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THIS SUPPLEMENTARY APPENDIX contains additional results and proofs to support the
main text.

Appendix D contains the proof of the limiting experiment results in Appendix A and
additional lemmas. Appendix E presents the technical lemmas and their proofs that are
used in the proofs of Appendix B and Appendix C. Appendix F contains the proofs of
the results in Section 4. Appendix G provides sufficient conditions for verifying Assump-
tion 3.1 in the general nonparametric conditional moment restriction models studied in
Section 4. Appendix H provides additional discussion of the Examples in Section 4 as well
as a final example.

APPENDIX D: PROOFS FOR APPENDIX A AND ADDITIONAL LEMMAS

In this appendix, we provide the proofs of Theorem A.1 and additional technical lem-
mas.

PROOF OF THEOREM A.1: To establish part (i), we first note that, for any g ∈ L2
0(P),

it is possible to construct a path t �→ Pt�g whose score is g; see Example 3.2.1 in Bickel,
Klaassen, Ritov, and Wellner (1993) for a concrete construction. Further, any two paths
t �→ P̃t�g and t �→ Pt�g with the same score g ∈L2

0(P) satisfy

lim
n→∞

∣∣∣∣
∫
φn dP̃

n
1/

√
n�g −

∫
φn dP

n
1/

√
n�g

∣∣∣∣ ≤ lim
n→∞

∫ ∣∣dPn1/√n�g − dP̃n1/√n�g
∣∣ = 0 (D.1)

for any 0 ≤ φn ≤ 1 by Lemma D.1 (below). Thus, for each g ∈ L2
0(P), we may select an

arbitrary path t �→ Pt�g whose score is indeed g, and for B the σ-algebra on X, we consider
the sequence of experiments

En ≡ (
Xn�Bn�Pn1/√n�g : g ∈L2

0(P)
)
� (D.2)

Next, since {ψTk }dTk=1 ∪ {ψT⊥
k }dT⊥

k=1 forms an orthonormal basis for L2
0(P), we obtain from

Lemma D.3 (below) that En converges weakly to the experiment E given by

E ≡ (
RdT × Rd

T⊥ �AdT ×Ad
T⊥ �Qg : g ∈L2

0(P)
)
� (D.3)

where A denotes the Borel σ-algebra on R and we exploited that for dP ≡ dim{L2
0(P)}

we have RdT × Rd
T⊥ = RdP and AdT × Ad

T⊥ = AdP . The existence of a test function
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φ : (YT �YT⊥
)→ [0�1] satisfying π(g0) = ∫

φdQg0 for all g0 ∈ L2
0(P) then follows from

Theorem 7.1 in van der Vaart (1991). To establish part (i) of the theorem, it thus only
remains to show that φ must control size in (A.2). To this end, note that ΠT⊥(g0) = 0
if and only if g0 ∈ T̄ (P). Fixing δ > 0, then observe that for any g0 ∈ T̄ (P), there ex-
ists a g̃ ∈ T(P) such that ‖g0 − g̃‖P�2 < δ. Moreover, since g̃ ∈ T(P), there exists a path
t �→ P̃t�g̃ ∈ P with score g̃ and hence we can conclude that

∫
φdQg0 = lim

n→∞

∫
φn dP

n
1/

√
n�g0

≤ lim
n→∞

∫
φn dP̃

n
1/

√
n�g̃ + lim sup

n→∞

∫ ∣∣dPn1/√n�g0
− dP̃n1/√n�g̃

∣∣
≤ α+ 2

{
1 − exp

{
−δ

2

4

}}1/2

�

(D.4)

where the first inequality employed 0 ≤ φn ≤ 1, and the second inequality exploited
Lemma D.1 and that φn is a local asymptotic level α test. Since δ > 0 is arbitrary, we
conclude from (11) and (D.4) that π(g0)= ∫

φdQg0 ≤ α whenever g0 ∈ T̄ (P), and hence
part (i) of the theorem follows.

For part (ii) of the theorem, we first note that since T(P) is linear by Assumption 2.1(ii),
and θ̂n is regular by hypothesis, Lemma D.4 (below) and Theorem 5.2.3 in Bickel et al.
(1993) imply θ is pathwise differentiable at P ; that is, there exists a bounded linear oper-
ator θ̇ : T̄ (P)→ B such that, for any submodel t �→ Pt�g ∈ P, it follows that

lim
t↓0

∥∥t−1
{
θ(Pt�g)− θ(P)} − θ̇(g)∥∥

B
= 0� (D.5)

Then note that for any b∗ ∈ B∗, b∗ ◦ θ̇ : T̄ (P)→ R is a continuous linear functional. Hence,
since T̄ (P) is a Hilbert space under ‖ · ‖P�2, the Riesz representation theorem implies
there exists a θ̇b∗ ∈ T̄ (P) such that, for all g ∈ T̄ (P), we have

b∗(θ̇(g)) =
∫
θ̇b∗gdP� (D.6)

Moreover, since θ̂n is an asymptotically linear regular estimator of θ(P), it follows that
b∗(θ̂n) is an asymptotically linear regular estimator of b∗(θ(P)) with influence function
b∗ ◦ ν. Proposition 3.3.1 in Bickel et al. (1993) then implies that for all g ∈ T̄ (P),

∫ (
θ̇b∗ − b∗ ◦ ν)gdP = 0� (D.7)

In particular, (D.7) implies that θ̇b∗ =ΠT(b
∗ ◦ ν), and therefore, by asymptotic linearity,

√
n
{
b∗(θ̂n)− b∗(θ(P))} L→N

(
0�‖θ̇b∗‖2

P�2 + ∥∥ΠT⊥
(
b∗ ◦ ν)∥∥2

P�2

)
� (D.8)
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where we have exploited the central limit theorem and b∗ ◦ ν =ΠT(b
∗ ◦ ν)+ΠT⊥(b∗ ◦ ν).

To conclude, we next define the maps FT(YT ) and FT⊥
(YT⊥

) to be given by

FT
(
Y
T
) =

dT∑
k=1

Y
T
k

∫
{θ̇b∗ }ψTk dP�

FT
⊥(
Y
T⊥) =

d
T⊥∑
k=1

Y
T⊥
k

∫ {
ΠT⊥

(
b∗ ◦ ν)}ψT⊥

k dP�

(D.9)

We aim to show that if (YT �YT⊥
)∼Qg0 with g0 = 0, then FT(YT )∼N(0�‖θ̇b∗‖2

P�2), which
is immediate if dT <∞, and thus we assume dT = ∞. Defining the partial sums

VK ≡
K∑
k=1

Y
T
k

∫
{θ̇b∗}ψTk dP� (D.10)

we then observe VK ∼ N(0�σ2
K) where σ2

K ≡ ∑K

k=1

∫ {∫ θ̇b∗ψTk }2 dP and σ2
K ↑ ‖θ̇b∗‖2

P�2 by
Parseval’s identity. By the martingale convergence theorem (see, e.g., Theorem 12.1.1 in
Williams (1991)), it follows that VK converges almost surely and thus that FT(YT ) is well
defined. Moreover, for any continuous bounded function f : R → R, it follows that

E
[
f
(
FT

(
Y
T
))] = lim

K→∞
E

[
f (VK)

] = lim
K→∞

1√
2πσK

∫
f (z)exp

{
− z2

2σ2
K

}
dz

= 1√
2π‖θ̇b∗‖P�2

∫
f (z)exp

{
− z2

2‖θ̇b∗‖2
P�2

}
dz

(D.11)

due to σ2
K ↑ ‖θ̇b∗‖2

P�2. We conclude from (D.11) that FT(YT ) ∼ N(0�‖θ̇b∗‖2
P�2) when

(YT �YT⊥
) ∼ Qg0 with g0 = 0. Identical arguments imply FT⊥

(YT⊥
) ∼ N(0�‖ΠT⊥(b∗ ◦

ν)‖2
P�2). Thus, part (ii) of the theorem follows from (D.8) and independence of YT and

Y
T⊥ . Q.E.D.

LEMMA D.1: If t �→ Pt�g1 and t �→ Pt�g2 are arbitrary paths, then it follows that

lim sup
n→∞

∫ ∣∣dPn1/√n�g1
− dPn1/√n�g2

∣∣ ≤ 2
{

1 − exp
{
−1

4
‖g1 − g2‖2

P�2

}}1/2

� (D.12)

PROOF: Since t �→ Pt�g1 and t �→ Pt�g2 satisfy (1), we must have

lim
n→∞

n

∫ [
dP1/2

1/
√
n�g1

− dP1/2
1/

√
n�g2

]2 = 1
4

∫ [
g1 dP

1/2 − g2 dP
1/2

]2 = 1
4
‖g1 − g2‖2

P�2� (D.13)
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Moreover, by Theorem 13.1.2 in Lehmann and Romano (2005), we can also conclude

1
2

∫ ∣∣dPn1/√n�g1
− dPn1/√n�g2

∣∣
≤

{
1 −

[∫ {
dPn1/√n�g1

}1/2{
dPn1/√n�g2

}1/2
]2}1/2

=
{

1 −
[∫

dP1/2
1/

√
n�g1
dP1/2

1/
√
n�g2

]2n}1/2

=
{

1 −
[

1 − 1
2

∫ [
dP1/2

1/
√
n�g1

− dP1/2
1/

√
n�g2

]2
]2n}1/2

�

(D.14)

where in the first equality we exploited that Pn1/√n�g1
and Pn1/√n�g2

are product measures,
while the second equality follows from direct calculation. Thus, by (D.13) and (D.14),

lim sup
n→∞

1
2

∫ ∣∣dPn1/√n�g1
− dPn1/√n�g2

∣∣
≤ lim sup

n→∞

{
1 −

[
1 − 1

2n

∫
n
[
dP1/2

1/
√
n�g1

− dP1/2
1/

√
n�g2

]2
]2n}1/2

=
{

1 − exp
{
−1

4
‖g1 − g2‖2

P�2

}}1/2

�

(D.15)

which establishes the claim of the lemma. Q.E.D.

LEMMA D.2: Let {Pn}, {Qn}, {Vn} be probability measures defined on a common space. If
{dQn/dPn} is asymptotically tight under Pn and

∫ |dPn − dVn| = o(1), then

∣∣∣∣dQn

dPn
− dQn

dVn

∣∣∣∣ Pn→ 0� (D.16)

PROOF: Throughout, let μn = Pn +Qn + Vn, note μn dominates Pn, Qn, and Vn, and set
pn ≡ dPn/dμn, qn ≡ dQn/dμn, and vn ≡ dVn/dμn. We then obtain

∫ ∣∣∣∣dPndVn
− 1

∣∣∣∣dVn =
∫ ∣∣∣∣pnvn − 1

∣∣∣∣vn dμn =
∫
vn>0

∣∣∣∣pnvn − vn

vn

∣∣∣∣vn dμn
≤

∫
|pn − vn|dμn =

∫
|dPn − dVn| = o(1)�

(D.17)

where the second to last equality follows by definition, and the final equality by assump-
tion. Hence, by (D.17) and Markov’s inequality, we obtain dPn/dVn

Vn→ 1. Moreover, since∫ |dVn − dPn| = o(1) implies {Pn} and {Vn} are mutually contiguous, we conclude

dPn

dVn

Pn→ 1� (D.18)
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Next, observe that for any continuous and bounded function f : R → R, we have that

∫
f

(
dQn

dPn
− dQn

dVn

)
dPn =

∫
f

(
qn

pn
− qn

vn

)
pn dμn

=
∫
pn>0

f

(
qn

pn

(
1 − pn

vn

))
pn dμn

=
∫
f

(
dQn

dPn

(
1 − dPn

dVn

))
dPn → f (0)�

(D.19)

where the final result follows from (D.18), dQn/dPn being asymptotically tight under Pn,
and continuity and boundedness of f . Since (D.19) holds for any continuous and bounded
f , we conclude dQn/dPn − dQn/dVn converges in law (under Pn) to zero, and hence also
in Pn probability, which establishes (D.16). Q.E.D.

LEMMA D.3: Let H ⊆ L2
0(P), assume for each g ∈H there is a path t �→ Pt�g with score

g, recall B is the σ-algebra on X, let A be the Borel σ-algebra on R, and set

En ≡ (
Xn�Bn�Pn1/√n�g : g ∈H)

� (D.20)

If 0 ∈ H, {ψk}dPk=1 is an orthonormal basis for L2
0(P), and 
 denotes the standard normal

measure on R, then En converges weakly to the dominated experiment E

E ≡ (
RdP �AdP �Qg : g ∈H)

� (D.21)

where for each g ∈H, Qg(·)=Q0(· − T(g)) for T(g)≡ {∫ gψk dP}dPk=1 and Q0 = ⊗dP
k=1
.

PROOF: The conclusion of the lemma is well known (see, e.g., Section 8.2 in van der
Vaart (1991)), but we were unable to find a concrete reference and hence we include its
proof for completeness. Since the lemma is straightforward when the dimension of L2

0(P)
is finite (dP <∞), we focus on the case dP = ∞. To analyze E , let

�2 ≡
{

{ck}∞
k=1 ∈ R∞ :

∞∑
k=1

c2
k <∞

}
� (D.22)

and note that by Example 2.3.5 in Bogachev (1998), �2 is the Cameron–Martin space of
Q0.1 Hence, since for any g ∈ L2

0(P) we have {∫ gψk dP}∞
k=1 ∈ �2 due to {ψk}∞

k=1 being an
orthonormal basis for L2

0(P), Theorem 2.4.5 in Bogachev (1998) implies

Qg ≡Q0

(· − T(g)) �Q0 (D.23)

for all g ∈ L2
0(P), and thus E is dominated by Q0. Denoting an element of R∞ by ω =

{ωk}∞
k=1, we then obtain from {∫ gψk dP}∞

k=1 ∈ �2 and the Martingale convergence theorem

1See page 44 in Bogachev (1998) for a definition of a Cameron–Martin space.
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(see, e.g., Theorem 12.1.1 in Williams (1991)) that

Q0

(
ω : lim

n→∞

n∑
k=1

ωk

∫
ψkgdP exists

)
= 1� (D.24)

lim
n→∞

∫ ( ∞∑
k=n+1

ωk

∫
gψk dP

)2

dQ0(ω)= 0� (D.25)

Therefore, Example 2.3.5 and Corollary 2.4.3 in Bogachev (1998) yield, for any g ∈L2
0(P),

log
(
dQg

dQ0
(ω)

)
=

∞∑
k=1

ωk

∫
gψk dP − 1

2

∫ ( ∞∑
k=1

ωk

∫
gψk dP

)2

dQ0(ω)

=
∞∑
k=1

ωk

∫
gψk dP − 1

2

∫
g2 dP�

(D.26)

where the right-hand side of the first equality is well defined Q0 almost surely by (D.24),
while the second equality follows from (D.25) and

∑∞
k=1(

∫
gψk dP)

2 = ∫
g2 dP due to

{ψk}∞
k=1 being an orthonormal basis for L2

0(P).
Next, select an arbitrary finite subset {gj}Jj=1 ≡ I ⊆H and vector (λ1� � � � � λJ)

′ ≡ λ ∈ RJ .
From result (D.26), we then obtain Q0 almost surely that

J∑
j=1

λj log
(
dQgj

dQ0
(ω)

)
=

∞∑
k=1

ωk

∫ (
J∑
j=1

λjgj

)
ψk dP −

J∑
j=1

λj

2

∫
g2
j dP� (D.27)

In particular, we can conclude from Example 2.10.2 and Proposition 2.10.3 in Bogachev
(1998) together with (D.25) and

∑J

j=1 λjgj ∈L2
0(P) that, under Q0, we have

J∑
j=1

λj log
(
dQgj

dQ0

)
∼N

(
−

J∑
j=1

λj

2

∫
g2
j dP�

∫ (
J∑
j=1

λjgj

)2

dP

)
� (D.28)

Thus, for μI ≡ 1
2(

∫
g2

1 dP� � � � �
∫
g2
J dP)

′ and ΣI ≡ ∫
(g1� � � � � gJ)

′(g1� � � � � gJ)dP , we have(
log

(
dQg1

dQ0

)
� � � � � log

(
dQgJ

dQ0

))′
∼N(−μI�ΣI)� (D.29)

under Q0 due to (D.28) holding for arbitrary λ ∈ RJ .
To obtain an analogous result for the sequence of experiments En, let {Xi}ni=1 ∼ Pn where

Pn ≡ ⊗n

i=1 P . From Lemma 25.14 in van der Vaart (1998), we obtain, under Pn,

n∑
i=1

log
(
dP1/

√
n�gj

dP
(Xi)

)
= 1√

n

n∑
i=1

gj(Xi)− 1
2

∫
g2
j dP + op(1) (D.30)

for any 1 ≤ j ≤ J. Thus, defining Pn1/√n�gj ≡ ⊗n

i=1 P1/
√
n�gj , we can conclude that

(
log

(
dPn1/√n�g1

dPn

)
� � � � � log

(
dPn1/√n�gJ
dPn

))′
L→N(−μI�ΣI) (D.31)
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under Pn by (D.30), the central limit theorem, and the definitions of μI and ΣI . Further-
more, also note Lemma D.1 implies

∫ |dPn − dPn1/√n�0| = o(1) and hence

(
dPn1/√n�g1

dPn
� � � � �

dPn1/√n�gJ
dPn

)′
=

(
dPn1/√n�g1

dPn1/√n�0
� � � � �

dPn1/√n�gJ
dPn1/√n�0

)′
+ op(1) (D.32)

under Pn by Lemma D.2 and result (D.31). Thus, by (D.31) and (D.32), we obtain(
log

(
dPn1/√n�g1

dPn1/√n�0

)
� � � � � log

(
dPn1/√n�gJ
dPn1/√n�0

))′
L→N(−μI�ΣI)� (D.33)

under Pn, and since
∫ |dPn−dPn1/√n�0| = o(1) also under Pn1/√n�0. Hence, the lemma follows

from (i) (D.29), (ii) (D.33), and (iii) {Pn1/√n�g} and {Pn1/√n�0} being mutually contiguous
for any g ∈ H by (D.30) and Corollary 12.3.1 in Lehmann and Romano (2005), which
together verify the conditions of Lemma 10.2.1 in LeCam (1986). Q.E.D.

LEMMA D.4: Let Assumption 2.1(i) hold, B be a Banach space, and θ̂n be an asymptot-

ically linear estimator for θ(P) ∈ B such that
√
n{θ̂n − θ(P)} L→ D under Pn on B for some

tight Borel D. Then: for any function h ∈L2
0(P), (

√
n{θ̂n − θ(P)}� 1√

n

∑n

i=1 h(Xi)) converges
in distribution under Pn on B × R.

PROOF: For notational simplicity, let η(P) ≡ (θ(P)�0) ∈ B × R and define η̂n ≡
(θ̂n�

1
n

∑n

i=1 h(Xi)) ∈ B × R. Further let (B × R)∗ denote the dual space of B × R and
note that, for any d∗ ∈ (B × R)∗, there are b∗

d∗ ∈ B∗ and r∗d∗ ∈ R such that d∗((b� r)) =
b∗
d∗(b) + r∗d∗(r) for all (b� r) ∈ B × R. For ν the influence function of θ̂n, then define
ζd∗(Xi)≡ {b∗

d∗(ν(Xi))+ r∗d∗(h(Xi))} to obtain that under
⊗n

i=1 P , we have

d∗(√n{η̂n −η(P)}) = 1√
n

n∑
i=1

ζd∗(Xi)+ op(1) (D.34)

by asymptotic linearity of θ̂n. Thus, for any finite set {d∗
k}Kk=1 ⊂ (B × R)∗, we have

(
d∗

1

(√
n
{
η̂n −η(P)})� � � � � d∗

K

(√
n
{
η̂n −η(P)})) L→ (Wd∗

1
� � � � �Wd∗

K
) (D.35)

for (Wd∗
1
� � � � �Wd∗

K
) a multivariate normal random variable satisfying E[Wd∗

k
] = 0 for all

1 ≤ k≤K and E[Wd∗
j
Wd∗

k
] =E[ζd∗

j
(Xi)ζd∗

k
(Xi)] for all 1 ≤ j ≤ k≤K.

Next, note that since
√
n{θ̂n − θ(P)} is asymptotically measurable and asymptotically

tight by Lemma 1.3.8 in van der Vaart and Wellner (1996), it follows that
√
n{η̂n −η(P)}

is asymptotically measurable and asymptotically tight on B×R by Lemmas 1.4.3 and 1.4.4
in van der Vaart and Wellner (1996). Hence, we conclude by Theorem 1.3.9 in van der
Vaart and Wellner (1996) that any sequence {nk} has a subsequence {nkj } with

√
nkj

{
η̂nkj −η(P)} L→ W (D.36)

under
⊗nkj

i=1 P for W some tight Borel law on B × R. However, letting Cb(RK) denote the
set of continuous and bounded functions on RK , we obtain from (D.35), (D.36), and the
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continuous mapping theorem that, for any {d∗
k}Kk=1 ⊂ (B × R)∗ and f ∈Cb(RK),

E
[
f
((
d∗

1(W)� � � � � d
∗
K(W)

))] =E[
f
(
(Wd∗

1
� � � � �Wd∗

K
)
)]
� (D.37)

Since G ≡ {f ◦(d∗
1� � � � � d

∗
K) : f ∈ Cb(RK)� {d∗

k}Kk=1 ⊂ (B×R)∗�1 ≤K <∞} is a vector lattice
that separates points in B × R, Lemma 1.3.12 in van der Vaart and Wellner (1996) implies
there is a unique tight Borel measure W on B × R satisfying (D.37). Thus, since the origi-
nal sequence {nk} was arbitrary, we conclude all limit points of the law of

√
n{η̂n −η(P)}

coincide, and the lemma follows. Q.E.D.

APPENDIX E: TECHNICAL LEMMAS USED IN APPENDIX B AND APPENDIX C

In this appendix, we present technical lemmas that are used in Appendix B and Ap-
pendix C.

LEMMA E.1: If Zn ∈ B is asymptotically tight and asymptotically measurable and satisfies
b∗(Zn)

p→ 0 for any b∗ ∈ B∗, then it follows that Zn = op(1) in B.

PROOF: For an arbitrary subsequence {nj}∞
j=1, Theorem 1.3.9(ii) in van der Vaart and

Wellner (1996) implies there exists a further subsequence {njk}∞
k=1 along which Znjk

con-
verges in distribution to a tight limit Z. Moreover, note that by the continuous mapping
theorem, b∗(Z)= 0 for all b∗ ∈ B∗. Therefore, letting Cb(RK) denote the set of bounded
and continuous functions on RK and defining G ≡ {f ◦(b∗

1� � � � � b
∗
K) : f ∈Cb(RK)� {b∗

k}Kk=1 ⊂
B∗�1 ≤K <∞}, we then obtain, for any g ∈ G,

E
[
g(Z)

] = g(0)� (E.1)

In particular, since G is a vector lattice that contains the constant functions and separates
points in B, Lemma 1.3.12 in van der Vaart and Wellner (1996) implies Z = 0 almost
surely. We conclude that Znjk converges in probability to zero along {njk}∞

k=1. Thus, since
the original subsequence {nj}∞

j=1 was arbitrary, it follows that Zn = op(1). Q.E.D.

LEMMA E.2: Let Assumptions 2.1(i) and 3.1 hold, and for any g ∈L2
0(P) define Δg : T →

R to be given by Δg(τ)≡ ∫
sτg dP . It then follows that for any path t �→ Pt�g ∈M,

Ĝn

Ln�g→ G0 +Δg in �∞(T)� (E.2)

Further, under Assumption 2.1(ii), Δg = 0 whenever ΠS(g)= 0 where S(P)= {sτ ∈ T̄ (P)⊥ :
τ ∈ T}.

PROOF: We first note Lemma 25.14 in van der Vaart (1998) implies

n∑
i=1

log
(
dP1/

√
n�g

dP
(Xi)

)
= 1√

n

n∑
i=1

g(Xi)− 1
2

∫
g2 dP + op(1) (E.3)

under Pn for any path t �→ Pt�g ∈ M. Thus, by Example 3.10.6 in van der Vaart and Well-
ner (1996), Pn and Pn1/√n�g are mutually contiguous, and hence applying Lemma D.4 and
Lemma A.8.6 in Bickel et al. (1993) yields that, for any path t �→ Pt�g ∈M,

Ĝn

Ln�g→ G0 +Δg in �∞(T)� (E.4)
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which establishes (E.2). Moreover, if t �→ Pt�g ∈ P, then by definition g ∈ T(P) and hence∫
gsτ dP = 0 for all τ ∈ T due to sτ ∈ T̄ (P)⊥ by Assumption 3.1(i). More generally, Δg = 0

for any path t �→ Pt�g ∈M with ΠS(g)= 0. Q.E.D.

LEMMA E.3: Let Assumptions 2.1(i) and 3.1 hold, and for any g ∈L2
0(P) define Δg : T →

R by Δg(τ)≡ ∫
sτg dP . It then follows that Δg is in the support of G0.

PROOF: Define S ≡ S(P)= {sτ : τ ∈ T} and let the map B : T → S be given by B(τ)= sτ
for any τ ∈ T. In addition, for any s ∈ S , we define a selection E : S → T that assigns to
each s ∈ S a unique element E(s) ∈ B−1(s). Our first goal is to show

P
(

sup
s∈S

sup
τ∈B−1(s)

∣∣G0(τ)−G0

(
E(s)

)∣∣ = 0
)

= 1� (E.5)

and to this end we fix ε�η > 0, and note that since G0 is tight by Assumption 3.1(ii), we
obtain by Lemma 1.3.8 in van der Vaart and Wellner (1996) that Ĝn is asymptotically tight.
Thus, since G0 is Gaussian, Theorem 1.5.7 in van der Vaart and Wellner (1996) implies
that, for any ε�η > 0, there exists a δ(ε�η) > 0 such that

lim sup
n→∞

P
(

sup
τ1�τ2:‖sτ1 −sτ2 ‖P�2<δ(ε�η)

∣∣Ĝn(τ1)− Ĝn(τ2)
∣∣> ε)<η� (E.6)

Moreover, since ‖sE(s) − sτ‖P�2 = 0 for any τ ∈ B−1(s), by the Portmanteau Theorem (see,
e.g., Theorem 1.3.4(ii) in van der Vaart and Wellner (1996)), we obtain

P
(

sup
s∈S

sup
τ∈B−1(s)

∣∣G0(τ)−G0

(
E(s)

)∣∣> ε)

≤ P
(

sup
τ1�τ2:‖sτ1 −sτ2 ‖P�2<δ(ε�η)

∣∣G0(τ1)−G0(τ2)
∣∣> ε)<η� (E.7)

In particular, since ε�η > 0 were arbitrary, we conclude that (E.5) holds by result (E.7)
and the monotone convergence theorem.

Next, define a map Υ : �∞(T)→ �∞(S) to be given by Υ(f )(s) = f (E(s)) for any f ∈
�∞(T), and note that Υ is linear and continuous. Thus, setting S0 = Υ(G0), we note S0 is
a tight Gaussian process on �∞(S), which by Assumption 3.1(i) satisfies

E
[
S0(s1)S0(s2)

] =
∫
s1s2 dP (E.8)

for any s1� s2 ∈ S . Similarly, let Sg ∈ �∞(S) be given by Sg ≡ Υ(Δg) and note that

Sg(s)= Δg
(
E(s)

) =
∫
gsE(s) dP =

∫
gs dP (E.9)

for any s ∈ S . Further note that by Lemma 1.5.9 in van der Vaart and Wellner (1996) and
Gaussianity of G0, T is totally bounded under the semimetric d(τ1� τ2)≡ ‖sτ1 − sτ2‖P�2 and
the sample paths of G0 are almost surely uniformly continuous with respect to d(·� ·). It
follows that S0 is almost surely uniformly continuous on S with respect to ‖ · ‖P�2, which
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implies its sample paths almost surely admit a unique extension to S̄ for S̄ the closure of
S under ‖ · ‖P�2, and thus we may view S0 as an element of the space

C(S̄)≡ {
S : S̄ → R that are continuous under ‖ · ‖P�2

}
� (E.10)

Moreover, since T being totally bounded under d(·� ·) implies S is totally bounded under
‖ · ‖P�2, it follows that S̄ is compact under ‖ · ‖P�2. Since S0 is Radon by Theorem A.3.11 in
Bogachev (1998), we can conclude from (E.8) and (E.9) and Lemma E.4 (below) that Sg
belongs to the support of S0. In particular, we conclude, for any ε > 0, that

0<P
(‖Sg − S0‖∞ > ε

) = P(∥∥Υ(Δg)−Υ(G0)
∥∥

∞ > ε
) = P(‖Δg −G0‖∞ > ε

)
� (E.11)

where the first equality follows by definition of Υ : �∞(T)→ �∞(S), and the second equal-
ity is implied by (E.5) and Δg(τ) = Υ(Δg)(s) for any τ ∈ B−1(s). Thus, since ε > 0 was
arbitrary, we conclude from (E.11) that Δg is in the support of G0. Q.E.D.

LEMMA E.4: Let Assumption 2.1(i) hold, S ⊂ L2
0(P) be compact under ‖ · ‖P�2, for any

g ∈L2
0(P) let Sg : S → R be given by Sg(s)= ∫

sg dP , and define

C(S)≡ {
S : S → R is continuous under ‖ · ‖P�2

}
� (E.12)

which is endowed with the norm ‖S‖∞ = sups∈S |S(s)|. If S0 is a centered Radon Gaussian
measure on C(S) satisfying E[S0(s1)S0(s2)] = ∫

s1s2 dP for any s1� s2 ∈ S , then it follows that
Sg belongs to the support of S0 for any g ∈L2

0(P).

PROOF: Fix g ∈L2
0(P) and note the Cauchy–Schwarz inequality yields

∣∣Sg(s1)− Sg(s2)
∣∣ ≤

∫
|g||s1 − s2|dP ≤ ‖g‖P�2‖s1 − s2‖P�2 (E.13)

for any s1� s2 ∈ S , and therefore Sg ∈ C(S). Let V̄ denote the closure of the linear span of
S in L2

0(P) and set ΠV̄ (g) to equal the metric projection of g onto V̄ . For any s ∈ S , then
define SΠV̄ (g) : S → R by SΠV̄ (g)(s)= ∫ {ΠV̄ (g)}s dP and note that

Sg(s)=
∫
gs dP =

∫ {
ΠV̄ (g)

}
s dP = SΠV̄ (g)(s)� (E.14)

Moreover, since ΠV̄ (g) ∈ V̄ , it follows that there is a sequence {gk}∞
k=1 such that

lim
k→∞

∥∥gk −ΠV̄ (g)
∥∥
P�2

= 0� (E.15)

where each gk satisfies, for some {αj�k� sj�k}kj=1 with (αj�k� sj�k) ∈ R × S , the relation

gk =
k∑
j=1

αj�ksj�k� (E.16)
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Defining Sgk : S → R by Sgk(s) = ∫
gks dP , we then conclude from results (E.14) and

(E.15) together with the Cauchy–Schwarz inequality that

lim
k→∞

‖Sgk − Sg‖∞ = lim
k→∞

‖Sgk − SΠV̄ (g)‖∞ ≤ lim
k→∞

sup
s∈S

∫
|s|∣∣gk −ΠV̄ (g)

∣∣dP
≤ sup

s∈S
‖s‖P�2 × lim

k→∞

∥∥gk −ΠV̄ (g)
∥∥
P�2

= 0�
(E.17)

where in the final equality we exploited that sups∈S ‖s‖P�2 <∞ since S is compact under
‖ · ‖P�2 by hypothesis. In particular, since the topological support of S0 is a closed subset of
C(S), result (E.17) implies that to establish the lemma, it suffices to show Sgk belongs to
the support of S0 for all k. To this end, we let ca(S) denote the set of finite signed Borel
(w.r.t. ‖ · ‖P�2) measures on S , and note that by Theorem 14.15 in Aliprantis and Border
(2006), it follows ca(S) is the dual space of C(S). Next, for any k, we define a measure
νk ∈ ca(S) by setting, for each Borel set A⊆ C(S),

νk(A)=
k∑
j=1

αj�k1{sj�k ∈A}� (E.18)

Following the notation in Bogachev (1998), for any k we additionally introduce the linear
map R(νk) : ca(S)→ R which, for any μ ∈ ca(S), is given by

R(νk)(μ)=E
[{∫

S0(s)νk(ds)

}{∫
S0(s)μ(ds)

}]
� (E.19)

By results (E.18) and (E.19), Fubini’s theorem (see, e.g., Corollary 3.4.2 in Bogachev
(2007)), and E[S0(s1)S0(s2)] = ∫

s1s2 dP for any s1� s2 ∈ S , we then obtain

R(νk)(μ)=E
[{

k∑
j=1

αj�kS0(sj�k)

}{∫
S0(s)μ(ds)

}]

=
∫
E

[{
k∑
j=1

αj�kS0(sj�k)

}
S0(s)

]
μ(ds)=

∫
Sgk(s)μ(ds)�

(E.20)

where the last equality follows from (E.16). Result (E.20) implies we may identify the lin-
ear map R(νk) : ca(S)→ R with Sgk , and therefore Theorem 3.2.3 in Bogachev (1998) im-
plies Sgk is in the Cameron–Martin space of S0. However, by Theorem 3.6.1 in Bogachev
(1998), the Cameron–Martin space of S0 is a subset of its support, and hence we conclude
Sgk is in the support of S0. The lemma then follows from (E.17). Q.E.D.

LEMMA E.5: Let G0 be a centered Gaussian measure on a separable Banach space B and
0 �= Δ ∈ B belong to the support of G0. Further suppose Ψ : B → R+ is continuous, convex,
and nonconstant, and satisfies Ψ(0)= 0, Ψ(b)=Ψ(−b) for all b ∈ B, and {b ∈ B :Ψ(b)≤
t} is bounded for any 0< t <∞. For any finite t > 0, it then follows that

P
(
Ψ(G0 +Δ) < t)<P(

Ψ(G0) < t
)
�
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PROOF: Let ‖ · ‖B denote the norm of B, fix t > 0, and define

C ≡ {
b ∈ B :Ψ(b) < t}� (E.21)

For B∗ the dual space of B, let ‖ · ‖B∗ denote its norm, and νC : B∗ → R be given by

νC
(
b∗) = sup

b∈C
b∗(b)� (E.22)

which constitutes the support functional of C. Then note that, for any b∗ ∈ B∗, we have

νC
(−b∗) = sup

b∈C
−b∗(b)= sup

b∈C
b∗(−b)= sup

b∈−C
b∗(b)= νC

(
b∗)� (E.23)

due toC = −C sinceΨ(b)=Ψ(−b) for all b ∈ B. Moreover, note that 0 ∈C sinceΨ(0)=
0 < t, and hence there exists a M0 > 0 such that {b ∈ B : ‖b‖B ≤M0} ⊆ C by continuity
of Ψ . Thus, by definition of ‖ · ‖B∗ we obtain, for any b∗ ∈ B∗, that

νC
(
b∗) = sup

b∈C
b∗(b)≥ sup

‖b‖B≤M0

b∗(b)=M0 × sup
‖b‖B≤1

∣∣b∗(b)
∣∣ =M0

∥∥b∗∥∥
B∗ � (E.24)

Analogously, note that by assumption, M1 ≡ supb∈C ‖b‖B <∞, and thus for any b∗ ∈ B∗,

νC
(
b∗) = sup

b∈C
b∗(b)≤ ∥∥b∗∥∥

B∗ × sup
b∈C

‖b‖B =M1

∥∥b∗∥∥
B∗ � (E.25)

We next aim to define a norm on B under which C is the open unit sphere. To this end,
recall that the original norm ‖ · ‖B on B may be written as

‖b‖B = sup
‖b∗‖B∗ =1

b∗(b); (E.26)

see, for instance, Lemma 6.10 in Aliprantis and Border (2006). Similarly, instead define

‖b‖B�C ≡ sup
‖b∗‖B∗ =1

b∗(b)

νC
(
b∗) � (E.27)

and note that: (i) ‖b1 + b2‖B�C ≤ ‖b1‖B�C + ‖b2‖B�C for any b1� b2 ∈ B by direct calculation,
(ii) ‖αb‖B�C = |α|‖b‖B�C for any α ∈ R and b ∈ B by (E.23) and (E.27), and (iii) results
(E.24), (E.25), (E.26), and (E.27) imply that, for any b ∈ B,

M0‖b‖B�C ≤ ‖b‖B ≤M1‖b‖B�C� (E.28)

which establishes ‖b‖B�C = 0 if and only if b= 0, and hence we conclude ‖ · ‖B�C is indeed
a norm on B. In fact, (E.28) implies that the norms ‖ · ‖B and ‖ · ‖B�C are equivalent,
and hence B remains a separable Banach space and its Borel σ-algebra unchanged when
endowed with ‖ · ‖B�C in place of ‖ · ‖B.

Next, note that the continuity of Ψ implies C is open, and thus, for any b0 ∈ C, there is
an ε > 0 such that {b ∈ B : ‖b− b0‖B ≤ ε} ⊂ C. We then obtain

νC
(
b∗) ≥ sup

‖b−b0‖B≤ε
b∗(b)= sup

‖b‖B≤1

{
b∗(b0)+ εb∗(b)

} = b∗(b0)+ ε∥∥b∗∥∥
B∗� (E.29)
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where the final equality follows as in (E.24). Thus, from (E.25) and (E.29), we conclude
1 − ε/M1 ≥ b∗(b0)/νC(b

∗) for all b∗ with ‖b∗‖B∗ = 1, and hence we conclude

C ⊆ {
b ∈ B : ‖b‖B�C < 1

}
� (E.30)

Suppose, on the other hand, that ‖b0‖B�C < 1, and note (E.27) implies, for some δ > 0,

b∗(b0) < νC
(
b∗)(1 − δ) (E.31)

for all b∗ ∈ B∗ with ‖b∗‖B∗ = 1. Setting η≡ δM0 and arguing as in (E.29) then yields

sup
‖b∗‖B∗ =1

sup
‖b−b0‖B≤η

{
b∗(b)− νC

(
b∗)}

= sup
‖b∗‖B∗ =1

{
b∗(b0)+η∥∥b∗∥∥

B∗ − νC
(
b∗)}

< sup
‖b∗‖B∗ =1

{
η− νC

(
b∗)δ} = sup

‖b∗‖B∗ =1
δ
(
M0 − νC

(
b∗)) ≤ 0�

(E.32)

where the first inequality follows from (E.31), the second equality by definition of η,
and the final inequality follows from (E.24). Since C is convex by hypothesis, (E.32) and
Theorem 5.12.5 in Luenberger (1969) imply {b ∈ B : ‖b − b0‖B ≤ η} ⊆ C̄. We conclude
b0 is in the interior of C̄ , and since C is convex and open, Lemma 5.28 in Aliprantis and
Border (2006) yields that b0 ∈ C. Thus, we can conclude that{

b ∈ B : ‖b‖B�C < 1
} ⊆ C� (E.33)

which together with (E.30) yields C = {b ∈ B : ‖b‖B�C < 1}. Therefore, B being separa-
ble under ‖ · ‖B�C , 0 �= Δ being in the support of G0 by hypothesis, and Corollary 2 in
Lewandowski, Ryznar, and Zak (1995) finally enable us to derive

P
(
Ψ(G0 +Δ) < t) = P(G0 +Δ ∈C) < P(G0 ∈ C)= P(

Ψ(G0) < t
)
� (E.34)

which establishes the claim of the lemma. Q.E.D.

LEMMA E.6: Suppose Assumption 5.1 holds, f : X → R is bounded, and let θ̂n : {Xi}ni=1 →
R be an estimator of

∫
f dP . If θ̂n is such that, for any path t �→ Pt�g ∈ P,

√
n

{
θ̂n −

∫
f dP1/

√
n�g

}
Ln�g→ Zg (E.35)

for some tight law Zg, then (E.35) holds for any path t �→ Pt�g ∈M with g ∈ T̄ (P). Moreover,
if a sequence {gj}∞

j=1 ⊆ T(P) satisfies ‖gj − g0‖P�2 = o(1) for some g0 ∈ T̄ (P), then it follows
that Zgj → Zg0 in the weak topology.

PROOF: Fix a score g0 ∈ T̄ (P), select a sequence {gj}∞
j=1 ⊆ T(P) with ‖gj − g0‖P�2 =

o(1), and set Δj to equal

Δj ≡ 2
{

1 − exp
{
−1

4
‖g0 − gj‖P�2

}}1/2

� (E.36)



14 X. CHEN AND A. SANTOS

and note Δj = o(1). We further observe that since f : X → R is bounded, we obtain

∣∣∣∣√n
{∫

f dP1/
√
n�g −

∫
f dP

}
−

∫
fgdP

∣∣∣∣
≤ ‖f‖∞

∫ ∣∣∣∣g2 dP1/2
(
dP1/2

1/
√
n�g

− dP1/2
)∣∣∣∣

+ ‖f‖∞

∫ ∣∣∣∣√n{dP1/2
1/

√
n�g

− dP1/2
} − g

2
dP1/2

∣∣∣∣(dP1/2
1/

√
n�g

+ dP1/2
)

(E.37)

for any path t �→ Pt�g. In particular, result (E.37) and the Cauchy–Schwarz inequality im-
ply t �→ ∫

f dPt�g has pathwise derivative
∫
fgdP at t = 0. Hence, since gj ∈ T(P) implies

there exists a path t �→ Pt�gj ∈ P such that (E.35) holds, we obtain

√
n

{
θ̂n −

∫
f dP1/

√
n�g0

}
Ln�gj→ Zgj +

∫
f (gj − g0)dP (E.38)

for any j by the pathwise differentiability of t �→ ∫
f dPt�g and the continuous mapping

theorem. For any continuous and bounded map F : R → R, we then note

lim sup
n→∞

∫
F

(√
n

{
θ̂n −

∫
f dP1/

√
n�g0

})
dP1/

√
n�g0

≤ lim sup
n→∞

∫
F

(√
n

{
θ̂n −

∫
f dP1/

√
n�g0

})
dP1/

√
n�gj + ‖F‖∞Δj

= lim inf
n→∞

∫
F

(√
n

{
θ̂n −

∫
f dP1/

√
n�g0

})
dP1/

√
n�gj + ‖F‖∞Δj

≤ lim inf
n→∞

∫
F

(√
n

{
θ̂n −

∫
f dP1/

√
n�g0

})
dP1/

√
n�g0 + 2‖F‖∞Δj�

(E.39)

where the inequalities follow from (E.36) and Lemma D.1, and the equality from the limit
existing by (E.38) and F : R → R being continuous and bounded. Since Δj = o(1), (E.39)
implies the following limit exists for any continuous and bounded F : R → R:

L(F)≡ lim
n→∞

∫
F

(√
n

{
θ̂n −

∫
f dP1/

√
n�g0

})
dP1/

√
n�g0 � (E.40)

In addition, for any ε > 0, there exists a j(ε) such that Δj(ε) < ε/2 and, since Zgj(ε) is tight,
a compact set Kε such that P(Zgj(ε) +

∫
f (gj(ε) − g0)dP ∈Kε)≥ 1 − ε/2. For any δ > 0, let

Kδ
ε ≡ {a ∈ R : infb∈Kε ‖a−b‖< δ}, and note Portmanteu’s Theorem (see Theorem 1.3.4(ii)
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in van der Vaart and Wellner (1996)) (E.38), and Lemma D.1 yield

lim inf
n→∞

P1/
√
n�g0

(√
n

{
θ̂n −

∫
f dP1/

√
n�g0

}
∈Kδ

ε

)

≥ lim inf
n→∞

P1/
√
n�gj(ε)

(√
n

{
θ̂n −

∫
f dP1/

√
n�g0

}
∈Kδ

ε

)
−Δj(ε)

≥ P
(
Zgj(ε) +

∫
(gj(ε) − g0)dP ∈Kε

)
−Δj(ε)

≥ 1 − ε�

(E.41)

Since ε was arbitrary, result (E.41) implies that the law of
√
n{θ̂n − ∫

f dP1/
√
n�g0} under

Pn1/√n�g0
is asymptotically tight. Prohorov’s theorem (see, e.g., Theorem 1.3.9 in van der

Vaart and Wellner (1996)) then yields that every subsequence of
√
n{θ̂n − ∫

f dP1/
√
n�g0}

has a further subsequence that converges in distribution under Pn1/√n�g0
. However, in com-

bination with result (E.40), these observations imply that
√
n{θ̂n−

∫
f dP1/

√
n�g0} must itself

converge in distribution under Pn1/√n�g0
, and we denote the limit law by Zg0 :

√
n

{
θ̂n −

∫
f dP1/

√
n�g0

}
Ln�g0→ Zg0 � (E.42)

Moreover, for any continuous and bounded F : R → R, (E.38), (E.39), (E.42) imply

E
[
F(Zg0)

] − ‖F‖∞Δj ≤E
[
F

(
Zgj +

∫
f (gj − g0)dP

)]
≤E[

F(Zg0)
] + ‖F‖∞Δj� (E.43)

Since Δj = o(1), it therefore follows from (E.43) that Zgj + ∫
f (gj − g0)dP → Zg0 in the

weak topology. However, by the Cauchy–Schwarz inequality and ‖gj − g0‖P�2 = o(1), we
can further conclude that

∫
f (gj − g0)dP = o(1), and thus by the continuous mapping

theorem we obtain that Zgj → Zg0 in the weak topology. Q.E.D.

APPENDIX F: PROOFS OF MAIN RESULTS IN SECTION 4

In this appendix, we first provide the proofs for Theorem 4.1, Lemma 4.1, Lemma 4.2,
and Corollary 4.1. We then establish a theorem (Theorem F.1) that includes Theorem 4.2
as a special case for models defined by sequential moment restrictions.

LEMMA F.1: Let F ⊂ L2
0(P) be such that |f | ≤ F for all f ∈ F and some F ∈ L2(P).

Then, for any path t �→ Pt�g ∈M satisfying
∫
F 2 dPt�g =O(1), it follows that

lim
t↓0

sup
f∈F

∣∣∣∣
∫
f

t
{dPt�g − dP} −

∫
fgdP

∣∣∣∣ = 0�

PROOF: Since t �→ Pt�g is a path, the Cauchy–Schwarz inequality implies

lim
t↓0

sup
f∈F

∣∣∣∣
∫
f

[
1
t

{
dP1/2

t�g − dP1/2
} − g

2
dP1/2

](
dP1/2

t�g + dP1/2
)∣∣∣∣ = 0� (F.1)
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where we exploited that F ∈ L2(P) and
∫
F 2 dPt�g = O(1) by hypothesis. Next, for any

M <∞, we obtain by the Cauchy–Schwarz and triangle inequalities that

sup
f∈F

∣∣∣∣
∫
fgdP1/2

(
dP1/2

t�g − dP1/2
)∣∣∣∣ ≤M

{∫
g2 dP

}1/2{∫ (
dP1/2

t�g − dP1/2
)2

}1/2

+
{∫

|F |>M
g2 dP

}1/2{∫
F 2

(
dP1/2

t�g − dP1/2
)2

}1/2

�

(F.2)

Therefore, result (F.2), t �→ Pt�g being a path,
∫
F 2 dPt�g =O(1) by hypothesis, g ∈L2

0(P),
and P(|F(X)|>M) converging to zero as M diverges to infinity, yield

lim
t↓0

sup
f∈F

∣∣∣∣
∫
fgdP1/2

(
dP1/2

t�g − dP1/2
)∣∣∣∣

≤ lim
M↑∞

{∫
|F |>M

g2 dP

}1/2

× lim
t↓0

{∫
F 2

(
dP1/2

t�g − dP1/2
)2

}1/2

= 0�

(F.3)

Hence, results (F.1) and (F.3) and the triangle inequality together establish

lim
t↓0

sup
f∈F

∣∣∣∣1
t

∫
f (dPt�g − dP)−

∫
fgdP

∣∣∣∣
≤ lim

t↓0
sup
f∈F

∣∣∣∣1
2

∫
fgdP1/2

(
dP1/2

t�g − dP1/2
)∣∣∣∣

+ lim
t↓0

sup
f∈F

∣∣∣∣
∫
f

{
1
t

(
dP1/2

t�g − dP1/2
) − 1

2
gdP1/2

}(
dP1/2

t�g + dP1/2
)∣∣∣∣ = 0�

(F.4)

and therefore the claim of the lemma follows. Q.E.D.

PROOF OF THEOREM 4.1: Consider any path t �→ Pt�g satisfying Condition A, and an
arbitrary bounded function ψj ∈L2(Wj) for any 1 ≤ j ≤ J. Then, from P satisfying (26) by
Assumption 4.1(i) and t �→ Pt�g satisfying Condition A(i), we obtain

0 = 1
t

{∫
ρj(·�ht)ψj dPt�g −

∫
ρj(·�hP)ψj dP

}

= 1
t

{∫
ρj(·�ht)ψj(dPt�g − dP)+

∫ (
ρj(·�ht)− ρj(·�hP)

)
ψj dP

}
�

(F.5)

Furthermore, since the path t �→ Pt�g satisfies Condition A(iii), we obtain, by Lemma F.1,

lim
t↓0

1
t

∫
ρj(·�ht)ψj(dPt�g − dP)= lim

t↓0

∫
ρj(·�ht)ψjg dP =

∫
ρj(·�hP)ψjg dP� (F.6)

where the final equality follows by Assumption 4.1(iii), the Cauchy–Schwarz inequality,
ψj being bounded, and ‖ht − hP‖H = o(1) by Condition A(ii). On the other hand, since
mj(Wj� ·) : H → L2(Wj) is Fréchet differentiable and ‖t−1(ht − h)− Δ‖H = o(1) as t ↓ 0
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by Condition A(ii) for some Δ ∈ H, we can in addition conclude that

lim
t↓0

1
t
E

[
ψj(Wj)

{
mj(Wj�ht)−mj(Wj�hP)

}] =E[
ψj(Wj)∇mj(Wj�hP)[Δ]]� (F.7)

Therefore, combining results (F.5), (F.6), and (F.7), we can obtain that any path t �→ Pt�g
satisfying Condition A must have a score g ∈L2

0(P) satisfying the restriction

E

[{
J∑
j=1

ψj(Wj)ρj(Z�hP)

}
g(X)

]
= −E

[{
J∑
j=1

ψj(Wj)∇mj(Wj�hP)[Δ]
}]
� (F.8)

for any collection (ψ1� � � � �ψJ) ∈ ⊗J

j=1L
2(Wj) of bounded functions. However, since the

set of bounded functions of Wj is dense in L2(Wj) for any 1 ≤ j ≤ J, the Cauchy–Schwarz
inequality and E[ρ2

j (Z�hP)|Wj] being bounded almost surely by Assumption 4.2(i) imply
that (F.8) actually holds for all (ψ1� � � � �ψJ) ∈ ⊗J

j=1L
2(Wj). In particular, we note that

if we select (ψ1� � � � �ψJ) ∈ R̄⊥, then the right-hand side of (F.8) is equal to zero, and
therefore, result (F.8) implies the set inclusion{

f ∈L2
0(P) : f =

J∑
j=1

ρj(Z�hP)ψj(Wj) for some (ψ1� � � � �ψJ) ∈ R̄⊥
}

⊆ T̄ (P)⊥� (F.9)

In order to establish the theorem, we therefore only need to show the reverse inclusion
in (F.9). As a preliminary result towards this goal, we first aim to establish that{

f ∈L2
0(P) : f =

J∑
j=1

ρj(Z�hP)ψj(Wj) for some (ψ1� � � � �ψJ) ∈ R̄⊥
}

= V̄ ∩ T̄ (P)⊥�
(F.10)

To this end, note that by result (F.9) and the definition of V̄ , we obtain the set inclusion{
f ∈L2

0(P) : f =
J∑
j=1

ρj(Z�hP)ψj(Wj) for some (ψ1� � � � �ψJ) ∈ R̄⊥
}

⊆ V̄ ∩ T̄ (P)⊥�
(F.11)

Next, we note that since R̄ is a closed linear subspace of
⊗J

j=1L
2(Wj), Theorem 3.4.1

in Luenberger (1969) implies we may decompose
⊗J

j=1L
2(Wj) = R̄ ⊕ R̄⊥. For any

(f1� � � � � fJ) ∈ ⊗J

j=1L
2(Wj), we in turn denote its projection onto R̄ and R̄⊥ as (ΠRf1� � � � �

ΠRfJ) and (ΠR⊥f1� � � � �ΠR⊥fJ), respectively. Selecting an arbitrary f ∈ V ∩ T̄ (P)⊥, which
by definition of V must be of the form f = ∑J

j=1 ρj(·�hP)ψfj for some (ψf1� � � � �ψ
f
J) ∈⊗J

j=1L
2(Wj), we then observe that result (F.8) implies that, for any path t �→ Pt�g satisfy-

ing Condition A, we must have the equality

E

[{
J∑
j=1

ψ
f
j (Wj)ρj(Z�hP)

}
g(X)

]
= −E

[
J∑
j=1

{
ΠRψ

f
j (Wj)

}∇mj(Wj�hP)[Δ]
]
� (F.12)



18 X. CHEN AND A. SANTOS

However, by Assumption 4.1(iv), if (ΠRψ
f
1� � � � �ΠRψ

f
J) �= 0 (in

⊗J

j=1L
2(Wj)), then there

is a path t �→ Pt�g satisfying Condition A with ‖t−1(ht − hP)−Δ‖H = 0 and

E

[
J∑
j=1

{
ΠRψ

f
j (Wj)

}∇mj(W �hP)[Δ]
]

�= 0� (F.13)

Therefore, if f ∈ V is such that (ΠRψ
f
1� � � � �ΠRψ

f
J) �= 0, then results (F.12) and (F.13)

establish that there exists a path t �→ Pt�g satisfying Condition A and for which

E

[{
J∑
j=1

ψ
f
j (Wj)ρj(Z�hP)

}
g(X)

]
= −E

[
J∑
j=1

{
ΠRψ

f
j (Wj)

}∇mj(W �hP)[Δ]
]

�= 0� (F.14)

thus violating that f ∈ V ∩ T̄ (P)⊥. In particular, it follows that any f ∈ V ∩ T̄ (P)⊥ satisfies
(ΠRψ

f
1� � � � �ΠRψ

f
J)= 0, and hence from

⊗J

j=1L
2(Wj)= R̄⊕ R̄⊥ we obtain

V ∩ T̄ (P)⊥

⊆
{
f ∈L2

0(P) : f =
J∑
j=1

ρj(Z�hP)ψj(Wj) for some (ψ1� � � � �ψJ) ∈ R̄⊥
}
�

(F.15)

Next, let f̄ ∈ V̄ be arbitrary, and note that ‖f̄ − ∑J

j=1 ρj(·�hP)ψj‖P�2 diverges to infinity as∑J

j=1 ‖ψj‖P�2 diverges to infinity due to Assumption 4.2(ii). Thus, we obtain

0 = inf
(ψ1�����ψJ)∈

⊗J
j=1 L

2(Wj)

∥∥∥∥∥f̄ −
J∑
j=1

ρj(·�hP)ψj
∥∥∥∥∥
P�2

= min
(ψ1�����ψJ)∈

⊗J
j=1 L

2(Wj)

∥∥∥∥∥f̄ −
J∑
j=1

ρj(·�hP)ψj
∥∥∥∥∥
P�2

�

(F.16)

where the first equality holds because f̄ ∈ V̄ , and attainment in the second equality is
implied by Proposition 38.14 in Zeidler (1984). However, attainment in (F.16) implies
that f̄ ∈ V , and hence, since f̄ ∈ V̄ was arbitrary, we can conclude V̄ = V . The claim in
(F.10) then holds by result (F.11) and result (F.15).

In order to establish the theorem, we next aim to show that Assumption 4.1 implies

V̄⊥ ⊆ T̄ (P)� (F.17)

Selecting an arbitrary g ∈ V̄⊥ ∩L∞(P), we define a path with density (w.r.t. P) equal to

dPt�g

dP
= 1 + tg� (F.18)

which we note implies Pt�g is indeed a probability measure for t small enough since g ∈
L∞(P). The score of such a path is equal to g by direct calculation. Moreover, for any
ψj ∈L2(Wj) and 1 ≤ j ≤ J, we have that ρj(·�hP)ψj ∈ V implies∫

ρj(·�hP)ψj dPt�g =E[
ρj(Z�hP)

(
1 + tg(X))ψj(Wj)

] = 0� (F.19)
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where we exploited that g ∈ V̄⊥ and E[ρj(Z�hP)|Wj] = 0. Since ψj ∈ L2(Wj) was arbi-
trary, (F.19) in fact implies the path t �→ Pt�g satisfies Condition A(i) with ht = hP for
all t, and hence also Conditions A(ii)–(iii). We conclude that t �→ Pt�g satisfies Condi-
tion A, and as a result that g ∈ T̄ (P). Since g ∈ L∞(P) ∩ V̄⊥ was arbitrary, it follows that
L∞(P) ∩ V̄⊥ ⊆ T̄ (P), and by Assumption 4.1(v), that (F.17) indeed holds. Thus, we fur-
ther obtain from result (F.17) that T̄ (P)⊥ ⊆ (V̄⊥)⊥, and since (V̄⊥)⊥ = V̄ by Theorem 3.4.1
in Luenberger (1969), we can conclude that T̄ (P)⊥ ⊆ V̄ . The theorem therefore follows
from result (F.10). Q.E.D.

PROOF OF LEMMA 4.1: Recall that the map ∇m(W �hP) : H → ⊗J

j=1L
2(Wj) equals

∇m(W �hP)[h] ≡ (∇m1(W1�hP)[h]� � � � �∇mJ(WJ�hP)[h])′
� (F.20)

which is linear and continuous by the stated assumption that mj(Wj� ·) : H → L2(Wj) is
Fréchet differentiable at hP for 1 ≤ j ≤ J. Since

⊗J

j=1L
2(Wj) is its own dual, the ad-

joint ∇m(W �hP)∗ of the map ∇m(W �hP) has domain
⊗J

j=1L
2(Wj). Moreover, because

∇mj(Wj�hP)
∗ is the adjoint of ∇mj(Wj�hP), it follows that

∇m(W �hP)∗[f ] =
J∑
j=1

∇mj(Wj�hP)
∗[fj] (F.21)

for any f = (f1� � � � � fJ) ∈ ⊗J

j=1L
2(Wj). Letting N (∇m(W �hP)∗) denote the null space of

∇m(W �hP)∗ : ⊗J

j=1L
2(Wj)→ H∗, and noting that R (as defined in (29)) equals the range

of ∇m(W �hP) : H → ⊗J

j=1L
2(Wj), we obtain by Theorem 6.6.1 in Luenberger (1969)

that, for [R]⊥ the orthocomplement of R in
⊗J

j=1L
2(Wj), we have

[R]⊥ =N
(∇m(W �hP)∗)� (F.22)

Furthermore, since [R]⊥ = R̄⊥ by continuity, and R̄ = ⊗J

j=1L
2(Wj) if and only if R̄⊥ =

{0}, Equation (F.22) yields R̄ = ⊗J

j=1L
2(Wj) if and only if N (∇m(W �hP)∗)= {0}, which

together with (F.21) establishes the lemma. Q.E.D.

PROOF OF LEMMA 4.2: Since each ∇mj(Wj�hP) : H → L2(Wj) is linear and H =⊗J

j=1 Hj , for each j there are linear maps ∇mj�k(Wj�hP) : Hk →L2(Wj) such that

∇mj(Wj�hP)[h] =
J∑
k=1

∇mj�k(Wj�hP)[hk] (F.23)

for all (h1� � � � �hJ)= h ∈ H. Moreover, since ∇mj�k(Wj�hP)[hk] = 0 for any hk ∈ Hk when-
ever k> j by hypothesis, the decomposition in (F.23) implies that

∇mj(Wj�hP)[h] =
j∑

k=1

∇mj�k(Wj�hP)[hk]� (F.24)
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We first suppose that R̄j = L2(Wj) for all j and aim to show R̄ = ⊗J

j=1L
2(Wj). To this

end, let (f1� � � � � fJ) ∈ ⊗J

j=1L
2(Wj) and ε > 0 be arbitrary. Then observe that

∥∥∇m1�1(W1�hP)
[
h∗

1

] − f1

∥∥
P�2
< ε (F.25)

for some h∗
1 ∈ H1 since R̄1 =L2(W1). For 2 ≤ j ≤ J, we may then exploit that R̄j =L2(Wj)

to inductively select h∗
j ∈ Hj to satisfy the inequality

∥∥∥∥∥∇mj�j(Wj�hP)
[
h∗
j

] −
(
fj −

j−1∑
k=1

∇mj�k(Wj�hP)
[
h∗
k

])∥∥∥∥∥
P�2

< ε� (F.26)

Therefore, setting (h∗
1� � � � �h

∗
J)= h∗ ∈ H and employing (F.24) and (F.26), we obtain

J∑
j=1

∥∥∇mj(Wj�hP)
[
h∗] − fj

∥∥
P�2
< Jε� (F.27)

which, since (f1� � � � � fJ) ∈ ⊗J

j=1L
2(Wj) and ε > 0 were arbitrary, implies that R̄ =⊗J

j=1L
2(Wj).

We next suppose R̄ = ⊗J

j=1L
2(Wj) and aim to show R̄j = L2(Wj) for all j. First note

that by (F.24), it is immediate that R̄= ⊗J

j=1L
2(Wj) implies R̄1 =L2(W1). Thus, we focus

on showing R̄j = L2(Wj) for all j > 1. To this end, we select an arbitrary 1< k∗ ≤ J and
g∗ ∈L2(Wk∗), and define (f ∗

1 � � � � � f
∗
J ) to satisfy f ∗

j = g∗ if j = k∗ and f ∗
j = 0 if j �= k∗. Next,

note that since R̄ = ⊗J

j=1L
2(Wj) by hypothesis, there is a sequence (h1n� � � � �hJn)= hn ∈

H such that

lim
n→∞

J∑
j=1

∥∥∇mj(Wj�hP)[hn] − f ∗
j

∥∥
P�2

= 0� (F.28)

In particular, since k∗ > 1, result (F.24) and hn satisfying (F.28) together yield that

lim
n→∞

∥∥∇m1�1(W1�hP)[h1n]
∥∥
P�2

= 0� (F.29)

Moreover, employing (F.24) and requirement (34), we obtain for any 2 ≤ j ≤ J that∥∥∇mj�j(Wj�hP)[hjn] − f ∗
j

∥∥
P�2

≤ ∥∥∇mj(Wj�hP)[hn] − f ∗
j

∥∥
P�2

+C
j−1∑
k=1

∥∥∇mk�k(Wk�hP)[hkn]
∥∥
P�2
�

(F.30)

Evaluating (F.30) at any j < k∗ and proceeding inductively from (F.29) then implies

lim
n→∞

∥∥∇mj�j(Wj�hP)[hjn]
∥∥
P�2

= 0 (F.31)

since f ∗
j = 0 for all j < k∗. Finally, evaluating (F.30) at j = k∗ and employing (F.31) implies

f ∗
k∗ = g∗ ∈ R̄k∗ . Since 1 < k∗ ≤ J and g∗ ∈ L2(Wk∗) were arbitrary, it follows that R̄j =
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L2(Wj) for all j. Thus, we conclude R̄ = ⊗J

j=1L
2(Wj) if and only if R̄j = L2(Wj) for all

1 ≤ j ≤ J. Finally, let ∇mj�j(Wj�hP)
∗ : L2(Wj)→ H∗

j denote the adjoint of ∇mj�j(Wj�hP) :
Hj → L2(Wj). Theorem 6.6.1 in Luenberger (1969) then implies that R̄⊥

j = {f ∈ L2(Wj) :
∇mj�j(Wj�hP)

∗[f ] = 0}. Therefore, we further obtain that R̄j =L2(Wj) for all 1 ≤ j ≤ J if
and only if {f ∈L2(Wj) : ∇mj�j(Wj�hP)

∗[f ] = 0} = {0} for all 1 ≤ j ≤ J. Q.E.D.

PROOF OF COROLLARY 4.1: Notice that the conditions of Lemma 4.2 are trivially satis-
fied. Therefore, Lemma 4.2 implies that R̄ = ⊗J

j=1L
2(Wj) if and only if R̄j = L2(Wj) for

all 1 ≤ j ≤ J, where R̄j denotes the closure of Rj in L2(Wj), and Rj is given by

Rj =
{
f ∈L2(Wj) : f = dj(Wj)hj(Wj) for some hj ∈ Hj

}
� (F.32)

Hence, the claim of the corollary follows if, for all 1 ≤ j ≤ J, R̄j =L2(Wj) if and only if Hj

is dense in L2(Wj) and P(dj(Wj) �= 0)= 1. The conditions of the corollary are equivalent
for all 1 ≤ j ≤ J, and therefore, without loss of generality, we focus on the case j = 1. To
this end, we first suppose R̄1 =L2(W1) and define f1 ∈L2(W1) by

f1(W1)≡ 1
{
d1(W1)= 0

}
� (F.33)

Next observe that since R̄1 =L2(W1) by hypothesis, it follows that f1 ∈ R̄1 and therefore

0 = inf
h1∈H1

E
[{
d1(W1)h1(W1)− f1(W1)

}2] ≥E[{
f1(W1)

}2] = P(
d1(W1)= 0

)
� (F.34)

where in the first equality we exploited (F.32), the inequality follows from definition (F.33)
implying d1(W1)f1(W1)= 0 almost surely, and the final equality results from (F.33). Hence,
we conclude that if R̄1 = L2(W1), then P(d1(W1) �= 0) = 1. Moreover, for any h1 ∈ H1 ⊆
L2(W1), we have d1h1 ∈L2(W1) since d1 is bounded, and thus

0 = inf
h1∈H1

E
[{
d1(W1)h1(W1)− d1(W1)f (W1)

}2]
= min

h1∈H̄1

E
[{
d1(W1)

}2{
h1(W1)− f (W1)

}2]
�

(F.35)

for any f ∈ L2(W1), and where the first equality follows from R̄1 = L2(W1), while the
final equality holds for H̄1 the closure of H1 in L2(W1), and attainment of the infimum
is guaranteed by the criterion being convex and diverging to infinity as ‖h1‖P�2 ↑ ∞ and
Proposition 38.15 in Zeidler (1984). Thus we conclude from (F.34) and (F.35) that, for any
f ∈ L2(W1), there exists a h1 ∈ H̄1 such that P(f (W1) = h1(W1)) = 1. Since H1 ⊆ L2(W1)
by hypothesis, we conclude that in fact H̄1 =L2(W1).

We next suppose instead that H̄1 = L2(W1) and P(d1(W1) �= 0) = 1 and aim to estab-
lish that R̄1 = L2(W1). First, since ∇m1(W1�hP)[h] = d1h1 for any (h1� � � � �hJ) = h ∈ H
and d1 is bounded, we may view ∇m1(W1�hP) as a map from H̄1 into L2(W1) by, with
some abuse of notation, setting ∇m1(W1�hP)[h1] = d1h1 for any h1 ∈ H̄1 \ H1 as well. Fur-
thermore, since H̄1 =L2(W1) by hypothesis, direct calculation reveals that ∇m1(W1�hP) :
L2(W1) → L2(W1) is self-adjoint. Thus, Theorem 6.6.3 in Luenberger (1969) implies
R̄1 = L2(W1) if and only if ∇m1(W1�hP) : L2(W1)→ L2(W1) is injective. However, injec-
tivity of ∇m1(W1�hP) : L2(W1)→ L2(W1) is equivalent to P(d1(W1) �= 0)= 1, and there-
fore R̄1 =L2(W1). Q.E.D.
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Previously, Ai and Chen (2012) derived the semiparametric efficiency bound for a gen-
eral class of “smooth” functionals of P defined by nonparametric sequential moment re-
striction model (31). The next theorem, which is a restatement of Theorem 4.2, exploits
their results and our Corollary 3.1 to obtain an alternative characterization of local just
identification of P by model (31). In the following, we let Ω∗

f denote the semiparamet-
ric efficient variance bound for estimating population mean θf (P)≡ ∫

f dP for f in any
dense subset D of L2(P).

THEOREM F.1: Let Assumption 4.3 hold. Then: There is a dense subset D of L2(P) such
that Ω∗

f = Var{f (X)} for all f ∈ D if and only if R̄ = ⊗J

j=1L
2(Wj). Hence: P is locally just

identified by model (31) if and only if R̄= ⊗J

j=1L
2(Wj).

PROOF: We let L∞(P) ≡ {f : |f | is bounded P-a.s.}, and L∞(Wj) and L∞(Z) be the
subsets of L∞(P) depending only on Wj and Z, respectively. We recall that L2(Wj) and
L2(Z) are analogously defined. In addition, we note that Assumption 4.3(i) implies that
if j ≤ j′, then it follows that

Wj = F(Wj′) (F.36)

for some measurable function F : Wj′ → Wj ; see, for example, Theorem 20.1 in Billingsley
(2008). We define a subset Q⊆L2(P) as

Q≡
{
f : f (X)=

{
J∑
j=1

ρj(Z�hP)qj(Wj)+C
}

a.s. for some qj ∈L2(Wj)�C ∈ R

}
� (F.37)

and Q̄ as the closure of Q under ‖ · ‖P�2. We set the desired subset D to equal D ≡L∞(P)\
Q̄ and note D is a subset of L2(P) since D ⊆L∞(P)⊂L2(P). To establish that D is dense
in L2(P), we let j∗ be the smallest j satisfying 1 ≤ j ≤ J and such that L2(Wj∗) is infinite-
dimensional—note existence of j∗ is guaranteed by Assumption 4.3(vi). We next aim to
show that

L2(Wj∗)∩ Q̄ �=L2(Wj∗)� (F.38)

and to this end, we note that since L2(Wj∗) is infinite-dimensional and L2(Wj) is finite-
dimensional for all j < j∗, it follows that there exists a g ∈L2(Wj∗) with ‖g‖P�2 > 0 and

E

[
g(Wj∗)

{
j∗−1∑
j=1

ρj(Z�hP)qj(Wj)+C
}]

= 0 (F.39)

for all C ∈ R and qj ∈ L2(Wj)—here, if j∗ = 1, then (F.39) should be understood as just
requiring E[g(Wj∗)] = 0. On the other hand, Assumption 4.3(i) and the law of iterated
expectations together imply that for any qj ∈L2(Wj), we have

E

[
g(Wj∗)

{
J∑

j=j∗
ρj(Z�hP)qj(Wj)

}]
= 0� (F.40)

Thus, (F.39) and (F.40) imply ‖f − g‖P�2 = ‖f‖P�2 + ‖g‖P�2 > 0 for any f ∈ Q̄, from which
we conclude (F.38) holds. Since L∞(Wj∗) is dense in L2(Wj∗), (F.38) further yields that
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there is a g̃ ∈L∞(Wj∗) \ Q̄ and for any f ∈L∞(P) and εn ↓ 0 we set

fn =
{
f� if f /∈ Q̄�
f + εng̃� if f ∈ Q̄� (F.41)

and note fn ∈ D ≡ L∞(P) \ Q̄ and ‖fn − f‖P�2 = o(1). We conclude that D is dense in
L∞(P) with respect to ‖ · ‖P�2 and hence also in L2(P) since L∞(P) is a dense subset of
L2(P) under ‖ · ‖P�2.

While we have so far avoided stating an explicit formulation for Ω∗
f for ease of expo-

sition, it is now necessary to characterize it for all f ∈ D. To this end, we follow Ai and
Chen (2012) by setting εJ(Z�h)≡ ρJ(Z�h) and recursively defining

εs(Z�h)≡ ρs(Z�h)−
J∑

j=s+1

Γs�j(Wj)εj(Z�h) (F.42)

for 1 ≤ j ≤ J − 1, and where for any 1 ≤ s < j ≤ J, the function Γs�j(Wj) is given by

Γs�j(Wj)≡E[
ρs(Z�hP)εj(Z�hP)|Wj

]{
Σj(Wj)

}−1
� (F.43)

Σj(Wj)≡E[{
εj(Z�hP)

}2|Wj

]
� (F.44)

and we note Assumptions 4.3(i), (iv), (v) and simple calculations together imply

P
(
η≤ Σj(Wj)≤M) = 1 (F.45)

for all 1 ≤ j ≤ J and some η�M ∈ (0�+∞). We further set Σf ≡ Var{f (X)} and define

Σ0 ≡ Var

{
f (X)−

J∑
j=1

Λj(Wj)εj(Z�hP)

}
� (F.46)

Λj(Wj)≡E[
f (X)εj(Z�hP)|Wj

]{
Σj(Wj)

}−1
� (F.47)

and note: (i) Λj(Wj) ∈ L2(Wj) by (F.44), (F.45), f ∈ D ⊂ L∞(P), and Jensen’s inequality;
(ii) Σ0 > 0 since f /∈ Q̄ and Q̄ is closed; and (iii) by direct calculation,

Σ0 = Σf −
J∑
j=1

E
[{
Λj(Wj)

}2
Σj(Wj)

]
� (F.48)

Next, we define the maps aj(Wj� ·) : H →L2(Wj) for any 1 ≤ j ≤ J to be given by

aj(Wj�h)≡E[
εj(Z�h)|Wj

]
� (F.49)

We further note that result (F.45) and Assumption 4.3(v) imply by arguing inductively
that Γs�j(Wj) ∈ L∞(Wj). Hence, it can be shown from definition (F.42) and Assump-
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tion 4.3(ii) that the maps aj(Wj� ·) are Fréchet differentiable at hP and we denote
their derivatives by ∇aj(Wj�hP) : H → L2(Wj). Therefore, the Fisher norm of a s ∈ H
is

‖s‖2
w ≡

J∑
j=1

E
[{
Σj(Wj)

}−1{∇aj(Wj�hP)[s]
}2]

+ {Σ0}−1

{
E

[
J∑
j=1

Λj(Wj)∇aj(Wj�hP)[s]
]}2

(F.50)

(see eq. (4) in Ai and Chen (2012)), and we note ‖s‖w < ∞ for any s ∈ H since
∇aj(Wj�hP)[s] ∈ L2(Wj), {Σj(Wj)}−1 ∈ L∞(Wj) by (F.45), and as argued, Λj(Wj) ∈
L∞(Wj). Letting W denote the completion of H under ‖ · ‖w, we then obtain

{
Ω∗
f

}−1 = inf
s∈W

{
{Σ0}−1

{
1 +

J∑
j=1

E
[
Λj(Wj)∇aj(Wj�hP)[s]

]}2

+
J∑
j=1

E
[{
Σj(Wj)

}−1{∇aj(Wj�hP)[s]
}2]} (F.51)

by Theorem 2.1 in Ai and Chen (2012).
It is convenient for our purposes, however, to exploit the structure of our prob-

lem to further simplify the characterization in (F.51). To this end, note that (F.50)
and the Cauchy–Schwarz inequality imply that the objective in (F.51) is continuous un-
der ‖ · ‖w. Hence, since W is the completion of H under ‖ · ‖w, it follows from (F.51)
that

{
Ω∗
f

}−1 = inf
s∈H

{
{Σ0}−1

{
1 +

J∑
j=1

E
[
Λj(Wj)∇aj(Wj�hP)[s]

]}2

+
J∑
j=1

E
[{
Σj(Wj)

}−1{∇aj(Wj�hP)[s]
}2]}

�

(F.52)

Next, note that we may view (∇a1(W1�hP)� � � � �∇aJ(WJ�hP)) as a map from H onto the
product space

⊗J

j=1L
2(Wj), and we denote the range of this map by

A≡
{

{rj}Jj=1 ∈
J⊗
j=1

L2(Wj) :

for some s ∈ H� rj = ∇aj(Wj�hP)[s] for all 1 ≤ j ≤ J
}
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and let Ā denote the closure of A in the product topology. Result (F.52) then im-
plies

{
Ω∗
f

}−1 = inf
{rj }∈Ā

{
{Σ0}−1

{
1 +

J∑
j=1

E
[
Λj(Wj)rj(Wj)

]}2

+
J∑
j=1

E
[{
Σj(Wj)

}−1{
rj(Wj)

}2]}

= min
{rj }∈Ā

{
{Σ0}−1

{
1 +

J∑
j=1

E
[
Λj(Wj)rj(Wj)

]}2

+
J∑
j=1

E
[{
Σj(Wj)

}−1{
rj(Wj)

}2]}
�

(F.53)

where attainment follows from Ā being a vector space since (∇a1(W1�hP)� � � � �
∇aJ(WJ�hP)) is linear and H is a vector space, the criterion in (F.53) being convex and di-
verges to infinity as

∑
j ‖rj‖P�2 ↑ ∞, and Proposition 38.15 in Zeidler (1984). In particular,

note that if {r∗j } ∈ Ā is the minimizer of (F.53), then for any {δj} ∈ Ā,

J∑
j=1

E

[
δj(Wj)

{{
Σj(Wj)

}−1
r∗j (Wj)

+Σ−1
0 Λj(Wj)

{
1 +

J∑
s=1

E
[
Λs(Ws)r

∗
s (Ws)

]}}]
= 0�

(F.54)

Next, we aim to solve the optimization in (F.54) under the hypothesis that Ā =⊗J

j=1L
2(Wj). In that case, (F.54) must hold for all {δj} ∈ ⊗J

j=1L
2(Wj), which implies

r∗j (Wj)= −Σ−1
0

{
1 +

J∑
s=1

E
[
Λs(Ws)r

∗
s (Ws)

]}
Λj(Wj)Σj(Wj)� (F.55)

It is evident from (F.55) that r∗j (Wj)= −Λj(Wj)Σj(Wj)C0 for some C0 ∈ R independent of
j, and, plugging into (F.55), we solve for C0 and exploit (F.48) to find

r∗j (Wj)= −{Σf }−1Λj(Wj)Σj(Wj)� (F.56)

Thus, combining (F.53) and (F.56), and repeatedly exploiting (F.48), we conclude

{
Ω∗
f

}−1 = Σ−1
0

{
1 − {Σf }−1

J∑
j=1

E
[
Λ2
j (Wj)Σj(Wj)

]}2

+ {Σf }−2
J∑
j=1

E
[
Λ2
j (Wj)Σj(Wj)

]

= Σ−1
0

{
1 − {Σf }−1{Σf −Σ0}

}2 + {Σf }−2{Σf −Σ0} = {Σf }−1�

(F.57)
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or equivalently, Ω∗
f = Σf . While (F.57) was derived while supposing Ā = ⊗J

j=1L
2(Wj),

we note that since Ā ⊆ ⊗J

j=1L
2(Wj), the minimum in (F.53) is attained, and r∗j (Wj) =

−{Σf }−1Λj(Wj)Σj(Wj) is the unique minimizer on
⊗J

j=1L
2(Wj), we must have

Ω∗
f = Σf if and only if

{−Σ−1
f Λj(Wj)Σj(Wj)

}J
j=1

∈ Ā� (F.58)

Since result (F.58) holds for all f ∈D and Ā is a vector space, (F.47) implies

Ω∗
f = Σf ∀f ∈D if and only if

{
E

[
f (X)εj(Z�hP)|Wj

]}J
j=1

∈ Ā ∀f ∈D�

Also note that if ‖fn − f‖P�2 = o(1), then by the Cauchy–Schwarz inequality, we obtain

lim
n→∞

E
[{
E

[
fn(X)εj(Z�hP)|Wj

] −E[
f (X)εj(Z�hP)|Wj

]}2]
≤ lim

n→∞
E

[{
fn(X)− f (X)}2

Σj(Wj)
] = 0�

(F.59)

where the final equality follows fromΣj(Wj) ∈L∞(Wj) by result (F.45). Therefore, since as
argued, D is a dense subset of L2(P), in addition Ā is closed under the product topology
in

⊗J

j=1L
2(Wj), and result (F.59) holds for all 1 ≤ j ≤ J, we conclude

Ω∗
f = Σf ∀f ∈D if and only if

{
E

[
f (X)εj(Z�hP)|Wj

]}J
j=1

∈ Ā ∀f ∈L2(P)� (F.60)

Next, fix an arbitrary {gj}Jj=1 ∈ ⊗J

j=1L
∞(Wj) and note that result (F.45) then yields

f0(X)≡
J∑
j=1

gj(Wj)εj(Z�hP)
{
Σj(Wj)

}−1

belongs toL2(P) since gj ∈L∞(Wj). SinceE[{εj(Z�hP)}2|Wj] = Σj(Wj),E[εj(Z�hP)εs(Z�
hP)|Wj] = 0 whenever s < j, we obtain from result (F.36) that

E
[
f0(X)εj(Z�hP)|Wj

]
=E

[(
J∑
s=1

gs(Ws)εs(Z�hP)
{
Σs(Ws)

}−1

)
εj(Z�hP)

∣∣∣Wj

]

=
J∑
s=1

E
[
gs(Ws)

{
Σs(Ws)

}−1
E

[
εs(Z�hP)εj(Z�hP)|Ws∨j

]|Wj

] = gj(Wj)�

(F.61)

In particular, (F.61) holds for any 1 ≤ j ≤ J, and since {gj}Jj=1 ∈ ⊗J

j=1L
∞(Wj)was arbitrary,

it follows that if {E[f (X)εj(Z�hP)|Wj]}Jj=1 ∈ Ā for all f ∈ L2(P), then
⊗J

j=1L
∞(Wj) ⊆

Ā. However, since Ā is closed in the product topology of
⊗J

j=1L
2(Wj), we have that if⊗J

j=1L
∞(Wj)⊆ Ā, then

⊗J

j=1L
2(Wj)= Ā, and hence (F.60) yields

Ω∗
f = Σf ∀f ∈D if and only if

J⊗
j=1

L2(Wj)= Ā� (F.62)
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To conclude, we note that since, as previously argued, Γs�j(Wj) ∈ L∞(Wj) for all 1 ≤ s <
j ≤ J, definitions (F.43) and (F.49) and an inductive calculation imply that

∇mj(Z�hP)[s] = ∇aj(Z�hP)[s] +
J∑

k=j+1

E
[
Γj�k(Wk)∇ak(Z�hP)[s]|Wj

]
(F.63)

with ∇mJ(Z�hP)[s] = ∇aJ(Z�hP)[s]. Thus, from (F.63), we conclude Ā= ⊗J

j=1L
2(Wj) if

and only if R̄= ⊗J

j=1L
2(Wj) and therefore the theorem follows from (F.62). Q.E.D.

APPENDIX G: SUFFICIENT CONDITIONS FOR ASSUMPTION 3.1

In this appendix, we illustrate how to construct a statistic Ĝn satisfying Assumption 3.1
in the context of models defined by nonparametric conditional moment restrictions as
studied in Section 4. Concretely, we let {Xi = (Zi�Wi)}ni=1 be a random sample from the
distribution P satisfying model (26), which is restated below for the purpose of easy ref-
erence:

E
[
ρj(Zi�hP)|Wij

] = 0 for all 1 ≤ j ≤ J for some hP ∈ H� (G.1)

The parameter hP can be estimated via the method of sieves by regularizing through
either the choice of sieve, employing a penalization, or a combination of both approaches
(Chen and Pouzo (2012)). Here, we assume hP ∈ H ⊆ H, and consider a sequence
of sieve spaces Hk ⊆ Hk+1 ⊆ H, with Hk growing suitably dense in H as k diverges
to infinity. In turn, we estimate the unknown conditional expectation by series regres-
sion. Specifically, for {pjl}∞

l=1 a sequence of approximating functions in L2(Wj), we let
p
ljn
j (wj)≡ (pj1(wj)� � � � �pjljn(wj))′, set Pjn ≡ (pljnj (W1j)� � � � �p

ljn
j (Wnj))

′, and define

m̂j(wj�h)≡
{

n∑
i=1

ρj(Zi�h)p
ljn
j (Wji)

′
}(
P ′
jnPjn

)−
p
ljn
j (wj)� (G.2)

where (P ′
jnPjn)

− denotes the Moore–Penrose pseudoinverse of P ′
jnPjn. For a sequence kn

diverging to infinity with the sample size, the estimator ĥn is then defined as

ĥn ∈ arg min
h∈Hkn

n∑
i=1

J∑
j=1

m̂2
j (Wij�h)� (G.3)

See Chen and Pouzo (2012) and references therein for sufficient conditions for the con-
vergence rates of ĥn to hP .

For a set T and known function ψj : Wj × T → R, we let ψ(w�τ) ≡ (ψ1(w1� τ)� � � � �
ψJ(wJ� τ))

′ similarly define ρ(z�h)≡ (ρ1(z�h)� � � � � ρJ(z�h))
′ and set

Ĝn(τ)≡ 1√
n

n∑
i=1

{
ψ(Wi� τ)

}′
ρ(Zi� ĥn)� (G.4)

Note that the resulting process Ĝn may be viewed as an element of �∞(T) provided that
the functions ψj(Wij� ·) are bounded almost surely. To see why Ĝn might satisfy Assump-
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tion 3.1, we observe that, for any τ ∈ T, Ĝn(τ) is an estimator of the parameter

θP(τ)≡E[{
ψ(W �τ)

}′
ρ(Z�hP)

]
� (G.5)

However, since hP satisfies (G.1) by hypothesis, the model in fact dictates that θP(τ)= 0,
and thus the efficient estimator for θP(τ) is simply zero. As a result, Ĝn(τ) is an inefficient
estimator of θP(τ), and by Lemma 3.1(ii) it should satisfy Assumption 3.1 provided that
it is regular and asymptotically linear. Similarly, Ĝn could be constructed so that speci-
fication tests built on it aim their power at particular violations of the model by setting
Ĝn(τ) to be the efficient estimator of θP(τ) under the maintained alternative model; see
Lemma 3.2(iii) and related discussion.

Denotem(W �h)≡ (m1(W1�h)� � � � �mJ(WJ�h))
′. We assume that the mapsmj(Wj�h)≡

E[ρj(Z�h)|Wj], j = 1� � � � � J, are Fréchet differentiable at hP with derivative
∇mj(Wj�hP) : H → L2(Wj) (i.e., we impose Assumption 4.1(ii) as in Section 4). Recall
that the linear map ∇m(W �hP) : H → ⊗J

j=1L
2(Wj) is given by

∇m(W �hP)[h] ≡ (∇m1(W1�hP)[h]� � � � �∇mJ(WJ�hP)[h])′
� (G.6)

and its range space equals

R≡
{
f ∈

J⊗
j=1

L2(Wj) : f = ∇m(W �hP)[h] for some h ∈ H

}
� (G.7)

which is closed under addition, and its norm closure (in
⊗J

j=1L
2(Wj)), denoted R̄, is a

vector subspace of
⊗J

j=1L
2(Wj). With some abuse of notation, for any (f1� � � � � fJ)= f ∈⊗J

j=1L
2(Wj), we let ‖f‖2

P�2 = ∑J

j=1

∫
f 2
j dP and we observe

⊗J

j=1L
2(Wj) is a Hilbert space

under ‖ · ‖P�2 and its corresponding inner product. Therefore, since R̄ is a closed subspace
of

⊗J

j=1L
2(Wj), we obtain from Theorem 3.4.1 in Luenberger (1969) that

J⊗
j=1

L2(Wj)= R̄⊕ R̄⊥� (G.8)

For any f ∈ ⊗J

j=1L
2(Wj), we let ΠRf and ΠR⊥f denote the projection of f under ‖ · ‖P�2

onto R̄ and R̄⊥, respectively. We emphasize that the projection of (f1� � � � � fJ) = f ∈⊗J

j=1L
2(Wj) onto R̄ need not equal a coordinate by coordinate projection of f . Finally,

recall that by Theorem 4.1, P is locally just identified if and only if R̄ = ⊗J

j=1L
2(Wj), or

if and only if R̄⊥ = {0}.
We, in addition, impose the following assumptions to study the process Ĝn.

ASSUMPTION G.1: (i) F ≡ {f = {{ΠR⊥ψ(·� τ)}′ρ(·�h) : (τ�h) ∈ T × H} is P-Donsker;
(ii) ‖ΠR⊥ψ(w�τ)‖ is bounded on

⊗J

j=1 Wj × T; (iii) Hk ⊆H for all k.

ASSUMPTION G.2: (i)
∑J

j=1 ‖ρj(·� ĥn) − ρj(·�hP)‖P�2 = op(1); (ii) E[‖m(Wi� ĥn) −
m(Wi�hP) − ∇m(Wi�hP)[ĥn − hP]‖] = op(n

−1/2), (iii) 1
n

∑n

i=1{ΠRψ(Wi� τ)}′ρ(Zi� ĥn) =
op(n

−1/2) uniformly in τ ∈ T.



OVERIDENTIFICATION IN REGULAR MODELS 29

Assumption G.1(i) ensures that the empirical process indexed by f ∈ F converges in
distribution in �∞(T), Assumption G.1(ii) demands that the weights in the linear com-
binations of moments be bounded, and Assumption G.1(iii) implies that ĥn ∈ H with
probability 1. Assumption G.2 imposes high-level conditions on ĥn that are transparent
in their role played in the proof, though they can be verified under lower-level require-
ments on the sieve bases, the sieve approximation errors, and the smoothness of the map
m(W � ·) near hP . In particular, Assumption G.2(i) imposes that ρ(·� ĥn) be consistent for
ρ(·�hP) in

⊗J

j=1L
2(P). Assumption G.2(ii) demands the rate of convergence of ĥn to be

sufficiently fast to enable us to obtain a suitable expansion of m(Wi� ĥn) around hP . Both
Assumption G.2(i) and G.2(ii) can be verified under lower-level conditions by employ-
ing the results in Chen and Pouzo (2012). Finally, Assumption G.2(iii) intuitively follows
from ĥn satisfying (G.3) and ∇m̂(Wi� ĥn) approximating ∇m(Wi�hP);2 see Ai and Chen
(2003) and Chen and Pouzo (2009) for related arguments.

We next establish the asymptotic behavior of Ĝn.

LEMMA G.1: Let Assumptions 4.1(i), (ii), and G.1 and G.2 hold. Then:

Ĝn(τ)= 1√
n

n∑
i=1

{
ΠR⊥ψ(Wi� τ)

}′
ρ(Zi�hP)+ op(1) (G.9)

uniformly in τ ∈ T, and Ĝn
L→ G0 in �∞(T) for some tight Gaussian measure G0.

Lemma G.1 establishes the asymptotic linearity of Ĝn as a process in �∞(T). Since the
influence function of Ĝn obeys a functional central limit theorem by Assumption G.1(i),
the conclusion that Ĝn converges to a tight Gaussian process is immediate from result
(G.9). Therefore, given Lemma G.1, the main requirement remaining in verifying Ĝn

satisfies Assumption 3.1 is showing that the influence function of Ĝn(τ) is orthogonal to
the scores of the model for any τ ∈ T. However, the latter claim is immediate from the
characterization of T̄ (P)⊥ derived in Theorem 4.1.

PROOF OF LEMMA G.1: We first note that Assumption G.2(iii) allows us to conclude

Ĝn(τ)= 1√
n

n∑
i=1

{
ΠR⊥ψ(Wi� τ)

}′
ρ(Zi� ĥn)+ op(1) (G.10)

uniformly in τ ∈ T since ψ(Wi� τ) = ΠRψ(Wi� τ) + ΠR⊥ψ(Wi� τ). Moreover, by the
Cauchy–Schwarz inequality, and Assumptions G.1(ii) and G.2(i), we obtain that

E
[(
ΠR⊥ψ(Wi� τ)

′{ρ(Zi� ĥn)− ρ(Zi�hP)
})2]

≤ sup
(w�τ)

∥∥ψ(w�τ)∥∥2 × ∥∥ρ(·� ĥn)− ρ(·�hP)
∥∥2

P�2
= op(1)�

(G.11)

2RecallΠRψ(Wi� τ)= ∇m(Wi�hP)[vn]+o(1) for some sequence {vn}∞
n=1 ∈ H, while ĥn solving (G.3) can be

exploited to show 1
n

∑n
i=1{∇m̂(Wi� ĥn)[vn]}′ρ(Zi� ĥn)= op(n−1/2).
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Thus, since F = {f (x) = {ΠR⊥ψ(w�τ)}′ρ(z�h) : (τ�h) ∈ T × H} is P-Donsker by As-
sumption G.1(i) and ĥn ∈H by Assumption G.1(iii), result (G.11) yields

1√
n

n∑
i=1

{
ΠR⊥ψ(Wi� τ)

}′
ρ(Zi� ĥn)− 1√

n

n∑
i=1

{
ΠR⊥ψ(Wi� τ)

}′
ρ(Zi�hP)

= √
nE

[{
ΠR⊥ψ(Wi� τ)

}′{
ρ(Zi� ĥn)− ρ(Zi�hP)

}] + op(1)
(G.12)

uniformly in τ ∈ T. Furthermore, the law of iterated expectations, the Cauchy–Schwarz
inequality, and Assumptions G.1(ii) and G.2(ii) together yield uniformly in τ ∈ T that

√
nE

[{
ΠR⊥ψ(Wi� τ)

}′{
ρ(Zi� ĥn)− ρ(Zi�hP)

}]
= √

nE
[{
ΠR⊥ψ(Wi� τ)

}′∇m(Wi�hP)[ĥn − hP]
] + op(1)= op(1)�

(G.13)

where in the final equality we exploited that, by definition of R and R⊥, it fol-
lows that for any h ∈ H, we have E[{ΠR⊥ψ(Wi� τ)}′∇m(Wi�hP)[h]] = 0. Hence, the
lemma follows from results (G.10), (G.12), and (G.13), and the class F = {f (x) =
{ΠR⊥ψ(w�τ)}′ρ(z�h) : (τ�h) ∈ T ×H} being P-Donsker by Assumption G.1(i). Q.E.D.

APPENDIX H: EXAMPLES FOR SECTION 4

In this appendix, we provide additional discussions on Examples 4.1, 4.2, and 4.3 to
illustrate how to employ Theorem 4.1, Lemmas 4.1 and 4.2, and Corollary 4.1 to deter-
mine whether P is locally overidentified by the model P in specific applications. We also
introduce a final example based on DiNardo, Fortin, and Lemieux (1996).

EXAMPLE 4.1: In this application, Z represents the distinct elements of (V �Y1� � � � �YJ)

and there are J moment restrictions. For any h = (h1� � � � �hJ) ∈ H = ⊗J

j=1 Hj , each ρj :
Z × H → R then equals

ρj(Z�h)= Yj − hj(V )� (H.1)

Therefore, for any h = (h1� � � � �hJ) ∈ H, mj(Wj�h) = E[Yj − hj(V )|Wj] which is affine
and continuous by Jensen’s inequality and Hj ⊆ L2(V ). Hence, mj(Wj�h) : H → L2(Wj)
is Fréchet differentiable with

∇mj(Wj�hP)[h] = −E[
hj(V )|Wj

]
(H.2)

for any h = (h1� � � � �hJ) ∈ H. In particular, note that the conditions of Lemma 4.2 are
trivially satisfied since ∇mj�k(Wj�hP)[hk] = 0 for all k �= j and 1 ≤ j ≤ J. Hence, defining

Rj ≡
{
f ∈L2(Wj) : f =E[

hj(V )|Wj

]
for some hj ∈ Hj

}
� (H.3)

we conclude from Lemma 4.2 that P is locally just identified if and only if R̄j =L2(Wj) for
all 1 ≤ j ≤ J—that is, we may study local overidentification by examining each moment
condition separately. We gain insight into the condition R̄j = L2(Wj) by considering two
separate cases.

Case I: We first suppose Wj = V (i.e., V is exogenous in the jth moment restriction).
In this case, we may view E[·|Wj] : Hj →L2(Wj) as the identity mapping, and hence R̄j =
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L2(Wj) whenever Hj =L2(V ). Notice in fact that by Corollary 4.1, R̄j continues to satisfy
R̄j = L2(Wj) if we set Hj to be any Banach space that is dense in L2(Wj), such as the
set of bounded functions, continuous functions, or differentiable functions. On the other
hand, Corollary 4.1 implies R̄j �=L2(Wj) whenever Hj is a strict closed subspace of L2(V ),
which occurs, for example, when we impose a partially linear or an additively separable
specification for hj (Robinson (1988), Stone (1985)).

Case II: We next consider the case where Wj is an instrument, so that Wj �= V . We let
Hj = L2(V ); the condition that the closure of the range of E[·|Wj] : L2(V )→ L2(Wj) be
equal to L2(Wj) is most easily interpreted through Lemma 4.2. Note that the adjoint of
E[·|Wj] is E[·|V ] : L2(Wj)→ L2(V ). Thus, Lemma 4.2 implies that R̄j = L2(Wj) if and
only if

{0} = {
f ∈L2(Wj) :E[

f (Wj)|V
] = 0

}
� (H.4)

The requirement in (H.4) is known as the distribution of (V �Wj) being L2-complete with
respect to Wj , which is an untestable property of the distribution of the data (Andrews
(2017), Canay, Santos, and Shaikh (2013)). As in Case I, however, we may obtain R̄j �=
L2(Wj) by restricting the parameter space for hj . Suppose, for example, that Hj is a closed
subspace of L2(V ), such as in a partially linear or an additive separable specification. For
any f ∈L2(Wj), then let

ΠHj f ≡ arg min
h∈Hj

‖f − h‖P�2 (H.5)

and note ΠHj : L2(Wj) → Hj is the adjoint of E[·|Wj] : Hj → L2(Wj). Thus, applying
Lemma 4.2, we obtain that R̄j =L2(Wj) if and only if

{0} = {
f ∈L2(Wj) :ΠHj f = 0

}
� (H.6)

Condition (H.6) may be viewed as a generalization of (H.4), and can be violated even
when Hj is infinite-dimensional yet a strict subspace of L2(V ).

EXAMPLE 4.2: We will study a general nonparametric specification for the parameter
space and aim to show P is nonetheless locally overidentified. To this end, let

C1
([0�1]) ≡ {

f : [0�1] → R : f is continuously differentiable on [0�1]}� (H.7)

which is a Banach space when endowed with the norm ‖f‖C1 ≡ ‖f‖∞ + ‖f ′‖∞ for f ′ the
derivative of f . We then set the parameter space H to be given by

H =L∞(
(V �R)

) ×L2(V )×L2(V )×C1
([0�1]) ×C1

([0�1])� (H.8)

and assume (sP� g0�P� g1�P� λ0�P� λ1�P)= hP ∈ H; that is, we require the λd�P functions in (42)
to be continuously differentiable. For X = (Y�D�V �R) and W1 = (V �R), the moment
restriction in (43) corresponds to setting, for any (s� g0� g1�λ0�λ1)= h ∈ H,

ρ1(Z�h)=D− s(V �R)� (H.9)

In turn, for the moment restriction in (44), we let W2 = (V �R�D) and define

ρ2(Z�h)=D{
Y − g1(V )− λ1

(
s(V �R)

)} + (1 −D){Y − g0(V )− λ0

(
s(V �R)

)}
(H.10)
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for any (s� g0� g1�λ0�λ1)= h ∈ H.3 We note that by (H.9),m1(W1� ·) : H →L2(W1) is affine
and continuous and therefore Fréchet differentiable with derivative

∇m1(W1�hP)[h] = −s(V �R) (H.11)

for any (s� g0� g1�λ0�λ1)= h ∈ H. The second restriction is Fréchet differentiable as well,
and for any (s� g0� g1�λ0�λ1) ∈ H, ∇m2(W2�hP) : H →L2(W2) is given by

∇m2(W2�hP)[h]
=D{−g1(V )− λ1

(
sP(V �R)

) − λ′
1�P

(
sP(V �R)

)
s(V �R)

}
+ (1 −D){−g0(V )− λ0

(
sP(V �R)

) − λ′
0�P

(
sP(V �R)

)
s(V �R)

}
�

(H.12)

To verify this claim, first note ∇m2(W2�� hP) : H → L2(W2) is continuous when H is en-
dowed with the product topology. Moreover, by the mean value theorem, we have

{λd�P + λd}
(
sP(V �R)+ s(V �R))

− {λd�P + λd}
(
sP(V �R)

) − λ′
d�P

(
sP(V �R)

)
s(V �R)

= (
λ′
d�P

(
s̄(V �R)

) − λ′
d�P

(
sP(V �R)

))
s(V �R)+ λ′

d

(
s̄(V �R)

)
s(V �R)

(H.13)

for some s̄(V �R) a convex combination of sP(V �R) and sP(V �R) + s(V �R). Exploiting
(H.10), (H.12), and (H.13), we can then obtain that∥∥m2(W2�hP + h)−m2(W2�hP)− ∇m2(W2�hP)[h]∥∥

P�2

= o
(

‖s‖∞

{
1 +

2∑
d=1

∥∥λ′
d

∥∥
∞

})
(H.14)

since λ′
d�P is uniformly continuous on [0�1] and ‖sP − s̄‖∞ ≤ ‖s‖∞. Thus, from (H.14),

we conclude ∇m2(W2�hP) is indeed the Fréchet derivative of m2(W2� ·) : H → L2(W2).
In order to show that P is locally overidentified, we note that the moment restrictions
(H.9) and (H.10) possess a triangular structure. Hence, we aim to apply Lemma 4.2
with sP ∈ H1 = L∞((V �R)) and (g0�P� g1�P� λ0�P� λ1�P) = hP�2 ∈ H2 = L2(V ) × L2(V ) ×
C1([0�1])×C1([0�1]), for which (34) then holds since ‖λ′

d�P‖∞ <∞ for d ∈ {0�1}. More-
over, Corollary 4.1 implies R̄1 = L2(W1) since L∞(W1) is dense in L2(W1) under ‖ · ‖P�2.
Therefore, letting S = sP(V �R) and h2 = (g0� g1�λ0�λ1) for notational simplicity, we note
(H.12) and Lemma 4.2 together imply that P is locally just identified by P if and only if

R2 = {
f ∈L2(W2) : f (W2)=D{

g1(V )+ λ1(S)
}

+ (1 −D){g0(V )+ λ0(S)
}

for h2 ∈ H2

} (H.15)

is dense in L2(W2). However, if S = sP(V �R) is not a measurable function of V (i.e., the
instrument R is relevant), then {f ∈ L2((V �S)) : f (V �S)= g(V )+ λ(S)} is not dense in
L2((V �S)). Hence, from (H.15) we conclude that R̄2 is not dense in L2(W2) and thus by
Lemma 4.2 and Theorem 4.1 that P is locally overidentified.

3Technically, λj(s(V �R)) may not be well defined if s(V �R) /∈ [0�1] since λj ∈ C1([0�1]). However, note
sP(V �R) ∈ [0�1] almost surely by (43) so for notational simplicity we ignore this issue.
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EXAMPLE 4.3: We study a more general version of the model introduced in the main
text. In particular, we still maintain that for some Uit mean independent of (Kit�Lit� Iit),

Yit = gP(Kit�Lit)+ωit +Uit� (H.16)

However, we now let Lit be a possibly dynamic variable, in which case (48) becomes

ωit = λP(Kit�Lit� Iit)� (H.17)

Maintaining that ωit follows an AR(1) process with coefficient πP , and recalling that
Wi = (Ki1�Li1� Ii1), we then obtain the following two conditional moment restrictions:

E
[
Y1 − νP(W )|W

] = 0� (H.18)

E
[
Y2 − gP(K2�L2)−πP

(
νP(W )− gP(K1�L1)

)|W ] = 0� (H.19)

where νP(W ) = gP(K1�L1) + λP(K1�L1� I1). Let L2((K1�L1)) = L2((K2�L2)), hP =
(νP�gP�πP), and the parameter space be H =L2(W )×L2((K1�L1))× R. It is straightfor-
ward to verify that in this model, we have, for any h= (ν�g�π) ∈ H,

∇m1(W �hP)[h] = −ν(W )� (H.20)

∇m2(W �hP)[h] = −E[
g(K2�L2)|W

] −πλP(K1�L1� I1)

−πP
(
ν(W )− g(K1�L1)

)
�

(H.21)

Since the model defined by (H.18) and (H.19) has a triangular structure, we next ap-
ply Lemma 4.2 to establish that it is locally overidentified. Let νP ∈ H1 = L2(W ) and
(gP�πP) ∈ H2 = L2((K1�L1)) × R. Since πP < ∞, condition (34) of Lemma 4.2 is sat-
isfied by (H.20), (H.21), and direct calculation. Applying Corollary 4.1 to (H.20) and
since H1 = L2(W ), we trivially obtain that R̄1 = L2(W ). Therefore, by Theorem 4.1 and
Lemma 4.2, we can conclude that P is locally overidentified if and only if R̄2 �= L2(W ),
where

R2 = {−E[
g(K2�L2)|W

] +πPg(K1�L1)−πλP(K1�L1� I1) :
(g�π) ∈L2

(
(K1�L1)

) × R
}
�

(H.22)

Inspecting (H.22), a sufficient condition for P to be locally overidentified is therefore
for the map g �→ E[g(K2�L2)|W ] to not be able to generate arbitrary functions of W =
(K1�L1� I1). Formally, defining the spaces

F̄ ≡ cl
{
E

[
g(K2�L2)|W

] −E[
g(K2�L2)|K1�L1

] : g ∈L2
(
(K1�L1)

)}
�

L2
(
(K1�L1)

)⊥ ≡
{
f ∈L2(W ) :

∫
fgdP = 0 for all g ∈L2

(
(K1�L1)

)}
�

(H.23)

we note F̄ ⊆L2((K1�L1))
⊥ by the law of iterated expectations, and therefore we may de-

compose L2((K1�L1))
⊥ = F̄⊕ F̄⊥. A sufficient condition for P to be locally overidentified

is then that the dimension of F̄⊥ is at least 2.

We conclude by discussing an additional example based on the nonparametric analysis
of changes in the wage distribution by DiNardo, Fortin, and Lemieux (1996).
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EXAMPLE H.1: Suppose we observe {Hi�Di�Vi�Ti}ni=1, where, for each individual i, Hi

denotes hourly wages, Di is a dummy variable for union membership, Vi is a vector of
covariates, and Ti ∈ {1�2} indicates the time period individual i was measured in. The
parameter of interest θP is the counterfactual τth quantile of wages that would have held
in period two if unionization rates had been constant between periods, which solves

E

[
τ− 1{H ≤ θP�D= 1}λ1�P(V )

λ2�P(V )
− 1{H ≤ θP�D= 0}1 − λ1�P(V )

1 − λ2�P(V )

∣∣∣T = 2
]

= 0 (H.24)

for λt�P(V ) the unionization rate conditional on V at time t.4 Since λt�P satisfies

E
[
D− λt�P(V )|V �T = t] = 0 for t ∈ {1�2}� (H.25)

this setting fits model (26) with parameters (λ1�P�λ2�P� θP). Specifically, we suppose that
λt�P ∈ Lt ⊆L∞(V ), let H = L1 × L2 × R, set X = (Z�W )= (H�D�V �T) and define

ρ1(Z�h)= 1{T = 1}(D− λ1(V )
) + 1{T = 2}(D− λ2(V )

)
�

ρ2(Z�h)= 1{T = 2}
(
τ− 1{H ≤ θ�D= 1}λ1(V )

λ2(V )
− 1{H ≤ θ�D= 0}1 − λ1(V )

1 − λ2(V )

)
�

for any h= (λ1�λ2� θ) ∈ H, and whereW1 = (V �T), and since the second moment restric-
tion is unconditional, we set W2 = {1}. It is straightforward to verify that in this model,

∇m1(W1�hP)[h] = −1{T = 1}λ1(V )− 1{T = 2}λ2(V ) (H.26)

for any h= (λ1�λ2� θ) ∈ H. For notational simplicity, we let R= (V �T�D) and GH|R(h|r)
and gH|R(h|r) respectively denote the cdf and density of H conditional on R. Then, by
direct calculation, it follows that, for any h= (λ1�λ2� θ) ∈ H, we have

m2(W2�h)=E
[

1{T = 2}
(
τ−GH|R(θ|R)1{D= 1}λ1(V )

λ2(V )

−GH|R(θ|R)1{D= 0}1 − λ1(V )

1 − λ2(V )

)]
�

and that sufficient conditions for m2(W2� ·) : H → R to be Fréchet differentiable are that:
(i) gH|R(H|R) be continuously differentiable in H with almost surely bounded level and
derivative in (H�R), and (ii) P(1 − ε ≥ λ2�P(V ) ≥ ε) = 1 for some ε > 0. In addition,
notice that this model possesses the triangular structure required in Lemma 4.2 with
H1 = L1 × L2 and H2 = R, while requirement (34) holds under the additional assump-
tion that P(P(T = t|V )≥ ε)= 1 for t ∈ {1�2} and some ε > 0. Employing the notation of
Lemma 4.2, we obtain by direct calculation that

R1 =
{
f ∈L2(W1) : f (T�V )=

2∑
t=1

1{T = t}λt(V ) for (λ1�λ2) ∈ L1 × L2

}
�

R2 =
{
θ×E

[
1{T = 2}gH|R(θP |R)

(
1{D= 1}λ1�P(V )

λ2�P(V )
+ 1{D= 0}1 − λ1�P(V )

1 − λ2�P(V )

)]
: θ ∈ R

}
�

4That is, as in DiNardo, Fortin, and Lemieux (1996), we desire the τth quantile of G(H|D�V �T =
2)G(D|V �T = 1)G(V |T = 2), where for any (A�B), G(A|B) denotes the distribution of A conditional on B.



OVERIDENTIFICATION IN REGULAR MODELS 35

Notice, however, that the expectation defining R2 is necessarily positive, and thus R2 =
R—an equality that simply reflects that assuming existence of θP offers no additional
information. Thus, Lemma 4.2 implies that P is locally just identified if and only if
R̄1 =L2(W1). Equivalently, P is locally just identified iff Lt is dense in L2(V ) for t ∈ {1�2}.
For example, P is locally overidentified if we restrict λt�P through an additive separable
specification. In that case, the choice of estimator for λt�P can affect the asymptotic distri-
bution of a plug-in estimator for θP .
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