff convergence of
their graphs. We conclude that E∩([0� a] × [0�1])=E′ ∩ ([0� a] × [0�1]). Since this is true
for every a < 1, the intersections of E and E′ with [0�1)×[0�1] coincide. Since the set E′ is
closed, we know that (1�1) ∈ E′. Moreover, since fcn > j for all n, the set E′ “lie above” E,
that is, there is no pair (1�x) ∈ [0�1]2 such that x < 1 and (1�x) ∈ E′. We conclude that
E′ =E. Since the limit point E′ of (Grn)n was arbitrary, this concludes the proof. Q.E.D.

The next two lemmas are key for solving the distributivity equation.

LEMMA S.2—Constructing an Iteration Group: There is an iteration group {f α}α∈(−λ�λ)

on (0�1) such that λ > 1, f α > j for all α> 0, and

f αG0(x1� � � � � xm)=G0

(
f α(x1)� � � � � f

α(xm)
)
� (S.6)

for all (x1� � � � � xm) ∈ [0�1]m and α ∈ (−λ�λ) for which the equation is well-defined.

PROOF: We know that fcn →L j, fcn 
= j for every n, and Domn →L (0�1). Theorem 4.16
in Lundberg (1982) shows that (fcn)n has a subsequence that generates the desired it-

2See Aliprantis and Border (1999, p. 109) for the definition of a closed limit.
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eration group.3 Abusing notation, from now on we write (fcn)n for the latter subse-
quence. Q.E.D.

LEMMA S.3—Constructing an Abel Function: There is a continuous, strictly increasing
function L : (0�1) → R such that f α(x) = L−1(L(x)+ α) for all x in the domain of f α and
all α ∈ (−λ�λ).

PROOF: We know that f α > j for all α ∈ (0�λ). Since f α is the inverse of f−α, the latter
implies that f α < j for all α ∈ (−λ�0). In particular, none of the functions f α�α 
= 0, has
a fixed point. As explained in Section B.1, the iteration group then has an Abel function,
that is, a continuous function L : (0�1) → R such that f α(x) = L−1(α + L(x)) for every
α ∈ (−λ�λ) and every x in the domain of f α. Since f α > j for all α > 0, the function L is
strictly increasing. Q.E.D.

Recall that each function fcn is defined in a right neighborhood of 0, while its range
contains a left neighborhood of 1. It follows that for each α > 0, f α(0) := limx↘0 f

α(x)
and for each α < 0, f α(1) := limx↗1 f

α(x) are well-defined. From now on, we assume
that {f α} is such that f 1(0) > 0 and f−1(1) < 1. Section S.1.9 below shows how to modify
the proof if either f 1(0) = 0 or f−1(1) = 1. Under the assumption just made, we have
f α(0) > 0 for all α > 0 and f α(1) < 1 for all α < 0 as well as L(0) := limx↘0 L(x) > −∞
and L(1) := limx↗1 L(x) < +∞. Using the latter, we now argue that the Abel function L
can be chosen so that L(0) = 0 and L(1) = 1. First, observe that if L is an Abel function
for the iteration group {f α}, then so is the function L+ l where l ∈ R is a constant. Thus,
we can choose L so that L(0) = 0. To see that L can be chosen so that L(1) = 1, observe
that λ = limα↗λ f

α(0) = L(1). Relabeling the iteration group {f α}α∈(−λ�λ) so that λ = 1
implies that L(1)= 1.

S.1.3. A Monotone Transformation of Utility

Since L : [0�1] → [0�1] is strictly increasing, the function Ũ := LU : D → [0�1] repre-
sents � on D. Moreover, the function Ũ is part of a recursive representation (Ũ� W̃ � Ĩ)
where

W̃ (c�x) := LW
(
c�L−1(x)

) ∀x ∈ [0�1]� c ∈ C�

Ĩ(μ) := LI
(
μ ◦L−1

) ∀μ ∈M
([0�1])�

For every c ∈ C, let F̃c :=LFcL
−1. For k ∈ {0�1�2}, we define

G̃k(x1� � � � � xm) :=LGk

(
L−1(x1)� � � � �L

−1(xm)
)
� (S.7)

As before, define W̃0 := [0�1]m and inductively for k ∈ {1�2},
W̃k := {(

F̃c(x1)� � � � � F̃c(xm)
) : c ∈C�(x1� � � � � xm) ∈ W̃k−1

}
� (S.8)

By definition, the function G̃k�k ∈ {0�1�2}, has domain W̃k. Also, W̃0 ⊃ W̃1 ⊃ W̃2. As in
Section B.1, we use the Abel function to prove that G̃0 is translation-invariant.

3The statement of Theorem 4.16 in in Lundberg (1982) does not say that λ > 1 and f α > j for all α > 0,
but these properties of the iteration group follow from the proof of the theorem and the fact that fcn > j for
every n.
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LEMMA S.4—Translation Invariance G̃0: For every (x1� � � � � xm) ∈ W̃0�α ∈ (−1�1) such
that (α+ x1� � � � �α+ xm) ∈ W̃0, we have G̃0(α+ x1� � � � �α+ xm)= α+ G̃0(x1� � � � � xm).

PROOF: Let (x1� � � � � xm) and α be as in the statement of the lemma. Let yi = L−1(xi)
for i = 1� � � � �m. Then,

G̃0(α+ x1� � � � �α+ xm) = LG0

(
L−1

(
α+L(y1)

)
� � � � �L−1

(
α+L(ym)

))
= LG0

(
f α(y1)� � � � � f

α(ym)
) = Lfα

(
G0(y1� � � � � ym)

)
= L

(
G0(y1� � � � � ym)

) + α= G̃0(x1� � � � � xm)+ α� Q.E.D.

We now introduce a function which, together with the last lemma, will later on (see
Section S.1.6) allow us to derive more tractable, “linearized” versions of the equations in
(S.3). Namely, for every x1�x2 ∈ [0�1], define

φ0(x2 − x1) := G̃0(x1�x2�x2� � � � � x2)− x1� (S.9)

To see that φ0 is well-defined, take x1�x2� y1� y2 ∈ [0�1] such that x2 − x1 = y2 − y1 and
let z := (x1�x2� � � � � x2)� z′ := (y1� y2� � � � � y2) ∈ W̃0. Let α := y1 − x1 > 0. By construc-
tion, z′ = z + α and α ∈ (−1�1). But then G̃0(z + α) = G̃0(z) + α, which is equivalent
to G̃0(x1�x2�x2� � � � � x2)−x1 = G̃0(y1� y2� y2� � � � � y2)− y1, showing that φ0 is well-defined.
Finally, observe that φ0 has domain [−1�1]. The next lemma characterizes the mono-
tonicity of the functions φ0 and j −φ0.

LEMMA S.5: The function φ0 is continuous and strictly increasing. The function j −φ0 is
strictly decreasing.

PROOF: The definition (S.9) and the properties of G̃0 directly imply that φ0 is contin-
uous and strictly increasing. Regarding the second statement, fix some x in (−1�1), that
is, in the interior of φ0’s domain. Then, there is some x′ ∈ [0�1] such that for all ε > 0
small enough, the vectors z := (x′�x′ + x� � � � � x′ + x)� z + ε, and z′ := z + (0� ε�ε� � � � � ε)
belong to W̃0. Observe that z′ < z+ε. It is enough to show that φ0(x+ε)−φ0(x)−ε < 0.
From the definition of φ0 and Lemma S.4, we can deduce that φ0(x + ε) − φ0(x) − ε =
G̃0(z′)− G̃0(z + ε), which is less than 0 since G̃0 is strictly increasing. Q.E.D.

S.1.4. Solving the Distributivity Equation for G1

In this section, we show that the iteration group {f α} constructed in Section S.1.2 also
solves the following distributivity equation (37):

G1

(
fc(x1)� � � � � fc(xm)

) = fcG1(x1� � � � � xm)� (S.10)

For every c ∈ C, let Ac := [Fc(0)�Fc(1)] and let Am
c be the Cartesian product of m-

copies of the set Ac . Observe that W1 = ⋃
c A

m
c , that is, the domain of G1 is the union of

product sets situated along the diagonal in [0�1]m. Lemma S.6 below shows that equation
(S.6) continues to hold when the function G0 is replaced with G1. One important caveat
is that the equation is only guaranteed to hold “locally,” that is, within each product set
Am

c rather than across the entire domain W1 of G1. The proof of Lemma S.6 clarifies why
we can only obtain a local analogue of Lemma S.2.
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LEMMA S.6: For all c ∈ C, (x1� � � � � xm) ∈ Am
c , and α ∈ (−1�1) with (f α(x1)� � � � �

f α(xm)) ∈ Am
c , we have G1(f

α(x1)� � � � � f
α(xm))= f αG1(x1� � � � � xm).

PROOF: We need to establish a preliminary property of the distributivity equation
in (S.10). Fix c ∈ C and remember that f = f 1 is a function such that f > j and
fG1(x1� � � � � xm) = G1(f (x1)� � � � � f (xm)) for all (x1� � � � � xm) ∈ Am

c such that (f (x1)� � � � �
f (xm)) ∈ Am

c . Let p> 1 be an integer and let (x1� � � � � xm) ∈ Am
c be such that (f p(x1)� � � � �

f p(xm)) ∈ Am
c . We want to show that f pG1(x1� � � � � xm) = G1(f

p(x1)� � � � � f
p(xm)). Sup-

pose first that p = 2. Then,

f 2G1(x1� � � � � xm) = ffG1(x1� � � � � xm)= fG1

(
f (x1)� � � � � f (xm)

)
(S.11)

= G1

(
f 2(x1)� � � � � f

2(xm)
)
� (S.12)

as desired. Next, fix an integer p> 2. For every integer p′ such that 0 <p′ <p, we have

(x1� � � � � xm)≤ (
f p′

(x1)� � � � � f
p′
(xm)

) ≤ (
f p(x1)� � � � � f

p(xm)
)
�

where ≤ is the pointwise order on R
m. Since Am

c is a product set and the vectors
(x1� � � � � xm), (f p(x1)� � � � � f

p(xm)) belong to Am
c , it follows that the vector (f p′

(x1)� � � � �
f p′

(xm)) belongs to Am
c . But then a chain of equalities analogous to those in (S.11) and

(S.12) shows that f 3 solves the distributivity equation. By induction, so do the functions
f 4� f 5� � � � � and f p.

We can now complete the proof of the lemma. Take some α > 0; symmetric argu-
ments apply when α < 0. Fix any c ∈ C. Take some (x1� � � � � xm) in the interior of
Am

c and α ∈ (0�λ) such that (f α(x1)� � � � � f
α(xm)) ∈ Am

c . We know that there is a se-
quence (pn)n of integers such that f pn

cn
→L f α. For n large enough, we know that

(f pn
cn
(x1)� � � � � f

pn
cn
(xm)) ∈ Am

c . Since (S.10) holds for each fcn , we know that G1(f
pn
cn
(x1)�

� � � � f pn
cn
(xm))= f pn

cn
G1(x1� � � � � xm) for all n large enough. Since f pn

cn
→L f

α and G1 is con-
tinuous, we have G1(f

α(x1)� � � � � f
α(xm)) = f αG1(x1� � � � � xm), as desired. Q.E.D.

S.1.5. Translation Invariance for G̃1 and G̃2

In this section, we show that G̃1 and G̃2—defined in equation (S.7) above—are
translation-invariant in a “local” sense which we make precise below.

Translation Invariance for G̃1.

For every c ∈ C, let Ãc := [F̃c(0)� F̃c(1)] and let Ãm
c be the Cartesian product of m-

copies of the set Ãc . Note that G̃1 is defined on
⋃

c Ã
m
c (= W̃1). The proof of the next

lemma parallels that of Lemma S.4 and is omitted. As was the case with Lemmas S.2
and S.6, Lemma S.7 is only a partial analogue of Lemma S.4 in that its conclusion holds
only within each separate rectangle Ãm

c , rather than within the entire domain of G̃1.

LEMMA S.7—Translation Invariance for G̃1: For every c ∈ C, (x1� � � � � xm) ∈ Ãm
c , and

α ∈ (−1�1) such that (α + x1� � � � �α + xm) ∈ Ãm
c , we have G̃1(α + x1� � � � �α + xm) = α +

G̃1(x1� � � � � xm).
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Using the above lemma, for every c ∈ C, we can define φc
1 by setting

φc
1(x2 − x1) := G̃1(x1�x2� � � � � x2)− x1

for all (x1�x2� � � � � x2) ∈ Ãm
c . An analogue of Lemma S.5 shows that φc

1 is a continuous,
strictly increasing function and that j − φc

1 is a strictly decreasing function. We omit the
details. We should observe, however, that if (x1�x2� � � � � x2) ∈ Ãm

c , then (x2�x1� � � � � x1) ∈
Ãm

c . Thus, the domain of φc
1 is an interval of the form [−ac

1� a
c
1]. Since Ãc ⊂ [0�1], we also

know that [−ac
1� a

c
1] ⊂ [−1�1].

Translation Invariance for G̃2.

We need an analogous construction for G̃2 as well. Fix c ∈ C and let

Ãm
cc := {

(F̃c(x1)� � � � � F̃c(xm) : (x1� � � � � xm) ∈ Ãm
c

}
�

Again, G̃2 is defined on
⋃

c Ã
m
cc(= W̃2). An analogue of Lemma S.7 shows that G̃2 is

translation-invariant within each rectangle Ãm
cc . Hence, we can define a function φc

2 such
that φc

2(x2 − x1) = G̃2(x1�x2� � � � � x2) − x1 for all (x1�x2� � � � � x2) ∈ Ãm
cc , exactly as we

did for φc
1. Finally, note that Ãm

cc ⊂ Ãm
c and so φc

2 is defined on an interval [−ac
2� a

c
2] ⊂

[−ac
1� a

c
1].

S.1.6. Two Linear Distributivity Equations

The functions G̃0� G̃1� G̃2, and F̃c satisfy analogues of the equations in (S.3). From these
equations and from the definitions of F̃c , φ0, φc

1, and φc
2, we obtain

F̃c

(
x1 +φ0(x2 − x1)

) = F̃c(x1)+φc
1

(
F̃c(x2)− F̃c(x1)

)
� (S.13)

F̃c

(
x1 +φc

1(x2 − x1)
) = F̃c(x1)+φc

2

(
F̃c(x2)− F̃c(x1)

)
� (S.14)

where the first equation holds for all c ∈ C and x1�x2 ∈ [0�1], while the second holds
for all c and x1�x2 such that (x1�x2�x2� � � � � x2) ∈ Ãm

c . Equations such as (S.13) and
(S.14) were studied in Lundberg (1985). His results, Theorem 11.1 in particular, are
applicable since all functions are continuous, F̃c�φ0�φ

c
1�φ

c
2 are strictly increasing, and

j − φ0� j − φc
1� j − φc

2 are strictly decreasing, as shown in Section S.1.5. For any given
c ∈ C, Theorem 11.1 in Lundberg (1985) shows that there are four cases for the functions
F̃c�φ

c
1 that solve (S.13). As in Lundberg (1985), we enumerate those cases: (a), (b), (c),

(d). In addition, we let Ω(a) be the set of all c ∈C such that the functions F̃c�φ
c
1 belong to

case (a). The sets Ω(b)�Ω(c)�Ω(d) are defined analogously. The next lemma shows that all
but one of those sets are empty, meaning that the system of equations in (S.13)–(S.14) is
solved by functions that belong to the same set.

LEMMA S.8: C = Ωk for some k ∈ {(a)� (b)� (c)� (d)}.

PROOF: The four sets Ω(a)�Ω(b)�Ω(c), and Ω(d) form a partition of C. Since C is con-
nected, it is enough to show each of these sets is open in C. For every c ∈C, write (ac� bc)

for the interval (F̃c(0)� F̃c(1)). If Ω(a) is empty, it is necessarily open. So suppose Ω(a) is
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non-empty and fix some c′ ∈ Ω(a). Since the functions c �→ ac and c �→ bc are continu-
ous, we can find ε > 0 such that for all c′′ ∈ (c′� c′ + ε) ∩ C, we have ac′′ ∈ (ac′� bc′) and
for all c′′ ∈ (c′ − ε� c′) ∩ C, we have bc′′ ∈ (ac′� bc′). In other words, for all c′′ sufficiently
close to c′, the intervals (ac′� bc′) and (ac′′� bc′′) have a non-empty intersection. To show
that Ω(a) is open in C, it is enough to show that the neighborhood (c′ − ε� c′ + ε) ∩ C of
c′ is a subset of Ω(a). First, take some c′′ ∈ (c′� c′ + ε) ∩ C. For every x1�x2 ∈ (ac′′� bc′) =
(ac′� bc′)∩ (ac′′� bc′′), we know from the definitions of φc′

1 �φ
c′′
1 that

φc′
1 (x2 − x1) = G̃1(x1�x2�x2� � � � � x2)− x1� (S.15)

φc′′
1 (x2 − x1) = G̃1(x1�x2�x2� � � � � x2)− x1� (S.16)

Note that if x1�x2 ∈ (ac′′� bc′), then x2 − x1 ∈ (ac′′ − bc′� bc′ − ac′′). From (S.15), conclude
that φc′

1 �φ
c′′
1 coincide on the interval (ac′′ −bc′� bc′ −ac′′), which is a symmetric, non-trivial

neighborhood of 0. From Theorem 11.1 in Lundberg, if φ1
c′�φ1

c′′ belong to different cases,
they cannot coincide on any non-trivial interval. We conclude that c′′ ∈ Ω(a). Analogous
arguments show that (c′ − ε� c′) ∩ C ⊂ Ω(a) and, hence, that Ω(a) is open in C. Similarly,
the sets Ω(b)�Ω(c)�Ω(d) are open in C, completing the proof of the lemma. Q.E.D.

Cases (b) and (c) can be ruled out. Indeed, for some c ∈ C, equations (S.13) and (S.14)
are linked by the functions F̃c and φc

1, which appear in both equations but in a “differ-
ent position.” However, it is known from Lundberg (1985) that functions that appear in
“different positions” have different functional forms, which rules out (b) and (c).

We are thus left with cases (a) and (b), which we refer to as the affine and the non-affine
case and which we study in detail below.

S.1.7. Detailed Analysis of the Affine and Non-Affine Cases

S.1.7.1. The Affine Case

If all functions F̃c solving equations (S.13) and (S.14) belong to case a), then F̃c(x) =
u(c) + b(c)x for every c ∈ C and x ∈ [0�1]. Moreover, the functions u�b : C → R are
continuous and b(C) ⊂ (0�1). If b is a constant function, there is little left to prove since
we already know that G̃0 is translation-invariant. See Section S.1.8 for the remaining de-
tails. Here, suppose that the function b is not constant. We begin with a general lemma
concerning the scale invariance of a real-valued function G′ defined on a convex set in a
Euclidean space.

LEMMA S.9: Let W ′ be a convex set in R
m containing the origin and G′ be a continuous

function from W ′ into R. Suppose that for every x ∈W ′, there is ε ∈ (0�1) such that G′(αx)=
αG′(x) for all α ∈ (1 − ε�1]. Then, G′(αx) = αG′(x) for all x ∈ W ′ and all α > 0 such that
αx ∈W ′.

PROOF: Pick x ∈ W ′. It is enough to show that G′(γx) = γG′(x) for all γ ∈ (0�1]. We
proceed by way of contradiction. Let us assume that there is γ′ ∈ (0�1) such that G′(γx)=
γG′(x) for all γ ∈ [γ′�1] and G′(γx) 
= γG′(x) for all γ in a left neighborhood of γ′. But
we know that there is εγ′x > 0 such that G′(αγ′x) = αG′(γ′x) for all α ∈ (1 − εγ′x�1].
Also, by the definition of γ′, αG′(γ′x) = αγ′G′(x) and, hence, G′(αγ′x) = αγ′G′(x) for
all α ∈ (1 − εγ′x�1], contradicting the fact that G′(γx) 
= γG′(x) for all γ in some left
neighborhood of γ′. Q.E.D.
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When a function G′ : W ′ → R has the property deduced in Lemma S.9, we say that G′

is scale-invariant on W ′.

LEMMA S.10: If b :C → (0�1) is non-constant, then G̃0 is scale-invariant on W̃0.

PROOF: For every c� c′ ∈ C and x in the interior of W̃0, let

y := u
(
c′) − u(c)

b(c)
+ b

(
c′)

b(c)
x� (S.17)

Observe that if c′ is sufficiently close to c, then y is close to x and hence y ∈ W̃0. Similarly,
we can ensure that b(c′)

b(c)
x ∈ W̃0. From now on, assume that c� c′ are chosen so that both in-

clusions hold. From the definition of y, conclude that u(c)+b(c)y = u(c′)+b(c′)x. Hence,
G̃1(u(c)+ b(c)y) = G̃1(u(c

′)+ b(c′)x). Since G̃0 and G̃1 satisfy an analogue of equation
(S.3), conclude that u(c) + b(c)G̃0(y) = u(c′) + b(c′)G̃0(y). Substituting the expression
for y from (S.17), we get

G̃0(x)= u(c)− u
(
c′)

b
(
c′) + b(c)

b
(
c′)G̃0

(
u
(
c′) − u(c)

b(c)
+ b

(
c′)

b(c)
x
)
� (S.18)

Since y ∈ W̃1 and b(c′)
b(c)

x ∈ W̃1, we can apply Lemma S.4 and deduce that

G̃0(x)= b(c)

b
(
c′)G̃0

(
b
(
c′)

b(c)
x
)
�

Since b is non-constant, we can also choose c� c′ so that b(c) > b(c′). Since b is continuous
and C a connected set, we can also vary c� c′ so that b(c′)

b(c)
spans an open interval of the form

(1 − ε�1]. It follows from Lemma S.9 that G̃0 is scale-invariant on W̃0. Q.E.D.

S.1.7.2. The Non-Affine Case

If all functions F̃c solving equations (S.13) and (S.14) belong to case (d), then

F̃c(x)= 1
a

log
(
u(c)+ b(c)eax

) ∀c ∈C�x ∈ [0�1]� (S.19)

where u�b : C → R are continuous functions, a ∈ (0�+∞), and b(C) ⊂ (0�1). Let
H(x) := eax and observe that H−1(y) = 1

a
log y . For every c ∈ C, let F̂c := HF̃H−1. Each

function F̂c has domain [1� ea] and, by construction, F̂c(x)= u(c)+ b(c)x for every c ∈ C

and x ∈ [1� ea]. Also, let Ŵ0 := [1� ea]m and

Ŵk := {(
F̂c(x1)� � � � � F̂c(xm)

)
� c ∈ C�(x1� � � � � xm) ∈ Ŵk−1

}
for k ∈ {1�2}. For k ∈ {0�1�2} and every (x1� � � � � xm) ∈ Ŵk, let

Ĝk(x1� � � � � xm) :=HG̃k

(
H−1(x1)� � � � �H

−1(x1)
)
�

The next two lemmas focus on the function Ĝ0.
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LEMMA S.11: The function Ĝ0 : Ŵ0 →R is scale-invariant on Ŵ0.

PROOF: Fix x = (x1� � � � � xm) ∈ Ŵ0 and α > 0 such that αx ∈ Ŵ0. Since xi�αxi ∈ [1� ea]
for every i, we know that H−1(xi) ∈ [0�1] and H−1(αxi) = H−1(xi) + H−1(α) ∈ [0�1] for
every i = 1� � � � �m. Using Lemma S.4 and the definition of Ĝ0, deduce that

Ĝ0(αx) = HG̃0

(
H−1(αx1)� � � � �H

−1(αxm)
)

= HG̃0

(
H−1(x1)+H−1(α)� � � � �H−1(xm)+H−1(α)

)
= H

[
G̃0

(
H−1(x1)� � � � �H

−1(xm)
) +H−1(α)

] = αHG̃0

(
H−1(x1)� � � � �H

−1(xm)
)

= αĜ0(x)� Q.E.D.

In order to show that the function Ĝ0 is translation-invariant, we first establish the
following local result.

LEMMA S.12: For every x in the interior of Ŵ0, there is some δx > 0 such that Ĝ0(x +δ)=
Ĝ0(x)+ δ for all δ ∈ [0� δx].

PROOF: Suppose first that u is a non-constant function. By construction, the functions
F̂c� Ĝ0, and Ĝ1 satisfy an analogue of equations in (S.3), that is,

u(c)+ b(c)Ĝ0(x)= Ĝ1

(
u(c)+ b(c)x

)
(S.20)

for every c ∈C and x ∈ Ŵ0. For every c� c′ ∈ C and every x in the interior of Ŵ0, let

y := u
(
c′) − u(c)

b(c)
+ b

(
c′)

b(c)
x�

Using (S.20), deduce that

Ĝ0(x)= u(c)− u
(
c′)

b
(
c′) + b(c)

b
(
c′)Ĝ0

(
u
(
c′) − u(c)

b(c)
+ b

(
c′)

b(c)
x
)
� (S.21)

If c� c′ are close to one another, then b(c)

b(c′)y� y ∈ Ŵ0. From Lemma S.11, we can conclude
that b(c)

b(c′) Ĝ0(y) = Ĝ0(
b(c)

b(c′)y). Then, (S.21) becomes

Ĝ0(x)= u(c)− u
(
c′)

b
(
c′) + Ĝ0

(
u
(
c′) − u(c)

b
(
c′) + x

)
� (S.22)

Summarizing the arguments so far, we can ensure that (S.22) holds for all x in the interior
of Ŵ0, all c ∈ C, and all c′ in some neighborhood Ox�c of c. Since u : C → R is non-
constant, we can choose c such that u is non-constant in some right neighborhood of c.
But then (S.22) implies that Ĝ0(x)= −δ+ Ĝ0(δ+ x) for all x in the interior of Ŵ0 and all
δ > 0 less than some δx > 0, as we wanted to prove.
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Consider now the case when the function u is constant. The functions F̂c� Ĝ0� Ĝ1, and
Ĝ2 satisfy equations analogous to the equations in (S.3). Deduce that

u(c)+ b(c)u(c)+ b(c)b(c)Ĝ0(x)= Ĝ2

(
u(c)+ b(c)u(c)+ b(c)b(c)x

)
(S.23)

for every c ∈ C and x ∈ Ŵ0. For every c ∈ C, let v(c) := u(c)(1 + b(c)) and γ(c) :=
b(c)b(c). Observe that if u is a constant function, then b is necessarily non-constant.
Otherwise, � fails to be strictly increasing in the pointwise order on C∞. Conclude that v
is necessarily a non-constant function. Then, (S.23) becomes

v(c)+ γ(c)Ĝ0(x)= Ĝ2

(
v(c)+ γ(c)x

)
� (S.24)

which holds for every c ∈ C�x ∈ Ŵ0. But this equation is an exact analogue of equation
(S.20), with the function v non-constant. Hence, the proof can be completed in an identi-
cal manner. Q.E.D.

The next lemma shows that the local property obtained in Lemma (S.12) “integrates”
into a global property. The proof is analogous to that of Lemma S.9 and is omitted.

LEMMA S.13: For every x ∈ Ŵ0 and every δ ∈R such that x+δ ∈ Ŵ0, we have Ĝ0(x+δ)=
Ĝ0(x)+ δ.

S.1.8. Concluding the Proof

The preceding arguments show that it is always possible to renormalize the utility repre-
sentation, so as to obtain an affine time aggregator, W (c�x)= u(c)+ b(c)x, and a renor-
malized certainty equivalent (G̃0 in the affine case and Ĝ0 in the non-affine case) which
is translation-invariant (Lemmas S.4 and S.13), and furthermore scale-invariant when the
function b is not constant (Lemmas S.10 and S.11). Recall from (S.1) that G0 was defined
by fixing m> 1 and a probability vector (π1� � � � �πm) and projecting I onto [0�1]m. Since
m and (π1� � � � �πm) were arbitrary, we obtain that the recursive representation (U�W �I)
of � can be renormalized so that:

– case 1: W (c�x)= u(c)+βx and I is translation-invariant on Mf(U),
– case 2: W (c�x)= u(c)+b(c)x and I is translation- and scale-invariant on Mf(U),

where U := U(D) and Mf(U) is the set of simple lotteries with prizes drawn from the
interval U . In the first case, u : C → R is continuous and β ∈ (0�1). In the second,
u�b : C → R are continuous and b(C) ⊂ (0�1). Since Mf(U) is dense in M(U) and the
certainty equivalent I :M(U) → U is continuous, we know that if I is translation-invariant
on Mf(U), then I is also translation-invariant on M(U). An identical argument holds for
scale invariance.

To conclude the proof, it remains to take full account of the implications of Axiom 6
(Deterministic Monotonicity). First, note that the main features of the representations
(U�W �I) we have derived so far—that W (c�x) is affine in x and that I is translation-
and, in the appropriate case, also scale-invariant—are preserved under positive affine
transformations of utility. It is therefore w.l.o.g. to assume that the representations are
chosen so that U(D) = [0�1]. This normalization, which we maintain in the statement
of Proposition 1, makes it possible to express the implications of Axiom 6 in terms of
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the representation. When discounting is exogenous, everything is standard in that Ax-
iom 6 is equivalent to the strict monotonicity of the function u : C → R. When dis-
counting is endogenous, Axiom 6 is equivalent to the strict monotonicity of the functions
u�u + b : C → R, provided that U(D) = [0�1]. To see this, note that U(D) = [0�1] is
equivalent to U(c� c� � � �) = 0 and U(c� c� � � �) = 1. The latter imply that for all c ∈ C, we
have U(c� c� c� � � �) = u(c) and U(c� c� c� � � �) = u(c)+ b(c), from where the strict mono-
tonicity of u�u+ b follows.

S.1.9. Dealing With the Case Where the Abel Function Is not Bounded

We assume in Section S.1.2 that the iteration group {f α} obtained in Lemma S.2 is
such that f 1(0) > 0 and f−1(1) < 1. This means that the Abel function L : (0�1) → R is
bounded, which allows us to extend L continuously from (0�1) to [0�1]. We show here
how to handle the case when either f 1(0) = 0 or f−1(1) = 1 (or both). To see how this
affects the preceding proof, note that we started with a utility function U : D → [0�1]
and then obtained the desired representations by looking at the functions LU or HLU ,
depending on whether we were in the affine or non-affine case. If L is unbounded on
(0�1), however, the functions LU or HLU are not well-defined on the entire domain D:
we have to exclude the best and worst temporal lotteries in D, namely, the deterministic
consumption streams (c� c� � � �) and (c� c� � � �). In particular, let D◦ ⊂ D be the subset of
all temporal lotteries whose consumption levels are drawn from the open interval C◦ :=
(c� c). Following the preceding arguments, we can then obtain the desired representations
on D◦. It remains to show that these representations can be extended from D◦ to the entire
domain D. The only non-trivial part in this argument is to show that an Uzawa–Epstein
representation on (C◦)∞ can be extended to an Uzawa–Epstein representation on C∞.
The next lemma provides the details, thus completing the proof of Proposition 1. To state
the lemma, consider some set X ⊂ C and say that a preference relation � on X∞ has an
Uzawa–Epstein representation (u�b�U) if it is represented by the utility function

U(c0� c1� � � �) = u(c0)+ b(c0)u(c1)+ b(c0)b(c1)u(c2)+ · · ·
= u(c0)+ b(c0)U(c1� c2� � � �)�

where u :X → R and b :X → (0�1) are continuous functions.

LEMMA S.14: If � is continuous on C∞ and has an Uzawa–Epstein representation on
(C◦)∞, then � has an Uzawa–Epstein representation on the entire domain C∞.

PROOF: Let (u�b�U) be the Uzawa–Epstein representation on (C◦)∞. In particular,
note that u�b are functions on C◦ and U is a function on (C◦)∞. First, we are go-
ing to show that limc↗c U(c� c� � � �) < +∞. Fix some c′� c′′ ∈ C◦ such that U(c′� c′� � � �) <
U(c′′� c′′� � � �) < U(c′� c′� � � �)+ 1

2 . If limc↗c U(c� c� � � �)= +∞, then we can find a sequence
(cn)n such that cn ∈C◦ and b(c′)nU(cn� cn� � � �) ≥ 1 for every n. Consider the consumption
streams d1 := (c′� c1� c1� � � �)� d2 := (c′� c′� c2� c2� � � �), and so on. Since the sequence (dn)n
converges pointwise to (c′� c′� � � �) and � is continuous in the product topology on C∞, we
know that (c′′� c′′� � � �) � dn for all n large enough. But for every n,

U(dn)=U
(
c′� c′� � � �

)(
1 − b

(
c′)n) + b

(
c′)nU(cn� cn� � � �) ≥U

(
c′� c′� � � �

)(
1 − b

(
c′)n) + 1�

Hence, U(dn) > U(c′� c′� � � �)+ 1
2 >U(c′′� c′′� � � �) for all n large enough, a contradiction.
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Next, we are going to show that limc↗c b(c) < 1. The proof is once again by contradic-
tion. Let (cn)n be a sequence such that cn ↗ c�b(cn) ↗ 1, and cn ∈ C◦ for every n. Fix
some c� c′ ∈ C◦ such that (c� c� c� � � �) � (c′� c� c� � � �) � (c� c� � � �). Since � is continuous,
we know that (cn� c� c� � � �)� (c′� c� c� � � �) for all n large enough. Also,

U(cn� c� c� � � �) = (
1 − b(cn)

)
U(cn� cn� � � �)+ b(cn)U(c� c� � � �) ∀n�

Since limn U(cn� cn� � � �) < ∞ and b(cn) ↗ 1, it follows that limn U(cn� c� c� � � �) =
U(c� c� � � �). But then U(cn� c� c� � � �) < U(c′� c� c� � � �) for all n large enough, con-
tradicting the fact that U represents � on (C◦)∞. Analogous arguments show that
limc↘c U(c� c� � � �) > −∞ and limc↘c b(c) > 0. Since u(c) = (1 − b(c))−1U(c� c� � � �) for
every c ∈C◦ and the function U is bounded, we can conclude that u : C◦ → R is bounded.
By taking limits, we can extend the functions u�b : C◦ → R from C◦ to C. Let (u′� b′�U ′)
be the ensuing Uzawa–Epstein representation on C∞. By construction, U ′ agrees with U
on (C◦)∞ and hence represents � on (C◦)∞. Since U ′ is the continuous extension of U
from (C◦)∞ to C∞, the function U ′ represents � on C∞ as well. Q.E.D.

S.2. PROOF OF PROPOSITION 4

Before starting the proof, let us recall that the notions of conditional, continuation, and
concatenated acts are related to each other. Formally, we have

h= (h0�h1�h2� � � �) ∈H and s ∈ S ⇒ hs = (
h0�h

s�1
)
� (S.25)

∀c ∈C�h ∈H and s ∈ S� (c�h)s�1 = h� (S.26)

We first establish a result similar to Lemma 1, after which the proof of Proposition 1
can be almost readily applied.

LEMMA S.15: A binary relation � on H admits a recursive representation (U�W �I) (as
defined in equation (26)) if and only if it fulfills Axioms 1, 2, A.3, A.4, and A.5.

PROOF: Let us start with the necessity of the axioms. It is obvious that representation
(26) implies that Axioms 1, 2, and A.4 hold. Remark that (S.26) and (26) imply that for
any c ∈ C and h ∈H, we have

U(c�h)=W
(
c�U(h)

)
�

which proves that Axiom A.5 holds. Last, for Axiom A.3, let us consider two acts
h = (h0�h1� � � �) and ĥ = (h0� ĥ1� � � �) such that U(hs) ≥ U(ĥs) for all s. Using (S.25), we
get U(hs) = W (h0�U(hs�1)) and U(ĥs) = W (h0�U(ĥs�1)), so that the inequality U(hs) ≥
U(ĥs) for all s provides U(hs�1) ≥ U(ĥs�1) for all s. Thus, we deduce that U(h) ≥ U(ĥ),
which implies that Axiom A.3 holds and concludes the necessity part.

We now demonstrate that the axioms are sufficient. Let us denote by He the set of con-
sumption plans h = (h0�h1� � � �) whose consumption h0 at date 0 is not constrained to be
deterministic, that is, the set of C-valued and G-adapted processes. States will be denoted
(s0� s1� � � �) to emphasize the difference with our setting, where h0 was supposed to be
constant (while here it may depend on s0). Let c0 ∈ C be a given constant consumption
level. We define a binary relation �e on the set He as follows:

∀(h� ĥ) ∈H2
e�h �e ĥ ⇔ (c0�h)� (c0� ĥ)�
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where (c�h) is defined similarly to equation (24). Because of Axiom A.4, the binary rela-
tion �e is independent of c0 and defines a preference relation on He. Moreover, for any
c ∈ C and h ∈ H, Axioms A.4 and A.5 imply that (c�h) �e (c� ĥ) ⇔ h �e ĥ. The prefer-
ence relation �e fulfills, therefore, a property similar to the one defined in Axiom A.5.
By continuity of � and thus of �e, there exists a continuous utility representation, whose
corresponding utility function is denoted U .

For any c ∈ C , the functions h ∈ He �→ U(h) and h ∈ He �→ U((c�h)) both represent
the preference relation �e. Therefore, there exists a continuous function W , which is
increasing in its second argument, such that

∀h ∈He�U
(
(c�h)

) = W
(
c�U(h)

)
�

For any h in He and any s ∈ S, one can define a conditional act hs ∈H similarly to equation
(22). Consider now two acts h and ĥ in He such that hs �e ĥ

s for all s. By definition of
�e, we have (c0�h

s) � (c0� ĥ
s) for all s. Axiom A.3 implies then that h �e ĥ. The set He

being isomorphic to HS , we obtain that for any h ∈ He, U(h) = I(U ◦ h) where U ◦ h :
S → Im(U) = [0�1] is defined by (U ◦h)(s)= U(hs) and I : B0(Σ)→ R+ is a continuous,
strictly increasing function. Since any h = (h0�h1� � � �) ∈H can be viewed as (h0� (h1� � � �))
where (h1� � � �) ∈He, we obtain

U(h0� � � �)=W
(
h0� I

(
U ◦ h1

))
�

It remains to show that I fulfills I(x) = x for all x ∈ Im(U). For this, consider any act
such that U(hs�1) = x for all s. We have U(hs) = W (h0�x) which is independent of s.
With Axiom A.3, this implies that U(hs)=U(h) and therefore I(x)= x. Q.E.D.

To end up proving Proposition 4, it remains to show that Axioms 6 and A.7 hold if
and only if one can use a time aggregator W and a certainty equivalent that fulfill the
same kind of restrictions as those derived in the risk setting. The sufficiency part of
the proof is exactly the same as the one provided for the risk setting. Indeed, in Ap-
pendix B, the number m ∈ N+ and the probabilities (π1� � � � �πm) ∈ (0�1)m were consid-
ered to be fixed. Thus, the whole reasoning that was done considering the simple lottery
(π1�x1; � � � ;πm�xm) ∈ M([0�1]) can be reproduced here without any change by imposing
that m= card(S) and viewing the x1� � � � � xm as state-contingent realizations.

Necessity of Axiom 6 is obvious, as in the risk setting. For the necessity of Axiom A.7,
which is a stronger monotonicity requirement than the one imposed in the risk setting, let
us define the notion of time-t conditional act as follows. For any t ≥ 1, any (σ1� � � � �σt) ∈
St , and any act h ∈H, we set

hσ1�����σt ∈H : (s1� s2� � � �) ∈Ω → hσ1�����σt (s1� s2� � � �)= h(σ1� � � � �σt� st+1� st+2� � � �)�

This is a direct generalization of the notion of conditional act defined in equation (22).
Now consider T > 0 and an act h such that any time-T conditional act is a constant act

(i.e., the act h only depends on the information revealed during the first T periods). We
can show that U(h) is given by the terminal point of the backward recursion:{

Vt(σ1� � � � �σt�h)= V
(
hσ1�����σT

)
for t ≥ T�

Vt(σ1� � � � �σt�h)= It+1

(
s �→ Vt+1(σ1� � � � �σt� s�h)

)
for all 0 ≤ t < T�

(S.27)
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where V is the ex post lifetime utility function (i.e., the restriction of U to C∞) and the
It are given by It(μ) = βtI( 1

βt μ). The property stated in Axiom A.7 is then found to hold

for any pair of acts h and ĥ that only depends on information revealed in a finite number
of periods. The extension to all pairs of acts is obtained by continuity.
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