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IN THIS SUPPLEMENT, we provide details of the proofs omitted in the main text and the
appendices of the paper. In Section S.1, we prove the equivalence between the Arrow–
Debreu setup and the sequential market setup in the two-period model. Section S.2 con-
tains details of the certainty equivalent functionals of dynamic preferences that Theorems
1 and 2 allow for and the associated A-SDF. Section S.3 provides details of the continuous-
time model in Section 5 of the paper.

S.1. THE TWO-PERIOD MODEL

In this section, we provide a formal derivation of the A-SDF in the two-period model.
We also establish the equivalence between Arrow–Debreu markets and sequential mar-
kets in the context of our model. We show that both formulations lead to the same set of
asset pricing equations. Section S.1.3 discusses the A-SDF of the recursive utility in the
two-period model.

S.1.1. The Arrow–Debreu Market

We use {C̄0� {C̄1(s)}Ns=1} to denote aggregate endowment in our two-period model and
use {C0(s)�C1(s)}Ns=1 for the consumption choice of the agent. From an individual agent’s
perspective, the decision for C0 is made after the announcement, and therefore is allowed
to depend on s. At the aggregate level, C̄0 does not depend on s.

Trading on the Arrow–Debreu market happens in period 0−. Let q0(s) be the period 0−

price of an Arrow–Debreu security that delivers one unit of consumption good in period
0+ and state s, for s = 1�2� � � � �N . Similarly, let q1(s) be the Arrow–Debreu price of one
unit of consumption good in period one and state s. Because markets are complete, the
utility maximization problem of the representative agent can be written as

maxI
[
u
(
C0(s)

) +βu(C1(s)
)]

subject to:
N∑
s=1

[
q0(s)C0(s)+ q1(s)C1(s)

] ≤
N∑
s=1

[
q0(s)C̄0 + q1(s)C̄1(s)

]
�

In the above setup, because the announcement is made at time 0+, from the agent’s
perspective, consumption at time 0+ is allowed to depend on s, which we write as C0(s). To
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save notation, as in the paper, we denote Vs = u(C0(s))+βu(C1(s)). Optimality implies

q0(s)= λ∂I[V ]
∂Vs

u′(C0(s)
)
� q1(s)= λ∂I[V ]

∂Vs
βu′(C1(s)

)
�

where λ is the Lagrangian multiplier of the budget constraint. In equilibrium, market
clearing implies that C0(s) = C̄0 for all s. If we normalize the price of one unit of state-
non-contingent consumption at time 0+ to be 1, that is,

∑N

s=1 q0(s)= 1, then, for all s,

q0(s)=
∂I[V ]
∂Vs

N∑
s=1

∂I[V ]
∂Vs

� (S.1.1)

and q1(s)

q0(s)
= βu′(C̄1(s))

u′(C̄0)
. That is, we can simply use ratios of marginal utilities to compute

Arrow–Debreu prices. Clearly, equation (S.1.1) implies the expression of the A-SDF in
equation (12) of the paper.

S.1.2. The Sequential Market

Here, we show that the two-period version of the sequential market setup described in
Section 4 leads to the same asset pricing equation, (12). In period 0−, there is no con-
sumption decision and the agent chooses investment in a vector of announcement returns
to maximize:

max
{ξj }Jj=1

I
[
V

(
W ′)]

subject to: W ′
s =W −

J∑
j=1

ξj +
J∑
j=1

ξjRA�j(s)� all s�
(S.1.2)

where W ′ = {W ′
s }Ns=1 is the realizations of wealth in the next period, and V (W ′) =

{Vs(W ′
s )}Ns=1 is a vector of value functions. For each s, the value function Vs(W ) is defined

by the optimal portfolio choice problem on the post-announcement market:

Vs(W )= max
C0(s)�C1(s)

u
(
C0(s)

) +βu(C1(s)
)

subject to: C1(s)= (
W −C0(s)

)
RP�s�

(S.1.3)

Note that RP�s is the return from period 0+ to period 1 after announcement s. Because
the announcement fully reveals the true state of the world, RP�s is a risk-free return.

The first-order condition for (S.1.2) with respect to ξj implies that for any announce-
ment returns RA�j ,

N∑
s=1

∂

∂Vs
I
[
V

(
W ′)]∂Vs(W ′

s

)
∂W ′

s

[
RA�j(s)− 1

] = 0� (S.1.4)

whereW ′
s denotes the equilibrium wealth of the agent in period 0+ after announcement s.

The envelope condition for (S.1.3) implies that ∂Vs(W
′
s )

∂W ′
s

= u′(C0(s)) = u′(C̄0), where the
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second equality uses the market clearing condition. As u′ > 0, equation (S.1.4) implies

N∑
s=1

∂

∂Vs
I
[
V

(
W ′)]

N∑
s=1

∂

∂Vs
I
[
V

(
W ′)]RA�j(s)= 1�

as in equation (11) of the paper.

S.1.3. The Example of Recursive Utility

Here, we provide details of the computation of the A-SDF for the recursive utility in
Section 3.2 of the paper. We illustrate that because the announcement in our model leads
uncertainty to resolve before the realization of consumption shocks, the computation of
utilities and, therefore, marginal utilities differs from that in models in which resolution
of uncertainty happens at the same time of the realization of the consumption shocks.

Figure S.1 illustrates a two-period model with announcement and one without an-
nouncement. The top panel is the same as that in Figure 2 in our main text, where the
announcement at time 0+ fully reveals the true state and leads to early resolution of un-
certainty. In the bottom panel of Figure S.1, due to the absence of announcement, the

FIGURE S.1.—Early and late resolution of uncertainty. Figure S.1 plots a consumption plan with early reso-
lution of uncertainty (top panel) and a consumption plan with late resolution of uncertainty (bottom panel).
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uncertainty is resolved in period 1 when consumption is realized; that is, it is a case of late
resolution of uncertainty.1

We denote the utility at 0− in the case of early resolution as V E({C0(s)�C1(s)}Ns=1). Con-
sistent with our previous notations, in the rest of this section, we will allow C0 to depend
on s when evaluating utilities, and will impose market clearing, C0(s)= C̄0 for all s when
computing stochastic discount factors. In the case of early resolution, because there is no
uncertainty in period 0+, we first aggregate over time to compute the continuation utility

as Vs = 1
1− 1

ψ

C
1− 1

ψ

0 (s)+β 1
1− 1

ψ

C
1− 1

ψ

1 (s), and then aggregate over uncertain realizations of the

announcement to compute its certainty equivalent at 0− as

V E =
{

N∑
s=1

π(s)
[{
C

1− 1
ψ

0 (s)+βC1− 1
ψ

1 (s)
} 1−γ

1−1/ψ
]} 1

1−γ

� (S.1.5)

Clearly, ∀s,

∂V E

∂C0(s)
= π(s)(V E

)γ
V

1
ψ−γ
1− 1

ψ
s C

− 1
ψ

0 (s)�
∂V E

∂C1(s)
= βπ(s)(V E

)γ
V

1
ψ−γ
1− 1

ψ
s C

− 1
ψ

1 (s)�

Therefore, the marginal utility of one unit of data-0 state un-contingent consumption can
be computed as

N∑
s=1

∂V E

∂C0(s)
=

N∑
s=1

π(s)
(
V E

)γ
V

1
ψ−γ
1− 1

ψ
s C

− 1
ψ

0 (s)

=
[

N∑
s=1

π(s)V

1
ψ−γ
1− 1

ψ
s

](
V E

)γ
C̄

− 1
ψ

0 �

where the second equality imposes market clearing. Therefore, the price of one unit of
consumption good paid in period 1, state s, measured in date-0 state un-contingent con-
sumption is

∂V E

∂C1(s)
N∑
s=1

∂V E

∂C0(s)

= βπ(s)
(
C̄1(s)

C̄0

)− 1
ψ V

1/ψ−γ
1−1/ψ
s

N∑
s=1

π(s)V
1/ψ−γ
1−1/ψ
s

� (S.1.6)

In the case of late resolution, 0− and 0+ have the same utility level, which we denote as
V L(C0� {C1(s)}Ns=1). We first aggregate over uncertain period-1 consumption to compute

1The comparison between early and late resolution of uncertainty here is the same as that in Figure 2 of
Kreps and Porteus (1978). Our top panel corresponds to node d0(a) and the bottom panel corresponds to
node d0(b) in that figure.
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its certainty equivalent: {E[C1−γ
1 (s)]} 1

1−γ , and then aggregate over time to compute V L as

V L =
{

1

1 − 1
ψ

C
1− 1

ψ

0 +β 1

1 − 1
ψ

{
N∑
s=1

π(s)
[
C1−γ

1 (s)
]} 1−1/ψ

1−γ } 1
1−1/ψ

� (S.1.7)

The Arrow–Debreu price for one unit of consumption in period 1 measured in period-0
consumption numeraire can be computed as

∂V L

∂C1(s)

∂V L

∂C0

= π(s)β
(
C̄1(s)

C̄0

)− 1
ψ

{
C̄1(s)[

N∑
s=1

π(s)C̄1−γ
1 (s)

] 1
1−γ

} 1
ψ−γ

� (S.1.8)

Clearly, the SDF for the early resolution case, (S.1.6), can be decomposed into them∗ in
equation (10) and an SDF that discounts period-1 cash flow into period-0+ consumption
units: β( C̄1(s)

C̄0
)−

1
ψ . The SDF in (S.1.8) takes a familiar form as in many consumption-based

asset pricing models where uncertainty is assumed to resolve at the same time of the
realization of consumption shocks. In general, the term { C̄1(s)

[∑N
s=1 π(s)C̄

1−γ
1 (s)]

1
1−γ

} 1
ψ−γ does not

integrate to 1 unless in the special case of unit IES.

S.2. EXAMPLES OF DYNAMIC PREFERENCES AND A-SDF

In this section, we show that most of the non-expected utility proposed in the literature
can be represented in the form of (14). We also provide an expression for the implied
A-SDF.2

• The recursive utility of Kreps and Porteus (1978) and Epstein and Zin (1989). The
recursive preference can be generally represented as

Ut = u−1
{
(1 −β)u(Ct)+βu ◦ h−1E

[
h(Ut+1)

]}
� (S.2.1)

For example, the well-known recursive preference with constant IES and constant risk
aversion is the special case in which u(C) = 1

1−1/ψC
1−1/ψ and h(U) = 1

1−γU
1−γ . With a

monotonic transformation,

V = u(U)� (S.2.2)

the recursive relationship for V can be written in the form of (14) with the same u function
in equation (S.2.1) and the certainty equivalent functional

I(V )=φ−1

(∫
φ(V )dP

)
�

2Depending on the model, additional conditions may be needed so that the assumptions of Theorem 1 can
be verified. We provide the expressions for A-SDF assuming appropriate conditions on the primitive utility
functions can be imposed to guarantee its existence.



6 H. AI AND R. BANSAL

where φ= h ◦ u−1. The A-SDF can be written as

m∗(V )∝φ′(V )� (S.2.3)

where we suppress the normalizing constant, which is chosen so that m∗(V ) integrates to
1.

• The maxmin expected utility of Gilboa and Schmeidler (1989). The dynamic version
of this preference was studied in Epstein and Schneider (2003) and Chen and Epstein
(2002). This preference can be represented as the special case of (14) where the certainty
equivalent functional is of the form

I(V )= min
m∈M

∫
mV dP�

where M is a family of probability densities that is assumed to be convex and closed in
the weak∗ topology. As we show in Section 3.2 of the paper, the A-SDF for this class of
preference is the Radon–Nikodym derivative of the minimizing probability measure with
respect to P .

• The variational preferences of Maccheroni, Marinacci, and Rustichini (2006a), the
dynamic version of which was studied in Maccheroni, Marinacci, and Rustichini (2006b),
features a certainty equivalent functional of the form

I(V )= min
E[m]=1

∫
mV dP + c(m)�

where c(m) is a convex and weak∗-lower semi-continuous function. Similarly to the
maxmin expected utility, the A-SDF for this class of preference is minimizing probability
density.

• The multiplier preferences of Hansen and Sargent (2008) and Strzalecki (2011) are
represented by the certainty equivalent functional

I(V )= min
E[m]=1

∫
mV dP + θR(m)�

where R(m) denotes the relative entropy of the density m with respect to the refer-
ence probability measure P , and θ > 0 is a parameter. In this case, the A-SDF is also
the minimizing probability that can be written as a function of the continuation utility:
m∗(V )∝ e− 1

θ V .
• The second-order expected utility of Ergin and Gul (2009) can be written as (14) with

the following choice of I :

I(V )=φ−1

(∫
φ(V )dP

)
�

where φ is a concave function. In this case, the A-SDF can be written as a function of
continuation utility:

m∗(V )∝φ′(V )�

• The smooth ambiguity preference of Klibanoff, Marinacci, and Mukerji (2005) and
Klibanoff, Marinacci, and Mukerji (2009) can be represented as

I(V )=φ−1

(∫
M

φ

(∫
Ω

mV dP

)
dμ(m)

)
� (S.2.4)
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where μ is a probability measure on a set of probability densities M . The A-SDF can be
written as

m∗(ω)∝
∫
M

φ′
(∫

Ω

mV dP

)
m(ω)dμ(m)� (S.2.5)

• The certainty equivalent functional I for the disappointment aversion preference is
implicitly defined as I[V ] = μ, where μ is the unique solution to the following equation:

φ(μ)=
∫
φ(V )dP − θ

∫
μ≥V

[
φ(μ)−φ(V )]dP�

where φ is a concave function. The A-SDF can be written as

m∗(V )=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

φ′(V )

φ′(μ)
[
1 + θP(V ≤ μ)] if V > μ�

(1 − θ)φ′(V )

φ′(μ)
[
1 + θP(V ≤ μ)] if V ≤ μ�

whenever I[V ] is differentiable at V .
• Hayashi and Miao (2011) developed a class of generalized recursive smooth ambigu-

ity model that takes the form3

V̄t = u−1

{
(1 −β)u(Ct)+β[

u ◦ ν−1
](∫

M

[
ν ◦φ−1

](∫
mφ(V̄t+1)dP

)
dμ(m)

)}
� (S.2.6)

where u, v, andφ are all smooth and monotone functions. As in the Klibanoff, Marinacci,
and Mukerji (2005) model, M is a set of probability densities that represent ambiguous
beliefs, and μ is a measure on the set of densities. With a monotonic transformation,
Vt = u(V̄t), the above can be written in the form of (14) with

I(V )= [
u ◦ ν−1

](∫
M

[
ν ◦φ−1

](∫
m

[
φ ◦ u−1

]
(V )dP

)
dμ(m)

)
�

The A-SDF for this class of preferences can be written as

m∗(ω)∝
∫
M

[
ν ◦φ−1

]′
(∫

m
[
φ ◦ u−1

]
(V )dP

)
m(ω)

[
φ ◦ u−1

]′(
V (ω)

)
dμ(m)�

S.3. DETAILS OF THE CONTINUOUS-TIME MODEL

In this section, we provide details of the solution of the continuous-time model. Sec-
tion S.3.1 provides the solution to the model with periodic announcement in Sections 5.1
and 5.2 of the main text of the paper. Section S.3.2 provides the omitted proofs for the
results on time-non-separable preferences discussed in Section 5.3.

3The model in Hayashi and Miao (2011) is more general than (S.2.6) and may not permit a representation
of the form Vt = u(Ct)+ βI[Vt+1]. However, the applied examples of this preference are often special cases
of (S.2.6). See also the related generalized recursive multiple-priors model of Hayashi (2005), which can be
obtained as a limiting case of (S.2.6).
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S.3.1. Asset Pricing in the Learning Model

Value Function of the Representative Agent

Because announcements fully reveal the value of xt at nT , q+
nT = 0. We start from

q0 = 0. In the interior of (0�T ), the standard optimal filtering implies that the posterior
mean and variance of xt are given by equations (30) and (31). Here qt has a closed-form
solution:

q(t)= σ2
x

(
1 − e−2ât

)
(â− ax)e−2ât + ax + â � (S.3.1)

where â= √
a2
x + (σx/σ)2. In general, we can write qt = q(tmodT) for all t.4

Using the results from Duffie and Epstein (1992), the representative consumer’s pref-
erence is specified by a pair of aggregators (f�A) such that the utility of the representative
agent, Vt , is the solution to the following stochastic differential equation:

dVt =
[
−f (Ct�Vt)− 1

2
A(Vt)

∥∥σV (t)∥∥2
]
dt + σV (t)dBt�

for some square-integrable process σV (t). We adopt the convenient normalization
A(V ) = 0 (Duffie and Epstein (1992)), and denote f̄ the normalized aggregator, and
V̄t the corresponding utility process. Under this normalization,

f̄ (C� V̄ )= ρ{(1 − γ)V̄ lnC − V̄ ln
[
(1 − γ)V̄ ]}

�

Due to homogeneity, the value function is of the form5

V̄ (x̂t� t�Ct)= 1
1 − γH(x̂t� t)C

1−γ
t � (S.3.2)

where H(x̂� t) satisfies the following Hamilton–Jacobi–Bellman (HJB) equation:

− ρ

1 − γ lnH(x̂t� t)H(x̂t� t)+
(
x̂t − 1

2
γσ2

)
H(x̂t� t)+ 1

1 − γHt(x̂t� t)

+
[

1
1 − γax(x̄− x̂t)+ qt

]
Hx(x̂t� t)+ 1

2
1

1 − γHxx(x̂t� t)
q2
t

σ2 = 0�

(S.3.3)

with the boundary condition that for all n= 1�2� � � � ,

H
(
x̂−
nT � nT

) =E[
H

(
x̂+
nT � nT

) | x̂−
nT � q

−
nT

]
� (S.3.4)

The solution to the partial differential equation (PDE) (S.3.3) together with the bound-
ary condition (S.3.4) is separable and given by

H(x̂� t)= e 1−γ
ax+ρ x̂+h(t)�

4We use the notation tmodT for the remainder of t divided by T .
5As �→ 0, the discrete-time approximation, (32), converges to the following monotonic transformation of

V̄ : Vt = 1
1−γ ln[(1 − γ)V̄t ].
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where h(t) satisfies the following ODE:

−ρh(t)+ h′(t)+ f (t)= 0� (S.3.5)

where f (t) is defined as

f (t)= (1 − γ)2

ax + ρ q(t)+ 1
2
(1 − γ)2

(ax + ρ)2

1
σ2q

2(t)− 1
2
γ(1 − γ)σ2 + axx̄ 1 − γ

ax + ρ�

The general solution to (S.3.5) is of the following form on (0�T ):

h(t)= h(0)eρt − eρt
∫ t

0
e−ρsf (s)ds�

We focus on the steady state in which h(t)= h(tmodT) and use the convention h(0)=
h(0+) and h(T)= h(T−). Under these notations, the boundary condition (S.3.4) implies
h(T)= h(0)+ 1

2(
1−γ
ax+ρ)

2q(T−).

Asset Prices

For n= 1�2� � � � , in the interior of (nT� (n+ 1)T), the law of motion of the state price
density, πt , satisfies the stochastic differential equation of the form

dπt = πt
[−r(x̂t� t) dt − σπ(t)dB̃C�t]�

where

r(x̂� t)= ρ+ x̂− γσ2 + 1 − γ
ax + ρq(t)

is the risk-free interest rate, and

σπ(t)= γσ + γ− 1
ax + ρ

q(t)

σ

is the market price of the Brownian motion risk.
We denote p(x̂t� t) as the price-to-dividend ratio. For t ∈ (nT� (n+ 1)T), the price of

the claim to the dividend process can then be calculated as

p(x̂t� t)Dt =Et
[∫ (n+1)T

t

πs

πt
Ds ds+ π(n+1)T

πt
p

(
x̂−
(n+1)T � (n+ 1)T−)

D(n+1)T

]
�

The above present value relationship implies that

πtDt + lim
�→0

1
�

{
Et

[
πt+�p(x̂t+�� t +�)Dt+�

] −πtp(x̂t� t)Dt

} = 0� (S.3.6)

Equation (S.3.6) can be used to show that the price-to-dividend ratio function must satisfy
the following PDE:

1 −p(x̂� t)�(x̂� t)+pt(x̂� t)−px(x̂� t)ν(x̂� t)+ 1
2
pxx(x̂� t)

q2(t)

σ2 = 0� (S.3.7)
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where the functions �(x̂� t) and ν(x̂� t) are defined by

�(x̂� t)= ρ−μ+φx̄+ (1 −φ)x̂+ (φ− 1)
[
γσ2 + γ− 1

ax + ρq(t)
]
�

ν(x̂� t)= ax(x̂− x̄)+ (γ−φ)q(t)+ γ− 1
ax + ρ

(
q(t)

σ

)2

�

Also, equation (S.3.6) can be used to derive the following boundary condition for p(x̂� t):

p
(
x̂−
T �T

−) = E
[
e

1−γ
ax+ρ x̂

+
T p

(
x̂+
T �T

+) | x̂−
T � q

−
T

]
e

1−γ
ax+ρ x̂

−
T+ 1

2 (
1−γ
ax+ρ )2[q−

T −q+
T ]

� (S.3.8)

Again, we focus on the steady state and denote p(x̂�0) = p(x̂�nT+) and p(x̂�T ) =
p(x̂�nT−). Under this condition, PDE (S.3.7) together with the boundary condition can
be used to determine the price-to-dividend ratio function.

We define μR�t to be the instantaneous risk premium, that is,

μR�t dt = 1
p(x̂t� t)Dt

{
Dt dt +Et d

[
p(x̂t� t)Dt

]}
� (S.3.9)

In the interior of (nT� (n+ 1)T), the instantaneous risk premium, μR�t − r(x̂� t), can be
computed as

[
μR�t − r(x̂� t)

]
dt = −Covt

[
d
[
p(x̂t� t)Dt

]
p(x̂t� t)Dt

�
dπt

πt

]
�

We have

μR�t − r(x̂� t)=
[
γσ + γ− 1

ax + ρ
q(t)

σ

][
φσ + px(x̂� t)

p(x̂� t)

q(t)

σ

]
� (S.3.10)

To gain a better understanding on how the risk premium and the announcement pre-
mium depend on the parameters, let �(x̂� t) = lnp(x̂� t); then equation (S.3.7) can be
written as

e−�(x̂�t)−�(x̂� t)+�t(x̂� t)−�x(x̂� t)ν(x̂� t)+ 1
2
[
�xx(x̂� t)+�2

x(x̂� t)
]q2(t)

σ2 = 0� (S.3.11)

Note that x̂t is itself an Ornstein–Uhlenbeck process with steady state x̄. Using a log-
linear approximation around x̂= x̄, we can replace the term e−�(x̂�t) with e−�(x̂�t) ≈ e−�̄ −
e−�̄[�(x̂� t)− �̄], where we denote �̄≡ �(x̄� t), and write

e−�̄[1 + �̄−�(x̂� t)] −�(x̂� t)+�t(x̂� t)−�x(x̂� t)ν(x̂� t)

+ 1
2
[
�xx(x̂� t)+�2

x(x̂� t)
]q2(t)

σ2 = 0�
(S.3.12)

We conjecture that �(x̂� t)=Ax̂+B(t), and equation (S.3.12) can be used to solve forA
and B(t) by the method of undetermined coefficients to get A= φ−1

ax+e−�̄ .
Using the log-linearization result to evaluate equation (S.3.10) at x̂= x̄, we obtain (35).

In addition, using p(x̂+
T �T

+)≈ eAx̂
+
T+B(T+), we can compute the expectation in (S.3.8) ex-

plicitly and obtain (36).
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Numerical Solutions

To solve the PDE (S.3.7) with the boundary condition (S.3.8), we consider the following
auxiliary problem:

p(xt� t)=E
[∫ T

t

e− ∫ s
t �(xu�u)du ds+ e− ∫ T

t �(xu�u)dup(xT �T )

]
� (S.3.13)

where the state variable xt follows the law of motion:

dxt = −ν(x̂� t)dt + q(t)

σ
dBt� (S.3.14)

Note that the solution to (S.3.13) and (S.3.8) satisfies the same PDE. Given an initial
guess of the pre-announcement price-to-dividend ratio, p−(xτ� τ), we can solve (S.3.13)
by the Markov chain approximation method (Kushner and Dupuis (2001)):

(i) We first start with an initial guess of a pre-announcement price-to-dividend ratio
function, p(xT �T).

(ii) We construct a locally consistent Markov chain approximation of the diffusion
process (S.3.14) as follows: We choose a small dx, letQ= |ν(x̂� t)|dx+ ( q(t)

σ
)2, and define

the time increment �= dx2

Q
to be a function of dx. Define the following Markov chain on

the space of x:

Pr(x+ dx | x)= 1
Q

[
−ν(x̂� t)+ dx+ 1

2

(
q(t)

σ

)2]
�

Pr(x− dx | x)= 1
Q

[
−ν(x̂� t)− dx+ 1

2

(
q(t)

σ

)2]
�

One can verify that as dx→ 0, the above Markov chain converges to the diffusion process
(S.3.14). (In the language of Kushner and Dupuis (2001), this is a Markov chain that is
locally consistent with the diffusion process (S.3.14).)

(iii) With the initial guess of p(xT �T), for t = T −�, T − 2�, etc., we use the Markov
chain approximation to compute the discounted problem in (S.3.13) recursively:

p(xt� t)= �+ e−�(x�t)�E
[
p(xt+�� t +�)

]
�

until we obtain p(x�0).
(iv) Compute an updated pre-announcement price-to-dividend ratio function, p(xT �

T) using (S.3.8):

p
(
x̂−
T �T

−) = E
[
e

1−γ
ax+ρ x̂

+
T p

(
x̂+
T �0

) | x̂−
T � q

−
T

]
e

1−γ
ax+ρ x̂

−
T+ 1

2 (
1−γ
ax+ρ )2[q−

T −q+
T ]

�

Go back to step 1 and iterate until the function p(xT �T) converges.

Choice of Parameter Values

The numerical example we presented in the paper uses parameter values in the stan-
dard long-run risk model (see Table S.I). All parameters are annual. We assume that
announcements are made at the monthly frequency, that is, T = 1

12 .
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TABLE S.I

LIST OF PARAMETER VALUES IN THE CONTINUOUS-TIME MODEL

ρ γ x̄ ax σx σ φ σ2
S

0�02 10 1�5% 0�10 0�025% 3% 4 0

Pre-Announcement Drift

The density of communication in the top panel of Figure 4 is generated from a Beta
distribution with parameter α = 2, δ = 3 on [−6�0] hours before announcement. The
density of the Beta distribution is

f (y | α�δ)= B[σ�δ]−1yα−1(1 − y)δ−1 for y ∈ (0�1)�

where B[σ�δ] is the Beta function. In our example, the density of the occurrence of a
communication h hours before announcement is f (1 − h

6 | α�δ).
During a small interval dt, the expected return of the dividend claim is μR�t dt if the

announcement does not occur. The expected return is E[p(x̂+
T �T

+)|x̂−
T �q

−
T ]

p(x̂−
T �T

−) if the announcement
return occurs during dt. Given that the probability of an announcement during hour (k−
h�k) is

∫ k

k−h f (1 − t
6 | α�δ)dt, the expected return of the dividend claim during hour (k−

h�k) can be written as

E

[∫ k

k−h

{
f

(
1 − t

6
| α�δ

)E[
p

(
x̂+
T+ t

2880
�

(
T + t

2880

)+)
x̂−
T+ t

2880
� q−

T+ t
2880

]

p

(
x̂−
T+ t

2880
�

(
T + t

2880

)−)

+μR�T+ t
2880

}
dt

]
�

(S.3.15)

The above calculation assumes that there are 360 days per year and 8 hours per day. Be-
cause t is measured in hours, it needs to be divided by 360 × 8 = 2880 to translate into
annual unit. Numerically, because the pre-announcement drift happens within hours be-
fore T , replacing T + t

2880 with T does not make any material difference in the evaluation
of (S.3.15). In addition, the term

∫ k

k−h μR�T+ t
2880
dt is negligible. We can therefore approxi-

mate the average return during hour (k− h�k) as

E

[∫ k

k−h
f

(
1 − t

6

∣∣∣ α�δ)dt] ×E
[
E

[
p

(
x̂+
T �T

+) | x̂−
T � q

−
T

]
p

(
x̂−
T �T

−) ]
�

S.3.2. Time-non-separable Utilities

To guarantee that the model is well defined, we make the following assumptions on the
weighting function {ξ(t� s)}ts=0: ∫ t

0
ξ(t� s)ds ≤ 1 for all t > 0� (S.3.16)
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0
ξ(t + s� t)ds <∞ for all t > 0� (S.3.17)

(
1 −

∫ t

0
ξ(t� s)ds

)
H0 +

∫ t

0
ξ(t� s)Cs ds < Ct for all t > 0� (S.3.18)

The first assumption requires that {ξ(t� s)}ts=0 is an appropriate weighting function, that
is, total weight is less than 1. The second assumption implies that the contribution of Ct to
future habit stock is finite, and the last assumption ensures Ct −Ht > 0 so that the utility
function is well defined.

External Habit

Under the assumption of complete markets, the state-price density can be constructed
from the marginal utility of the representative agent. In the external habit model,

πt = e−βtu′(Ct + bHt)�

Internal Habit

In this case, the calculation of the state price density must take into account the impact
of Ct on future habit stock. Therefore, the state price density is given by (39). Because
announcement fully reveals xt , we need to show that

E

[∫ ∞

0
e−βsξ(t + s� t)u′(Ct+s + bHt+s) ds

∣∣∣ xt = x
]

(S.3.19)

is a decreasing function of x. Without loss of generality, we assume t = 0 in the following
lemma.

LEMMA S.1: Fixing the path of Brownian motions {BC�s�Bx�s}∞
s=0,

∂

∂x0
[Ct + bHt]> 0 for all t > 0� (S.3.20)

PROOF: Using the law of motion of Ct , we have

lnCt = lnC0 − 1
2
σ2t +

∫ t

0
σ dBC�s +

∫ t

0
xs ds�

Since xt is an Ornstein–Uhlenbeck process, we can solve
∫ t

0 xs ds explicitly:

∫ t

0
xs ds = (x0 − x̄) 1

ax

[
1 − e−axt] + x̄t + 1

ax

∫ t

0

[
1 − eax(s−t)]σx dBx�s�

Therefore, for given realizations of the Brownian motion paths,

∂

∂x0
Ct = Ct 1

ax

[
1 − e−axt]�
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and

∂

∂x0
Ht =

∫ t

0
ξ(t� s)

∂Cs

∂x0
ds

=
∫ t

0
ξ(t� s)Cs

1
ax

[
1 − e−axs]ds

<

∫ t

0
ξ(t� s)Cs ds

1
ax

[
1 − e−axt]

< Ct
1
ax

[
1 − e−axt]�

where the first inequality is true because s < t, and the second is due to the fact that∫ t

0 ξ(t� s)Cs ds ≤Ht < Ct . The inequality (S.3.20) follows because b ∈ (−1�0). Q.E.D.

Consider two initial conditions, x0 = x and x0 = x′. The above lemma implies that x >
x′ implies that Ct+s + bHt+s first-order stochastic dominates C ′

t+s + bH ′
t+s. Because u′(·)

is a strictly decreasing function, we conclude that (S.3.19) must be a decreasing function
of x.

Consumption Substitutability

Because (S.3.19) is a decreasing function of x, with b > 0, the state price density in (39)
must be a decreasing function of xt as well. As a result, the announcement premium must
be positive for any payoff that is increasing in xt .
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