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APPENDIX F: PROOF OF THEOREM 0

F.1. Preliminaries

IN THIS SECTION, WE PROVE Theorem 0, which extends the characterizations of REU
representations in Gul and Pesendorfer (2006) and Ahn and Sarver (2013) to allow for
an arbitrary separable metric space X of outcomes. Refer to Section 2.1 of the main
text for all relevant notation and terminology. Throughout, we fix some y∗ ∈ X and let
R̃X = {0} × RX�{y∗} denote the set of utility functions u in RX that are normalized by
u(y∗)= 0.

We first define the static analog of S-based representations introduced in Appendix A:

DEFINITION 13: An S-based REU representation of ρ is a tuple (S�μ� {Us�τs}s∈S) such
that

(i) S is a finite state space and μ is a probability measure on S such that supp(μ) = S,
(ii) for each s ∈ S, the utility Us ∈ R̃X is nonconstant and Us �≈ Us′ for s �= s′,

(iii) for each s ∈ S, the tie-breaking rule τs is a proper finitely-additive probability mea-
sure on R̃X endowed with the Borel sigma-algebra,

(iv) for all p ∈ Δ(X) and A ∈A,

ρ(p;A)=
∑
s∈S

μ(s)τs(p�A)�

where τs(p�A) := τs({u ∈ R̃X : p ∈M(M(A�Us)�u)}).

Analogous arguments as for the DREU part of Proposition A.1 yield the equivalence
of S-based REU representations and static REU representations.

PROPOSITION F.1: Let ρ be a stochastic choice rule on A. Then ρ admits an REU repre-
sentation if and only if it admits an S-based REU representation.

PROOF: Analogous to Proposition A.1(i). Q.E.D.
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Thus, Theorem 0 is equivalent to the following result, which we prove throughout the
rest of this section.

THEOREM F.1: The stochastic choice rule ρ on A satisfies Axiom 0 if and only if ρ admits
an S-based REU representation (S�μ� {Us�τs}s∈S).

Note that because X may be infinite, continuity of each Us in the representation is not
directly implied by linearity. However, the following additional Axiom ensures this. As
in Section 3.3, let A∗ denote the collection of menus without ties, that is, the set of all
A ∈A such that, for any p ∈ A and any sequences pn →m p and Bn →m A� {p}, we have
limn→∞ ρ(pn;Bn ∪ {pn})= ρ(p;A).

AXIOM F.1—Continuity: ρ :A∗ → Δ(Δ(X)) is continuous.

Here A is endowed with the Hausdorff topology induced by the Prokhorov metric π on
Δ(X), and A∗ with the relative topology. We have the following proposition.

PROPOSITION F.2: Suppose ρ admits an S-based REU representation (S�μ� {Us�τs}s∈S).
Then ρ satisfies Axiom F.1 if and only if each utility Us is continuous.

PROOF: See Section F.5. Q.E.D.

Additional notation: For any Y ⊆ X , let A(Y) := {A ∈ A : ∀p ∈ A� supp(p) ⊆ Y } ⊆ A
denote the space of all menus consisting only of lotteries with support in Y . Note that
for each A ∈ A, there is a finite Y such that A ∈ A(Y). We denote by ρY the restriction
of ρ to A(Y), which can be seen as a map from A(Y) to Δ(Δ(Y)). If y∗ ∈ Y , we write
R̃Y := {0} ×RY�{y∗}.

For any A ∈ A(Y) and p ∈ Δ(X), let NY(A�p) := {u ∈ R̃Y : p ∈ M(A�u)} and let
N+

Y (A�p) := {u ∈ R̃Y : {p} = M(A�u)}. Note that NY({p}�p) = N+
Y ({p}�p) = R̃Y and

that NY(A�p) = N+
Y (A�p) = ∅ if p /∈ A. Let N (Y) := {NY(A�p) : A ∈ A(Y) and p ∈

Δ(X)}, N +(Y) := {N+
Y (A�p) :A ∈A(Y) and p ∈ Δ(X)}.

We will consider both the Borel sigma-algebra on R̃Y and its subalgebra F(Y) that
is generated by N (Y) ∪ N +(Y). A finitely-additive probability measure νY on either of
these algebras is called proper if νY (NY(A�p)) = νY (N+

Y (A�p)) for any A ∈ A(Y) and
p ∈ Δ(X). Whenever Y = X , we omit Y from the description of NY(A�p), N+

Y (A�p),
N (Y), N +(Y), and F(Y).

F.2. Proof of Theorem F.1: Sufficiency

F.2.1. Outline

The proof proceeds as follows:
(i) In Section F.2.2, we use conditions (i)–(iv) of Axiom 0 and Theorem 2 in Gul and

Pesendorfer (2006) to construct, for each finite Y ⊆X , a proper finitely-additive probabil-
ity measure νY on F(Y) representing ρY , in the sense that ρY(p;A)= νY (NY(A�p)) for
all A, p. Given the fact that each ρY is derived from the same ρ, it is easy to check that the
family {F(Y)� νY } is Kolmogorov consistent. We can then find a proper finitely-additive
probability measure ν on F extending all the νY (and hence representing ρ).
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(ii) The support of ν is defined by

supp(ν) :=
(⋃{

V ∈F : V is open and ν(V ) = 0
})c

�

In Section F.2.3, we use part (v) of Axiom 0 to show that suppν is finite (up to positive
affine transformation of utilities) and contains at least one nonconstant utility function.
While Axiom 0(v) is similar to the finiteness Axiom in Ahn and Sarver (2013), this step
requires more work in our setting. A key technical challenge is that unlike in Ahn and
Sarver, it is not clear in our infinite outcome space setting how to normalize utilities to
ensure that N(A�p)-sets are compact. Compact sets C have the useful property (used
repeatedly by Ahn and Sarver) that if C ∩ suppν = ∅, then ν(C) = 0. Lemma F.5 exploits
the geometry of N(A�p)-sets to show that this property continues to hold for N(A�p)-
sets in our setting, even though they are not compact.

(iii) In Section F.2.4, we proceed in a similar way to the proof of Theorem S3 in Ahn
and Sarver (2013) (again using Lemma F.5 to circumvent technical difficulties). Letting
S := {s1� � � � � sL} denote the equivalence classes of nonconstant utilities in supp ν, we find
separating neighborhoods Bs ∈ F of each s such that ν(Bs) > 0. We then define μ(s) =
ν(Bs) and τs(V ) = ν(V ∩Bs)

ν(Bs)
and show that this yields an S-based REU representation of ρ.

F.2.2. Construction of ν

In this section, we construct a proper finitely-additive probability measure ν on F that
represents ρ, that is, such that for all A ∈A and p ∈ A, we have

ρ(p;A) = ν
(
N(A�p)

) = ν
(
N+(A�p)

)
)�

First consider any finite Y ⊆ X with y∗ ∈ Y . By Axiom 0(i)–(iv) (Regularity, Linearity,
Extremeness, and Mixture Continuity), Theorem 2 in Gul and Pesendorfer (2006) ensures
that there is a proper finitely-additive probability measure νY on FY such that

ρY(p;A) = νY
(
NY(A�p)

) = νY
(
N+

Y (A�p)
)

for all A ∈A(Y) and p ∈A.

CLAIM 4: For any finite Y ′ ⊇ Y � y∗, (νY ′
�F(Y ′)) and (νY �F(Y)) are Kolmogorov con-

sistent, that is, for any E ∈F(Y), we have

νY
′(
E ×RY ′

�Y
) = νY (E)� (24)

PROOF: To see this, note first that the LHS of (24) is well-defined, since E ×
RY ′

�Y ∈ FY ′ by Lemma F.4(iv). Note next that by Lemma F.4(iii), E is of the form⋃n

i=1 NY(Ai�pi) ∩ N+
Y (Bi� qi) for some finite n and Ai�Bi ∈ A(Y). Let E′ be ob-

tained from E by replacing each NY(Ai�pi) with N+
Y (Ai�pi). By Lemma F.4(ii), E′ =⋃n

i=1 N
+
Y (Ci� ri) for some family {Ci} ⊆ A(Y). Moreover, since both νY and νY

′ are
proper, we have that νY (E) = νY (E′) and νY

′
(E × RY ′

�Y ) = νY
′
(E′ × RY ′

�Y ). Hence,
it suffices to prove that νY

′
(E′ × RY ′

�Y ) = νY (E′). For this, it is enough to show that
for any collection of sets N+

1 � � � � �N
+
n ∈ N +(Y) := {N+(A�p) : A ∈ A(Y)}, we have

νY (
⋃n

i=1 N
+
i ) = νY

′
(
⋃n

i=1 N
+
i × RY ′

�Y ). We prove this by induction. For the base case,
note that for any N+(A�p) ∈N +(Y), we have

νY
′(
N+(A�p)

) ×RY ′
�Y )= ρY ′

(p�A) := ρ(p;A) =: ρY(p;A) = νY
(
N+(A�p)

)
�
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Suppose next that the claim is true whenever m< n. Then

νY

(
m+1⋃
i=1

N+
i

)
= νY

(
m⋃
i=1

N+
i

)
+ νY

(
N+

m+1

) − νY

(
m⋃
i=1

(
N+

i ∩N+
m+1

))

= νY
′
(

m⋃
i=1

N+
i ×RY ′

�Y

)
+ νY

′(
N+

m+1 ×RY ′
�Y

)

− νY
′
(

m⋃
i=1

(
N+

i ∩N+
m+1

) ×RY ′
�Y

)

= νY
′
(

m+1⋃
i=1

N+
i ×RY ′

�Y

)
�

where the second equality follows from the inductive hypothesis and the fact that N+
i ∩

N+
m+1 ∈N +(Y) by Lemma F.4(ii). Q.E.D.

Now define ν on F by setting ν(E) := νY (proj
R̃Y E) for any finite Y � y∗ such that E =

proj
R̃Y E ×RX�Y and proj

R̃Y E ∈ FY . By Lemma F.4(iv), such a Y exists. Moreover, given
Kolmogorov consistency of the family {νY }Y⊆X , this is well-defined. Finally, it is immediate
that ν is a proper finitely-additive probability measure and that ν represents ρ.

F.2.3. Finiteness of suppν

The support of a finitely-additive probability measure ν is defined by

supp(ν) :=
(⋃{

V ∈F : V is open and ν(V ) = 0
})c

�

The next lemma invokes Axiom 0(v) (Finiteness) to show that the support of ν constructed
in the previous section contains finitely many equivalence classes of utility functions and
contains at least one nonconstant function. We use 0 to denote the unique constant utility
function in R̃X .

LEMMA F.1: Let K be as in the statement of the Finiteness Axiom and let Pref(Δ(X))
denote the set of all preferences over Δ(X). Then

#
{
�∈ Pref

(
Δ(X)

) : � is represented by some u ∈ supp(ν)� {0}} =L�

where 1 ≤L≤ K.

PROOF: We first show that L ≤ K. If not, then we can find utilities {u1� � � � � uK+1} ⊆
supp(ν) such that each ui is nonconstant over X and ui �≈ uj for all i �= j. By Lemma E.2,
we can find a menu A = {pi : i = 1� � � � �K + 1} ∈ A such that ui ∈ N+(A�pi) for each i.
Take any B ⊆A with |B| ≤K. Then pi /∈ B for some i.

Fix any sequences pi
n →m pi and Bn →m B. By definition, this means that there exist

r ∈ Δ(X) and αn → 0 such that pi
n = αnr + (1 − α)pi for all n, and that, for each q ∈ B,

there exist Bq ∈A and βn(q)→ 0 such that Bn = ⋃
q∈B(βn(q)Bq+(1−βn(q)){q}) for all n.

Now, B and each Bq are finite, and ui is linear with ui ·pi > ui ·q for all q ∈ B. Hence, there
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is N such that for all n ≥ N , ui · pi
n > u · qn for all qn ∈ Bn. Thus, ui ∈ N+({pi

n} ∪ Bn�p
i
n)

for all n ≥ N . But since ui ∈ supp(ν) and N+({pi
n} ∪ Bn�p

i
n) is an open set in F , the

definition of supp(ν) then implies that ν(N+({pi
n} ∪ Bn�p

i
n)) > 0 for all n ≥ N . But then

ρ(pi
n; {pi

n} ∪Bn)= ν(N+({pi
n} ∪Bn�p

i
n)) > 0 for all n ≥N , contradicting Finiteness.

Next we show that L ≥ 1. Indeed, if L = 0, then for any A ∈ A with |A| ≥ 2 and for
any p ∈ A, we have (N(p�A)� {0})∩ suppν = ∅. By Lemma F.5 below, this implies that
ν(N+(p�A)) = 0 for any p ∈ A. But since ν represents ρ, ρ(p;A) = ν(N+(p�A)) for
any p ∈A, so we have

∑
p∈A ρ(p;A) = 0, which is a contradiction. Q.E.D.

F.2.4. Constructing the REU Representation

Let �1� � � � ��L denote all the preferences represented by some nonconstant utility in
supp(ν), where by Lemma F.1 we know that L is finite and L ≥ 1. For each i = 1� � � � �L,
pick some ui ∈ suppν representing �i. For any u ∈ R̃X , let [u] := {u′ ∈ R̃X : u′ ≈ u}.
By Lemma E.2, we can find A := {p1� � � � �pL} ∈ A such that ui ∈ N+(A�pi) for all
i = 1� � � � �L. Let Bui := N+(A�pi) for all i. By construction, [ui] ⊆ Bui and Bui ∩ Buj = ∅
for j �= i. Moreover, by the definition of supp(ν), we have ν(Bui) > 0 for each i, since
Bui ∈F is open and ui ∈ Bui ∩ supp(ν) �= ∅.

Let S := {u1� � � � � uL} and define the function μ : S → [0�1] by

μ(s) = ν(Bs) for each s ∈ S�

We claim that μ defines a full-support probability measure on S. For this, it remains to
show that

∑
s μ(s) = 1. Since

∑
s μ(s) = ∑

s ν(Bs) = ν(
⋃

s∈S Bs), it suffices to prove the
following claim:

LEMMA F.2: ν(
⋃

s∈S Bs)= 1.

PROOF: It suffices to prove that ν(R̃X �
⋃

s∈S Bs) = 0. Note that R̃X = ⋃L

i=1 N(A�pi),
since A = {pi� � � � �pL}. Thus,

R̃X �
⋃
s∈S

Bs ⊆
L⋃
i=1

(
N(A�pi)�N+(A�pi)

)
�

By finite additivity of ν, this implies that

ν

(
R̃X �

⋃
s∈S

Bs

)
≤

L∑
i=1

ν
(
N(A�pi)�N+(A�pi)

) = 0�

where the last inequality follows from properness of ν. Q.E.D.

Next, we define a set function τs :F → R+ for each s ∈ S by setting

τs(V ) := ν(V ∩Bs)

ν(Bs)

for each V ∈ F . Since ν(Bs) > 0 for all s ∈ S, this is well-defined. Moreover, since ν is a
proper finitely-additive probability measure on F , so is τs.

Note that for all A ∈ A and p ∈ Δ(X), {u ∈ R̃X : p ∈ M(M(A�s)�u)} = N(M(A�s)�

p) ∈ F , so τs({u ∈ R̃X : p ∈ M(M(A�s)�u)}) is well-defined. The next lemma will allow
us to complete the representation:
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LEMMA F.3: For each s ∈ S, A ∈A, and p ∈ A,

ν
(
N(A�p)

) =
∑
s∈S

μ(s)τs
({
u ∈ R̃X : p ∈ M

(
M(A�s)�u

)})
�

PROOF: We first show that for each s ∈ S, suppτs � {0} = [s]. To see that [s] ⊆ suppτs �
{0}, consider any u ∈ [s] and any open V ∈ F such that u ∈ V . By Lemma F.4(iii), V
is a finite union of finite intersections of sets in N ∪ N +. Hence, since each element of
N ∪N + is closed under positive affine transformations, so is V . Thus, u ∈ V implies s ∈ V .
But then V ∩Bs ∈F is open and contains s, and hence ν(V ∩Bs) > 0 since s ∈ suppν. This
proves u ∈ suppτs � {0}.

To see that suppτs � {0} ⊆ [s], consider any u �= 0 such that u /∈ [s]. It suffices to show
that there exists an open V ∈ F such that u ∈ V and τs(V ) = 0. If u ≈ s′ for some s′ ∈
S� {s}, then V = Bs′ is as required since Bs′ ∩Bs = ∅ and u ∈ Bs′ . If there is no s′ ∈ S� {s}
such that u≈ s′, then u /∈ suppν. But then there exists an open V ∈F such that u ∈ V and
ν(V ) = 0, so also τs(V ) = 0.

By Lemma F.6 below, this implies that τs(N(A�p)) = τs(N(M(A� s)�p)) for any A ∈
A and p ∈ A. This implies that for any A ∈A and p ∈A,∑

s∈S
μ(s)τs

({
u ∈ R̃X : p ∈ M

(
M(A�s)�u

)}) =
∑
s∈S

μ(s)τs
(
N

(
M(A�s)�p

))

=
∑
s∈S

μ(s)τs
(
N(A�p)

)

=
∑
s∈S

ν
(
N(A�p)∩Bs

)

= ν

(
N(A�p)∩

⋃
s∈S

Bs

)

= ν(N(A�p)�

where the last equality follows from Lemma F.2. Q.E.D.

For any s ∈ S = {u1� � � � � uL}, we write Us := s. We claim that (S�μ� {Us�τs}s∈S) is an
S-based REU representation of ρ. Indeed, by construction, Us is nonconstant for all
s, Us �≈ Us′ for any distinct s� s′ ∈ S, and μ is a full-support probability measure on S.
Moreover, each τs is a proper finitely-additive probability measure on R̃X endowed with
the algebra F . By standard arguments (cf. Rao and Rao (2012)), we can extend τs to a
proper finitely-additive probability measure on the Borel sigma-algebra on R̃X . Finally,
Lemma F.3 and the fact that ν represents ρ implies that, for all A ∈A and p ∈A, we have
ρ(p;A) = ∑

s∈S μ(s)τs(p�A), as required.

F.3. Proof of Theorem F.1: Necessity

Suppose that ρ admits an S-based REU representation (S�μ� {Us�τs}s∈S). We show
that ρ satisfies Axiom 0. Observe first that for any finite Y ⊆ X with y∗ ∈ Y , (S�μ�
{Us �Y � τs �Y }s∈S) constitutes an S-based REU representation of ρY , where Us �Y denotes
the restriction of Us to Y and τs �Y is given by τs �Y (B) = τs(B × RX�Y ) for any Borel
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set B on RY . Thus, by Theorem S3 in Ahn and Sarver (2013), ρY satisfies Regularity,
Linearity, Extremeness, and Mixture Continuity.

To show that ρ satisfies Regularity, consider any p ∈ A ⊆ A′. Pick a finite Y ⊆ X
with y∗ ∈ Y such that A�A′ ∈ A(Y). By definition, ρ(p;A) = ρY(p;A) and ρ(p;A′) =
ρY(p;A′). Hence, by Regularity for ρY , we have ρ(p;A) ≥ ρ(p;A′), as required. Simi-
larly, we can show that ρ satisfies Linearity, Extremeness, and Mixture Continuity by using
the fact that for each finite Y , each ρY satisfies these axioms.

Finally, to show that ρ satisfies Finiteness, let K := |S| and consider any A ∈ A. For
each s ∈ S, pick any qs ∈ M(A�Us), and define B := {qs : s ∈ S}. Note that |B| ≤ K. If
B = A, then Finiteness is trivially satisfied. If B�A, then pick any p ∈A�B. We can pick
a large enough finite Y ⊆ X such that each Us is nonconstant on Y and Us �Y �≈Us′ �Y for
any distinct s� s′ ∈ S. Let r ∈ Δ(Y) be given by r(y) := 1

|Y | for each y ∈ Y . For each s ∈ Y ,
pick any ys ∈ argmaxy∈Y Us(y). Note that Us(ys) > Us(r). Define Bn := n−1

n
B+ 1

n
{ys : s ∈ S}

and pn := n−1
n
p + 1

n
r. Then Bn →m B and pn →m p. Moreover, for all large enough n,

we have Us(
n−1
n
qs + 1

n
ys) > Us(p

n) for each s ∈ S. Thus, ρ(pn; {pn} ∪ Bn) = 0, proving
Finiteness.

F.4. Additional Lemmas for Section F

F.4.1. Properties of N(A�p)-Sets

LEMMA F.4: Fix any X ′ ⊆X with y∗ ∈ X . For any collection S , we let U(S) denote the set
of all finite unions of elements of S .

(i) If E ∈N (X ′) (resp. E ∈N +(X ′)), then Ec ∈ U(N +(X ′)) (resp. Ec ∈ U(N (X ′)).
(ii) If E1�E2 ∈ N (X ′) (resp. E1�E2 ∈ N +(X ′)), then E1 ∩ E2 ∈ N (X ′) (resp. E1 ∩ E2 ∈

N +(X ′)).
(iii) F(X ′) is the set of all E such that E = ⋃

�∈LM� ∩N� for some finite index set L and
M� ∈N (X ′), N� ∈N +(X ′) for each � ∈ L.

(iv) F(X ′) is the set of all E for which there exists a finite Y ⊆ X ′ with y∗ ∈ Y and EY ∈
F(Y) such that E = EY ×RX�Y .

PROOF: (i) If E = N(A�p) ∈ N (X ′), then Ec = ⋃
q∈A�{p} N

+({p�q}� q) ∈ U(N +(X ′))

if p ∈A and Ec = R̃X ′ ∈ U(N +(X ′)) if p /∈ A. Similarly, if E =N+(A�p) ∈N +(X ′), then
Ec = ⋃

q∈A�{p} N({p�q}� q) ∈ U(N (X ′)) if p ∈A and Ec = R̃X ′ ∈ U(N (X ′)) if p /∈ A.
(ii) If N(A1�p1)�N(A2�p2) ∈ N (X ′), then N(A1�p1) ∩ N(A2�p2) = N( 1

2A1 +
1
2A2�

1
2p1 + 1

2p2) ∈ N (X ′). The same argument goes through replacing all instances of
N with N+.

(iii) By standard results, F(X ′) can be described as follows: Let F0(X
′) denote the

set of all elements of N (X ′) ∪ N +(X ′) and their complements. Let F1(X
′) denote the

set of all finite intersections of elements of F0(X
′). Then F(X ′) is the set of all finite

unions of elements of F1(X
′). By part (i), F0(X) = U(N(X)) ∪ U(N(X ′)) is the col-

lection of all finite unions of elements of N (X ′) and of all finite unions of elements of
N +(X ′). By part (ii), F1(X

′) = F0(X) ∪ I(X ′), where I(X ′) consists of all finite unions
of the form

⋃
�∈LM� ∩N�, where M� ∈N (X ′) and N� ∈N +(X ′) for each � ∈L. Note that

R̃X ′ ∈N (X ′)∩N +(X ′), since R̃X ′ = NX ′({p}�p) = N+
X ′({p}�p) for any p ∈ Δ(X ′). Thus,

F0(X)= U(N(X))∪U(N(X ′))⊆ I(X). Hence, F1(X)= I(X)=F(X).
(iv) Note first that for any NX ′(A�p) ∈ N (X ′) (resp. N+

X ′(A�p) ∈ N +(X ′)) and any
finite Y ⊆ X ′ with y∗ ∈ Y and A ∈A(Y), we have NX ′(A�p)= NY(A�p)×RX ′

�Y (resp.
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N+
X ′(A�p) = N+

Y (A�p) × RX ′
�Y ). Now fix any E ∈ F(X ′). By part (iv), we have a finite

index set L and M� ∈ N (X ′), N� ∈ N +(X ′) for each � ∈ L such that E = ⋃
�∈LM� ∩ N�.

By the first sentence, we can then pick a finite Y ⊆ X ′ with y∗ ∈ Y such that for each �,
we have M� =MY

� ×RX ′
�Y and N� =NY

� ×RX ′
�Y , where MY

� ∈N (Y) and NY
� ∈N +(Y).

Then E = EY × RX�Y , where EY := ⋃
�∈LM

Y
� ∩ NY

� ∈ F(Y). Conversely, if EY ∈ F(Y),
then by part (iv), EY is of the form

⋃
�∈LM

Y
� ∩ NY

� ∈ F(Y) for some finite collection of
MY

� ∈ N (Y) and NY
� ∈ N +(Y). Then by the first sentence, M� := MY

� × RX ′
�Y ∈ N (X ′)

and N� = NY
� × RX ′

�Y ∈ N +(X ′), so EY × RX ′
�Y = ⋃L

�=1 M� ∩ N�) ∈ F(X ′) by part (iv).
Q.E.D.

F.4.2. Properties of Proper Finitely-Additive Probability Measures on F
LEMMA F.5: Let ν be a proper finitely-additive probability measure on F and suppose

that (N(p�A)� {0}) ∩ suppν = ∅ for some A ∈ A and p ∈ A, where 0 denotes the unique
constant utility in R̃X . Then ν(N+(A�p))= ν(N(A�p))= 0.

PROOF: Since (N(A�p)� {0})∩ suppν = ∅, we have

N(A�p)� {0} ⊆ (suppν)c :=
⋃{

V ∈F : V open and ν(V ) = 0
}
�

Thus, for some possibly infinite index set I, there exists a family {Vi}i∈I , with Vi ∈ F open
and ν(Vi)= 0 for each i such that

N(A�p)� {0} ⊆
⋃
i∈I

Vi�

We now show that there is a finite subset {i1� � � � � in} ⊆ I such that

N(A�p)� {0} ⊆
n⋃

j=1

Vij �

To see this, define L(A�p) := (N(A�p)∩[−1�1]X)�{0}. Note that since [−1�1]X is com-
pact in RX (by Tychonoff’s theorem) and N(A�p) is closed in R̃X , C(A�p) is compact in
the relative topology on R̃X � {0}. Hence, since L(A�p) ⊆ N(A�p)� {0} is covered by⋃

i∈I Vi and each Vi is open, it has a finite subcover
⋃n

j=1 Vij .
We claim that N(A�p) � {0} is also covered by

⋃n

j=1 Vij . To see this, consider any
u∗ ∈ N(A�p) � {0}. We can find a finite Y ⊆ X such that y∗ ∈ Y , u∗ �Y is not con-
stant, N(A�p) =NY(A�p)×RX�Y , and for each j = 1� � � � � n, Vij = V Y

ij
×RX�Y for some

V Y
ij

∈FY (see Lemma F.4(iv)).
Since Y is finite, there exists α > 0 small enough such that αu∗(y) ∈ [−1�1] for all

y ∈ Y . Define u ∈ R̃X by u �Y= αu∗ �Y and u(x) = 0 for all x ∈ X � Y . Note that u ∈
N(A�p): Indeed, u∗ ∈ N(A�p) = NY(A�p) × RX�Y , u �Y= αu∗ �Y , and NY(A�p) is
closed under positive scaling. Moreover, u is not constant, since u∗ �Y is not constant.
Finally, u ∈ [−1�1]X . This shows u ∈ L(A�p). Since L(A�p) is covered by

⋃n

j=1 Vij , there
exists j such that u ∈ Vij = V Y

ij
×RX�Y . But note that V Y

ij
is closed under positive scaling,

since, by Lemma F.4(iii), it is a finite union of sets which are closed under positive scaling.
Since u �Y= αu∗ �Y , this implies u∗ ∈ Vij .
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The above shows that N(A�p)� {0} is covered by
⋃n

j=1 Vij , and hence so is N+(A�p).
But since ν(Vij ) = 0 for all j = 1� � � � � n and ν is finitely additive, it follows that
ν(N+(A�p))= 0. Moreover, by properness of ν, this implies ν(N(A�p))= 0. Q.E.D.

LEMMA F.6: Suppose ν is a proper finitely-additive probability measure on F and suppν�
{0} = [u] for some u ∈ R̃X . Then for any A ∈ A and p ∈ A, we have ν(N(A�p)) =
ν(N(M(A�u)�p)).

PROOF: Fix any A ∈A and p ∈A. Note first that for any q ∈ A,

q /∈M(A�u) ⇒ ν
(
N(A�q)

) = 0� (25)

Indeed, if q /∈ M(A�u), then ∅ = [u] ∩ N(A�q) = (N(A�q) � {0}) ∩ suppν. But then
Lemma F.5 implies that ν(N(A�q)) = 0, as claimed.

Suppose now that p /∈ M(A�u). Then (25) implies that ν(N(A�p)) = 0. Moreover,
N(B�p) := ∅ if p /∈ B, so also ν(N(M(A�u)�p))= 0, as required.

Suppose next that p ∈M(A�u). Then

N(A�p)⊆ N
(
M(A�u)�p

) ⊆ N(A�p)∪
⋃

q∈A�M(A�u)

N(A�q)�

so that

ν
(
N(A�p)

) ≤ ν
(
N

(
M(A�u)�p

)) ≤ ν
(
N(A�p)

) +
∑

q∈A�M(A�u)

ν
(
N(A�q)

) = ν
(
N(A�p)

)
�

where the last equality follows from (25). This again shows that ν(N(A�p)) =
ν(N(M(A�u)�p)), as required. Q.E.D.

F.5. Proof of Proposition F.2

“Only if” direction: We prove the contrapositive. Suppose that there exist some s′ ∈ S
and x ∈ X such that limn Us′(xn) �= Us′(x) for some sequence xn → x. Since S is finite, by
taking an appropriate subsequence of {xn}, we can assume that limn Us(xn) exists (allow-
ing for ±∞) for every s ∈ S.

Let S+ := {s ∈ S : limn Us(xn) < Us(x)}, S− := {s ∈ S : limn Us(xn) > Us(x)}, and S0 :=
S� (S+ ∪ S−). Then there exist γ > 0 and N such that for all n ≥N , Us(xn)+ 2γ <Us(x)
for all s ∈ S+ and Us(xn) > Us(x)+ 2γ for all s ∈ S−. Let p = αδx + (1 −α)δxN . By setting
α sufficiently large, we can guarantee that for all n ≥N , Us(xn)+γ <Us(p) for all s ∈ S+
and Us(xn) > Us(p) + γ for all s ∈ S−. Note also that Us(x) > Us(p) + 2γ(1 − α) for all
s ∈ S+ and Us(x)+ 2γ(1 − α) <Us(p) for all s ∈ S−.

Since S is finite and each Us is nonconstant, we can assume that Us(p) �= Us(x) for
all s ∈ S. (Otherwise, we can replace p with a lottery that is obtained by mixing an ap-
propriate lottery to p, without violating the above construction.) This implies that there
exist γ′ > 0 and N ′ such that, for all s ∈ S0, either min{Us(xn)�Us(x)}>Us(p)+ γ′ for all
n ≥ N ′ or max{Us(xn)�Us(x)} + γ′ <Us(p) for all n ≥ N ′. Let S0− be the set of states in
S0 that satisfy the former inequality, and S0+ be the set of states in S0 that satisfy the latter
inequality.

Let m := |S|. By Lemma E.2, we can find distinct lotteries {q1� � � � � qm} such that
Usi ∈ N+({q1� ��� qm}� qi) for each si ∈ S. Define pi = (1 − ε)p + εqi for each si ∈ S, and
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A := {p1� � � � �pm�δx} and An := {p1� � � � �pm�δxn}. By construction, if we take ε suffi-
ciently small, then for all n ≥ max{N�N ′},[

Usi ∈ N+(An�pi)∩N+(A�δx)�∀si ∈ S+
]
�[

Usi ∈ N+(An�δxn)∩N+(A�pi)�∀si ∈ S−
]
�[

Usi ∈ N+(An�δxn)∩N+(A�δx)�∀si ∈ S0−
]
�[

Usi ∈ N+(An�pi)∩N+(A�pi)�∀si ∈ S0+
]
�

By Lemma E.3, A�An ∈A∗ for all n≥ max{N�N ′}. Note that S+ ∪ S− �= ∅ by assumption.
Take any si ∈ S+ ∪ S−. If si ∈ S+, then ρ(pi;An) = μ(si) for every n ≥ max{N�N ′} and
ρ(pi;A) = 0. If si ∈ S−, then ρ(pi;An) = 0 for every n ≥ max{N�N ′} and ρ(pi;A) =
μ(si). In either case, Axiom F.1 is violated.

“If” direction: Suppose each Us is continuous. Take any sequence An → A of menus
that converge under the Hausdorff metric such that A�An ∈ A∗ for each n. Enumerate
the elements in A by A = {p1� � � � �pm}, where we can assume up to relabeling that, for
some k ≤ m, we have ρ(pi;A) > 0 for each i = 1� � � � �k and ρ(pi;A) = 0 for each i =
k + 1� � � � �m. For each i = 1� � � � �k, define Si := {s ∈ S : M(A�Us) = {pi}}. Note that by
Lemma E.3, S = ⋃

i Si since A ∈A∗.
Take any B that is a continuity set under ρ(·;A). For each i = 1� � � � �k, we have either

pi ∈ intB or pi ∈ int(Δ(X)�B). We can pick ε > 0 sufficiently small such that:
(i) Bε(pi)⊆ intB if pi ∈ intB, and Bε(pi)⊆ int(Δ(X)�B) if pi ∈ int(Δ(X)�B),

(ii) for any i� j = 1� � � � �m with i �= j, we have Bε(pi)∩Bε(pj),
(iii) for any i = 1� � � � �k, j = 1� � � � �m with i �= j, qi ∈ Bε(pi), and qj ∈ Bε(pj), we have

Usi(qi) > Usi(qj) for all si ∈ Si.
Here Bε(·) denotes ε-neighborhoods with respect to the Prokhorov metric π, and (iii)
holds by the assumption that each Us is continuous. Since An → A, there exists N such
that for all n ≥ N , we have the following: (a) for each q ∈ An, there exists i = 1� � � � �m
such that q ∈ Bε(pi); and (b) for each i = 1� � � � �m, there exists q ∈ An such that q ∈
Bε(pi). For such n ≥ N , we then have M(An�Usi) ∈ Bε(pi) for each i = 1� � � � �k and si ∈
Si. Thus ρ(B;An)= ∑k

i=1 μ(Si)= ρ(B;A). By the Portmanteau theorem, this guarantees
that ρ(·;An)→ ρ(·;A) under weak convergence, as claimed.

APPENDIX G: PROOFS FOR SECTION 5

G.1. Proof of Proposition 1

The first part is immediate from the i.i.d. full-support assumption on ε. To show the
second part, suppose that v1(z1) < v1(z

′
1). We consider the equivalent problem of scaling

v terms by α := 1
λ
> 0 while fixing ε terms. That is, we write

U0

(
z0�A

big
1

) = αv0(z0)+ ε
(z0�A

big
1 )

0 + δE
[
max

{
αv1(z1)+ ε

z1
1 �αv1

(
z′

1

) + ε
z′

1
1

}]
�

U0

(
z0�A

small
1

) = αv0(z0)+ ε
(z0�A

small
1 )

0 + δαv1(z1)�

where the second line used the fact that εz1
1 has mean zero.

By the i.i.d. full-support assumption on ε0, the desired claim follows if we show that the
difference U0(z0�A

big
1 ) − U0(z0�A

small
1 ) is decreasing in α. To show this, suppose without
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loss of generality that v0(z0)= 0. Then, for all α, the derivatives of the utilities satisfy

dU
(
z0�A

big
1

)
dα

= δ
(
ρ1

(
z1�A

big
1

)
v1(z1)+ ρ1

(
z′

1�A
big
1

)
v1

(
z′

1

))
�

dU
(
z0�A

small
1

)
dα

= δv1

(
z′

1

)
�

where we can suppress the dependence on histories in ρ1 since ε shocks are i.i.d. More-
over, letting f denote the density of the ε shocks and setting κ(ε

z′
1

1 ) := α(v1(z
′
1)−v1(z1))+

ε
z′

1
1 , we have that ρ1(z1�A

big
1 ) = ∫ ∞

−∞
∫ ∞
κ(ε

z′1
1 )

f (ε
z1
1 )dε

z1
1 f (ε

z′
1

1 )dε
z′

1
1 and ρ1(z

′
1�A

big
1 ) = 1 −

ρ1(z1�A
big
1 ). Note that both choice probabilities are strictly positive since the ε1 shocks

are i.i.d. with full support. Thus, v1(z1) < v1(z
′
1) implies dU(z0�A

big
1 )

dα
<

dU(z0�A
small
1 )

dα
for all α, as

required.

G.2. Proof of Proposition 2

BEU: For BEU, we have

U0

(
x�A

early
1

) = E
[
max

{
E
[
u2(y)|F1

]
�E

[
u2(z)|F1

]}|F0

]
�

U0

(
x�Alate

1

) = E
[
E
[
max

{
u2(y)�u2(z)

}|F1

]|F0

]
�

By the conditional Jensen inequality and convexity of the max operator, U0(x�A
early
1 ) ≤

U0(x�A
late
1 ). Moreover, this inequality is strict at ω as long as there exist ω′�ω′′ ∈ F0(ω)

with F1(ω
′)=F1(ω

′′) such that u2(y)− u2(z) changes sign on {ω′�ω′′}.
i.i.d. DDC: For i.i.d. DDC, to simplify the notation we assume v0(x) = v1(x)= 0 without

loss of generality. Take a measurable function σ :R2 → [0�1] such that

σ
(
εy� εz

) ∈ argmax
α∈[0�1]

α
(
v2(y)+ εy

) + (1 − α)
(
v2(z)+ εz

)

for all (εy� εz) ∈ R2.83 Then U0(x�A
late
1 )− ε

(x�Alate
1 )

0 is equal to

δ2E
[
max

{
v2(y)+ ε

y
2� v2(z)+ εz

2

}]
= δ2E

[
σ

(
ε
y
2� ε

z
2

)(
v2(y)+ ε

y
2

) + (
1 − σ

(
ε
y
2� ε

z
2

))(
v2(z)+ εz

2

)]
= δ2

(
α∗v2(y)+ (

1 − α∗)v2(z)
) + δ2E

[
σ

(
ε
y
2� ε

z
2

)
ε
y
2 + (

1 − σ
(
ε
y
2� ε

z
2

))
εz

2

]
�

where α∗ := E[σ(εy
2� ε

z
2)]. Since ε

y
2 and εz

2 have mean zero, δ2(α∗v2(y) + (1 − α∗)v2(z))
in the last line is equal to the expected value the agent would obtain from Alate

1 if, in
period 2, she chooses y with probability α∗ regardless of the realization of ε2. Since such
a decision rule is strictly suboptimal at Alate

1 under the full-support assumption on ε2, the
term δ2E[σ(εy

2� ε
z
2)ε

y
2 + (1 − σ(ε

y
2� ε

z
2))ε

z
2] in the last line is strictly positive. At the same

time, U0(x�A
early
1 )− ε

(x�A
early
1 )

0 is equal to

δE
[
max

{
δv2(y)+ ε

(x�{y})
1 � δv2(z)+ ε(x�{z})

1

}]
≥ δE

[
σ

(
ε
(x�{y})
1 � ε(x�{z})

1

)(
δv2(y)+ ε

(x�{y})
1

) + (
1 − σ

(
ε
(x�{y})
1 � ε(x�{z})

1

))(
δv2(z)+ ε(x�{z})

1

)]
= δ2

(
α∗v2(y)+ (

1 − α∗)v2(z)
) + δE

[
σ

(
ε
y
2� ε

z
2

)
ε
y
2 + (

1 − σ
(
ε
y
2� ε

z
2

))
εz

2

]
�

83The existence of such a function follows by the measurable selection theorem.
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where the inequality follows since the value in the second line is the expected payoff if the
agent follows the decision rule σ at Aearly

1 . The equality holds by the i.i.d. assumption on

ε1 and ε2. Since δ ∈ (0�1), it follows that U0(x�A
early
1 )− ε

(x�A
early
1 )

0 >U0(x�A
late
1 )− ε

(x�Alate
1 )

0 .
Thus, the desired claim follows from the i.i.d. assumption on ε0.

“Moreover” part: We consider the equivalent problem in which we scale v terms by a
scaling factor α := 1

λ
> 0 while fixing ε terms. Assume v2(y) > v2(z) without loss of gen-

erality. Then,

U0

(
x�A

early
1

) = ε
(x�A

early
1 )

0 + δE
[
max

{
δαv2(y)+ ε

x�{y}
1 � δαv2(z)+ εx�{z}

1

}]
�

U0

(
x�Alate

1

) = ε
(x�Alate

1 )

0 + δ2E
[
max

{
αv2(y)+ ε

y
2�αv2(z)+ εz

2

}]
�

By the i.i.d full-support assumption on ε0, the desired claim follows if we show that
U0(x�A

early
1 )−U0(x�A

late
1 ) is strictly decreasing in α. As in the proof of Proposition 1, the

derivatives of utilities with respect to α satisfy

dU0

(
x�A

early
1

)
dα

= δ2
(
ρ1

((
x� {y});Aearly

1

)
v2(y)+ ρ1

((
x� {z});Aearly

1

)
v2(z)

)
�

dU0

(
x�Alate

1

)
dα

= δ2
(
ρ2

(
y; {y� z})v2(y)+ ρ2

(
z; {y� z})v2(z)

)
�

where we can again suppress the dependence of choice probabilities on histories due to
the i.i.d. ε assumption. But note that

ρ1

((
x� {y});Aearly

1

) = Pr
[
δ
(
v2(y)− v2(z)

) ≥ εx�{z}
1 − ε

x�{y}
1

]
< Pr

[
v2(y)− v2(z) ≥ εz

2 − ε
y
2

] = ρ2

(
y; {y� z})�

where the inequality holds since δ < 1, v2(y) > v2(z) and by the i.i.d. full-support assump-

tion on ε. Thus, dU0(x�A
early
1 )

dα
<

dU0(x�A
late
1 )

dα
, as required.

G.3. Proof of Proposition 3

Let G denote the cdf of the difference ε− ε′ of two shocks ε, ε′ that are independently
drawn from F .

PROOF OF PROPOSITION 3: Because the density of ε is symmetric and unimodal
around 0, G dominates F in terms of the peakedness order by Theorem 3.D.4 in Shaked
and Shanthikumar (2007). Thus, F(γ) ≥ G(γ) for any γ > 0 and F(γ) ≤ G(γ) for any
γ < 0 by Theorem 3.D.1 in Shaked and Shanthikumar (2007); moreover, the inequalities
are strict because the distribution F has full support.

We express choice probabilities of a in each period as functions of parameters (w�δ),
where we can suppress the dependence on histories by the i.i.d. assumption on shocks.
That is, for each model M = DDC�BEU, let ρM

0 (w�δ) := ρM
0 (a;A0) and ρM

1 (w�δ) :=
ρM

1 (a;A1) for each (w�δ). Let V (w) := E[max{w + εa
1� ε

b
1}]. Note that V (w) ≥ 0 since

shocks have mean zero, and the inequality is strict because of the full-support assumption.
We have ρDDC

1 (w�δ) = ρBEU
1 (w�δ) = Pr(w + εa

1 ≥ εb
1) = G(w). Moreover, ρDDC

0 (w�δ) =
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Pr(w + εa
0 ≥ δV (w) + ε

A1
0 ) = 1 − G(δV (w) − w). Finally, ρBEU

0 (w�δ) = Pr(w + εa
0 ≥

δV (w)) = 1 − F(δV (w)−w).
For each model M, we consider the maximization problem

max
(ω̂�δ̂)∈Θ

ρ0(a;A0) log
[
ρM

0 (ŵ� δ̂)
] + (

1 − ρ0(a;A0)
)

log
[
1 − ρM

0 (ŵ� δ̂)
]

+ (
1 − ρ0(a;A0)

)(
ρ1(a;A1) log

[
ρM

1 (ŵ� δ̂)
] + (

1 − ρ1(a;A1)
)

log
[
1 − ρM

1 (ŵ� δ̂)
])
�

By the assumption that ρ is compatible, for each model M = DDC, BEU, there exists
(ŵM� δ̂M) ∈ Θ such that

ρ0(a;A0)= ρM
0

(
ŵM� δ̂M

)
and ρ1(a;A1)= ρM

1

(
ŵM� δ̂M

)
(26)

hold. By Gibbs’s inequality, (ŵM� δ̂M) achieves the maximum of the above maximization
problem. The latter condition in (26) implies ŵDDC = ŵBEU = G−1(ρ1(a�A1)) =: ŵ∗ (the
value is unique as G is strictly increasing). Then the first condition in (26) implies 1 −
ρ0(a;A0) = G(δ̂DDCV (ŵ∗)− ŵ∗) = F(δ̂BEUV (ŵ∗)− ŵ∗) and the corresponding values of
δ̂DDC, δ̂BEU are uniquely determined (as F , G are strictly increasing and V (·) > 0). If
ρ0(a;A0) > 0�5, then δ̂DDCV (ŵ∗)−ŵ∗� δ̂BEUV (ŵ∗)−ŵ∗ < 0. By the observation in the first
paragraph, this implies δ̂DDCV (ŵ∗) < δ̂BEUV (ŵ∗). Thus, δ̂DDC < δ̂BEU since V (ŵ∗) > 0. If
ρ0(a;A0) < 0�5, a symmetric argument yields δ̂DDC > δ̂BEU.

By standard results (e.g., Theorem 2 in White (1982)), the maximum likelihood esti-
mates (ŵM

n � δ̂
M
n ) for each model M converge almost surely to (ŵM� δ̂M). This completes

the proof. Q.E.D.

In Proposition 3, we assumed that distribution F has a symmetric and unimodal den-
sity around 0. While this assumption is satisfied by several commonly used distributions
including the probit model, it rules out other instances such as the logit model. The fol-
lowing proposition accommodates such distributions under the assumption that F and G
have finite crossings, that is, |{γ : F(γ)=G(γ)}|<∞.

PROPOSITION G.1: Suppose that ρ is compatible with both models. If F and G have finite
crossings, then there exist α�α ∈ (0�1) such that almost surely

(i) limn ŵ
DDC
n = limn ŵ

BEU
n ,

(ii) limn δ̂
DDC
n < limn δ̂

BEU
n if ρ0(a;A0) > α and limn δ̂

DDC
n > limn δ̂

BEU
n if ρ0(a;A0) < α.

The proposition shows that the same conclusion as in Proposition 3 holds as long as
period-0 choice probabilities are relatively extreme. The proof is identical to Proposition 3
except for modifying the first paragraph in the following manner. Note that F and G
cross at least once since they have the same mean. By the finite crossing assumption, we
can take γ and γ to be the largest and smallest crossing points of F and G. Since ε has
mean zero, G is a mean-preserving spread of F by construction. Thus, since their means
are finite,

∫ p

0 F−1(q)dq ≥ ∫ p

0 G−1(q)dq and
∫ 1
p
F−1(q)dq ≤ ∫ 1

p
G−1(q)dq hold for any p ∈

(0�1) (Theorem 3.A.5 in Shaked and Shanthikumar (2007)). This implies F(γ) < G(γ)
for all γ < γ and F(γ) > G(γ) for all γ > γ. Based on this modification, the remaining
proof goes through by defining α := F(γ) and α := F(γ).

Finally, while we have assumed that shocks to each option are identically distributed
according to F , this assumption is also not crucial. In particular, suppose that the shock
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distribution can depend on both the option and the time period; that is, for each x ∈
{a�b�A1} and t ∈ {0�1}, εx

t follows some mean-zero distribution Fx
t with full-support den-

sity and all shocks are independent. In this more general case, the same argument as
above yields the same predictions as Proposition G.1 as long as Fa

0 and F
A1
0 have finite

crossings.

APPENDIX H: PROOFS FOR SECTION 6

We use the following preliminary lemma in the proofs.

LEMMA H.1: Take any finite set of nonconstant utilities {u1� ��� um} ⊆RZ and a convex set
D ⊆ RZ such that {u1� ��� um} ∩ [D] �= ∅. Suppose there exist �� � ∈ Δ(Z) such that ui(�) >
ui(�) for each i = 1� � � � �m. Then there exist a finite set L ⊆ Δ(Z) and �∗ ∈ intΔ(Z) such
that (i) |M(L�ui)| = 1 for all ui, (ii) M(L�ui)= {�∗} if and only if ui ∈ [D].

PROOF: We suppose {u1� � � � � um}� [D], because otherwise we can take any lottery �∗ ∈
intΔ(Z) and set L = {�∗}. For convenience, we relabel the utilities such that ui ∈ [D] for
i = 1� � � � �k and ui /∈ [D] for i = k + 1� � � � �m. By the affine aggregation theorem (e.g.,
Theorem 2 in Fishburn (1984)), for any u ∈ RZ , the following statements are equivalent:

(i) for any w ∈ RZ such that
∑

z∈Z w(z)= 0,[∀i = 1� � � � �k�ui ·w ≤ 0
] ⇒ u ·w ≤ 0�

(ii) u ∈ [co{u1� � � � � uk}].
Note that by definition for any i = k+1� � � � �m, ui does not belong to [co{u1� � � � � uk}] ⊆

[D]. Thus, by the above equivalence result, for each i = k+ 1� � � � �m, we can find a vector
wi ∈ RZ with

∑
z∈Z w

i(z) = 0 such that ui · wi > 0 ≥ uj · wi for any j = 1� � � � �k. Fix any
� ∈ intΔ(Z). For each i = k + 1� � � � �m, we construct �(i) ∈ Δ(Z) such that the vector
�(i) − � (in RZ) is proportional to wi. Note that such a construction is possible because
� is in the interior of Δ(Z). Thus, uj(�) ≥ maxi=k+1�����m uj(�(i)) for each j = 1� � � � �k and
ui(�) < ui(�(i)) for each i = k+ 1� � � � �m.

Let �∗ := � + ε(� − �), where ε > 0 is small enough so that the lottery is well-defined
(this is possible because � is in the interior). By choosing ε small, we can guarantee that
uj(�∗) > maxi=k+1�����m uj(�(i)) for each j = 1� � � � �k and ui(�∗) < ui(�(i)) for each i = k+
1� � � � �m. Let L := �∗ ∪ {�(i) : i = k + 1� � � � �m}. Since each utility is nonconstant, up
to perturbing lotteries in L, we can assume without loss that |M(L�ui)| = 1 for each
i = 1� � � � �m while preserving the above strict inequalities. This completes the proof as
M(L�uj) = {�∗} for each j = 1� � � � �k and M(L�ui) �= {�∗} for each i = k + 1� � � � �m.

Q.E.D.

H.1. Proof of Proposition 4

“If” direction: Consider any L0 ∈ L∗
0, L1 ∈ A∗

1 with L1 ⊆ L0 such that ρZ
0 (�;L0)�

ρZ
0 (�

′;L0) > 0.
Let U0(�) := {u0(ω) : ω ∈ C(L0� �)} and U0(�

′) := {u0(ω) : ω ∈ C(L0� �
′)}. Note that

since L1 features no ties, Lemma E.3 implies C(L1� �) = {ω : � ∈ M(L1�u1(ω))} by the
representation in the atemporal domain. Hence

ρZ
1 (�;L1|L0� �)= μ

({
� ∈M(L1�u1)

}|C(L0� �)
)

≥ min
u∈U0(�)

μ
({
p ∈M(L1�u1)

}|{u0 ≈ u})� (27)
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Likewise,

ρZ
1 (�;L1|L0� �)= μ

({
� ∈M(L1�u1)

}|C(
L0� �

′))
≤ max

u′∈U0(�
′)
μ

({
� ∈M(L1�u1)

}|{u0 ≈ u′})� (28)

Pick u ∈ U0(�) (respectively, u′ ∈ U0(�
′)) which achieve the min (respectively, max) in

(27) (respectively, in (28)). Let {u1
1� � � � � u

m
1 } := {u1(ω) : ω ∈ C(L0� �) ∪C(L0� �

′) and � ∈
M(L1�u1(ω))} and let D := co{u�u1

1� � � � � u
m
1 }. Note that since L0 ⊇ L1, we have � ∈

M(L1�u). Hence, {ω : u0(ω)≈ u�� ∈ M(L1�u1(ω))} = {ω : u0(ω) ≈ u�u1(ω) ∈ [D]}, and
likewise {ω : u0(ω) ≈ u′� � ∈M(L1�u1(ω))} = {ω : u0(ω) ≈ u′�u1(ω) ∈ [D]}. Thus,

μ
({
� ∈ M(L1�u1)

}| ∩ {u0 ≈ u}) = μ
([D]|{u0 ≈ u}) ≥ μ

([D]|{u0 ≈ u′})
= μ

({
� ∈ M(L1�u1)

}|{u0 ≈ u′})� (29)

where the inequality holds by assumption. Combining (27), (28), and (29) yields
ρZ

1 (�;L1|L0� �) ≥ ρZ
1 (�;L1|L0� �

′), as required.
“Only if” direction: We prove the contrapositive. Suppose that for some u�u′ ∈ RZ and

convex D ⊆RZ with u ∈D such that μ({u0 ≈ u})�μ({u0 ≈ u′}) > 0, we have

μ
({
u1 ∈ [D]}|{u0 ≈ u}) <μ

({
u1 ∈ [D]}|{u0 ≈ u′})� (30)

Let U1 be the set of possible realizations of u1 conditional on the event {ω : u0 ≈ u or u0 ≈
u′}. Let U0 be the set of possible realizations of u0. Enumerate {u1

1� � � � � u
m
1 } := U1 ∩ [D],

which is nonempty by (30).
By Condition 1, ut(�) > ut(�) for each t = 1�2 and any possible realization ut . Thus, we

can apply Lemma H.1 so that there exist some menu L1 and �∗ such that (i) M(L1�u) =
M(L1�u

i
1) = {�∗} for all i = 1� � � � �m, (ii) |M(L1�u1)| = 1 and M(L1�u1) �� �∗ for each

u1 ∈ U1 � [D]. Subject to perturbations of the lotteries in L1, we can assume without loss
that |M(L1�ut)| = 1 for each t = 1�2 and any possible realization of ut (since every such
realization is nonconstant). Thus, L1 ∈A∗

1 by Lemma E.3.
By construction of L1, we have{

�∗ ∈M(u1�L1)
} ∩ {u0 ≈ u} = {

u1 ∈ [D]} ∩ {u0 ≈ u}�
Let {[u1

0]� � � � � [uk
0 ]} denote the collection of equivalence classes of utilities in U0, and

assume without loss that u ∈ [u1
0]. By Lemma E.2, we construct a collection of con-

sumption lotteries {�(h) : h = 1� � � � �k} such that u0(�(h)) > u0(�(h
′)) for any distinct

h�h′ = 1� � � � �k with u0 ∈ [uh
0 ].

Pick ε′ > 0 sufficiently small such that �∗ + ε′(�(h)− �(1)) ∈ Δ(Z) for all h = 2� � � � �k;
the construction is possible since �∗ is in the interior of Δ(Z). Define a menu L0 by

L0 :=L1 ∪ {
�∗ + ε′(�(h)− �(1)

) : h= 2� � � � �k
}
�

For each h = 2� � � � �k and u0 ∈ [uh
0 ], u0(�

∗ + ε′(�(h) − �(1))) is nonconstant in ε′; there-
fore, for small enough ε′ > 0, M(L0�u0) is either {�∗ + ε′(�(h)− �(1))} or a singleton in-
cluded in L1. Furthermore, M(L0�u0)= {�∗} for each u0 ∈ [u1

0]. This ensures that L0 ∈L∗
0

by Lemma E.3. Furthermore, {
�∗ ∈M(u0�L0)

} = {u0 ≈ u}�
Since u �≈ u′, there is a lottery �0 ∈ L0 different from �∗ such that M(L0�u

′)= {�0}.
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By the previous observations, we have L0 ⊇ L1 and ρZ
1 (�

∗;L1|L0� �
∗) = μ(u1 ∈

[D]|u0 ≈ u) and ρZ
1 (�

∗;L1|L0� �0) = μ(u1 ∈ [D]|u0 ≈ u′). But then (30) implies that
ρZ

1 (�
∗;L1|L0� �0) < ρZ

1 (�
∗;L1|L0� �0), which is a violation of consumption persistence.

H.2. Proof of Proposition 5

For each menu L of consumption lotteries and � ∈ L, recall the notation N(L��) =
{u ∈ RZ : u · �≥ u · �′�∀�′ ∈L}. Note that N(L��) is convex with N(L��) = [N(L��)].

“If” direction: ρZ
0 = ρ̂Z

0 follows directly from the condition that μ({u0 ≈ u}) = μ̂({û0 ≈
u}) for each u ∈ RZ .

Take any L0 ∈ L∗
0, L1 ∈ A∗

1, and � ∈ L0 such that L0 ⊇ L1. Let {[u1
0]� � � � � [uk

0 ]} denote
the set of possible consumption preferences in period 0 that can realize with positive
probabilities under μ or μ̂ and belong to [N(L0� �)]. Since there is no tie in L0 and L1, we
can write

ρZ
1 (��L1|L0� �) =

k∑
i=1

μ
({
u0 ≈ ui

0

})
μ

({
u1 ∈N(L1� �)

}|{u0 ≈ ui
0

})
k∑
i=1

μ
({
u0 ≈ ui

0

})

≥

k∑
i=1

μ̂
({
û0 ≈ ui

0

})
μ

({
û1 ∈N(L1� �)

}|{û0 ≈ ui
0

})
k∑
i=1

μ̂
({
û0 ≈ ui

0

}) = ρ̂Z
1 (��L1|L0� �)�

where the inequality follows from the condition that μ({u0 ≈ ui
0}) = μ̂({û0 ≈ ui

0}) and
μ({u1 ∈ N(L1� �)}|{u0 ≈ ui

0})≥ μ({û1 ∈N(L1� �)}|{û0 ≈ ui
0}) for each i = 1� � � � �k.

“Only if” direction: For each u ∈ RZ , μ({u0 ≈ u}) = μ̂({u0 ≈ û}) follows directly from
ρZ

0 = ρ̂Z
0 . To complete the remaining part, we suppose to the contrary that there exist

u ∈ RZ and a convex set D � u such that μ({u1 ∈ [D]}|{u0 ≈ u}) < μ̂({û1 ∈ [D]}|{û0 ≈ u}).
Let {[u1

0]� � � � � [uk
0 ]} and {[u1

1]� � � � � [um
1 ]} denote the set of possible consumption pref-

erences that can realize with positive probabilities under μ or μ̂ in periods 0 and 1, re-
spectively. Note that by the joint uniformly ranked pair condition, ui

1(�) > ui
1(�) for each

i = 1� � � � �m. Thus, by Lemma H.1, there exist a lottery �∗ and a menu L1 such that (i)
M(L1�u) = M(L1�u

i
1) = {�∗} for each i = 1� � � � �m with ui

1 ∈ [D], and (ii) M(L1�u
i
1) �� �∗

and |M(L1�u
i
1)| = 1 for each i = 1� � � � �m with ui

1 /∈ [D]. Thus, L1 ∈A∗
1.

Moreover, following the same construction as in the proof of Proposition 4, we
construct a menu L0 ⊇ L1 such that (i) M(L0�u) = {�∗} and (ii) M(L0�u

i
0) �� �∗ and

|M(L0�u
i
0)| = 1 for each i = 1� � � � �k with ui

0 /∈ [u]. Thus, L0 ∈L∗
0.

Based on this, we can write the choice probabilities as

ρZ
1

(
�∗�L1|L0� �

∗) = μ
({
u1 ∈ {[

u1
1

]
� � � � �

[
uk

1

]} ∩ [D]}|{u0 ≈ u})
< μ̂

({
û1 ∈ {[

u1
1

]
� � � � �

[
uk

1

]} ∩ [D]}|{û0 ≈ u}) = ρ̂Z
1

(
�∗�L1|L0� �

∗)�
which contradicts the fact that ρZ features more consumption persistence than ρ̂Z .
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H.3. Proof of Corollary 1

(i) =⇒ (ii):
We consider the case m≥ 2 as otherwise the desired statement trivially holds with any α.

Observe first that for any distinct indices i� j ∈ {1� � � � �m}, consumption persistence and
its characterization (Proposition 4) imply

Mii = μ
({
u1 ∈ [

ui
]}|u0 = ui

) ≥ μ
({
u1 ∈ [

ui
]}|u0 = uj

) =Mji (31)

by taking D = {ui}. (Note that, by definition, both ui and uj arise with positive probability
in period 0.) Moreover, if D = co{ui�uj}, then by the non-collinearity assumption, there is
no k /∈ {i� j} such that uk ∈ [D]. Thus, by consumption persistence and its characterization
(Proposition 4),

Mii +Mij = μ
({
u1 ∈ [D]}|u0 = ui

) = μ
({
u1 ∈ [D]}|u0 = uj

) = Mjj +Mji� (32)

Suppose first that m= 2. Since 1 =M11 +M12 = M22 +M21, we have M11 −M21 =M22 −
M12 := α, which is nonnegative by (31). Since the Markov chain is irreducible, M21�M12 >
0, which also ensures α < 1. One can verify the desired form by setting ν(u1) = M21

1−α
and

ν(u2)= M12
1−α

.
Suppose next that m ≥ 3. Take any distinct i� j�k ∈ {1� � � � �m} and let D′ = co{ui�uj�uk}.

By non-collinearity, there is no l /∈ {i� j�k} such that ul ∈ [D′]. Thus, by consumption per-
sistence and its characterization (Proposition 4),

Mii +Mij +Mik = μ
({
u1 ∈ [

D′]}|u0 = ui
) = μ

({
u1 ∈ [

D′]}|u0 = uj
) =Mjj +Mji +Mjk�

Combined with (32), this implies that Mik = Mjk for any distinct i, j, k. Thus, for any
k, we can define βk := Mik for some arbitrary i �= k. Here βk > 0, because otherwise∑

i s.t. i �=kMik = 0, contradicting irreducibility of the Markov chain. By (32), Mii − Mji =
Mjj − Mij for any i, j, and thus Mii − βi = Mjj − βj =: α for any i, j. By (31), α ≥ 0, and
α< 1 as βk > 0 for all k. Thus, setting ν(uj)= βj

1−α
for each j yields to the desired form.

(ii) =⇒ (i):
Take any pair u�u′ ∈ RZ of possible realizations of period-0 felicities. Then, for any

convex set D ⊆RZ with u ∈D, by (ii) we have

μ
({
u1 ∈ [D]}|u0 ≈ u

) = α+ (1 − α)
∑
uj∈[D]

ν
(
uj

) ≥ αIu′∈[D] + (1 − α)
∑
uj∈[D]

ν
(
uj

)

= μ
({
u1 ∈ [D]}|u0 ≈ u′)�

Thus, ρ features consumption persistence by Proposition 4.
(ii) =⇒ (iii):
Note that for any L = {�1� � � � � �m} ∈ L∗

0 and distinct indices i, j, we have ρZ
1 (�

i;L|
L��i) = α + (1 − α)

∑
uk∈N(L��i) ν(u

k) = α + (1 − α)ρZ
0 (�

i;L) and ρZ
1 (�

j;L|L��i) = (1 −
α)

∑
uk∈N(L��j) ν(u

k)= (1 − α)ρZ
0 (�

j;L).
(iii) =⇒ (ii):
Since {u1� � � � � um} are ordinally distinct, Lemma E.2 yields L = {�1� � � � � �m} such that

M(L�ui)= {�i} for each i. Then, by the Markov representation, we have ρZ
1 (�

j;L|L��i) =
Mij and ρZ

0 (�
i;L)= ν(ui) for all indices i, j. Thus, by (iii), there exists β ∈ [0�1) such that

Mii = β+ (1 −β)ν(ui) and Mij = (1 −β)ν(uj) for all i �= j, which verifies (ii).
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H.4. Proof of Corollary 2

Since ρ and ρ̂ admit sticky i.i.d. representations, for each � ∈ L1 ⊆ L0 with L0 ∈L∗
0 and

L1 ∈A∗
1, choice probabilities satisfy

ρZ
0 (�;L0)=

∑
ui∈N(L0��)

ν
(
ui

)
� ρ̂Z

0 (�;L0)=
∑

ui∈N(L0��)

ν̂
(
ui

)
�

ρZ
1 (�;L1|L0� �)= α+ (1 − α)

∑
ui∈N(L1��)

ν
(
ui

)
�

ρ̂Z
1 (�;L1|L0� �)= α̂+ (1 − α̂)

∑
ui∈N(L1��)

ν̂
(
ui

)
�

The “if” direction is immediate from these expressions. For the “only if” direction, the
existence of the bijection φ follows from the fact that ρZ and ρ̂Z coincide on period-0
consumption choices and the assumption that, in each representation, all felicities are or-
dinally distinct. To show that α ≥ α̂, consider any � ∈ L1 ⊆ L0 (with L0 ∈ L∗

0 and L1 ∈ A∗
1)

such that
∑

ui∈N(L1��)
ν(ui) = ∑

ui∈N(L1��)
ν̂(ui) < 1. Then ρZ

1 (�;L1|L0� �) ≥ ρ̂Z
1 (�;L1|L0� �)

implies α≥ α̂.

H.5. Proof of Proposition 6

Necessity:
Take any L ∈ L∗

0 and �� �′ ∈ L with {�� �′} ∈ A∗
1. If ρZ

0 (�;L) > 0, then there exists
u ∈ N(L��) such that μ({u0 = u}) > 0. This implies u(�) > u(�′). Then by (2), there ex-
ists some u′ ∈ RZ with μ({u1 = u′}|{u0 = u}) > 0 such that u′(�) > u′(�′). This ensures
ρZ

1 (�; {�� �′}|L��) > 0 because μ({u1 ≈ u′}|{u0 ∈N(L��)}) > 0.
Sufficiency:
Take a BEU representation (Ω�F ∗�μ� (Ft �Ut�ut� δt�Wt)) of ρZ . Let F̂0 be the sigma-

algebra generated by the random equivalence class [u0], that is, F̂0 is induced by the finest
partition over Ω such that u0(·) corresponds to the same preference within each cell.
Likewise, let F̂1 be the sigma-algebra generated by the random sequence of equivalence
classes ([u0]� [u1]). Note that F̂0 ⊆ F0 and F̂1 ⊆ F1. For each t = 0�1, construct an F̂t-
measurable function ût such that ût(ω) ≈ ut(ω) and

∑
z ût(ω)(z) = 0 for each ω.

We consider a tuple (Ω�F ∗�μ� (F̂t � Ût� ût� δt� Ŵt)), where (Ût) is induced from
(μ� (F̂t � ût� δt)) by equation (1), and (Ŵt) is any F ∗-measurable tie-breaker that satisfies
the properness condition with respect to (μ� (F̂t)). This tuple is clearly a BEU represen-
tation of ρZ , since (ut) and (ût) are ordinally equivalent at every state.84

Next, we fix any û ∈ RZ such that μ({û0 = û}) > 0, and let Uû := {û′ ∈ RZ : μ({û1 =
û′}|{û0 = û}) > 0}. We now use Axiom 11 (consumption inertia) to show that û ∈ coUû.
By the affine aggregation theorem (e.g., Theorem 2 in Fishburn (1984)), it suffices to
establish that for all �� �′ ∈ Δ(Z), we have[

û′(�′) ≥ û′(�)�∀û′ ∈ Uû

] ⇒ û
(
�′) ≥ û(�)�

84Note that the exact specification of (Ŵt) is irrelevant in this argument because we restrict attention to
menus without ties.
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Suppose to the contrary that [û′(�′) ≥ û′(�)�∀û′ ∈ Uû] and û(�′) < û(�) for some �, �′.
By the Uniformly Ranked Pair condition, we have û′(�) > û′(�) for all û′ ∈ Uû. Thus,
by mixing � with �′ (resp. � with �) with a small weight on � (resp. �), we can assume
without loss that [û′(�′) > û′(�)�∀û′ ∈ Uû] and û(�) > û(�′). In addition, since the rel-
evant inequalities are all strict, we can assume that �� �′ ∈ intΔ(Z) and {�� �′} ∈ A∗

1.
Take a menu of consumption lotteries L ∈ L∗

0 such that �� �′ ∈ L, M(L� û) = {�}, and
M(L� û′′) �� � for all other period-0 felicities û′′ �= û that can realize with positive prob-
ability under μ.85 For this menu L, it follows that ρZ

0 (�;L) = μ({û0 = û}) > 0 and
ρZ

1 (�; {�� �′}|L��)= μ({û1(�) > û1(�
′)}|{û0 = u})= 0, contradicting consumption inertia.

The observation in the previous paragraph implies that for each û ∈ RZ such that
μ({û0 = û}) > 0, there exist constants (αû�û′)û′∈Uû

≥ 0 and βû ∈ R such that

û=
∑
û′∈Uû

αû�û′ û′ +βû� (33)

Since, by construction,
∑

z ût(ω)(z) = 0 at every state ω and period t, we must have
βû = 0.

Define û′
0(ω) := û0(ω) and û′

1(ω) := αû0(ω)�û1(ω)

μ(E1(ω)|E0(ω))
û1(ω) for each ω, where Et(·) de-

notes each cell of the partition that generates F̂t for t = 1�2. Note that each û′
t is F̂t-

measurable. We consider the tuple (Ω�F ∗�μ� (F̂t � Û
′
t � û

′
t � δt� Ŵt)), where (Û ′

t ) is induced
from (μ� (F̂t � û

′
t � δt)) by equation (1). This tuple is still a BEU representation of ρZ , since

(û′
t) and (ût) are ordinally equivalent at every state.
To conclude that the representation is BEB, we verify that (2) holds with ũ := û′

1. That
is, for each ω,

E
[
û′

1|F̂0(ω)
] =

∑
E1⊆E0(ω)

μ
(
E1|E0(ω)

)
û′

1(E1)=
∑

E1⊆E0(ω)

αû0(ω)�û1(E1)û1(E1)= û0(ω) = û′
0(ω)�

where the second and fourth equalities hold by definition of û′
t and the third equality uses

(33) with βû0(ω) = 0 for each ω.

APPENDIX I: ADDITIONAL RESULTS

I.1. Identification

The following proposition provides identification results for our representations (see
Remark 1 for the discussion).

PROPOSITION I.1: Suppose ρ and ρ̂ admit DREU representations D = (Ω�F ∗�μ�
(Ft �Ut�Wt)) and D̂ = (Ω̂� F̂ ∗� μ̂� (F̂t � Ût� Ŵt)), with partitions Πt and Π̂t generating Ft

85To see why such a construction is possible, first note that all the possible realizations of period-0 felicities
û0(·) are ordinally distinct by construction. Take a set of consumption lotteries L̄ that separates all the period-0
felicities û0(·) by Lemma E.2. Here we can assume that the sup-norm distance among these lotteries is bounded
by ε by mixing them to a common lottery if necessary, where ε := minz∈Z{�(z)�1 − �(z)} > 0. Let �̄ ∈ L̄ be the
lottery that strictly maximizes û in L̄. Then we define L̄∗ := {� + �̄′′ − �̄ : �̄′′ ∈ L̄}. This is a well-defined set of
lotteries by the construction of ε. Note that this set also separates all period-0 felicities. Then the desired set L
can be constructed by adding �′ to L̄∗ such that there is no tie (that is guaranteed by slightly perturbing lotteries
if necessary).
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and F̂t , respectively. Then ρ= ρ̂ if and only if, for each t, there exists a bijection φt :Πt → Π̂t

and Ft-measurable functions αt :Ω→ R++ and βt :Ω →R such that, for all ω ∈ Ω,
(i) μ(F0(ω)) = μ̂(φ0(F0(ω))) and μ(Ft(ω)|Ft−1(ω)) = μ̂(φt(Ft(ω))|

φt−1(Ft−1(ω))) if t ≥ 1;
(ii) Ut(ω) = αt(ω)Ût(ω̂)+βt(ω) whenever ω̂ ∈φt(Ft(ω));
(iii) μ[{Wt ∈ Bt(ω)}|Ft(ω)] = μ̂[{Ŵt ∈ Bt(ω)}|φt(Ft(ω))] for any Bt(ω) such that

Bt(ω) = {w ∈ RX : pt ∈ M(M(At�Ut(ω))�w)} for some pt ∈ At ∈At .
If (D� (ut� δt)) is a BEU representation of ρ, then (D̂� (ût� δ̂t)) is a BEU representation of ρ
if and only if (i)–(iii) hold and additionally, for all t = 0� � � � �T ,

(iv) αt(ω)= α0(ω)
∏t−1

τ=0
δ̂τ(ω̂)

δτ(ω)
whenever ω̂ ∈φt(Ft(ω));

(v) ut(ω) = αt(ω)ût(ω̂)+ γt(ω) whenever ω̂ ∈ φt(Ft(ω)), where γT(ω) := βT(ω) and
γt(ω) := βt(ω)− δt(ω)Eμ[βt+1|Ft(ω)] if t ≤ T − 1.
If (D� (ut� δt)) is a BEB representation of ρ that satisfies Condition D.1, then (D̂� (ût� δ̂t))
is a BEB representation of ρ if and only if (i)–(v) hold and additionally, for all t =
0� � � � � T − 1,

(vi) δt(ω) = δ̂t(ω̂) for all ω̂ ∈ φt(Ft(ω));
(vii) γt(ω) = Eμ[βT |Ft(ω)] for all ω.

PROOF: See Appendix J.3. Q.E.D.

I.2. Markov Evolving Utility

DEFINITION 14: A (stationary) Markov evolving utility representation is a BEU rep-
resentation (Ω�F ∗�μ� (Ft�Ut�Wt�ut� δt)) for which there exists a finite set of felicities
U = {u1�u2� � � � � um} ⊆ RZ , with ui �≈ uj for all i �= j, along with a stationary distribution
ξ ∈ Δ◦(U) and a right stochastic transition matrix Π = (Πi�j)i�j=1�����m such that

(i) μ(ut(ω) ≈ ui)= ξ(ui) for all t = 0� � � � �T and i = 1� � � � �m;
(ii) μ(ut+1(ω) ≈ ut+1|u0(ω) ≈ u0� � � � � ut−1(ω) ≈ ut−1�ut(ω) ≈ ut) = μ(ut+1(ω) ≈

ut+1|ut(ω) ≈ ut) for all t = 0� � � � �T − 1 and u0� � � � � ut+1 ∈ U ;
(iii) μ(ut+1(ω) ≈ uj|ut(ω) ≈ ui)=Πi�j for all t = 0�1� � � � �T − 1 and i� j = 1� � � � �m.

We assume that ρ admits a BEU representation. As in Section 6, we consider the re-
striction ρZ of ρ to atemporal consumption problems without ties; this is well-defined
given the assumption that ρ admits a BEU representation. For each �T−1 ∈ Δ(Z)
and LT−1�LT ∈ K(Δ(Z)), we define the lottery (�T−1�LT ) := (δ�T−1� δLT

) and menu
(LT−1�LT ) := {(�′

T−1�LT ) : �′
T−1 ∈ LT−1}. Recursively, for each t ≤ T − 2, �t ∈ Δ(Z), and

Lt� � � � �LT−1 ∈ K(Δ(Z)), we define the lottery (�t�LT−1� � � � �LT ) := (δ�t � δ(Lt+1�����LT )) and
menu (Lt� � � � �LT ) := {(�′

t �Lt+1� � � � �LT ) : �′
t ∈ Lt}.

Let L∗
0 ⊆ K(Δ(Z)) denote the set of period-0 consumption menus without ties, which

consists of all L0 such that (L0�L1) ∈ A∗
0 for all L1 ∈ K(Δ(Z)). For any L0 ∈ L∗

0
and �0 ∈ L0, define ρZ

0 (�0;L0) := ρ0((�0�L1); (L0�L1)) for an arbitrary choice of L1.
This induces the set of all period-0 consumption histories without ties, that is, se-
quences h0

Z = (L0� �0) such that ρZ
0 (�0�L0) > 0 and L0 ∈ L∗

0. Recursively, for each
period-t − 1 consumption history without ties ht−1

Z = (L0� �0� � � � �Lt−1� �t−1), we de-
note by L∗

t (h
t−1
Z ) the set of period-t consumption menus without ties conditional on

ht−1
Z , which consists of all Lt such that (Lt�Lt+1� ���LT ) ∈ A∗

t (h
t−1) for all Lt+1, �., LT ,

where ht−1 = (A0�p0� � � � �At−1�pt−1) is given by Aτ = (Lτ�Lτ+1� � � � �LT ) and pτ =
(�τ�Lτ+1� � � � �LT ) for each τ = 0� � � � � t − 1. Given any such ht−1

Z and ht−1, we define
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ρZ
t (�t�Lt |ht−1

Z ) := ρt((�t�Lt+1� � � � �LT )� (Lt� � � � �LT )|ht−1) for each L∗
t ∈ Lt(h

t−1
Z ) and

�t ∈ Lt ; if ρZ
t (�t�Lt |ht−1

Z ) > 0, then we say that the sequence (L0� �0� � � � �Lt� �t) is a con-
sumption history without ties in period t. Finally, we say that a consumption history with-
out ties is degenerate if the corresponding Lτ ’s are all singleton.

AXIOM I.1—Unconditional Stationarity: For all degenerate consumption histories dt−1
Z ,

L ∈L∗
t (d

t−1
Z )∩L∗

0, and � ∈ L, we have ρZ
0 (��L)= ρZ

t (��L|dt−1
Z ).

A consumption atom is a pair (L��) with L ∈L∗
0 and � ∈ Δ◦(Z) such that

(i) ρZ
0 (��L) > 0;

(ii) ρZ
0 (��L

′) ∈ {ρZ
0 (��L)�0} for all L′ ∈L∗

0 with L′ ⊇L.

AXIOM I.2—Markov: For any consumption atom (L��) and consumption history ht−1
Z

without ties, we have ρZ
1 (·|L��)= ρZ

t+1(·|ht−1
Z �L��).

PROPOSITION I.2: Suppose that ρ admits a BEU representation that satisfies Condi-
tion D.1 (Uniformly Ranked Pair). Then ρZ satisfies Axioms I.1 and I.2 if and only if it
admits a Markov evolving utility representation.

PROOF: See Appendix J.4. Q.E.D.

I.3. Approximate Contraction History Independence

Consider the following strengthening of Axiom 1:

AXIOM I.3—Approximate Contraction History Independence: If (A0�p0)� (B0�p0) ∈
H0(A1) and B0 ⊇ A0, then for all p1 ∈ A1,

∣∣ρ1(p1;A1|A0�p0)− ρ1(p1;A1|B0�p0)
∣∣ ≤ 2

∣∣∣∣1 − ρ0(p0;B0)

ρ0(p0;A0)

∣∣∣∣�
Clearly, Axiom I.3 implies Axiom 1, but it also captures that whenever ρ0(p0;B0) and

ρ0(p0;A0) are close, then period-1 choice probabilities following (A0�p0) and (B0�p0)
must be close. The following proposition shows that Axiom I.3 remains necessary under
DREU.86

PROPOSITION I.3: Suppose T = 1 and ρ admits a DREU representation. Then ρ satisfies
Axiom I.3.

PROOF: Define the following subsets of Ω:

E := C(p1�A1)� F := C(p0�A0)� G := C(p0�B0)�

Note that G⊆ F and let H := F �G. We have

μ(E|F)= μ(E|G)μ(G|F)+μ(E|H)μ(H|F)�

86Note that the proof does not exploit expected utility; thus, the Axiom holds under any dynamic random
utility model.
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Thus, ∣∣ρ1(p1;A1|A0�p0)− ρ1(p1;A1|B0�p0)
∣∣

= ∣∣μ(E|F)−μ(E|G)
∣∣

≤ ∣∣1 −μ(G|F)∣∣ +μ(H|F)

= 2
∣∣∣∣1 − μ(G)

μ(F)

∣∣∣∣ = 2
∣∣∣∣1 − ρ0(p0;B0)

ρ0(p0;A0)

∣∣∣∣� Q.E.D.

APPENDIX J: PROOFS FOR SECTIONS A, E, AND I

J.1. Proof of Proposition A.1

The following three subsections prove Proposition A.1, that is, the equivalence between
DREU, BEU, BEB, and their respective S-based analogs.

J.1.1. DREU

“If” direction: Suppose ρ admits an S-based DREU representation (St� {μst−1
t }st−1∈St−1�

{Ust � τst }st∈St )t=0�����T . We will construct a DREU representation (Ω̂� F̂ ∗� μ̂� (F̂t � Ût� Ŵt)).
Consider the space G := ∏T

t=0(St × RXt ) of all sequences of states and tie-breaking
utilities. Let Ω̂ := {(s0�W0� � � � � sT �WT) ∈ G : ∏t

k=0 μ
sk−1
k (sk) > 0}. Let F̂ ∗ be the restric-

tion to Ω̂ of the product sigma-algebra of the discrete sigma-algebra on
∏T

t=0 St and the
product Borel sigma-algebra on

∏T

t=0 R
Xt . For each K = ({s0}�K0� � � � � {sT }�KT) ∈ F̂ ∗, let

μ̂(K) = ∏T

t=0 μ
st−1
t (st)τst (Kt); by finiteness of

∏T

t=0 St , μ̂ extends to a finitely-additive prob-
ability measure on Ω̂ in the natural way.

Let Πt be the finite partition of Ω̂ whose cells are all the cylinders C(s0� � � � � st) := {ω̂ ∈
Ω̂ : projS0×···×St

(ω̂) = (s0� � � � � st)}. Let F̂t be the sigma-algebra generated by Πt ; by defini-

tion of Ω̂, μ(F̂t(ω̂)) > 0 for all ω̂ ∈ Ω̂. Also, F̂t(ω̂) = ⋃
ω̂′∈F̂t (ω̂) F̂t+1(ω̂

′), so (F̂t)0≤t≤T ⊆ F̂ ∗

is a filtration. Define Ût : Ω̂ → RXt by Ût(ω̂) = Ust where projSt (ω̂) = st . Note that (Ût)

is adapted to (F̂t) and that Ût(ω̂) is nonconstant for each ω̂ since each Ust is noncon-
stant. Finally, if Ft−1(ω̂) =Ft−1(ω̂

′) and Ft(ω̂) �=Ft(ω̂
′), then projSt−1

(ω̂) = projSt−1
(ω̂) =

st−1 and projSt (ω̂) = st �= s′
t = projSt (ω̂

′) for some st−1 ∈ St−1 and st� s
′
t ∈ suppμst−1

t . By
DREU1(a), this implies Ût(ω̂) := Ust �≈Us′t =: Ût(ω̂

′). Thus, (Ft �Ut) are simple.
Define Ŵt : Ω̂ → RXt by Ŵt(ω̂) = Wt where proj

RXt (ω̂) = Wt . Note that for all At ,
μ̂({ω̂ ∈ Ω̂ : |M(At� Ŵt)| = 1}) = ∑

(s0�����sT )
(
∏T

k=0 μ
sk−1
k (sk))τst ({Wt ∈ RXt : |M(At�Wt)| =

1}) = 1, since each τst is proper. Thus, (Ŵt) satisfies part (i) of the properness require-
ment for DREU. Moreover, for any F̂T (ω̂) = C(s0� � � � � sT ) and any sequence (Bt) of
Borel sets Bt ⊆RXt , the definition of μ̂ implies

μ̂

(
T⋂
t=0

{Ŵt ∈ Bt}
∣∣∣C(s0� � � � � sT )

)
=

T∏
t=0

τst (Bt)=
T∏
t=0

μ̂
({Ŵt ∈ Bt} | C(s0� � � � � st)

)
� (34)

Since F̂T (ω̂) = C(s0� � � � � sT ) implies F̂t(ω̂) = C(s0� � � � � st) for all t ≤ T , this shows that
(Ŵt) also satisfies parts (ii) and (iii) of the properness requirement.
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Finally, to see that (Ω̂� F̂ ∗� μ̂� (F̂t � Ût� Ŵt)) represents ρ, fix any ht = (A0�p0� � � � �
At�pt) ∈Ht . Then

μ̂
(
C

(
ht

))
= μ̂

(
t⋂

k=0

{
ω̂ ∈ Ω̂ : pk ∈ M

(
M

(
Ak� Ûk(ω̂)

)
� Ŵk(ω̂)

)})

=
∑

C(s0�����st )∈Πt

μ̂
(
C(s0� � � � � st)

)
μ̂

(
t⋂

k=0

{
ω̂ ∈ Ω̂ : pk ∈ M

(
M(Ak� Ûk)� Ŵk

)}∣∣∣C(s0� � � � � st)

)

=
∑

(s0�����st )∈S0×···×St

t∏
k=0

μ
sk−1
k (sk)μ̂

(
t⋂

k=0

{
ω̂ ∈ Ω̂ : pk ∈M

(
M(Ak�Usk)� Ŵk

)}∣∣∣C(s0� � � � � st)

)

=
∑

(s0�����st )∈S0×···×St

t∏
k=0

μ
sk−1
k (sk)τsk(pk�Ak)�

where the third equality follows from the definition of μ̂ and Û , and the final equality
follows from (34). Thus, as required, we have

μ̂
(
C(pt�At)|C

(
ht−1

)) = μ̂
(
C

(
ht

))
μ̂(C

(
ht−1

) =

∑
(s0�����st )

t∏
k=0

μ
sk−1
k (sk)τsk(pk�Ak)

∑
(s0�����st−1)

t−1∏
k=0

μ
sk−1
k (sk)τsk(pk�Ak)

= ρt

(
pt;At |ht−1

)
�

where the final equality holds by DREU2.
“Only if” direction: Take any DREU representation (Ω�F ∗�μ� (Ft �Ut�Wt)) of ρ. We

will construct an S-based DREU representation (St� {μ̂st−1
t }st−1∈St−1� {Ûst � τst }st∈St )t=0�����T .

For each t, let St := {Ft(ω) : ω ∈ Ω} denote the partition generating Ft , which is finite
since (Ft) is simple. Each μ̂st

t+1 is defined to be the one-step-ahead conditional of μ, that
is, μ̂0(s0) := μ(s0) for all s0 ∈ S0 and μ̂st

t+1(st+1) := μ(st+1|st) for all st ∈ St , st+1 ∈ St+1. This
is well-defined since μ(Ft(ω)) > 0 for all ω. For each st ∈ St , define Ûst := Ut(ω) if ω ∈ st ;
this is well-defined as (Ut) is Ft-adapted and each Ust is nonconstant since each Ut(ω) is
nonconstant. Finally, for any Borel set Bt ⊆ RXt , define τst (Bt) := μ({Wt ∈ Bt}|st). This is
well-defined since Wt is F ∗-measurable. Moreover, because μ({ω ∈ Ω : |M(At�Wt(ω)| =
1} = 1 for all At and |St | is finite, it follows that τst (N(At�pt)) = τst (N

+(At�pt)) for all
pt , that is, τst is proper. Thus, each (St�μ

st−1
t � {Ust � τst }st∈St ) is an REU form on Xt .

Moreover, (a) for any distinct st� s′
t ∈ supp(μst−1

t ), we have ω, ω′ such that Ft−1(ω) =
st−1 = Ft−1(ω

′) and Ft(ω) = st �= Ft(ω
′) = s′

t . Thus, Ûst = Ut(ω) �≈ Ut(ω
′) = Ûs′t , since

(Ut�Ft) is simple. Also, since (Ft) is adapted, the partition St refines the partition St−1, so
that (b) for any distinct st−1, s′

t−1, we have supp(μ̂st−1
t )∩ supp(μ̂

s′t−1
t )= ∅. Since additionally

μ(st) > 0 for all st ∈ St , we have (c)
⋃

st−1∈St−1
supp μ̂st−1

t = St . Thus, DREU1 is satisfied.
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To see that DREU2 holds, observe that for each ht = (A0�p0� � � � �At�pt) ∈ Ht , we
have

μ
(
C

(
ht

)) =
∑
sT ∈ST

μ(sT )μ
(
C

(
ht

)|sT )

=
∑
sT ∈ST

μ(sT )μ

(
t⋂

k=0

{
ω ∈Ω : pk ∈ M

(
M(Ak�Uk)�Wk

)}∣∣∣sT
)

=
∑

(s0�����sT )∃ω∈Ω∀t:st=Ft (ω)

μ(sT )μ

(
t⋂

k=0

{
pk ∈ M

(
M(Ak�Usk)�Wk

)}∣∣∣st
)

=
∑

(s0�����sT )∃ω∈Ω∀t:st=Ft (ω)

μ(sT )

t∏
k=0

μ
({
pk ∈M

(
M(Ak�Usk)�Wk

)}∣∣∣sk)

=
∑

(s0�����st )∃ω∈Ω∀k≤t:sk=Fk(ω)

t∏
k=0

μ
sk−1
k (sk)

t∏
k=0

τsk(pk�Ak)

=
∑

(s0�����st )∈S0×···×St

t∏
k=0

μ
sk−1
k (sk)

t∏
k=0

τsk(pk�Ak)�

where the third equality follows from the fact that (Ut) is Ft-adapted, the fourth equality
follows from parts (ii) and (iii) of the properness assumption on (Wt), the final equality
follows from the fact that

∏t

k=0 μ
sk−1
k (sk) = 0 whenever (s0� � � � � st) �= (F0(ω)� � � � �Ft(ω))

for all ω, and the remaining equalities hold by definition. Since ρt(pt;At |ht−1) = μ(C(ht ))

μ(C(ht−1)

by (3), this shows that DREU2 holds.

J.1.2. BEU

“If” direction: Suppose ρ admits an S-based BEU representation (St� {μst−1
t }st−1∈St−1�

{Ust �ust � τst }st∈St )t=0�����T . Let (Ω̂� F̂ ∗� μ̂� (F̂t � Ût� Ŵt)) denote the corresponding DREU
representation of ρ obtained in the “if” direction for DREU. In addition, define ût :
Ω̂ → RZ for each t by ût(ω̂) := ust whenever projSt (ω̂) = st . Note that the process (ût) is
F̂t-adapted. Moreover, for each ω̂ = (s0�W0� � � � � sT �WT), we have ÛT (ω̂) = UsT = usT =
ûT (ω̂) and, for each t ≤ T − 1 and (zt�At+1),

Ût(ω̂)(zt�At+1) = Ust (zt�At+1)

= ust (zt)+
∑

st+1∈St+1

μst
t+1(st+1) max

pt+1∈At+1
Ust+1(pt+1)

= ût(ω̂)(zt)+
∑

st+1∈St+1

μ̂(st+1|st) max
pt+1∈At+1

Ust+1(pt+1)

= ût(ω̂)(zt)+E
[

max
pt+1∈At+1

Ût+1(pt+1)
∣∣F̂t(ω̂)

]
�
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where we let μ̂(st+1|st) := μ̂(C(s0� � � � � st+1) | C(s0� � � � � st)). Thus, we constructed a BEU
representation with δt(·)= 1 for every t.

“Only if” direction: Suppose ρ admits a BEU representation (Ω�F ∗�μ� (Ft �Ut�ut�
δt�Wt)). We construct another tuple (Ω�F ∗�μ� (Ft �U

′
t � u

′
t � δ

′
t �Wt)) by setting U ′

t (ω) :=∏t−1
τ=0 δτ(ω)Ut(ω), u′

t(ω) := ∏t−1
τ=0 δτ(ω)ut(ω), and δ′

t(ω) = 1 for each t and ω, which are
all Ft-measurable. By Proposition I.1, (Ω�μ� (Ft �U

′
t �Wt)) is still a DREU representation

of ρ. Furthermore, for each ω (omitting its notational dependence),

U ′
t (zt�At+1)=

t−1∏
τ=0

δτUt(zt�At+1)=
t−1∏
τ=0

δτ

(
ut(z)+ δtE

[
max
At+1

Ut+1

∣∣Ft

])

= u′
t(z)+ δtE

[
max
At+1

U ′
t+1

∣∣Ft

]

for every (zt�At+1). Thus, (Ω�F ∗�μ� (Ft �U
′
t � u

′
t � δ

′
t �Wt)) is still a BEU representation of

ρ. Based on this tuple, let (St� {μ̂st−1
t }st−1∈St−1� {Ûst � τst }st∈St )t=0�����T denote the corresponding

S-based DREU representation obtained in the “only if” direction for DREU. In addition,
for each st , define ûst ∈ RZ by ûst = u′

t(ω) for any ω ∈ st ; this is well-defined as (u′
t) is

Ft-adapted. Reversing the argument in the previous part, we can verify that ûsT = ÛsT

for each sT and Ûst (zt�At+1)= ûst (zt)+∑
st+1

μ̂st
t+1(st+1)maxpt+1∈At+1 Ûst+1(pt+1) for each st

with t ≤ T − 1.

J.1.3. BEB

“If” direction: Suppose ρ admits an S-based BEB representation (St� {μst−1
t }st−1∈St−1�

{Ust �ust � τst � δst }st∈St )t=0�����T . Let (Ω̂� F̂ ∗� μ̂� (F̂t � Ût� ût�1� Ŵt)) denote the correspond-
ing BEU representation obtained in the “if” direction for BEU. In addition, define
δ̂t : Ω̂ → R for each t by δ̂t(ω̂) := δst whenever projSt (ω̂) = st . Note that for each
ω̂ = (s0�W0� ��� sT �WT) and t ≤ T − 1, we have ût(ω̂) = ust = 1

δst

∑
st+1

μst
t+1(st+1)ust+1 =

1
δ̂t (ω̂)

E[ût+1|F̂t(ω̂)]. Iterating expectations, this yields ût(ω̂) = E[∏T−1
τ=t δ̂

−1
τ ûT |F̂t(ω̂)] =

E[∏T−1
τ=t δ̂

−1
τ ÛT |F̂t(ω̂)]. Replace Ût(ω̂) with Û ′

t (ω̂) := E[∏T−1
τ=t δ̂τ|F̂t(ω̂)]Ût(ω̂) for each

t and ω̂. By Proposition I.1, (Ω̂� F̂ ∗� μ̂� (F̂t � Û
′
t � Ŵt)) is still a DREU representation of ρ.

Moreover, for each t ≤ T − 1, we have

Û ′
t (ω̂)(zt�At+1)= E

[
T−1∏
τ=t

δ̂τ

∣∣∣F̂t(ω̂)

]
ût(ω̂)(zt)+E

[
T−1∏
τ=t

δ̂τ max
pt+1∈At+1

Ût+1(pt+1)
∣∣∣F̂t(ω̂)

]

= E
[
Û ′

T (zt) | F̂t(ω̂)
] + δ̂t(ω̂)E

[
max

pt+1∈At+1
Û ′

t+1(pt+1)
∣∣F̂t(ω̂)

]
�

Thus, (Ω̂� F̂ ∗� μ̂� (F̂t � Û
′
t � δ̂t� Ŵt)) is a BEB representation of ρ.

“Only if” direction: Suppose that ρ admits a BEB representation (Ω�μ� (Ft �Ut� δt�Wt)).
Let (Ω�F ∗�μ� (Ft �U

′
t � u

′
t � δ

′
t �Wt)) and (St� {μ̂st−1

t }st−1∈St−1� {Û ′
st
� û′

st
� τst }st∈St )t=0�����T respec-

tively denote the corresponding BEU representation and S-based BEU representation
of ρ obtained in the “only if” direction for BEU. In addition, define δ̂st := δt(ω) for
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Ft(ω) = st . Then, for each t ≤ T − 1 and ω with Ft(ω) = st , we have

û′
st

= u′
t(ω) =

t−1∏
τ=0

δτ(ω)ut(ω) =
t−1∏
τ=0

δτ(ω)E
[
ut+1(ω)|Ft(ω)

]

= 1
δt(ω)

E
[
u′
t+1|Ft(ω)

] = 1

δ̂st

∑
st+1

μ̂st
t+1(st+1)û

′
st
�

where the first and last equalities used the construction of S-based BEU, and the sec-
ond and fourth equalities used the construction of BEU. Thus, (St� {μ̂st−1

t }st−1∈St−1� {Û ′
st
� û′

st
�

δ̂st � τst }st∈St )t=0�����T is an S-based BEB representation of ρ.

J.2. Proofs for Appendix E

This appendix presents proofs of all lemmas from Appendix E.

J.2.1. Proof of Lemma E.1

By standard arguments, for any separable metric space (Y�d): (a) the set P(Y) of Borel
probability measures on Y endowed with the topology of weak convergence is a separable
metric space metrized by the Prokhorov metric πd induced by d (e.g., Theorem 15.12
in Aliprantis and Border (2006)); (b) the set KC(Y) of nonempty compact subsets of
Y endowed with the Hausdorff distance induced by d is a separable metric space (e.g.,
Khamsi and Kirk (2011, p. 40)); (c) every dense subspace of Y is separable.

We now prove the claim inductively, working backwards from period T . Since XT :=Z
is finite, the claim is immediate. Consider t < T and suppose that Xτ is a separable metric
space for all τ ≥ t + 1. By (a) above, P(Xt+1) endowed with the induced Prokhorov met-
ric is separable, so since Δ(Xt+1) is dense in P(Xt+1) (e.g., Theorem 15.10 in Aliprantis
and Border (2006)), Δ(Xt+1) is also separable (by (c)). Then by (b) above, KC(Δ(Xt+1))
endowed with the induced Hausdorff metric is separable, so since At+1 := K(Δ(Xt+1)) is
dense in KC(Δ(Xt+1)) (e.g., Lemma 0 in Gul and Pesendorfer (2001)), At+1 is also sep-
arable. Finally, Xt := Z ×At+1 endowed with the product of the discrete metric and the
Hausdorff metric is separable, as required.

J.2.2. Proof of Lemma E.2

By the finiteness of S, there is a finite set Y ′ ⊆ Y such that, for each s, the restriction
Us �Y ′ to Y ′ is nonconstant and for any distinct s, s′, Us �Y ′ �≈ Us′ �Y ′ (i.e., there exists
p�q ∈ Δ(Y ′) such that Us(p) ≥ Us(q) and Us′(p) < Us′(q)). By Lemma 1 in Ahn and
Sarver (2013), there is a collection of lotteries {ps : s ∈ S} ⊆ Δ(Y ′) such that Us(p

s) =
Us �Y ′ (ps) > Us �Y ′ (ps′)=Us(p

s′) for any distinct s, s′.

J.2.3. Proof of Lemma E.3

(i) =⇒ (ii): We prove the contrapositive. Suppose that there are st−1 ∈ S(ht−1) and st ∈
suppμst−1

t such that |M(At�Ust )| > 1. Pick any pt ∈ M(At�Ust ) such that τst (pt�At) > 0.
Since Ust is nonconstant, we can find lotteries r� r ∈ Δ(Xt) such that Ust (r) < Ust (r). Fix
any sequence αn ∈ (0�1) with αn → 0. Let pn

t := αnr+(1−αn)pt . For every qt ∈At � {pt},
let qn

t
:= αnr + (1 − αn)qt and qn

t := αnr + (1 − αn)qt . Let Bn
t := {qn

t
: qt ∈ At � {pt}}, let

B
n

t := {qn
t : qt ∈At � {pt}}, and let Bn

t := Bn
t ∪B

n

t . Then Bn
t →m At � {pt} and pn

t →m pt .
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Moreover, since |M(At�Ust )| > 1, there exists qt ∈ At � {pt} such that Ust (αnr + (1 −
αn)qt) > Ust (p

n
t ) for all n, so that τst (p

n
t �B

n
t ∪ {pn

t }) = 0. Furthermore, note that for
all s′

t ∈ St � {st}, we have N(M(At�Us′t )�pt) = N(M(Bn
t ∪ {pn

t }�Us′t )�p
n
t ) ⊇ N(M(Bn

t ∪
{pn

t }�Us′t )�p
n
t ), so that τs′t (pt�At) ≥ τs′t (p

n
t �B

n
t ∪ {pn

t }) for all n. Letting pred(st−1) =
(s0� � � � � st−2), Lemma E.5 then implies that for all n,

ρt

(
pt;At |ht−1

) − ρt

(
pn

t ;Bn
t ∪ {

pn
t

}|ht−1
)

=

∑
s′0�����s

′
t

t−1∏
k=0

μ
s′
k−1
k

(
s′
k

)
τs′

k
(pk�Ak)μ

s′t−1
t

(
s′
t

)(
τs′t (pt�At)− τs′t

(
pn

t �B
n
t ∪ {

pn
t

}))
∑

s′0�����s
′
t−1

t−1∏
k=0

μ
s′
k−1
k

(
s′
k

)
τs′

k
(pk�Ak)

≥

t−1∏
k=0

μ
sk−1
k (sk)τsk(pk�Ak)μ

st−1
t (st)τst (pt�At)

∑
s′0�����s

′
t−1

∑
s′0�����s

′
t−1

t−1∏
k=0

μ
s′
k−1
k

(
s′
k

)
τs′

k
(pk�Ak)

> 0�

Since the last line does not depend on n, this implies limn→∞ ρt(p
n
t ;Bn

t ∪ {pn
t }|ht−1) <

ρt(pt;At |ht−1). By definition of A∗
t , this means At /∈A∗

t (h
t−1).

(ii) =⇒ (i): Suppose At satisfies (ii). Consider any pt ∈At , pn
t →m pt , Bn

t →m At � {pt}.
Consider any st−1 ∈ S(ht−1) and st ∈ suppμst−1

t . By (ii), we either have M(At�Ust ) = {pt}
or pt /∈ M(At�Ust ). In the former case, Ust (pt) > Ust (qt) for all qt ∈ At � {pt}. But then,
for all n large enough, linearity of Ust implies Ust (p

n
t ) > Ust (q

n
t ) for all qn

t ∈ Bn
t , that is,

τst (pt�At) = limn τst (p
n
t �B

n
t ∪ {pn

t }) = 1. In the latter case, Ust (pt) < Ust (qt) for some
qt ∈ At � {pt}. But then, for all n large enough, linearity of Ust implies Ust (p

n
t ) < Ust (q

n
t )

for all qn
t ∈ Bn

t such that qn
t →m qt , that is, τst (pt�At)= limn τst (p

n
t �B

n
t ∪ {pn

t }) = 0.
Thus, for all st−1 ∈ S(ht−1) and st ∈ suppμst−1

t , we have τst (pt�At) = limn τst (p
n
t �B

n
t ∪

{pn
t }). Hence, the representation in Lemma E.5 implies that for all n sufficiently large,

ρt

(
pn

t ;Bn
t ∪ {

pn
t

}|ht−1
) = ρt

(
pt;At |ht−1

)
�

as required.

J.2.4. Proof of Lemma E.4

Let k := max{n = 0 � � � � t − 1 : qn �= q̂n} be the last entry at which dt−1 and d̂t−1 differ,
where we set k = −1 if qn = q̂n for all n = 0� � � � � t − 1. We prove the claim by induction
on k.

Suppose first that k = −1, that is, that dt−1 = d̂t−1. If λ0 > λ̂0, then the 0th entry of
λht−1 + (1 − λ)dt−1 can be written as an appropriate mixture of the 0th entry of λ̂ht−1 +
(1−λ̂)d̂t−1 with (A0�p0); if λ0 ≤ λ̂0, then the 0th entry of λht−1 +(1−λ)dt−1 can be written
as an appropriate mixture of the 0th entry of λ̂ht−1 + (1 − λ̂)d̂t−1 with ({q0}� q0). In either
case, Axiom B.2 implies that ρt(·;At |λ̂ht−1 + (1 − λ̂)d̂t−1) is unaffected after replacing
the 0th entry of λ̂ht−1 + (1 − λ̂)d̂t−1 with the 0th entry of λht−1 + (1 − λ)dt−1. Continuing
this way, we can successively apply Axiom B.2 to replace each entry of λ̂ht−1 + (1 − λ̂)d̂t−1
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with the corresponding entry of λht−1 + (1 − λ)dt−1 without affecting ρt . This yields the
desired conclusion.

Suppose the claim holds whenever k≤ m− 1 for some 0 ≤m ≤ t − 1. We show that the
claim continues to hold for k= m. Note first that we can assume that

1
2
ht−1 + 1

2
dt−1�

1
2
ht−1 + 1

2
d̂t−1 ∈Ht−1(At);

2
3
Bm + 1

3
{q̂m}�

{
1
2
qm + 1

2
q̂m

}
∈ suppqA

m−1;

2
3
B̂m + 1

3
{qm}�

{
1
2
qm + 1

2
q̂m

}
∈ supp q̂A

m−1�

(35)

where Bm := 1
2Am + 1

2 {qm}, B̂m := 1
2Am + 1

2 {q̂m}, rm := 1
2pm + 1

2qm, and r̂m := 1
2pm + 1

2 q̂m.
Indeed, we can find a sequence of lotteries (�n)t−1

n=0 such that for all n = 1� � � � � t − 1,

λnAn + (1 − λn){on}� 1
2
An + 1

2
{on}� λ̂nAn + (1 − λ̂n){ôn}� 1

2
An + 1

2
{ôn}� {on} ∈ supp�An−1;

2
3
Bm + 1

3
{ôm}� 2

3
B̂m + 1

3
{om}�

{
1
2
om + 1

2
ôm

}
∈ supp�Am−1�

where on := 1
2qn + 1

2�n and ôn := 1
2 q̂n + 1

2�n. Letting ct−1 := ({on}�on)
t−1
n=0 and ĉt−1 :=

({ôn}� ôn)
t−1
n=0, we have that ct−1� ĉt−1 ∈ Dt−1, λht−1 + (1 − λ)ct−1� λ̂ht−1 + (1 − λ̂)ĉt−1 ∈

Ht−1(At), and the last entry at which ct−1 and ĉt−1 differ is m. Moreover, repeated ap-
plication of Axiom B.2 implies

ρt

(·;At|λht−1 + (1 − λ)dt−1
) = ρt

(·;At|λht−1 + (1 − λ)ct−1
);

ρt

(·;At|λ̂ht−1 + (1 − λ̂)d̂t−1
) = ρt

(·;At|λ̂ht−1 + (1 − λ̂)ĉt−1
)
�

Thus, we can replace dt−1 and d̂t−1 with ct−1 and ĉt−1 if need be and guarantee that (35) is
satisfied.

Given (35), 1
2h

t−1 + 1
2d

t−1� 1
2h

t−1 + 1
2 d̂

t−1 ∈Ht−1(At), so the base case of the proof implies

ρt

(·;At|λht−1 + (1 − λ)dt−1
) = ρt

(
·;At

∣∣∣1
2
ht−1 + 1

2
dt−1

)
;

ρt

(·;At|λ̂ht−1 + (1 − λ̂)d̂t−1
) = ρt

(
·;At

∣∣∣1
2
ht−1 + 1

2
d̂t−1

)
�

(36)

Also, (35) guarantees that (( 1
2h

t−1 + 1
2d

t−1)−m� (
2
3Bm + 1

3 {q̂m}� 2
3 rm + 1

3 q̂m)) and (( 1
2h

t−1 +
1
2 d̂

t−1)−m� (
2
3 B̂m + 1

3 {qm}� 2
3 r̂m + 1

3qm)) are well-defined histories in Ht−1(At). Thus, by Ax-
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iom B.2,

ρt

(
·;At

∣∣∣1
2
ht−1 + 1

2
dt−1

)
= ρt

(
·;At

∣∣∣(1
2
ht−1 + 1

2
dt−1

)
−m

�

(
2
3
Bm + 1

3
{q̂m}� 2

3
rm + 1

3
q̂m

))
;

ρt

(
·;At

∣∣∣1
2
ht−1 + 1

2
d̂t−1

)
= ρt

(
·;At

∣∣∣(1
2
ht−1 + 1

2
d̂t−1

)
−m

�

(
2
3
B̂m + 1

3
{qm}� 2

3
r̂m + 1

3
qm

))
�

(37)

But note that(
2
3
Bm + 1

3
{q̂m}� 2

3
rm + 1

3
q̂m

)
=

(
1
3
Am + 2

3

{
1
2
qm + 1

2
q̂m

}
�

1
3
pm + 2

3

(
1
2
qm + 1

2
q̂m

))

=
(

2
3
B̂m + 1

3
{qm}� 2

3
r̂m + 1

3
qm

)
�

Thus, (( 1
2h

t−1 + 1
2d

t−1)−m� (
2
3Bm + 1

3 {q̂m}� 2
3 rm + 1

3 q̂m)) is an entry-wise mixture of ht−1

with the degenerate history et−1 := ((dt−1)−m� ({ 1
2qm + 1

2 q̂m}� 1
2qm + 1

2 q̂m)) and similarly
(( 1

2h
t−1 + 1

2 d̂
t−1)−m� (

2
3 B̂m + 1

3 {qm}� 2
3 r̂m + 1

3qm)) is an entry-wise mixture of ht−1 with the de-
generate history êt−1 := ((d̂t−1)−m� ({ 1

2qm + 1
2 q̂m}� 1

2qm + 1
2 q̂m)). But the last entry at which

et−1 and êt−1 differ is strictly smaller than m. Hence, applying the inductive hypothesis, we
obtain

ρt

(
·;At

∣∣∣(1
2
ht−1 + 1

2
dt−1

)
−m

�

(
2
3
Bm + 1

3
{qm}� 2

3
rm + 1

3
qm

))

= ρt

(
·;At

∣∣∣(1
2
ht−1 + 1

2
d̂t−1

)
−m

�

(
2
3
B̂m + 1

3
{qm}� 2

3
r̂m + 1

3
qm

))
� (38)

Combining (36), (37), and (38) yields the required equality

ρt

(·;At|λht−1 + (1 − λ)dt−1
) = ρt

(·;At |λ̂ht−1 + (1 − λ̂)d̂t−1
)
�

Finally, let d̂t−1 and λ̂ ∈ (0�1] be the choices from Definition 10 such that ρht−1

t (·;At) :=
ρt(·;At |λ̂ht−1 + (1 − λ̂)d̂t−1). Then the above implies that ρht−1

t (·;At) = ρt(·;At |λht−1 +
(1 − λ)dt−1), as claimed.

J.2.5. Proof of Lemma E.5

If ht′−1 ∈ Ht′−1(At′), the claim is immediate from DREU2. So suppose ht′−1 /∈
Ht′−1(At′). Let λ ∈ (0�1) and dt′−1 = ({q�}� q�)

t′−1
�=0 ∈ Dt′−1 be the choices from Defini-

tion 11 such that λht′−1 + (1 − λ)dt′−1 ∈ Ht′−1(At′) and ρt′(pt′�At′ |ht′−1) := ρt′(pt′�At′ |
λht′−1 + (1 − λ)dt′−1).
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Note that for all k ≤ t ′, sk ∈ Sk, and w ∈ RXk , we have pk ∈ M(M(Ak�Usk)�w) if
and only if λpk + (1 − λ)qk ∈ M(M(λAk + (1 − λ){qk}�Usk)�w). Hence, τsk(pk�Ak) =
τsk(λpk + (1 − λ)qk�λAk + (1 − λ){qk}). Thus, the claim follows from DREU2 applied
to the history λht′−1 + (1 − λ)dt′−1 ∈Ht′−1(At′).

J.2.6. Proof of Lemma E.6

Let St(st−1) := suppμst−1
t . By DREU1, we can find a finite Yt ⊆ Xt such that (i) for

any st ∈ St(st−1), Ust is nonconstant over Yt ; (ii) for any distinct st� s′
t ∈ St(st−1), Ust �≈ Us′t

over Yt ; and (iii)
⋃

pt∈At
supppt ⊆ Yt . By (i) and (ii) and Lemma E.2, we can find a menu

Dt := {qst
t : st ∈ St(st−1)} ⊆ Δ(Yt) such that M(Dt�Ust ) = {qst

t } for all st ∈ St(st−1). Define
bt := ∑

y∈Yt

1
|Yt |δy ∈ Δ(Y). For each st ∈ St(st−1), pick zst ∈ argmaxy∈Y Ust and let gst

t := δzst .
By (i), we have Ust (g

st
t ) > Ust (bt) for all st ∈ St(st−1). Hence, there exists α ∈ (0�1) small

enough such that for all st ∈ St(st−1), we have Ust (q̂
st ) > Ust (bt), where q̂st := αqst

t + (1 −
α)gst

t . Note that setting D̂ := {q̂st
t : st ∈ St(st−1)}, we still have M(D̂t�Ust )= {q̂st

t }.
For each st ∈ St(st−1), pick some pt(st) ∈ M(At�Ust ). For the “moreover” part, we

can ensure that pt(s
∗
t ) = p∗

t . Fix any sequence (εn) from (0�1) such that εn → 0. For
each n and st ∈ St(st−1), let pn

t (st) := (1 − ε)pt(st) + εq̂st
t . And for each rt ∈ At , let rnt :=

(1−ε)rt +εbt . Finally, let An
t := {pn

t (st) : st ∈ St(st−1)}∪{rnt : rt ∈ At}. Note that An
t →m At .

Moreover, by construction, for all st ∈ St(st−1) and n, we have M(An
t �Ust ) = {pn

t (st)}: In-
deed, Ust (p

n
t (st)) > Ust (r

n
t ) for all rt ∈At since Ust (pt(st))≥Ust (rt) and Ust (q̂

st
t ) > Ust (bt);

and Ust (p
n
t (st)) > Ust (p

n
t (s

′
t)) for all s′

t �= st , since Ust (pt(st)) ≥ Ust (pt(s
′
t)) and Ust (q̂

st
t ) >

Ust (q̂
s′t
t ).

Since st−1 is the only state consistent with ht−1, Lemma E.3 implies that An
t ∈A∗

t (h
t−1),

as required. Finally, for the “moreover” part, note that we ensured that pt(s
∗
t ) = p∗

t .
Hence, pn

t (s
∗
t ) constructed above has the desired property that pn

t (s
∗
t ) →m p∗

t and
Ust (A

n
t �p

n
t (s

∗
t ))= {Us∗t } for all n.

J.3. Proof of Proposition I.1

J.3.1. “If” Directions

DREU: Consider any ht = (p0�A0� � � � �pt�At) ∈Ht . Then

μ
(
C

(
ht

)) =
∑

FT (ω)∈ΠT

μ
(
FT (ω)

)
μ

(
t⋂

k=0

{
pk ∈ M

(
M(Ak�Uk)�Wk

)}∣∣∣FT (ω)

)

=
∑

Ft (ω)∈Πt

t∏
k=0

μ
(
Fk(ω) |Fk−1(ω)

)
μ

({
Wk ∈N

(
M

(
Ak�Uk(ω)

)
�pk

)}|Fk(ω)
)

=
∑

Ft (ω)∈Πt

t∏
k=0

μ̂
(
φk

(
Fk(ω)

) |φk−1

(
Fk−1(ω)

))

× μ̂
({
Ŵk ∈ N

(
M

(
Ak�Uk(ω)

)
�pk

)}|φk

(
Fk(ω)

))
=

∑
F̂t (ω̂)∈Π̂t

t∏
k=0

μ̂
(
F̂k(ω̂) | F̂k−1(ω)

)
μ̂

({
Ŵk ∈N

(
M

(
Ak� Ûk(ω̂)

)
�pk

)}|F̂k(ω̂)
)
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=
∑

F̂T (ω̂)∈Π̂T

μ̂
(
F̂T (ω̂)

)( t⋂
k=0

{
pk ∈M

(
M(Ak� Ûk)� Ŵk

)} ∣∣∣ F̂T (ω̂)

)
= μ̂

(
Ĉ

(
ht

))
�

where the second equality follows from properness of (Wt) and Ft-adaptedness of (Ut),
the third equality follows from assumptions (i) and (iii), the fourth equality from the
fact that φt is a bijection and assumption (ii), the fifth equality from the properness of
(Ŵt) and F̂t-adaptedness of (Ût), and the first and last equalities hold by definiton. Since
D represents ρ and D̂ represents ρ̂, this implies ρt(pt�At|ht−1) = μ(C(ht ))

μ(C(ht−1))
= μ̂(Ĉ(ht ))

μ̂(Ĉ(ht−1))
=

ρ̂t(pt�At|ht−1). Thus, ρ̂ = ρ, as required.
BEU: By the “if” direction for DREU, D̂ is a DREU representation of ρ. It remains to

show that (D̂� (ût� δ̂t)) satisfies (1). From assumptions (ii), (iv), and (v), it is immediate
that ÛT = ûT . Moreover, for all t ≤ T − 1, and ω ∈ Ω, ω̂ ∈φt(Ft(ω)), we have

αt(ω)Ût(ω̂)(z�At+1)

= Ut(ω)(z�At+1)−βt(ω)= ut(ω)(z)−βt(ω)+ δt(ω)Eμ

[
max

pt+1∈At+1
Ut+1(pt+1)

∣∣Ft(ω)
]

= αt(ω)ût(ω̂)(z)− δt(ω)Eμ

[
βt+1|Ft(ω)

]
+ δt(ω)Eμ̂

[
αt+1 max

pt+1∈At+1
Ût+1(pt+1) | F̂t(ω̂)

]
+ δt(ω)Eμ

[
βt+1|Ft(ω)

]
= αt(ω)

(
ût(ω̂)(z)+ δ̂t(ω̂)Eμ̂

[
max

pt+1∈At+1
Ût+1(pt+1)

∣∣ F̂t(ω̂)
])

�

where the first equality follows from (ii), the second from (1) for (D� (ut� δt)), the third
from (i), (ii), and (v) (and the fact φt is a bijection), and the fourth by (iv). Thus,
(D̂� (ût� δ̂t)) satisfies (1).

BEB: By the “if” direction for BEU, (D̂� (ût� δ̂t)) is a BEU representation of ρ. It re-
mains to show that (D̂� (ût� δ̂t)) satisfies (2). For all t ≤ T − 1 and ω ∈Ω, ω̂ ∈ φt(Ft(ω)),
we have

α0(ω)ût(ω̂)+ γt(ω)= ut(ω)= Eμ

[
UT |Ft(ω)

] = α0(ω)Eμ̂

[
ÛT |F̂t(ω̂)

] +Eμ

[
βT |Ft(ω)

]
�

where the first equality follows from (iv), (v), and (vi), the second from (2) for
(D� (ut� δt)), and the third from (i), (ii), (iv), (vi) (and the fact that φt is a bijection).
But since γt(ω) = Eμ[βT |Ft(ω)] by (vii), the above implies that ût(ω̂) = Eμ̂[ÛT |F̂t(ω̂)],
whence (D̂� (ût� δ̂t)) satisfies (2) with ˆ̃u := ÛT .

J.3.2. “Only If” Directions

DREU: Throughout the proof, for any t and Et = Ft(ω) ∈ Πt , we let Ut(Et) denote
Ut(ω) and likewise for Û ; this is well-defined by adaptedness. We construct the sequence
(φt�αt�βt) inductively, dealing with the base case t = 0 and the inductive step simultane-
ously.

Suppose t ≥ 0 and that we have constructed (φt′�αt′�βt′) satisfying (i)–(iii) for all
t ′ < t (disregard the latter assumption if t = 0). If t > 0, fix any Et−1 = Ft−1(ω

∗) ∈
Πt−1, let Êt−1 := φt−1(Et−1), and let Πt(Et−1) := {Et = Ft(ω) ∈ Πt : Ft−1(ω) = Et−1} and
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Π̂t(Êt−1) := {Êt = F̂t(ω̂) ∈ Π̂t : F̂t−1(ω̂) = Êt−1}. As in the proof of Lemma B.2, we can
repeatedly apply Lemma E.2 to find a separating history for Et−1 = Ft−1(ω

∗), that is,
a history ht−1 = (B0� q0� � � � �Bt−1� qt−1) ∈ H∗

t−1 such that {ω ∈ Ω : qk ∈ M(Bk�Uk(ω))} =
Fk(ω

∗) for all k = 0� � � � � t − 1. By inductive hypothesis, ht−1 is then also a separating
history for Êt−1. Thus, by Lemma E.3 (and the translation to S-based DREU in Propo-
sition A.1), C(ht−1) = Et−1 and Ĉ(ht−1) = Êt−1. If t = 0, then in the following we let
Et−1 := Ω, Êt−1 := Ω̂, Πt(Et−1) := Π0, Π̂t(Et−1) := Π̂0, and we disregard all references
to the separating history.

Enumerate Πt(Et−1) = {Ei
t : i = 1� � � � �m} with corresponding utilities Ui

t :=Ut(E
i
t) and

Π̂t(Êt−1) = {Êj
t : j = 1� � � � � m̂} with corresponding utilities Û

j
0 := Ût(Ê

j
t ). Since (Ft �Ut)

and (F̂t � Ût) are both simple, we have μ(Ei
t) > 0 for all i and Ui

t �≈ Ui′
t for i �= i′, and like-

wise μ̂(Ê
j
t ) > 0 for all j and Û

j
t �≈ Û

j′
t for j �= j′. Note that, for every j, there exists a unique

i(j) such U
i(j)
t ≈ Û

j
t . Indeed, if such an i(j) exists, it is unique because all the Ui

t repre-
sent different preferences. And the desired i(j) exists, since otherwise by Lemma E.2,
we can find a menu Bt = {qi

t : i = 1� � � � �m} ∪ {q̂j
t } such that M(Bt�U

i
t ) = {qi

t} for each i

and M(Bt� Û
j
t )= {q̂j

t }. We can additionally assume (by replacing ht−1 with an appropriate
mixture if need be) that ht−1 ∈H∗

t−1(Bt). Since D and D̂ both represent ρ, we obtain

0 = μ
[
C

(
q̂
j
t �Bt

)|Et−1

] = ρt

(
q̂
j
t ;Bt |ht−1

) = μ̂[Ĉ(
q̂
j
t �Bt

)|Êt−1)≥ μ̂
(
Ê

j
t |Êt−1

)
> 0�

a contradiction. Similarly, for every i, there exists a unique j(i) such that Û
j(i)
t ≈ Ui

t .
Thus, defining φt : Πt(Et−1) → Π̂t(Êt−1) by φt(E

i
t) = Ê

j(i)
t yields a bijection. By construc-

tion, Ut(E
i
t) ≈ Ût(φt(E

i
t)) for all i, so we can find αt(E

i
t) ∈ R++ and β(Ei

t) ∈ R such that
Ut(E

i
t ) = αt(E

i
t)Ût(φt(E

i
t)) + β(Ei

t). Defining α(ω) = α(Ft(ω)) and β(ω) = β(Ft(ω)),
this yields Ft-measurable maps αt�βt : Et−1 → R such that (ii) holds for all ω ∈ Et−1.
Moreover, applying Lemma E.2 again, we can find a menu Dt = {rit : i = 1� � � � � n} such
that M(Dt�U

i
t ) = {rit } for each i. Again, slightly perturbing the separating history ht−1

for Et−1 if need be, we can assume that ht−1 ∈ H∗
t−1(Dt). Then, by the representation,

μ(Ei
t |Et−1)= ρt(r

i
t ;Di

t |ht−1)= μ̂(φt(E
i
t)|Êt−1) for all i, yielding (i).

To show (iii), consider any pt ∈ At , where we can again assume ht−1 ∈ H∗
t−1(

1
2At +

1
2Dt). Let Bi

t := {w ∈ RXt : pt ∈ M(M(At�Ut(E
i
t))�w)}. Note that by (ii), Bi

t = {w ∈ RXt :
pt ∈ M(M(At� Ût(φt(E

i
t)))�w)}. Thus, μ({Wt ∈ Bt}|Ei

t) = μ(C(pt�At)|Ei
t) and μ̂({Ŵt ∈

Bt}|φt(E
i
t))= μ̂(Ĉ(pt�At)|φt(E

i
t )). But since D and D̂ both represent ρ and by choice of

Dt ,

μ
(
Ei

t |Et−1

)
μ

[
C(pt�At)|Ei

t

]
= μ

[
C

(
1
2
pt + 1

2
rit �

1
2
At + 1

2
Dt

)∣∣Et−1

]

= ρt

(
1
2
pt + 1

2
rit ;

1
2
At + 1

2
Dt

∣∣ht−1

)

= μ̂

[
Ĉ

(
1
2
pt + 1

2
rit �

1
2
At + 1

2
Dt

)∣∣Êt−1

]
= μ̂

(
φt

(
Ei

t

)|Êt−1

)
μ̂

[
Ĉ(pt�At)|φt

(
Ei

t

)]
�
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which implies μ[C(pt�At)|Ei
t ] = μ̂[Ĉ(pt�At)|φt(E

i
t)], since, by (i), we have μ(Ei

t |Et−1) =
μ̂(φt(E

i
t)|Êt−1). Thus, μ({Wt ∈ Bt}|Ei

t) = μ̂({Ŵt ∈ Bt}|φt(E
i
t )), as required.

Finally, note that the collection {Πt(Et−1) : Et−1 ∈ Πt−1} partitions Πt , and similarly
{Π̂t(Êt−1) : Êt−1 ∈ Π̂t−1} partitions Π̂t . Thus, applying the above construction for every
Et−1 ∈ Πt−1 yields a bijection φt : Πt → Π̂t and Ft-measurable maps αt : Ω → R++ and
βt : Ω → R such that (i)–(iii) are satisfied.

BEU: The “only if” part for DREU yields sequences (φt�αt�βt) such that (i)–(iii)
are satisfied. It remains to show that (iv) and (v) hold. Throughout the proof, for any
Et =Ft(ω) ∈ Πt , we sometimes use Ut(Et), δt(Et), αt(Et), βt(Et) to denote Ut(ω), δt(ω)
αt(ω), βt(ω); this is well-defined since they are Ft-measurable. We also let Ft−1(Et) :=
Ft−1(ω); this is well-defined since Ft(ω) = Ft(ω

′) implies Ft−1(ω) = Ft−1(ω
′), as (Ft) is

a filtration.
For (iv), fix any ω and t ≤ T − 1. Let Et :=Ft(ω) and pick any At+1, Bt+1 and zt . Then

Ut(Et)(zt�At+1)−Ut(Et)(zt�Bt+1)

= αt(Et)
(
Ût

(
φt(Et)

)
(zt�At+1)− Ût

(
φt(Et)

)
(zt�Bt+1)

)
= αt(Et)δ̂t

(
φt(Et)

) ∑
Êt+1∈Π̂t+1

μ̂
(
Êt+1|φt(Et)

)[
max
At+1

Ût+1(Êt+1)− max
Bt+1

Ût+1(Êt+1)
]

= αt(Et)δ̂t

(
φt(Et)

) ∑
Et+1∈Πt+1

μ̂
(
φt+1(Et+1)|φt(Et)

)

×
[
max
At+1

Ût+1

(
φt+1(Et+1)

) − max
Bt+1

Ût+1

(
φt+1(Et+1)

)]

= αt(Et)δ̂t

(
φt(Et)

) ∑
Et+1∈Πt+1

μ(Et+1|Et)

×
[
max
At+1

Ût+1

(
φt+1(Et+1)

) − max
Bt+1

Ût+1

(
φt+1(Et+1)

)]
= αt(Et)δ̂t

(
φt(Et)

) ∑
Et+1 s.t. Ft (Et+1)=Et

μ(Et+1|Et)

×
[
max
At+1

Ût+1

(
φt+1(Et+1)

) − max
Bt+1

Ût+1

(
φt+1(Et+1)

)]
� (39)

where the first equality holds by (ii), the second equality follows from (D̂� (ût� δ̂)) be-
ing a BEU representation, the third equality from the fact that φt is a bijection, the
fourth equality from (i), and the fifth equality from the fact that μ(Ft+1(ω

′)|Et) > 0 iff
Ft(ω

′)=Et .
At the same time, we have

Ut(Et)(zt�At+1)−Ut(Et)(zt�Bt+1)

= δt(Et)
∑

Et+1∈Πt+1

μ(Et+1|Et)[max
At+1

Ut+1(Et+1)− max
Bt+1

Ut+1(Et+1)

= δt(Et)
∑

Et+1∈Πt+1

μ(Et+1|Et)αt+1(Et+1)
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×
[
max
At+1

Ût+1

(
φt+1(Et+1)

) − max
Bt+1

Ût+1

(
φt+1(Et+1)

)]

= δt(Et)
∑

Et+1 s.t. Ft (Et+1)=Et

μ(Et+1|Et)αt+1(Et+1)

×
[
max
At+1

Ût+1

(
φt+1(Et+1)

) − max
Bt+1

Ût+1

(
φt+1(Et+1)

)]
� (40)

where the first equality follows from (D� (ut� δt)) being a BEU representation, the second
equality from (ii), and the third equality from the fact that μ(Ft+1(ω

′)|Et) > 0 iff Ft(ω
′)=

Et .
Combining (39) and (40), we have that for all At+1 and Bt+1,

δ̂t

(
φt(Et)

) ∑
Et+1 s.t. Ft (Et+1)=Et

μ(Et+1|Et)αt(Et)

×
[
max
At+1

Ût+1

(
φt+1(Et+1)

) − max
Bt+1

Ût+1

(
φt+1(Et+1)

)]
= δt(Et)

∑
Et+1 s.t. Ft (Et+1)=Et

μ(Et+1|Et)αt+1(Et+1)

×
[
max
At+1

Ût+1

(
φt+1(Et+1)

) − max
Bt+1

Ût+1

(
φt+1(Et+1)

)]
� (41)

Since (F̂t � Ût) is simple and φt is a bijection, Ût+1(φt+1(Et+1)) �≈ Ût+1(φt+1(E
′
t+1)) for

all distinct Et+1, E′
t+1 with Ft(Et+1) = Et = Ft(E

′
t+1). So by Lemma E.2, we can find a

menu At+1 := {qEt+1
t+1 : Ft(Et+1) = Et} such that, for all Et+1 with Ft(Et+1) = Et , we have

M(At+1� Ût+1(φt+1(Et+1)) = {qEt+1
t+1 }. Let E∗

t+1 := Ft+1(ω) and let Bt+1 = At+1 � {qE∗
t+1

t+1 }.
Then in (41), [maxAt+1 Ût+1(φt+1(Et+1)) − maxBt+1 Ût+1(φt+1(Et+1))] �= 0 iff Et+1 = E∗

t+1.
Hence, (41) implies δ̂t (φt (Et ))

δt (Et )
αt(ω) = δ̂t (φt (Et ))

δt (Et )
αt(Et) = αt+1(E

∗
t+1) = αt+1(ω). Since this is

true for all t ≤ T − 1, (iv) follows.
For (v), note that the claim for T is immediate from (ii) and the fact that UT = uT ,

ÛT = ûT . Next, fix any ω ∈ Ω, ω̂ ∈φt(Ft(ω)), t ≤ T − 1, and (z� {pt+1}). Then

Ut(ω)
(
z� {pt+1}

) = ut(ω)(z)+ δt(ω)Eμ

[
Ut+1(pt+1)|Ft(ω)

]
= ut(ω)(z)+ αt(ω)δ̂t(ω̂)Eμ̂

[
Ût+1(pt+1)|F̂t(ω̂)

]
+ δt(ω)Eμ

[
βt+1|Ft(ω)

]
� (42)

where the first equality follows from (D� (ut� δt)) being an evolving utility representation
and the second equality from (i), (ii), (iv) (and the fact that φt is a bijection). At the same
time, we have

Ut(ω)
(
z� {pt+1}

) = αt(ω)Ût(ω̂)
(
z� {pt+1}

) +βt(ω)

= αt(ω)ût(ω)(z)+ αt(ω)δ̂t(ω̂)Eμ̂

[
Ût+1(pt+1)|F̂t(ω̂)

] +βt(ω)� (43)

where the first equality follows from (ii) and the second equality from (D̂� (ût� δ̂t)) being
an evolving utility representation. Combining (42) and (43) yields the desired claim.
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BEB: The “only if” part for BEU yields sequences (φt�αt�βt) such that (i)–(v) are
satisfied. It remains to show that (vi) and (vii) hold.

For (vi), fix any ω ∈ Ω and t. Take �, � from Condition D.1 (Uniform Ranked Pair).
Then, based on the representation, one can verify that ut(ω)(�) > ut(ω)(�) holds by fol-
lowing the similar line as in Lemma D.1.

Note that by (2) and iterated expectations, we have

Ut(ω)(�t� �t+1�At+2)= ut(ω)(�t)+ δt(ω)
(
ut(ω)(�t+1)+E

[
δt+1 max

At+2
Ut+2

∣∣Ft(ω)
])

for any (�t� �t+1�At+2). Hence, Ut(ω)(�� ��At+2) − Ut(ω)(η� + (1 − η)��η� + (1 −
η)��At+2) = 0 if and only if η = 1

1+δt (ω)
.

Now pick any ω̂ ∈ φt(Ft(ω)). Then, since (D̂� (ût� δ̂t)) is also a BEU representation, by
the same reasoning as above we have that Ût(ω̂)(�� ��At+2)− Ût(ω̂)(η�+ (1 −η)��η�+
(1 − η)��At+2) = 0 if and only if η = 1

1+δ̂t (ω̂)
. By (ii), this implies that δt(ω) = δ̂t(ω̂),

proving (vi).
Finally, (vii) is verified by observing that for any t, ω, and ω̂ ∈ φt(Ft(ω)),

γt(ω)= ut(ω)− αt(ω)ût(ω̂) = Eμ

[
uT |Ft(ω)

] − αt(ω)Eμ̂

[
ûT |F̂t(ω̂)

] = Eμ

[
βT |Ft(ω)

]
�

where the first equality uses (v), the second uses (2), and the third uses (i), (v), and
αt(ω) = αT(ω) (which follows from (iv) and (vi)).

J.4. Proof of Proposition I.2

(i) =⇒ (ii): Suppose that ρZ admits a BEU representation (Ω�F ∗�μ� (Ft �Ut�Wt�
ut� δt)) and satisfies Axioms I.1 and I.2. For each t, we can pick a finite collection
Ut = {u1

t � � � � � u
mt
t } of ordinally distinct felicities such that [Ut] = [{ut(ω) : ω ∈ Ω}]. Con-

dition D.1 (Uniformly Ranked Pairs) ensures that these felicities are nonconstant. Let
U := {u1� � � � � um}, where m = m0 and ui = ui

0 for all i = 1� � � � �m. Define ξ ∈ Δ◦(U) by
ξ(ui) := μ(u0(ω) ≈ ui) for all i.

By Axiom I.1, for each degenerate consumption history dt−1
Z , ρZ

0 and ρZ
t (·|dt−1

Z ) rep-
resent the same static stochastic choice rule over finite menus of consumption lotter-
ies without ties. Hence, the same argument in the proof of Proposition I.1 implies
that after suitable relabeling, we can assume that mt = m and ui

t ≈ ui for all i and
μ(ut(ω) ≈ ui) = ξ(ui). Thus, property (i) of the Markov evolving utility representation
is satisfied.

Next, we construct a menu L = {�1� � � � � �m} ∈ L∗
0 such that ui(�i) > ui(�j) for all i �= j

and such that each (L��i) is a consumption atom. Indeed, since the ui are noncon-
stant and ordinally distinct, Lemma E.2 yields a menu L = {�1� � � � � �m} ∈ L∗

0 such that
ui(�i) > ui(�j) for all i �= j; moreover, up to mixing all �i with some full-support lottery
� ∈ Δ◦(Z), we can assume that L ⊆ Δ◦(Z). By the representation, ρ0(�

i�L) = μ(u0(ω) ≈
ui) > 0 for all i. Finally, suppose that L′ ∈ L∗ and L′ ⊇ L. Then, either �i ∈ M(L′�ui),
in which case ρ0(�

i�L′) = μ(u0(ω) ≈ ui) = ρ0(�
i�L); or �i /∈ M(L′�ui), in which case

ρ0(�
i�L′) = 0 since uj(�i) < uj(�j) for all j �= i. Thus, each (L��i) is a consumption

atom.
Now, consider any t ≤ T − 1 and any u0� � � � � ut+1 ∈ U . For each s = 0� � � � � t + 1, let �s

denote the maximizer of us in menu L that we constructed in the previous paragraph.
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Then, for any degenerate consumption history dt−1
Z , we have

μ
(
ut+1(ω) ≈ ut+1|u0(ω) ≈ u0� � � � � ut−1(ω) ≈ ut−1�ut(ω) ≈ ut

)
= ρZ

t+1(�t+1�L | L��0� � � � �L� �t−1�L� �t)

= ρZ
1 (�t+1�L |L��t)= ρZ

t+1

(
�t+1�L | dt−1

Z �Lt� �t
)

= μ
(
ut+1(ω) ≈ ut+1|ut(ω)≈ ut

)
�

where the first and fourth equalities hold by the BEU representation of ρ together with
the fact that M(L�ui) = {�i} for all i, and the second and third equalities follow from
Axiom I.2 and the fact that (L��t) is a consumption atom. This establishes property (ii)
of the Markov evolving utility representation.

Finally, set Πi�j := μ(u1(ω) ≈ uj|u0(ω)≈ ui) for all i� j = 1� � � � �m. Note that this yields
a right stochastic matrix Π, because

∑
j Πi�j = 1 by part (i) of Definition 14 that we estab-

lished above. Consider any i� j = 1� � � � �m. Then, letting L, �i, and �j be as constructed in
the third paragraph, we have for any degenerate consumption history dt−1

Z that

μ
(
ut+1(ω) ≈ uj|ut(ω) ≈ ui

) = ρZ
t+1

(
�j�L | dt−1

Z �L��i
)

= ρZ
1

(
�j�L | L��i) = μ

(
u1(ω) ≈ uj|u0(ω) ≈ ui

) = Πi�j�

where the first and third equalities again follow from the representation and the con-
struction of L and the second equality holds by Axiom I.2 and the fact that (L��i) is a
consumption atom. This proves property (iii) of the Markov evolving utility representa-
tion.

(ii) =⇒ (i): Suppose that ρ admits a Markov evolving utility representation. To show
that Axiom I.1 holds, consider any degenerate consumption history dt−1

Z , L ∈ L∗
0 ∩

L∗
t (d

t−1
Z ), � ∈ L. Then

ρZ
0 (��L)= μ

{
ω : � ∈M

(
L�u0(ω)

)}
= ξ

{
ui ∈ U : � ∈M

(
L�ui

)} = μ
{
ω : � ∈ M

(
L�ut(ω)

)} = ρZ
t

(
��L|dt−1

Z

)
�

where the first and final equalities hold by the BEU representation and the fact that L is
without ties and dt−1

Z is degenerate, and the second and third equalities hold by property
(i) of the Markov evolving utility representation.

To establish Axiom I.2, consider any consumption atom (L��). We first show that there
exists ui ∈ U such that μ(� ∈ M(L�ut(ω))) = μ(ut(ω) ≈ ui) for all t. Since L is without
ties, it suffices to show that there is a unique i ∈ {1� � � � �m} such that � ∈ M(L�ui). To
see this, note that since μ(� ∈ M(L�u0(ω))) = ρ0(��L) > 0, there exists ui such that � ∈
M(L�ui). Suppose for a contradiction that � ∈ M(L�uj) for some j �= i. Since ui �≈ uj ,
we can find m ∈ Δ(Z) such that ui(�) > ui(m) and uj(�) < uj(m).87 Then, letting M =
L∪{m}, we have that ξ(ui)≤ ρ0(��M)≤ ρ0(��L)−ξ(uj). Thus, ρ0(��M) /∈ {ρ0(��L)�0},
contradicting the fact that (L��) is a consumption atom.

87Indeed, since ui �≈ uj , we can find �i , �j such that ui(�i) > ui(�j) and uj(�j) > uj(�i). Then, for small
enough ε > 0, m := � + ε(�j − �i) is a well-defined consumption lottery in Δ(Z), as � ∈ Δ◦(Z). Moreover,
ui(�) > ui(m) and uj(�) < uj(m), as required.
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Now, consider any consumption history ht−1
Z without ties. For any L′ ∈ L∗

t (h
t−1
Z ) and

�′ ∈L′, we have

ρZ
1

(
�′�L′|L��) = μ

(
�′ ∈M

(
L′�u1(ω)

) | u0(ω) ≈ ui
)

=
∑

{j:�′∈M(L′�uj)}
μ

(
u1(ω) ≈ uj | u0(ω)≈ ui

) =
∑

{j:�′∈M(L′�uj)}
Πi�j

=
∑

{j:�′∈M(L′�uj)}
μ

(
ut+1(ω) ≈ uj | ut(ω) ≈ ui

)

= μ
(
�′ ∈M

(
L′�ut+1(ω)

) | ut(ω) ≈ ui
)
�

where the second and final equalities follow from property (i) of the Markov evolving util-
ity representation and the fact that L′ is without ties, and the third and fourth equalities
follow from property (iii) of the Markov evolving utility representation.

Moreover, letting U(ht−1
Z ) denote the set of all sequences of felicity realizations from U

that are consistent with history ht−1
Z ,88 we have

ρZ
t+1

(
�′�L′|ht−1

Z �L��
)

= μ
(
�′ ∈ M

(
L′�ut+1(ω)

) | ut(ω)≈ ui�ω ∈ C
(
ht−1
Z

))
=

( ∑
(u0�����ut−1)∈U(ht−1

Z )

μ

(
�′ ∈ M

(
L′�ut+1(ω)

) ∣∣∣ ut(ω) ≈ ui�

t−1⋂
s=0

{
us(ω)≈ us

})

×μ

(
ut(ω)≈ ui�

t−1⋂
s=0

{
us(ω) ≈ us

}))

/( ∑
(u0�����ut−1)∈U(ht−1

Z )

μ(ut(ω) ≈ ui�

t−1⋂
s=0

{
us(ω) ≈ us

})

= μ
(
�′ ∈ M

(
L′�ut+1(ω)

) | ut(ω)≈ ui
)
�

where the third equality follows from property (ii) of the Markov evolving utility
representation. Combining the previous two paragraphs, we have ρZ

1 (�
′�L′|L��) =

ρZ
t+1(�

′�L′|ht−1
Z �L��). This establishes Axiom I.2.
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