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APPENDIX A: PROOFS AND ADDITIONAL FIGURES FOR THE MODEL
A.1. Proofs

PROOF OF LEMMA 1: Consider first k, > k,. Given the increasing cost of exerting in-
fluence, a whip exerts the minimum amount of influence necessary to ensure a vote for
k., provided this amount is less than or equal to y;'*. The minimum amount of influence
is such that the member is indifferent, u(k,, o’ + y') = u(k,, @' + y!) or |’ + y' — k,| =

|w! + yi — k,|. This equality is satisfied if and only if o + y/ = MV, = “2% If w! > MV,
the required influence is weakly negative (absent influence, the member votes for k,) and
so no influence is exerted. If ! < MV, a positive amount of influence, y' = MV, — v > 0
is required which increases linearly in MV, — '. Therefore, a member is whipped if and
only if their ideology is such that MV, — y™ < o' < MV,. For k, < k,, the argument is

reversed: only members for which MV, < ! < MV, + yy*are whipped. Q.E.D.

PROOF OF LEMMA 2: Consider the mass, f(6), of members at some 6, each of whom
has an independent signal of 7, , due to their independent ideological shocks. The average
number of Yes reports from the N members at 0 is given by limy_, o, % Zﬁl I(u(x,, 0+
81,, + M) > ulq, 0+ 61, + 11,,)) where I () represents the indicator function. By the law
of large numbers, as N — oo, this average converges to

FOE[I(u(xi, 0+ 8 +7,,) = u(q, 0+8 +7,,))]
=f(0)Pr(u(x,, 0+8,+7,,)>u(q, 0+8 +1,,))
=f(O)Pr(0+ 8} +14,,>MV,)
=fO(1-GMV,—6—1,,)).

Therefore, after observing the number of Yes reports for a given 6, 1, , is known with
probability one. Q.E.D.
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PROOF OF LEMMA 3: Consider x, > g;. Let Gy;,() denote the cdf of & , 4+ 85, (with

corresponding pdf, g1,,()). For a given MV ,,, the number of votes for x, from a given
party’s members is known with probability one due to independent idiosyncratic shocks
and a continuum of members. To see this fact, consider the continuum of party p’s mem-
bers located at each 6, each with independent shocks, & , and &5 ,. With N voters at 6, the

average number of votes from these members is given by limy_, o, % Zfil 10"+ 8, +

8, > MV,, + yy™), where the sign with which y™ enters depends upon the direction
that party p whips. By the law of large numbers, as N — oo, this average converges to

FOE[I(0+8] + 8> MV, £y™™)] = f(0) Pr(6 + 8} + 87 > MV 5, £ y™™)

p

=F(0)(1 = G1o(MV o, £ y2™ — 0)).

Using this fact, the number of votes for x, from party D’s members is given by
YD(M~V2J) = ND[ff;(l - GHZ(MVz,t — 0 £ yp*™))fp(0)de]. The corresponding expres-
sion for party R is Yr(MV5,) = Nil[[*.(1 — G1o(MV 5, — 0 £ yi®)) fr(8) d6]. The total
number of votes for x, is then given by Y(M Vo= YD(M Vo) + YR(I\/f Vo).

Y(MV,,) is strictly decreasing in x,. To see this, consider the votes from party D’s
members, Y, (M Vi)

AYpMVy,) 1 4 > P
D( 2 ) = — ND|:/ (1_G1+2(MV27,—Oﬂ:ygax))f[;(e)de}

dx, B 2(9M‘V2,t 0o
ND = r max
= —7 g1+2(MV2’t -0 :l:yD )fD(O)dO (Al)

(A.1) is strictly less than zero given that that ideological shocks are unbounded, in-
dependent of the (finite) amount or direction of whipping. The same is true of the
derivative of Yx(MV ), ensuring Y(MV,) strictly decreases in x, for x, > g,. For
X, < qi,we have Yp(MV5,) = Npl[* G112(MV 5, — 0+ yp™) fp(6) d6] and Yr(MV5,) =
NR[f_OZo G1+2(M~V2,t — 0 £ yR™)fr(6)d0] so that Y(M~Vz,t) increases in x,. Since for
q. < 07, we must have x; > ¢, and for g, > 6 we must have x; < g,; we see that the

number of votes for x, strictly decreases the closer it gets to the proposing party’s ideal
point. Q.E.D.

PROOF OF PROPOSITION 1: For g, = 0}, clearly x{**" = x}° “""" = 7} are the unique
optimal alternative policies because party D can do no better than its ideal point.

In the case of no whip count, and g, < 67, so that x, > g,, we can rewrite party D’s
expected utility as

MV, — MV g g

(o

EUBO count(qt’xt) — (1 _ (I)(

)) G 03) = wla 03) + e 05) — G

The derivative with respect to x, is given by

MV, — MV 1 (MV,—MV
(1 _ qa(’—“»ux(x,, o) — E¢(’—R’R> (u(x., 02) — (e, O)),

(o (o
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where ¢ () denotes the pdf of the standard Normal distribution. At x, = g,, the derivative
is strictly positive given g, < 67 and the fact that M Vg g is finite. At x, = 67, it is strictly
negative given u(q,, 8};) < 0. Together these facts ensure an interior solution, which we
now show is unique. Any interior solution must satisfy the first-order condition,

no count _ r
(1 —(I)(Ml/t MVR,R))ux(xftw count’ Og)

o

no count _ r
— %d)(MI/f MVR!R) (u( no count

= X! , 05) —u(q:, 67)) =0. (A2)

no count — My CUum_MVR,R
t - o

Defining z , we can rewrite the first-order condition as

1 _ (I)(Z;w count) _ i u(x't“’ count, Og) _ M(Qt; 03) ‘ (A3)

d) (Z;IO count) 20. u, (x;lo coum, erg)

The left-hand side of (A.3) is the inverse hazard rate of a standard Normal distribu-
tion and so is strictly decreasing in z° "™ (and, therefore, x° ©"™ since x7° ©"" strictly
increases in z[° «""). The sign of the derivative of the right-hand side with respect to
x00 count i gjven by w, (X0 U 97)2 — p,, (X710 W97 (u (X0 U 07y — u(q,, 07)) which
is strictly positive because u,,(x}° "™, 67) < 0 and u(x}° “"™, 6%) > u(q,, 67}). Thus, the
right-hand side is strictly increasing in x° ©"". Together, these facts guarantee a unique
solution, x™ ' € (g,, O7).!

In the case of a whip count and and g, < 87, we can rewrite the party’s expected utility:

EUlc)oum(CIta X;)
=Pr(n, = n, )(Pr(x, wins|ni, > n, )(u(x,, 05) — u(q., 03)) + u(q., 03) — C)
+Pr(n,, <m Ju(q., 0p)

= Pr(nl,t = ﬂl,t’ Xy Wins)(u(xta Og) - M(Qn Hg)) - Pr(”’h,, > ﬂl,t)cb + u(%: Hg)

_ ﬁ“<1_¢(M” —MVir )) (2 ) dntutr. o) - ula. 05)

M, Oy Oy Oy

n
—~ (1 — cb<——“)>c,, + u(qy, 07).
Oy

'The second-order condition at x™ ©unt js also easily checked, but must be satisfied given that marginal
expected utility is increasing at x, = g,, decreasing at x, = 67} and the solution is unique.
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Taking the derivative with respect to x, yields:?

dEUlc)mmt(CIt, X¢)

dx,
dn,, 1 (m, MV, — MV rr—n,,
() (o Yt o) )
MV, — MV
ol S ) (1)t 03) - wla. )
Oy n

- -7
1 o ’ ) n
— m 1-® _
#grntsan) [ (1=0(————L)()an
1 dn n
+ — _“d)(__l’t)cb
o, dx, o,
1 o0 MV, — MV g g —
=—ux(x,,0’")/ (1—CI)< RR n))c{)(i) dn
Oy ., On T

B _/ <MV MV g — >¢<%> dn(u(x, 02) — u(q, 62)),  (Ad)

Oy

where the second equality uses the fact that  satisfies

(1 _ cp(MV’ =MV e ﬂw)) (e 00) —u(gn 02) =G (AS)

Oy

Consider the limit as C, — 0. From (A.5), we can see that, provided x, is bounded away
from g, so that u(x,, 6%;) — u(q,, 0};) > 0 (which we subsequently confirm), we must have
M, —o0as C» — 0. But, as y — —oo, the party always continues to pursue the bill

after the first aggregate shock. In thls case, the optimal alternative policy is identical to
the case of no whip count. Formally,

E count 1 [e] MV _ MV _
11m d UD (Clt, xt) _ _ux(xz, eg)/ (1 —@( t R,R ﬂ))d)(i) dn
_ Ty

ny =0 dx, oy, o oy,

1 [ (MVt—MVR,R—n>
20'31

x ‘ﬁ(%) dn(u(x., ) - u(q. 7))

Oy

2The necessary conditions for applying the Leibniz integral rule with an infinite bound are satisfied. Specif-
ically, the integrand and its partial derivative with respect to x, are both continuous functions of x, and 7, and
it is possible to find integrable functions of n that bound the integrand and it’s partial derivative with respect
to x,.
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i) (1 oMMV n) )

o
1 (MV,—MVgx . .

o <—> (e 02) — u(qn 02)),  (A6)
where the equality follows from the fact that the convolution of two standard Normal
distributions is a Normal distribution with the sum of the variances, and using o* = 20,2].
Comparing (A.6) with (A.2), we can see immediately that, in the limit, the first-order
condition for the whip and no whip cases are identical, and it therefore follows that x{°*"™ is
unique and interior as in the no whip case. This fact ensures that u(x,, 83) —u(q,, 65) >0
in the limit, confirming that we must have n  — —oco as G, — 0.

(o

We now show that x{°"™ is unique and interior for strictly positive Cp. From (A.4), we

dEUSY (g, . . .. . . .
see that % is strictly positive at x, = g, and strictly negative at x, = 6}, ensuring

an interior optimum, x¢°** which must satisfy the first-order condition®

o0 count i _
N S el G
., Oy Oy B (u(xcoum, 92’;) — u(q,, Og))

t

1 oo d)(MI/tcoum _ MVR,R — n)(ﬁ(l) dn B ux(Xf"”nt, ag)

20, ., oy, n

. (A7)

As in the case of no whip count, the right-hand side of (A.7) strictly increases in x{°"™. It
remains to show that, in the limit as C, — 0, the left-hand side of (A.7) strictly decreases in
x¢out which, by continuity of the left-hand side in Cy, ensures there exists a strictly positive

value of C,, C‘,, > 0, such that for all C, < C‘,,, the left-hand side continues to strictly

decrease. It then follows that x¢°*™ is unique for all C,, < é’b. The sign of the derivative of
the left-hand side of (A.7) with respect to x¢*™, is determined by*

dﬂl ‘ n, MV, — MVRR -,
——=¢(— (1D :
dx; oy oy

1 o0 M COUHI_M _
« — ¢< Vt Vg n)d)(i) dn
7 Oy

20, , o,

dﬂ],t 1 MI/tcount _ MVR,R _ ﬂl,, ﬂ
dx™ 20, ¢

l,t)
n
o] MVcounl_MV _

S e (el o
AW Ty T

1 00 M count_MV . 2
(o [ o)) )
20-77 AW 0',7 0-17

3These statements require n,, <00, which, by continuity, is true for C, sufficiently small given that n,,~
—oo0 as C, — 0.
4 Again, the necessary conditions for applying the Leibniz integral rule with an infinite bound are satisfied.

(o

) (o
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1 o0 Mchunt_MV _
e

4o, 0 oy o,

y /W(l_q)(MI/tcount _OZ-WVR,R_H))d)((Ti) d'r] (A8)

1,t

By the implicit function theorem, *] L must satisty (from (A.5))

MI/tcount _ MVR,R _ ﬂ 1 . dﬂ
_¢( o )_ (5 - dx?iu’;t)w(xf"“"‘, 03) — u(a:, 05))

n Oy

MVtcount MVRR
1f count pm
—i—(l—CD( ))ux(xl ,05)=0

Oy

or

MI/tcount MVR R — 1 . t
an, 1 (- ) . o)

Oy

=-— . A9
dxfount 2 MI/tcoum MVR o — 1 t ( )
( Gt 03) = u(a )

¢

Oy

In the limit as C, — 0, n, — —oo, in which case the second term of (A.9) approaches

zero because x{*'™ is bounded away from ¢, and 67, and the inverse hazard rate of a
standard Normal random variable approaches zero as its argument approaches infinity.’
The limit of (A.8) as C, — 0 is then determined by the limit of its second two terms

. MVt My g e e
because the first two terms approach zero. Defining z{**" = —————=% this limit is given

by
1 0 M/count _ MV _ 2
im —(—/ ool ) )
ny,——00 20, - o, o
4 < count MVRR _ >¢)<1>
0'»,7 g,
ount MV _
X ( o) Jal(7 ) an
.
MVcoum MV _
(o “)o( ) in)
a',, _ o
1 (o] MVcount _ MV _
(s 1),
Oy J-x Oy Oy
Slimy oo 1;"’ =lim,_ ~ de’((;‘; =lim,_ o :j(’;(";) = 0 where the first equality uses CHopital’s rule.
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[od] MVcoum _ MIA/ _
J (e Jo () o
—00 0-1] 0-77
_ id) Ml/tcount _ MIA/R’R 2
20 o

B L(ﬁ,(MV[wum _ MVR,R) (1 - (I)(MVzcoum _ MVRR))
40°

(o (o

1

2
d)(ztcount)) _ md)/(zl‘coum) (1 _ (D(Z[count))

1
20
1 count ? 1 count count count
== %d)(zt ) + Z, d)(zt )(1—®(zl ))
1
E d) (Zlcount) 2

4o’
2
count 1
B + o

=0,

where the second equality uses properties of the convolution of Normal distributions,
and the inequality follows from the fact that, for a standard Normal random variable,
x(1—®(x)) < d(x).

For g, > 67 so that x, < g,, we assume party R whips against the bill (supports g,). In
case of no whip count, we can write party D’s expected utility as

MV, — MV g

o

EUBO count(qt’ X)) = (I)( )(u(x,, 03) — u(q;, eg)) + M(qr, eg) — Cp.

With a whip count, it is

EUBO“m(qz, X;)

e MV, =MV, g —mn\ 1
- o L) Lo 2 ) dnuti,03) - ulan )

00 O-W

_ @(%)Cb + u(qt, eg).

n

Using these expressions, the optimal policy candidates, x{°*™ and x}° <*™, can be shown
to be unique (provided Cj is not too large) as in the previous case. Q.E.D.

To prove Lemma 4, we first define and prove Lemma A.1.

LEMMA A.1: Fix C, < C, such that the optimal alternative policies, x{°*™ and x° <™, are
unique. Then the alternative policies that satisfy the first-order conditions with and without a
whip count ((A.7) and (A.3) are such that:

(1) For q, # 67, the optimal alternative policy with a whip count, x¢°"", lies strictly closer
to party D’s ideal point, 6'};, than that without, x}° ™.

(2) MVrorni(q,) and MV™ <" (q,) strictly increase for q, < 07 and strictly increase for
q: > 07.
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PROOF OF LEMMA A.1: Part 1. Consider the case of g, < 67,. We can write the first-
order condition in the case of no whip count as an integration over the second aggregate
shock (as in the case of the whip count):

/oo — MI/tno count __ MVR,R -
o o,

<Ml/tn0 count __ MVR,R _ 77) (M(X?O count’ Og) _ u(Qta eg))j|

o l/t/ (xno count7 67)1)

1
— ¢

20,

X qS(O_i) dn=0.

Consider the left-hand side of this expression, evaluated instead at x{*'™:

/oc 1 B (I) MI/tcount _ MVR,R _ T’
—oo oy

count __ r _ count em — Iy Hm
L (M) (167 ) 1) 0,

20, o, u’(xt , Og)

_ /<oo|:1 3 q)(MI/tcount _MVR,R _ 77)
n Oy

1,

count r _ count Gm _ . om
(MM (A ) )y (1)

n t

20, oy ' (x8™, 07) oy
n /ﬂl,z |:1 B q)(MI/;:ount _ MVR,R _ n)
o Oy
(W 03,
oy, oy, ' (x8™, 07) o,

:+/ﬂl,t|:1_q)<MI/;coum—MVR’R —7])

o o,

count _ pf _ Count’ o) — , o
(MM ) (L (0,

20, oy u' (x5, 67) oy

(A.10)

where the last equality follows from the fact that x¢°**" satisfies the first-order condition
for the case of a whip count. Consider the sign of the integrand in (A.10):

|:1 B (I)<MVtC0um _ MVR,R _ n)

Ty

_ L¢>(MV,°°“" — MV gr n) (u(xf"““‘, o) — (g, 93))}¢(1> 20

/ no count m
207 Oy u (xz ) 0D)
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1-d

(Ml/lcount _ MVR,R _ n)

Oy

count em _ 0m
- (u(xt no zountu(zh D)> Z 0
U (X} ,07)

5

(MV;COUM _ MVR,R _ 77)

Oy

20’

The left-hand side of this inequality is a strictly increasing function of 7, so that there
is at most one value of n at which the integrand is zero. As n — oo, the integrand ap-
proaches 1. Thus, to satisfy the first-order condition for the case of a whip count at x{*'™,
the integrand evaluated at 7, , must be strictly negative so that the single zero-crossing

is contained in [y, ,00) (otherwme the integrand is positive over the whole range and

cannot integrate to zero). Thus, the integrand in (A.10) must be strictly negative over
[—o0, m, ] so that the integral is strictly negative: the marginal expected utility for the
case of no whip count must be negative when evaluated at the optimal alternative policy
for the case of a whip count. But, then we must have x}° “"" < x¢**" to ensure that the
first-order condition for the case of no whip count is satisfied (given that x}° «“" is the
unique optimum, for every x, < x}° "™, the marginal expected utility is positive). The
case of g, > 0}, can be shown similarly.

Part 2. Consider the case of g, < 6}, when a whip count is conducted. MV "™ is deter-
mined implicitly by the first-order condition, (A.7). Taking its derivative with respect to
q., we have

L (e (= ) o7 ) (s, 03) — (g 03)

aq, 1 /“d)(MVtC"‘"“ MV g g — ) ( ) U, (x5, 67)
n

20, n, oy,

oc MVcoum MVR,R _ 77 7’
| — )dn N
. Ty Oy MV
aMVcounl MVcounl MVR,R -1 n &qt
Yo $| — Jdn
0-7) M, a-‘rl 0-77

=0

count am (qt; Hg) > é,xﬁt:ount
coum Hm) aqt

u
count
Vcount MV _
)G ) e
0'7, O-T] aMI/[COun

/m
count 00 coun! jas
(9MV ( / MV: I_MVR’R_n)d)(i)dn a9,
Oy Oy

count em , gm count
count (u (qt D)> <207MI/[ - 1> = O

coum Om) J q.

[
t
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O S — L A
(9MI/[COunt ﬁ El,t

aq. | oMyt (MVfO“m MV — ) ( )

| ¢

20,

0'
Ny

J (u(xf"”"t, 0y) — u(qr, 0;’;))

count count mn
é)xt ux (x[ 9 HD)

J (u(xfounl, Om) _ (q[, 03)) —0

- count C t
&xt le(x oun om)

As shown in the proof of Proposition 1, the term in brackets on the left-hand side is
strictly negative for Cb < Cb, and the last term on the left-hand side is also strictly positive

F) MV"O count ..
so that we must have > 0. Similarly, ——— > 0. For g, > 67, we can similarly
g MV Vnn count

establish —t— < (0 and "WT <0. Q.E.D.

PROOF OF LEMMA 4: V5" (q,) > V° “"™(q,) because, for C, sufficiently small, m,, <

oo and 1, , > —oo (see footnote 3) so that an alternative policy is pursued for a nonzero
measure of the support of n, ,. Therefore, for the same alternative policy, party D’s ex-
pected utility with a whip count must strictly exceed that without because over this support
of n, ,, the cost, G, is avoided and the probability of the alternative passing is the same. If

party D pursues a different alternative policy with a whip count (which it generally does),
then it must because it does even better.

Consider the case of g, < #},. We claim both value functions decrease with g, but the
difference V35" (q,) — V}° ©*"(q,) increases. By the envelope theorem, the derivative of
the value function for the case of no whip count with respect to g, is given by

&VDnO counl(ql)
a9,

no count __ 7
(-

1 M/mo count MV
o _¢( t ~ R,R>(u(x;m count’ ng) _ u(q“ eg))

no count __ Af
PSS -
no count __ Af
— (1 _ QD(MV; - MVR,R))ux(x;m count, Bg)
no count __ Af
_(1_(I)<MI/; MVR,R))(uq(qt,e )+ux( no count em)),

(o3
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where the first equality follows from applying the first-order condition. With unbounded
aggregate shocks and g,, x}° “"™ < 67, the marginal utilities are strictly positive so that
the overall derivative is negative.

In a similar manner, for the case of a whip count, we have

V5" (q,)

aq,
. 1 00 MI/tcount — MVR,R - n ” .
__T'vzz[ll,td)( oy >¢<U_n) dn(u(x:, 0) — u(4:, 05))
1 00 M/ count _ MV _
e [ (R 3)e
Tn M1, () o,
1
=~ (uy(q0 O5) + e (5" 67))

n

[e 9] count i _
o (oo (EE ) el e
n Oy Oy

1,t

which is also strictly negative, given n < oc.
Finally, consider the marginal difference of the value functions:

Or)(VDcounl(qt) _ VDno COUHt(q:))
a9,

1
= ——(uq(qs, Op) + ue(x™, 67))

n

0 count __ 3 _
e e K R
n Oy Oy

1,t

o

My count __ MV
+ (uq(%a 9”31) + ux(x‘t10 count Gg))(l _ q)( ! R,R)).

From the first part of Lemma A.1, x}° " < x¢, which ensures u,(x}° “"™, 67) >
u, (x", 67). Furthermore,

1 3 @(Ml/tno count MVR,R)
g

. 1 B q)(MI/lcount _ M\V&R)
(o

o) count i _
“ [ (=)ol )
0'.,] —00 O'T) O'T)
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1 o0 MVcount_MV _
S (e () el ) o
Oy 0y, Ty T

>0

given 1, < oo. Therefore, the difference in expected utility strictly increases with g;.

For g, > 6}, we can establish that both value functions increase in g,, but their differ-
ence decreases, in an identical manner. O.E.D.

PROOF OF PROPOSITION 2: Assume C, < C’b so that, from Proposition 1, x{*™ is
unique. Consider g, < 0}. We first show that as g, — 67, V3°“""(q,) - —C, and
V5ot (g,) — 0. The first follows from simple inspection of EU}Y ©*"(q,, x,), noting that
x°cout must approach 67 as g, — 67 because it is contained in the interval, (g,, 67),

by Proposition 1. Similarly, inspecting EUZ"™(q,, x,), we see that V5*""(q,) - —(1 —
(IJ(E“ ))C;, But, as g, — 607, we can see from (A.5) that m, , must approach infinity such

that ®(2) — 1.

leen these facts, strictly positive costs, and the result of Lemma 4 that both value
functions strictly decrease with |g, — 671, there exists a status quo cutoff, g, < 6}, such
that for all g, € (g,, 67;), no alternative policy is pursued. Specifically, g, is given by the
larger of the two policies, ¢; and g, which satisfy V5° “""(g,) = 0 and V5**"(g,) = C
respectively.

For ¢q, < gq,, there are two possibilities. If g, > ¢,, then set q,=4q, = q so that
Vst (g1) < C, and V3° "™ (q,) = 0. In this case, for any ¢, < g, an alternative policy
is pursued without a whip count: by Lemma 4, over this range, V;}° “*"(g;) > 0 so that an
alternative policy without a whip count is preferred over not pursuing an alternative pol-
icy and, as g, decreases from g, V5" (gq,) — V3° “"™(q,) decreases so that not conducting
a whip count remains more valuable than conducting one.

If g1 < q», then set g, = ¢, and define 4, <q, to be the policy for which V“’”“‘(q ) —
C,=Vp° C"“"t(q ). Such a point must exist because by Lemma 4, as g, decreases from
q, V5o (q) — VnO count(qg,) decreases and so must eventually approach zero. Thus, for
g, sufficiently small, Vset(q,) — Gy, < V30 ©(g,). With these cutoffs, for g, € (—oo, ql],
an alternative policy is pursued without a whip count because }V3° «*"(g,) > V5" (q,) —
C,>0forall g, < q, For g, €(q,,q], an alternative policy is pursued with a whip count

because V5" (q,) — C > 0 and, by Lemma 4, 15°""(q,) — V3 "™ (q,) increases with g,
over this range so that V5" (q,) — C,, > V}3° CO“m(q ).

Symmetric arguments establish cutoffs, q. and q,, for the bill pursuit decisions over the
range q; > 07,. Q.E.D.

A.2. Additional Figures for the Model

nt and 82 n? and 87 roll call
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FIGURE 9.—Timeline.
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FIGURE 10.—Optimal Policy Alternative. Notes: Optimal policy selection by the Democratic party for a
status quo, gy, right of their ideal point, 6,, p, for a bill that goes directly to roll call. The shaded area is the
probability that the policy alternative, x,, wins. x, wins if the sum of the aggregate shocks is such that the
realized marginal voter lies to the right of M V'1,r, the position of the marginal voter for which votes are
equally split between ¢, and x,. A policy alternative chosen closer to the Democratic ideal point is preferred,
but is less likely to pass because as it shifts left, the marginal voter, M1/, also shifts left, reducing the size of the
shaded area.

Co-editor Fabrizio Zilibotti handled this manuscript.

Manuscript received 17 October, 2018; final version accepted 30 December, 2019; available online 22 January,
2020.



	Appendix A: Proofs and Additional Figures for the Model
	Proofs
	Additional Figures for the Model


