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This supplement to “Exchange Design and Efficiency” gives the remaining proofs
and additional results for the general design (part B) and results and proofs for sym-
metric markets (part C). It also includes a color version of Figure 2.

APPENDIX B: OTHER PROOFS AND ADDITIONAL RESULTS: GENERAL DESIGN

LEMMA S1—Woodbury Matrix Identity: Suppose that S ∈ RK×K and T ∈ RL×L are
square matrices, and U ∈ RK×L and V ∈ RL×K are real matrices. When S−1 and T−1 are
(psedo)inverses of S and T, respectively, the following matrix identity holds:

(S + UTV)−1 = S−1 − S−1U
(
T−1 + VS−1U

)−1
VS−1�

We define demand qi∗
k�n(·) : RK(n) → R as a function of residual supply intercept s−i

K(n)

(rather than price pK(n)) for each k ∈ K(n) and n.

LEMMA S2—Asset by Asset Optimization: Consider a market structure N = {K(n)}n.
Given the residual supply of trader i, that is, price impact �i and intercept distribution
F (s−i|qi

0), the following optimization problems are equivalent:
(1) a profile of demands {{qi

k�n(·) : RK(n) → R}k∈K(n)}n maximizes the expected payoff
(2);

(2) a profile of demands {{qi∗
k�n(·) : RK(n) → R}k∈K(n)}n maximizes the expected payoff

(2);
(3) for each n and k ∈ K(n), demand qi∗

k�n(·) :RK(n) → R maximizes the expected payoff
(2), given trader i’s demands for other assets {qi∗

��n(·)}�∈K(n)���=k in exchange n and
other exchanges {{qi∗

��n′ (·)}�∈K(n′)}n′ �=n.

PROOF OF LEMMA S2 (ASSET BY ASSET OPTIMIZATION): Consider a Banach space X
of profiles of twice continuously differentiable downward-sloping demands qi

k�n(·) :
RK(n) → R for all k ∈K(n) and n. Similarly, we consider a Banach space X ∗ of profiles of
twice continuously differentiable downward-sloping demands qi∗

k�n(·) : RK(n) → R for all

k ∈ K(n) and n. Specifically, the Jacobians of demands
∂qi

K(n) (·)
∂pK(n)

= (
∂qi

k�n
(·)

∂p��n
)k�� ∈ RK(n)×K(n)

and
∂qi∗

K(n) (·)
∂s−i

K(n)
= (

∂qi
k�n

(·)
∂s−i

��n

)k�� ∈ RK(n)×K(n) are negative definite for all n; they are negative semi-

definite if some assets in exchange n are perfectly correlated.
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(Part (1) ⇔ (2)). We first show that qi(·) ≡ {{qi
k�n(·)}k∈K(n)}n ∈ X maps one-to-one to

qi∗(·) ≡ {{qi∗
k�n(·)}k∈K(n)}n ∈ X ∗ that yields the same expected payoff (2), and endow the

spaces X and X ∗ with a norm ‖ · ‖∞ that assign the same norm to qi(·) and qi∗(·) when
they are mapped. Then, the equivalence between problems (1) and (2) is immediate.

Central to the equivalence between problems (1) and (2)—equivalently, the existence
of the one-to-one mapping between X and X ∗—is that pK(n) maps one-to-one to s−i

K(n) in
each n. A function of pK(n) (qi

k�n(·)) is measurable with respect to s−i
K(n) , and a function of

s−i
K(n) (qi∗

k�n(·)) is measurable with respect to pK(n) .
To construct a mapping between qi(·) and qi∗(·), we first characterize the mapping

between pK(n) and s−i
K(n) , given residual supply and market clearing: The price vector

pK(n) ∈ RK(n) is determined applying market clearing to the demand of trader i and his
residual supply in each exchange n:

qi
K(n) (pK(n)) = s−i

K(n) + ((�i
K(n)

)′)−1
pK(n) ∀s−i

K(n) ∈RK(n)� (S1)

By the continuity of the downward-sloping demand qi
K(n) (·), Eq. (S1) uniquely determines

price as continuous functions of intercepts’ realizations s−i
K(n) ∈ RK(n) , which we denote by

p∗
K(n) (·) : RK(n) → RK(n) . Then, trader i’s quantity demanded is uniquely determined by

qi∗
K(n) (·) = qi

K(n) ◦p∗
K(n) (·) :RK(n) → RK(n) in each n. Conversely, given qi∗(·), a profile of de-

mands is uniquely determined by qi
K(n) (·) = qi∗

K(n) ◦ (p∗
K(n) (·))−1 in each n when (p∗

K(n) (·))−1

is the inverse of price function p∗
K(n) (·). qi∗(·) is downward-sloping if and only if qi(·) is

downward-sloping, given the downward-sloping demands of traders j �= i (i.e., �i
K(n) is

positive semi-definite in Eq. (S1)).
Moreover, the system of equations (2) and (S1) that characterizes the expected payoff

reduces to a single equation for qi∗(·) (Eq. (S3)). Market clearing (Eq. (S1)) defines price
as a function of trader i’s quantity demanded qi∗ ∈ R

∑
n K(n) and intercepts’ realizations

s−i ∈R
∑

n K(n):

pi
(
qi∗� s−i

)≡ (�i
)′(

qi∗ − s−i
) ∀qi∗ = (qi∗

K(n)

)
n
∈R

∑
n K(n) ∀s−i = (s−i

K(n)

)
n
∈R

∑
n K(n)� (S2)

Substituting p∗(·) = (pi ◦ qi∗)(·) into the system of equations (2) and (S2) characterizes
the expected payoff as a function of qi∗(·):

U
(
qi∗(·))= E

[
δ+ · (qi∗ + qi

0

)− αi

2
(
qi∗ + qi

0

) ·�+(qi∗ + qi
0

)− (qi∗ − s−i
) ·�iqi∗|qi

0

]
∀qi∗(·) ∈X ∗� (S3)

The expected payoff U (qi(·)) in the system of equations (2) and (S2) satisfies U (qi(·)) =
U (qi∗(·)), given the mapping from qi(·) ∈X to qi∗(·) ∈X ∗ defined by Eq. (S1).

Endow the space X ∗ with a norm ‖ · ‖∞ defined by

∥∥qi∗(·)∥∥∞ ≡ max
k∈K(n)�n

∥∥qi∗
k�n(·)∥∥= max

k∈K(n)�n

(
E
[∣∣qi∗

k�n

(
s−i
K(n)

)∣∣2|qi
0

])1/2
� (S4)
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given �i and F (s−i|qi
0). Because qi∗(·) ∈ X ∗ maps one-to-one to qi(·) ∈ X ,1 given �i and

F (s−i|qi
0), the maximization of the expected payoff (2) with respect to a profile qi(·) =

{{qi
k�n(·)}k}n ∈ X subject to market clearing (S1) is equivalent to the maximization of the

expected payoff (S3) with respect to a profile qi�∗(·) ={{qi∗
k�n(·)}k}n ∈X ∗.

(Part (2) ⇔ (3)). We want to show that the maximization of expected payoff (S3) with
respect to a profile of demands {{qi∗

k�n(·)}k}n is equivalent to the maximization with respect
to the demand qi∗

k�n(·), given the trader’s demands for other assets, for all k ∈ K(n) and n.
By the Second Partial Derivative Test, to show the equivalence between problems (2) and
(3) in the lemma, it suffices to show that the mapping U (·) : X ∗ → R is twice (Fréchet)
differentiable2 and satisfies the second-order condition.

(Differentiability of expected payoff with respect to demand schedules). First, we will show
that DU (·) :X ∗ → R

∑
n K(n):

DU
(
qi∗(·))=E

[
δ+ − αi�

+(qi∗ + qi
0

)− p∗ −�iqi∗|qi
0

] ∀qi∗(·) ∈X ∗ (S5)

is the Fréchet derivative of U (·) with respect to qi∗(·). Consider a demand change
�qi∗(·) ≡ {{�qi∗

k�n(·)}k}n such that q̃i∗(·) ≡ qi∗(·) + �qi∗(·) is in X ∗. Because q̃i∗(·) is
downward-sloping, by the same argument as in (Part (1) ⇔ (2)), we can define price
p̃∗(·), that is a function of s−i, analogously to Eqs. (S1)–(S2). Substituting p̃∗(·) into Eq.
(S3) gives the expected payoff change (S3) for a demand change �qi(·):

U
(̃
qi∗(·))−U

(
qi∗(·))

=E

[(
δ+ − αi�

+(qi∗ + qi
0

)− p∗ −�iqi∗) · (̃qi∗ − qi∗)

− (̃qi∗ − qi∗) ·(αi

2
�

+ +�i

)(̃
qi∗ − qi∗)|qi

0

]
� (S6)

By the convexity of the quadratic matrix function (̃qi∗ − qi∗) · ( αi

2 �
+ + �i)(̃qi∗ − qi∗), the

Jensen’s inequality implies an upper bound on the change in the expected payoff:∣∣U (̃qi∗(·))−U
(
qi∗(·))−E

[(
δ+ − αi�

+(qi∗ + qi
0

)− p∗ −�iqi∗) · (̃qi∗ − qi∗)|qi
0

]∣∣
=
∣∣∣∣E
[(̃

qi∗ − qi∗) ·(αi

2
�

+ +�i

)(̃
qi∗ − qi∗)|qi

0

]∣∣∣∣
≤
(

1 ·
∣∣∣∣αi

2
�

+ +�i

∣∣∣∣1
)(

max
k∈K(n)�n

{
E
[∣∣̃qi∗

k�n − qi∗
k�n

∣∣2|qi
0

]})

1We endow the space X (rather than X ∗) with a norm ‖ · ‖∞ defined by

∥∥qi(·)∥∥∞ ≡ max
k∈K(n)�n

∥∥qi
k�n(·)∥∥= max

k∈K(n)�n

(
E
[∣∣qi

k�n

(
p∗
K(n)

)∣∣2|qi
0

])1/2
�

given �i and F (s−i|qi
0) and market clearing (S1). By the definition of the norm in X ∗ in Eq. (S4), ‖qi(·)‖∞ =

‖qi∗(·)‖∞ when qi∗
K(n) (·) = qi

K(n) ◦ p∗
K(n) (·) in each n.

2Let V and W be normed vector spaces, and U ⊂ V be an open subset of V. A function f : U →
W is Fréchet differentiable at x ∈ U if there exists a bounded linear operator A : V → W such that
lim‖h‖→0

‖f (x+h)−f (x)−Ah‖W
‖h‖V = 0. If such an operator A exists, it is unique. Df (x) =A is the Fréchet derivative of

f at x.
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≤
(

1 ·
∣∣∣∣αi

2
�

+ +�i

∣∣∣∣1
)(∥∥̃qi∗(·) − qi∗(·)∥∥∞

)2
� (S7)

Finally, taking the limit of the payoff change (S7) as ‖̃qi∗(·) − qi∗(·)‖∞ → 0, we have

lim
‖̃qi∗(·)−qi∗(·)‖∞→0

(∣∣U (̃qi(·))−U
(
qi(·))

−E
[(
δ+ − αi�

+(qi∗ + qi
0

)− p∗ −�iqi∗) · (̃qi∗ − qi∗)|qi
0

]∣∣)/(∥∥̃qi∗(·) − qi∗(·)∥∥∞
)

≤ lim
‖̃qi∗(·)−qi∗(·)‖∞→0

(
1 ·
∣∣∣∣αi

2
�

+ +�i

∣∣∣∣1
)∥∥̃qi∗(·) − qi∗(·)∥∥∞ = 0�

Given that all elements of |αi

2 �
+ +�i| are bounded, (S5) is bounded (i.e., |DU (qi∗(·))|<

∞) for any qi∗(·) ∈X ∗ such that ‖qi∗(·)‖∞ < ∞, and (S5) is the Fréchet derivative of U (·).
(Second-order condition). We show that the second-order condition of the optimization

problem (S3) holds. The Hessian of U (·), D2U (·) :X ∗ → R(
∑

n K(n))×(
∑

n K(n)) , is

D2U
(
qi∗(·))= −αi�

+ −�i − (�i
)′ ∀qi∗(·) ∈X ∗�

This is because, by the definition of the Fréchet derivative of DU (·), we have

lim
‖̃qi∗(·)−qi∗(·)‖∞→0

∥∥DU
(̃
qi∗(·))−DU

(
qi∗(·))−D2U

(
qi∗(·))�qi(·)∥∥∥∥̃qi∗(·) − qi∗(·)∥∥∞

= lim
‖̃qi∗(·)−qi∗(·)‖∞→0

(∣∣E[−αi�
+(̃qi∗ − qi∗)−�i

(̃
qi∗ − qi∗)− (�i

)′(̃
qi∗ − qi∗)

+ (αi�
+ +�i + (�i

)′)(̃
qi∗ − qi∗)|qi

0

]∣∣)/(∥∥̃qi∗(·) − qi∗(·)∥∥∞
)= 0�

D2U (·) is a constant (matrix) function on X ∗. Given the downward-sloping demands of
traders j �= i (i.e., �i is positive semi-definite), D2U (·) is negative semi-definite. Hence,
the second-order condition of the maximization problem (2) holds. The Second Partial
Derivative Test then implies the equivalence between a trader’s optimization with respect
to a profile of demands {{qi∗

k�n(·)}k∈K(n)}n ∈X ∗ and asset by asset optimization with respect
to qi∗

k�n(·), given his demands for assets � �= k, for all k and n.
It is immediate that the second-order conditions in problems (1) and (3) hold, given

that the second-order condition holds in problem (2). Q.E.D.

PROOF OF PROPOSITION 2 (EQUILIBRIUM: UNCONTINGENT TRADING): Let the mar-
ket structure be N = {K(n)}n. Consider a trader who optimizes against a residual mar-
ket {{qj

K(n) (·)}n}j �=i, for which the residual supply is the sufficient statistic. Assuming the
linearity of other traders’ demands, the trader’s residual supply in each exchange n is
parameterized as a linear function of the price vector pK(n) :

S−i
K(n) (pK(n)) = s−i

K(n) + ((�i
K(n)

)−1)′
pK(n) ∀pK(n) ∈ RK(n)�

where s−i
K(n) ≡ S−i

K(n) (0) ∈ RK(n) is the intercept of the trader’s residual supply and �i
K(n) =

((
∂S−i

K(n) (·)
∂pK(n)

)−1)′ ∈ RK(n)×K(n) is the transpose of the Jacobian of inverse residual supply.
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(Part (i): “Only if”). Suppose that a profile of (net) demands of trader i {{qi
k�n(·)}k∈K(n)}n

satisfies the first-order condition: for each k ∈K(n) and n,

δk − αi�kqi
0 − αi�

+
kE
[
qi|s−i

K(n)�qi
0

]= pk�n + (�i
K(n)

)
k
qi
K(n) ∀s−i

K(n) ∈RK(n)� (S8)

When written in matrix form, the first-order condition (S8) in each exchange n becomes
a single matrix equation:

δ+
K(n) − αi�K(n)qi

0 − αi�
+
K(n)E

[
qi|s−i

K(n)�qi
0

]= pK(n) +�i
K(n)q

i
K(n) ∀s−i

K(n) ∈RK(n)� (S9)

where �i
K(n) ≡ dpK(n)

dqi
K(n)

∈ RK(n)×K(n) is his price impact in exchange n.

To demonstrate that the first-order conditions (S9) computed pointwise with respect
to each realization of s−i

K(n) ∈ RK(n) are sufficient to the optimization of demand schedules
qi
K(n) (·) :RK(n) → RK(n) ,3 we show that a demand change �qi

K(n) (·) :RK(n) → RK(n) does not
increase the trader’s payoff (2).4 The payoff change following an arbitrary demand change
�qi

K(n) (·) : RK(n) → RK(n) that is a twice continuously differentiable function in s−i
K(n) is (as

characterized in the proof of Lemma S2, Eq. (S6)):

E
[(
δ+
K(n) −αi�K(n)qi

0 −αi�
+
K(n)q

i − pK(n) −�i
K(n)q

i
K(n)

) ·�qi
K(n)|qi

0

]−o
(∥∥�qi

K(n)

∥∥2

∞
)
� (S10)

Denoting the intercept distribution by F (s−i
K(n)|qi

0), the payoff change (S10) can be written
as follows:∫

E
[(
δ+
K(n) − αi�K(n)qi

0 − αi�
+
K(n)q

i − pK(n) −�i
K(n)q

i
K(n)

)
|s−i

K(n)�qi
0

] ·�qi
K(n) dF

(
s−i
K(n)|qi

0

)
− o

(∥∥�qi
K(n)

∥∥2

∞
)
� (S11)

If the integrand is zero for all intercept realizations s−i
K(n) ∈ RK(n) , that is, if the point-

wise first-order condition (S9) holds, then the payoff change (S11) is nonpositive for
any demand change �qi

K(n) (·). Given the one-to-one mapping between pK(n) and s−i
K(n)

(i.e., �i
K(n) > 0 in Eq. (S1)), the first-order condition (S9) is pointwise with respect to

pK(n) ∈RK(n):

δ+
K(n) − αi�K(n)qi

0 − αi�
+
K(n)E

[
qi|pK(n)�qi

0

]= pK(n) +�i
K(n)q

i
K(n) ∀pK(n) ∈ RK(n)�

Given that the second-order condition −αi�
+ −�i − (�i)′ < 0 holds (Lemma S2), point-

wise optimization (S9) is also sufficient for optimization with respect to qi
K(n) (·).

3As seen in the proof of Lemma S2, given downward-sloping and continuous qi
K(n) (·), Eq. (S1) uniquely

determines trader i’s quantity demanded in each n as continuous functions of a realization of intercepts s−i
K(n) ∈

RK(n) , which we denote by qi∗
K(n) (·) :RK(n) →RK(n) . For simplicity, we omit the superscript ‘∗’ from the proof of

Proposition 2.
4A unilateral demand change of trader i is understood as a profile of arbitrary twice continuously differ-

entiable functions {�qi
k(·) : RK(n) → R}k so that qi

K(n) (·) + �qi
K(n) (·) are downward-sloping with respect to the

contingent variables, that is, the Jacobian
∂(qi

K(n) (·)+�qi
K(n) (·))

∂pK(n)
∈RK(n)×K(n) is negative semi-definite.
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(Part (i): “If”). We prove by contradiction that condition (i) is necessary for each trader’s
optimality of demand schedules in problem (2). Suppose that for some realization s−i

K(n) ∈
RK(n) ,

E
[(
δ+
K(n) − αi�K(n)qi

0 − αi�
+
K(n)q

i − pK(n) −�i
K(n)q

i
K(n)

)
|s−i

K(n)�qi
0

]
> 0� (S12)

The marginal payoff (i.e., the LHS of Eq. (S12)) is continuous in s−i
K(n) by the continuity

of qi
K(n) (·) and pK(n) (·) with respect to s−i

K(n) . Hence, the marginal payoff is positive for all
prices in a neighborhood of s−i

K(n): that is, there exists ε > 0 such that

E
[(
δ+
K(n) − αi�K(n)qi

0 − αi�
+
K(n)q

i − pK(n) −�i
K(n)q

i
K(n)

)
|s−i

K(n)�qi
0

]
> 0 ∀s−i

K(n) ∈Rε

(
s−i
K(n)

)
�

where Rε(s−i
K(n)) ≡ {s−i

K(n)|‖s−i
K(n) − s−i

K(n)‖∞ < ε} is an open set that contains s−i
K(n) . Because

the measure of Rε(s−i
K(n)) is nonzero, one can construct a demand change �qi

K(n) (·) with
a positive payoff change in Eq. (S11): Pick a twice continuously differentiable, posi-
tive, bounded, and downward-sloping function η(·) : RK(n) → R

K(n)
+ such that the Jaco-

bian ∂η(·)
∂s−i

K(n)
∈ RK(n)×K(n) is negative semi-definite, η(s−i

K(n)) = 0 for all s−i
K(n) /∈ Rε(s−i

K(n)), and

η ≡ ‖η(·)‖∞ < ∞. For a demand change �qi
K(n) (·) = νη(·) by trader i for some ν ∈ R+,

the payoff change (S11) is

ν

∫
Rε(s−i

K(n))
E
[(
δ+
K(n) − αi�K(n)qi

0 − αi�
+
K(n)q

i − pK(n) −�i
K(n)q

i
K(n)

)
|s−i

K(n)�qi
0

]
× η

(
s−i
K(n)

)
dF
(
s−i
K(n)|qi

0

)− ν2o(η)� (S13)

Equation (S13) is quadratic in ν with a negative quadratic coefficient and a positive linear
coefficient. It follows that, for this ν > 0, the payoff change (S13) is strictly positive, and
thus the demand increase �qi

K(n) (·) = νη(·) is a strictly profitable deviation. This contra-
dicts the optimality of qi

K(n) (·).
Similarly, we can show that if, for some realization s−i

K(n) ∈ RK(n) ,

E
[(
δ+
K(n) − αi�K(n)qi

0 − αi�
+
K(n)

(
qi + qi

0

)− pK(n) −�i
K(n)q

i
K(n)

)
|s−i

K(n)�qi
0

]
< 0�

then trader i can increase his payoff by reducing his demands around s−i
K(n) by �qi

K(n) (·) =
νη(·) for some ν < 0 and η(·) :RK(n) → R

K(n)
+ with the same properties as above.

(Part (ii): “Only if”). We show that condition (ii) is sufficient for equilibrium (Defini-
tion 2): given each trader’s optimization problem that takes the residual supply as given
(condition (i)), the requirement that the residual supply is correct (condition (ii)) is suf-
ficient for each trader’s optimization problem that takes other traders’ demands as given
(Definition 2).

In trader i’s optimization problem, other traders’ demands {{qi
K(n) (·)}n}j �=i are payoff-

relevant to his expected payoff (2) only via the price distribution F (p|qi
0) and price impact

�i ≡ dp
dqi . Because F (p|qi

0) and �i are determined by applying market clearing to demand

schedules qi
K(n) (·) +∑

j �=i q
j

K(n) (·) = 0 in each exchange n, the sum of other traders’ de-
mands {

∑
j �=i q

j

K(n) (·)}n—equivalently, the residual supply {S−i
K(n) (·) ≡ −∑j �=i q

j

K(n) (·)}n—is
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the sufficient statistic for F (p|qi
0) and �i, and thus the sufficient statistic for the profile of

other traders’ demands in trader i’s optimization problem.
(Part (ii): “If”). We show that condition (ii) is necessary for equilibrium: If the residual

supply satisfies S̃−i
K(n) (·) �= −∑j qj

K(n) (·) for some i and n for some realization of {qj
0}j �=i ∈

R(I−1)K , then trader i’s demand q̃i
K(n) (·) that is optimized when taking S̃−i

K(n) (·) as given is
not an equilibrium demand. The argument is by contradiction, and mimics the proof of
Lemma 1 in Rostek and Weretka (2015).

Suppose that trader i submits demand functions {̃qi
K(n) (·) ≡ qi

K(n) (·; S̃−i(·))}n for which

S̃−i
K(n′) (·) �= −∑j qj

K(n′) (·) for some n′. Then, either �̃
i

K(n′) �= −((
∑

j �=i

∂qj
K(n′) (·)

∂pK(n′)
)−1)′ or the

residual supply intercept that defines F (̃s−i
K(n′)|qi

0) is such that s̃−i
K(n′) �= −∑j �=i q

j

K(n′) (0) for
some realization of {qj

0}j �=i ∈ R(I−1)K . Then, the first-order condition (S9) of trader i in
exchange n′ that takes as given other traders’ demands {qj(·)}j �=i—rather than function
S̃−i(·)—is violated at the realization {qj

0}j �=i:

δ+
K(n′) − αi�K(n′)qi

0 − αi�
+
K(n′)E

[̃
qi|s−i

K(n′)�qi
0

]− pK(n′) −�i
K(n′)q̃

i
K(n′) �= 0�

where �i
K(n′) ≡ −((

∑
j �=i

∂qj
K(n′) (·)
∂pK(n)

)−1)′ is the inverse of the transpose of the Jacobian of

−(
∑

j �=i q
j

K(n′) (·)), and s−i
K(n′) ≡ −∑j �=i q

j

K(n′) (0) is its intercept. Following the same argu-
ment as in the proof of (Part (i): Part If), one can construct a deviation �qi

K(n′) (·) =
νη(·) for which the expected payoff change (Eq. (S13)) is positive. It follows that
{qi

K(n) (·; S̃−i(·))}n is not a best response to the profile of other traders’ demands {qj(·)}j �=i,
and hence is not an equilibrium. Q.E.D.

PROOF OF COROLLARY 1 (EQUILIBRIUM PRICES AND ALLOCATIONS): We character-
ize equilibrium prices and allocations as functions of the equilibrium demand coefficients
{Bi�Ci}i and price impacts {�i}i. Applying market clearing to demand schedules (39)
yields the price vector:

p =
(∑

i

Ci

)−1(∑
i

ai −
∑
i

Biqi
0

)
� (S14)

Summing the intercepts {ai}i in Eq. (27), we have

∑
i

ai =
(∑

i

Ci

)(
δ+ −

(∑
j

(
αj�

+ +�j
)−1
)−1∑

j

(
αj�

+ +�j
)−1

Wαj�E
[
qj

0

])

+
∑
i

BiE
[
qi

0

]
� (S15)

Substituting for
∑

i a
i from Eq. (S15), the price equation (S14) becomes

p = δ+ −
(∑

j

(
αj�

+ +�j
)−1
)−1∑

j

(
αj�

+ +�j
)−1

Wαj�E
[
qj

0

]
︸ ︷︷ ︸

≡E[Qc ]
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−
(∑

j

Cj

)−1∑
j

Bj
(
qj

0 −E
[
qj

0

])
︸ ︷︷ ︸

≡Q−E[Q]

� (S16)

Q ≡ (
∑

j Cj)−1
∑

j Bjqj
0 is the aggregate risk in the uncontingent market, while Qc ≡

(
∑

j(α
j�

+ + �j)−1)−1
∑

j(α
j�

+ + �j)−1Wαj�qj
0 is the aggregate risk in the contingent

markets, where we used Cj�c = (αj�
+ +�j)−1 and Bj�c = (αj�

+ +�j)−1Wαj� for all j.
To characterize the equilibrium quantity traded of trader i, substitute equilibrium price

p and demand coefficient ai into trader i’s demand (39): for each i,

qi = (αi�
+ +�i

)−1(
E
[
Qc
]− Wαi�E

[
qi

0

])+ Ci
(
Q −E[Q]

)− Bi
(
qi

0 −E
[
qi

0

])
� (S17)

In the symmetric equilibrium (i.e., assuming αi = α for all i), the equilibrium price (S16)
and quantity traded (S17) become Eqs. (17) and (18), respectively. Q.E.D.

LEMMA S3—Price Impact in Competitive Markets: Consider a market structure N =
{K(n)}n, let {αi}i be the profile of traders’ risk aversions, and suppose {�i�I}i is a profile of the
equilibrium price impacts for all I < ∞ and in the limit market as I → ∞. The equilibrium
price impact becomes zero as I → ∞ if αi�I = αiγI ∈ R+ increases slower than linearly by a
common factor γI ∼ o(I1−ε) for some ε ∈ (0�1): for each i, �i = limI→∞ �i�I = 0.

PROOF OF LEMMA S3 (PRICE IMPACT IN COMPETITIVE MARKETS): By Definition 3,
the equilibrium price impact in the competitive market is �i = limI→∞ �i�I . Theorem 5
characterizes the fixed point equation for price impact matrices {�i�I}i for I < ∞. We
show that price impact �i�I is proportional to a factor γI ∈ R+ that is common to all
traders αi�I = αiγI : that is, {�i�I}i is a profile of equilibrium price impacts when traders’
risk aversions are {αiγI}i if and only if {�̃

i�I ≡ 1
γI
�i�I}i is a profile of equilibrium price

impacts when traders’ risk aversions are {αi}i independently of the number of traders I.
This can be shown substituting αi�I = αiγI for all i into Eqs. (28)–(30):

Bi�I =
(
αi�

+ + 1
γI

�i�I

)−1

Wαi�

−
((

αi�
+ + 1

γI
�i�I

)−1

− γICi�I

)(
γIC

I)−1
(

σpv

I(σcv + σpv)
Bi�I + σcv

σcv + σpv

B
I
)
�

[(
Id −

(
αi�

+ + 1
γI

�i�I

)
γICi�I

)(
γIC

I)−1
(∑

j �=i

Bj�I�

(
Bj�I + σcv

σcv + σpv

∑
h�=i

Bh�I

)′)]
N

= 0�

1
γI

�i�I =
(∑

j �=i

γICj

)−1

�

Hence, with {αi}i, the equilibrium demand coefficients and price impacts are C̃i�I ≡ γICi�I ,
B̃i�I ≡ Bi�I , and �̃

i�I ≡ 1
γI
�i�I for all i. The proportionality of the price impact matrix �i�I

to the common factor γI gives lower and upper bounds for the limit of the price impact
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matrix:

0 ≤ lim
I→∞

�i�I = lim
I→∞

γI lim
I→∞

�̃
i�I = lim

I→∞
γI lim

I→∞

((∑
j �=i

C̃i�I

)−1)′
≤ lim

I→∞
γI

I − 1
max

i

((
C̃i�I
)−1)′

�

Given that an equilibrium exists in the limit market (I → ∞), the Jacobian of each
trader’s demand schedule is bounded: limI→∞(C̃i�I)−1

k� < ∞ for all k��, and i. We have
limI→∞ �i�I = 0 when γI

I−1 ∼ o(I−ε) decreases to zero as I → ∞. We conclude that �i = 0
for all i. Q.E.D.

In what follows, we assume that risk preferences are symmetric across traders, and en-
dowments are independent across assets k unless specified otherwise. Then, Bi = B�Ci =
C, and �i = � for all i, and �= Id.

ASSSUMPTION—Symmetric Risk Preferences: Let αi = α for all i.

In a symmetric equilibrium, Eqs. (27)–(30) in Theorem 5 simplify as summarized by
Corollary S1.

COROLLARY S1—Symmetric Equilibrium; General Design: Consider a market structure
N = {K(n)}n. In a symmetric equilibrium, (net) demand schedules, defined by matrix coeffi-
cients {ai}i�B, and C, and price impact � are characterized by the following conditions: for
each i,

(i) (Optimization, given price impact) Given price impact matrix �, best-response coef-
ficients ai�B, and C are characterized by

ai = C
(
δ+ − (Wα�− C−1B

)
E[q0]

)
+ ((α�+ +�

)−1
Wα�− B

)(
E[q0] −E

[
qi

0

])
� (S18)

B = ((1 − σ0)
(
α�

+ +�
)+ σ0C−1

)−1
Wα�� (S19)

C = [(α�+ +�
)(

BB′)[BB′]−1

N

]−1

N
� (S20)

where σ0 ≡ σcv+ 1
I σpv

σcv+σpv
.

(ii) (Correct price impact) Price impact � equals the transpose of the Jacobian of the
trader’s inverse residual supply function:

�= 1
I − 1

(
C−1

)′
� (S21)

Note that the price slope C−1 = diag(C−1
K(n))n is a block-diagonal matrix.

Endogenous price covariance. Underlying this result is the lack of proportionality be-
tween the equilibrium price impact, and hence price covariance, and asset covariance �
with limited demand conditioning, as seen in Eq. (17). Consequently, � and Cov[pk�p�]
depend on the covariance of all assets and, in fact, need not match the sign of asset cor-
relation (i.e., σk�); for example, prices of complementary assets (σk� < 0) can be posi-
tively correlated (Cov[pk�p�] > 0). The intuition can be seen in the price equation (17):
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Cov[pk�p�] is determined by(
C−1B

)
k�

= ((C + κ(α�)−1
)−1)

k�
= ασk� − α�k

(
α�+ κC−1

)−1 · α��� (S22)

where κ= 1+(I−2)σ0
(I−1)(1−σ0) ∈R+. When demand coefficient C is not proportional to (α�)−1, one

can have sign( ∂E[p�|pk�q
j
0]

∂pk
) = sign(Cov[pk�p�]) �= sign(σk�) for some � �= k, and as a result,

λk < λc
k by Eq. (20) (Figure 1(B)). In the contingent market, the price covariance matrix

is proportional to the asset covariance: substituting Cc = (α�+�c)−1 = I−2
I−1 (α�)−1 in Eq.

(S22), we have

((
Cc + κ(α�)−1

)−1)
k�

= (I − 1)κ
(I − 1)κ+ (I − 2)

ασk� ∀k ∀�;

hence, sign(Cov[pk�p�]) = sign(σk�).

PROOF OF THEOREM 2 (EXISTENCE OF SYMMETRIC EQUILIBRIUM): Consider a
market structure N = {K(n)}n in which all assets are traded in one exchange (i.e.,∑

n K(n) = K). Let M be the set of all (
∑

n K(n))-dimensional block-diagonal matri-
ces, such that, for any M ∈M, MK(n)�K(n′) = 0 for distinct exchanges n �= n′. Given that the
price impact matrices are block-diagonal, we introduce a partial order on M: M1 ≤ M2 if
(M2 − M1) is positive semi-definite, or equivalently, if M1

K(n)�K(n) ≤ M2
K(n)�K(n) for all n.

(Existence). Substituting B from Eq. (S19) into Eq. (S20), the fixed point equation (S21)
for � becomes[(

α�+ +�− (I − 1)�′)(α�+ +�+ (I − 1)σ0

1 − σ0
�′
)−1

Wα�α�W′
(
α�+ +�′ + (I − 1)σ0

1 − σ0
�

)−1]
N︸ ︷︷ ︸

≡L(�)

= 0� (S23)

Define a mapping L(·) : M → M using the LHS of Eq. (S23). We want to show that
there exists � such that L(�) = 0. We first show that there exist two bounds (���), such
that L(�) ≥ 0 and L(�) ≤ 0. Then, by the Brouwer fixed point theorem,5 since the set of
block-diagonal matrices defined by the bounds (���) is compact and the mapping L(�)
is continuous, there exists a solution � to the fixed point problem L(�) = 0.

Let � ≡ 0 and � ≡ α
I−2N[�+]N . It is immediate that � satisfies the desired condition:

evaluating L(�) at � = 0, we have L(�) = [α�+]N ≥ 0 by the positive semi-definiteness
of α�+.

Evaluating L(�) at �, we have

L(�) = α

[(
Id + κN

I − 2
[
�

+]
N

(
�

+)−1
)−1(

�
+ −N

[
�

+]
N

)

×
(

Id + κN

I − 2
[
�

+]
N

(
�

+)−1
)−1]

N

� (S24)

5More precisely, the Brouwer fixed point theorem is applied to the equation � =L(�) +� on the partially
ordered compact set {�|� ≤� ≤ �}⊂R(

∑
n K(n))×(

∑
n K(n)) .
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where κ ≡ 1+(I−2)σ0
1−σ0

∈ R+. Given that �+ is positive semi-definite, (Id+ κN
I−2 [�+]N (�+)−1)−1

is positive definite, where we used that the inverse of a positive definite matrix is positive
definite. In turn, matrix (�+ − N[�+]N) in Eq. (S24) is negative definite. It is negative
semi-definite if and only if either some assets in an exchange are perfectly correlated or
all
∑

n K(n) assets are perfectly correlated. To prove this, observe that for any vector
v ≡ (vK(n))n ∈R

∑
n K(n) , we have

Cov[vK(n) ·rK(n)� vK(n′) ·rK(n′)] ≤ 1
2

Var[vK(n) ·rK(n)]+ 1
2

Var[vK(n′) ·rK(n′)] ∀n�n′ ∈N� (S25)

Using that �
+ is the covariance matrix of the distribution of asset returns r = (rK(n))n,

inequality (S25) is equivalent to

v′
K(n)�

+
K(n)�K(n′)vK(n′) ≤ 1

2
v′
K(n)�

+
K(n)�K(n)vK(n) + 1

2
v′
K(n′)�

+
K(n′)�K(n′)vK(n′) ∀n�n′ ∈ N� (S26)

Summing each side of Eq. (S26) over n and n′ gives

v′�+v =
∑
n�n′

v′
K(n)�

+
K(n)�K(n′)vK(n′) ≤N

∑
n

v′
K(n)�

+
K(n)�K(n)vK(n) = v′(N[�+]

N

)
v�

and hence, v′(�+ −N[�+]N)v ≤ 0 for any vector v.
By the positive semi-definiteness of (Id + κN

I−2 [�+]N (�+)−1)−1 and the negative semi-
definiteness of (�+ −N[�+]N), it follows that the RHS of Eq. (S24) becomes(

Id + κN

I − 2
[
�

+]
N

(
�

+)−1
)−1(

�
+ −N

[
�

+]
N

)(
Id + κN

I − 2
[
�

+]
N

(
�

+)−1
)−1

≤ 0� (S27)

Consequently, L(�) ≤ 0; the equality holds if all
∑

n K(n) assets are perfectly correlated.6
This completes the argument.

(Uniqueness for K = 2). We show that the equilibrium in the uncontingent market for
K = 2 is unique. As Appendix C.2 shows, the equilibrium fixed point equation (S23) for
�= diag(λ�λ) simplifies to

λ= α

I − 2
+ αρ

I − 2
2xy

x2 + y2 � (S28)

where x ≡ (1 − σ0)(1 − ρ2)α + (1 + (I − 2)σ0)λ and y ≡ ρ(1 + (I − 2)σ0)λ characterize
each row of B in Eq. (S19): b1 = (x� y) and b2 = (y�x). Rearranging Eq. (S28) gives a
third-order polynomial of λ:

0 = −(I − 2)
(
1 + ρ2

)(
1 + (I − 2)σ0

)2
λ3 + (4 − (1 − ρ2

)
(2I − 1)

+ (I − 2)
(
3 + ρ2

)
σ0

)(
1 + (I − 2)σ0

)
αλ2

+ (4 − (1 − ρ2
)
I + (I − 2)

(
3 + ρ2

)
σ0

)
(1 − σ0)

(
1 − ρ2

)
α2λ

+ α3(1 − σ0)2
(
1 − ρ2

)2
�

By the Descartes’ sign rule, there exists a unique positive solution λ. Q.E.D.

6The equality in (S27) implies that � = N
I−2 [�+]N is the solution to Eq. (S23) if and only if all

∑
n K(n)

assets are perfectly correlated.
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PROOF OF PROPOSITION 4: (SUFFICIENT STATISTIC FOR EQUILIBRIUM PAYOFFS). Let
I <∞ and K > 1. Consider a market N = {K(n)}n, represented by the indicator matrix
W ∈ {0�1}(

∑
n K(n))×K (Definition 6). Let {qi

k�n(·)}i�k�n be a profile of equilibrium demands.
We characterize the equilibrium payoff of each trader (Eq. (S30)) as a function of per-
unit price impact �̂ ∈ RK×K and the endowment coefficient of total demand B̂ ∈ RK×K

(Eq. (49)).
(Part (1)). Substituting the equilibrium prices and trades from Eqs. (17) and (18) into

ui(·) − p · qi gives the ex post equilibrium payoff of trader i in N :

ui
(
qi
)− p · qi

=
(
δ · qi

0 − α

2
qi

0 ·�qi
0

)
+ (δ+ − p − Wα�qi

0

) · qi − α

2
qi ·�+qi

=
(
δ · qi

0 − α

2
qi

0 ·�qi
0

)

+ 1
2
(
2
(
Wα�− C−1B

)(
E[q0] − q0

)− (α�+(
α�

+ +�
)−1

Wα�− α�
+B
)

× (E[q0] −E
[
qi

0

])
+ (2Wα�− α�

+B
)(

q0 − qi
0

)) · (((α�+ +�
)−1

Wα�− B
)(
E[q0] −E

[
qi

0

])
+ B

(
q0 − qi

0

))
� (S29)

Taking an expectation of the ex post payoff (S29) with respect to {qj
0}j , and using that

trace satisfies E[x′Mx] = E[tr(xx′M)] = tr(E[xx′]M) = tr(Var[x]M) +E[x′]ME[x] for any
x ∈ RK and M ∈RK×K , the ex ante equilibrium payoff of trader i is

E
[
ui − p · qi

]= E

[
δ · qi

0 − 1
2

qi
0 · α�qi

0

]
︸ ︷︷ ︸

Payoff without trade

+ (E[q0] −E
[
qi

0

]) ·ϒ+(�)
(
E[q0] −E

[
qi

0

])︸ ︷︷ ︸
Equilibrium surplus from trade

+ I − 1
I

σpv tr
(
α�W′B − 1

2
B′α�+B

)
︸ ︷︷ ︸

Payoff term due to Var[q0|qi
0] > 0

� (S30)

where ϒ+(�) ∈ R(
∑

n K(n))×(
∑

n K(n)) is a surplus matrix, which is a function of price impact:

ϒ+(�) ≡ α�W′(α�+ +�
)−1

Wα�− 1
2
α�W′(α�+ +�′)−1

α�
+(
α�

+ +�
)−1

Wα�� (S31)

First, applying the Woodbury Matrix Identity (Lemma S1) to matrix (α�+ + �)−1 in
Eq. (S31), the surplus matrix ϒ+(�) can be written as

ϒ+(�) = α�W′�−1W
(
�̂

−1 + (α�)−1
)−1

− 1
2
((
�̂

−1)′ + (α�)−1
)−1

W′(�−1)′α�+
�−1W

(
�̂

−1 + (α�)−1
)−1

= α�
(
α�+ �̂

′)−1
(

1
2
α�+ �̂

′
)

(α�+ �̂)−1α�� (S32)
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Therefore, the equilibrium surplus from trade in Eq. (S30),(
E[q0] −E

[
qi

0

]) ·ϒ (�̂)
(
E[q0] −E

[
qi

0

])
�

is determined as a function of the per-unit price impact �̂, where

ϒ (�̂) ≡ 1
2
α�
(
α�+ �̂

′)−1(
α�+ �̂+ �̂

′)
(α�+ �̂)−1α�� (S33)

Equation (S33) replaces the matrix ( 1
2α�+�̂

′
) in Eq. (S32) with its symmetric component

1
2 (α� + �̂ + �̂

′
). Replacing ϒ+(�) (Eq. (S32)) by ϒ (�) (Eq. (S30)) is innocuous when

evaluating the equilibrium surplus from trade in Eq. (S30), which is a quadratic function
of E[q0] −E[qi

0].
Second, we show that matrix α�W′B − 1

2 B′α�+B in Eq. (S30) is determined as a func-
tion of B̂. By the characterization of B in Eq. (S19) of Corollary S1 in Appendix A, we
have

α�W′B − 1
2

B′α�+B = α�− 1
2
(
B′W − Id

)
α�
(
W′B − Id

)
= α�− 1

2
(B̂ − Id)′α�(B̂ − Id)� (S34)

where the second equality holds by the definition of B̂ ≡ W′B (Eq. (49)). It follows that
trader i’s ex ante equilibrium payoff (S30) is determined as a function of (�̂� B̂):

E
[
ui − p · qi

]=E

[
δ · qi

0 − 1
2

qi
0 · α�qi

0

]
+ (E[q0] −E

[
qi

0

]) ·ϒ (�̂)
(
E[q0] −E

[
qi

0

])
+ I − 1

I
σpv tr(α�) − I − 1

2I
σpv tr

(
(B̂ − Id)′α�(B̂ − Id)

)
� (S35)

We now show that equilibrium payoff (S35) of each trader coincides between market
structures N and N ′ if and only if �̂ and B̂ coincide between N and N ′.

(If and only if: 0 ≤ |ρk�|< 1 for all k and � �= k). We first assume that no assets are
perfectly correlated, that is, � is invertible. Then, in Eq. (S33), the per-unit price impact
�̂ is one-to-one with ϒ (�̂), while in Eq. (S34), cross-asset inference B̂ is one-to-one with
α�W′B − 1

2 B′α�+B. Consequently, the per-unit price impact �̂ ∈ RK×K is the sufficient
statistic for the surplus matrix ϒ (�̂), while cross-asset inference B̂ ∈ RK×K is the sufficient
statistic for the payoff term due to Var[q0|qi

0] in Eq. (S30).
(If and only if: |ρk�| = 1 for some k and � �= k). Suppose that the payoffs of some

assets are perfectly correlated, that is, � is singular. When the asset payoffs of as-
sets k and � �= k are perfectly correlated, the equilibrium coincides with that in which
assets k and � are treated as the same asset, that is, the asset payoffs are defined
by (rm)m �=� ∈ RK−1 that is jointly Normally distributed according to N (δ−��−), where
δ− ∈ RK−1 and �

− ∈ R(K−1)×(K−1). Given trader i’s endowment qi
0 ∈ RK , his endowment

in RK−1 is qi�−
0 ≡ (qi�−

0�m)m ∈ RK−1 such that qi�−
0�k = qi

0�k + sign(ρk�)
σkk
σ��

qi
0�� and qi�−

0�m = qi
0�m for

all m �= ��k.
The same argument as for the case 0 ≤|ρk�|< 1, � �= k, applies with endowments de-

fined in R(K−1)×(K−1) rather than RK×K : Equilibrium payoff (S29) is a function of �E[qi
0] =
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W−�−
E[qi�−

0 ] and �qi
0 = W−�−qi�−

0 , where the �th row W −
� = (w−

�m)m �=� of W− ∈ RK×(K−1)

is such that w−
�k = sign(ρk�) σ��

σkk
and w−

�m = 0 for all m �= k, and the (K − 1) × (K − 1)
submatrix of W− excluding the �th row is the identity matrix. Then, the trade of asset k
(and zero trade of asset �) in the market with K − 1 assets is the same as the total trade
for assets k and �, defined by q̂i

k = qi
k + sign(ρk�)

σkk
σ��

qi
� in the market with K assets.

(Part (2)). We show that �̂ maps one-to-one to B̂ if and only if � is symmetric, that is,
�= �′. Then, �̂ is a sufficient statistic for equilibrium payoffs (S30).

By Eq. (49), the per-unit cross-asset inference B̂ is characterized as follows:

B̂ = W′((1 − σ0)
(
α�

+ +�
)+ σ0(I − 1)�′)−1

Wα�

= ((1 − σ0)α�+ (W′((1 − σ0)�+ σ0(I − 1)�′)−1
W
)−1)−1

α�� (S36)

The second equality holds by applying the Woodbury Matrix Identity (Lemma S1) to
((1 −σ0)α�+ + (1 −σ0)�+σ0(I − 1)�′)−1. Given the invertibility of �, Eq. (S36) shows
that B̂ maps one-to-one to W′((1 − σ0)� + σ0(I − 1)�′)−1W, which is a function of �̂ =
(W′�W)−1 if and only if �= �′:

W′((1 − σ0)�+ σ0(I − 1)�′)−1
W = 1

1 + (I − 2)σ0
�̂

−1
if and only if �= �′�

Hence, the sufficient statistic (�̂� B̂) of the equilibrium payoffs reduces to a single variable
�̂ or B̂ if and only if �=�′. Q.E.D.

PROOF OF THEOREM 4: (NONREDUNDANCY OF CHANGES IN MARKET STRUCTURE:
CONDITIONS). Suppose that K > 1 and |ρk�|< 1 for all k and � �= k. By the same argu-
ment as in the proof of Proposition 4, it is without loss of generality to treat the per-
fectly correlated assets as the same asset. Given a market structure N = {K(n)}n, let �N

be the equilibrium price impact. Suppose that an exchange n′ is introduced such that
K(n′) ⊂ K(n) for some n ∈ N and define N ′ ≡ N ∪ {n′}. Indicator matrices WN and WN ′

represent market structures N and N ′ (Definition 6), respectively.
(Part “If”). We show that, when one of conditions (i)–(iii) holds, the equilibrium payoffs

in market N and N ′ coincide. By Proposition 4, it suffices to show that the equilibrium
price impact �N ′

in market N ′ ≡ N ∪ {n′} satisfies �̂
N ′ = �̂

N
and B̂N ′ = B̂N . Given the

equilibrium price impact �N in market N , we will first construct a block-diagonal matrix
�N ′ ∈ R(

∑
n K(n)+K(n′))×(

∑
n K(n)+K(n′)) that equalizes the per-unit price impact �̂

N ′ = �̂
N

and
cross-asset inference B̂N ′ = B̂N . Then, we will show that such matrix �N ′

is an equilibrium
price impact in N ′.

(Construction of matrix �N ′
such that �̂

N ′ = �̂
N

and B̂N ′ = B̂N). Define a block-diagonal
matrix �N ′ = diag(�N ′

K(n′′))n′′∈N ′ such that

((
�N ′

K(n)

)−1)
��m

= ((�N
K(n)

)−1)
��m

∀��m ∈ K(n) and {��m} �⊂ K
(
n′)� (S37)((

�N ′
K(n′)

)−1)
��m

= ξ
((
�N

K(n)

)−1)
��m

�
((
�N ′

K(n)

)−1)
��m

= (1 − ξ)
((
�N

K(n)

)−1)
��m

∀��m ∈ K
(
n′)� (S38)

�N ′
K(n′′) =�N

K(n′′) ∀n′′ �= n�n′� (S39)
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for some ξ ∈ (0�1) subject to �N ′
K(n′) > 0 and �N ′

K(n) > 0. This implies that each trader’s
demand coefficient CN

K(n) = 1
I−1 ((�N

K(n))
−1)′ in exchange n of market N is a linear function

of CN ′
K(n) and CN ′

K(n′) in exchanges n and n′ of market N ′. Moreover, demands in other
exchanges n′′ �= n�n′ coincide between markets N and N ′.

First, �N ′
defined in Eqs. (S37)–(S39) satisfies �̂

N ′ = �̂
N

and B̂N ′ = B̂N . By con-

struction, �̂
N ′ = ((WN ′)′(�N ′

)−1WN ′)−1 is the same as the per-unit price impact �̂
N =

((WN)′(�N)−1WN)−1 in N when the indicator matrix in N ′ is

WN ′ =
[

WN

WK(n′)

]
�

In addition, when one of conditions (i)–(iii) holds, the cross-asset inference coincides,
that is, B̂N ′ = B̂N . By Eq. (49), B̂N ′ = B̂N if and only if �N ′

and �N satisfy

(
WN ′)′(

(1 − σ0)�N ′ + σ0(I − 1)
(
�N ′)′)−1

WN ′

= (WN
)′(

(1 − σ0)�N + σ0(I − 1)
(
�N
)′)−1

WN� (S40)

Because the trader’s demands in exchanges n′′ �= n�n′ coincide between markets N and
N ′ (Eq. (S39)), Eq. (S40) simplifies to an equation for price impacts in exchanges n and
n′ alone:∑
n′′∈{n�n′}

(
WN ′

K(n′′)
)′(

�N ′
K(n′′) +κ

(
�N ′

K(n′′)
)′)−1

WN ′
K(n′′) = (WN

K(n)

)′(
�N

K(n) +κ
(
�N

K(n)

)′)−1
WN

K(n)� (S41)

where κ ≡ σ0(I−1)
1−σ0

∈ R+. When K(n′) = K(n′′) (condition (i)), Eq. (S41) holds because

both (�N ′
K(n) + κ(�N ′

K(n))
′)−1 and (�N ′

K(n′) + κ(�N ′
K(n′))

′)−1 are proportional to (�N
K(n) +

κ(�N
K(n))

′)−1. When the payoff of assets K(n′) is independent of other assets in exchange
n, K(n) \K(n′) (condition (iii)), the demand coefficient CN

K(n) = diag(CN
K(n)\K(n′)�CN

K(n′)) is
a block-diagonal matrix, and so are (�N ′

K(n) +κ(�N ′
K(n))

′)−1 and (�N
K(n) +κ(�N

K(n))
′)−1 in Eq.

(S41). Applying the same argument as in condition (i) to all block-diagonal submatrices
that correspond to K(n′) and K(n) \K(n′) shows that Eq. (S41) holds. Last, when �N

K(n)

is symmetric (condition (ii)), both �N ′
K(n) and �N ′

K(n′) are symmetric by construction (Eqs.
(S37)–(S38)), and Eq. (S41) holds:

∑
n′′∈{n�n′}

1
1 + κ

(
WN ′

K(n′′)
)′(

�N ′
K(n′′)

)−1
WN ′

K(n′′) = 1
1 + κ

(
WN

K(n)

)′(
�N

K(n)

)−1
WN

K(n)�

(Simplifying the equilibrium fixed point with �̂ and B̂). We now show that �N ′
defined in

Eqs. (S37)–(S39) is an equilibrium price impact in N ′ = N ∪ {n′}. We first simplify equi-
librium fixed point (S19)–(S21) by decomposing the terms that coincide between market
N and N ′ (Eq. (S44) below). Applying the Woodbury Matrix Identity to BN ′ gives

BN ′ = 1
1 − σ0

(
(1 − σ0)�N ′ + σ0(I − 1)

(
�N ′)′)−1

WN ′(
�̂+ ((1 − σ0)α�

)−1)−1
� (S42)



16 M. ROSTEK AND J. H. YOON

where �̂≡ (WN ′)′((1−σ0)�N ′ +σ0(I−1)(�N ′
)′)−1WN ′ ∈ RK×K coincides between N and

N ′ (Eq. (S40)). Substituting BN ′ into the LHS of the equilibrium fixed point equation (Eq.
(S20)):

[(
α�

+ +�N ′ − (I − 1)
(
�N ′)′)(

(1 − σ0)�N ′ + σ0(I − 1)
(
�N ′)′)−1

WN ′
V̂
(
WN ′)′]

N ′� (S43)

where V̂ ≡ (�̂+ ((1 − σ0)α�)−1)−1�(�̂
′ + ((1 − σ0)α�)−1)−1 ∈ RK×K represents the co-

variance of K linearly independent random variables that determines the residual supply
intercepts (cf. Eq. (43)). The term V̂ in Eq. (S43) coincides in N and N ′. Equation (S43)
further simplifies using �N ′ − (I−1)(�N ′

)′ = − 1
σ0

((1−σ0)�N ′ +σ0(I−1)(�N ′
)′)+ 1

σ0
�N ′

:

[
WN ′

(
α��̂V̂ − 1

σ0
V̂
)(

WN ′)′]
N ′

+ 1
σ0

(
(1 − σ0)Id + σ0(I − 1)

(
�N ′)′(

�N ′)−1)−1[
WN ′

V̂
(
WN ′)′]

N ′ � (S44)

Equation (S44) is a function of a block-diagonal matrix ((1 −σ0)Id +σ0(I − 1)(�N ′
)′ ×

(�N ′
)−1)−1 and terms that coincide in markets N and N ′. �N ′

is the equilibrium price
impact in N ′ if and only if Eq. (S44) equals 0.

(�N ′
in Eqs. (S37)–(S39) is an equilibrium price impact in N ′). Each block submatrix

�N ′
K(n′′) of �N ′

satisfies Eq. (S44): For any exchange n′′ �= n�n′, WN ′
K(n′′) = WN

K(n′′) and �N ′
K(n′′) =

�N
K(n′′) , and hence, the block submatrix of Eq. (S44) that corresponds to exchange n′′ is the

same as the corresponding submatrix in N . Therefore,

WN ′
K(n′′)

(
α��̂V̂ − 1

σ0
V̂
)(

WN ′
K(n′′)

)′
+ 1

σ0

(
(1 − σ0)Id + σ0(I − 1)

(
�N ′

K(n′′)
)′(

�N ′
K(n′′)

)−1)−1
WN ′

K(n′′)V̂
(
WN ′

K(n′′)
)′ = 0�

In exchange n, when the price impact matrix is a symmetric matrix (condition
(ii)), we have ((1 − σ0)Id + σ0(I − 1)(�N ′

K(n))
′(�N ′

K(n))
−1)−1 = ((1 − σ0)Id + σ0(I −

1)(�N
K(n))

′(�N
K(n))

−1)−1 = 1
1+(I−2)σ0

Id. This shows that the block submatrix in Eq. (S44) cor-
responding to K(n) equals to 0 in N ′, given that �N

K(n) is the equilibrium price impact in
exchange n in market N . If condition (iii) holds, �N ′

K(n) is a block-diagonal matrix, whose
each block submatrix corresponds to assets K(n′) and K(n) \K(n′). By construction, the
block submatrix of �N ′

K(n) is proportional to the corresponding submatrix of �N
K(n) , and

hence, the block submatrix in Eq. (S44) for exchange n equals to 0. The same argument
applies to condition (i). Finally, in the new exchange n′, Eq. (S44) is equivalent to the
K(n′) × K(n′) submatrix of (α��̂V̂ − 1

σ0
V̂)K(n)�K(n) + 1

σ0

1
1+(I−2)σ0

V̂K(n)�K(n) = 0. It follows

that �N ′
defined in Eqs. (S37)–(S39) is the equilibrium price impact in N ′.

(Part “Only if”). We prove the contrapositive: Suppose that K(n′) �= K(n′′) for all n′′ ∈N
(condition (i)) and 0 <|ρk�|< 1 for some assets k ∈ K(n′) and � ∈K(n)\K(n′) (condition
(iii)). We show that if a block-diagonal matrix �N ′ ∈ R(

∑
n K(n)+K(n′))×(

∑
n K(n)+K(n′)) satisfies

�̂
N ′ = �̂

N
, then B̂N ′ = B̂N generally does not hold unless �N

K(n) = (�N
K(n))

′ for an exchange
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n such that K(n′) ⊂ K(n) (condition (ii)). Then, by Proposition 4, introducing new ex-
change n′ in market N is nonredundant.

(Construction of �N ′
that equalizes per-unit price impact �̂

N ′ = �̂
N

). We first assume a
block-diagonal matrix �N ′ = diag(�N ′

K(n′′))n′′∈N ′ such that �̂
N ′ = �̂

N
:

(
WN ′)′(

�N ′)−1
WN ′ = (WN

)′(
�N
)−1

WN� (S45)

Given that K(n′) ⊂ K(n) for an existing exchange n ∈ N , the indicator matrix (Defini-
tion 6) WN ′ in market N ′ =N ∪{n′} can be represented as a function of WN :

WN ′ =
[

WN

WN ′
K(n′)

]
=
[

WN[
0 Id

]
WN

]
� (S46)

This is because WN ′
K(n′) ∈ RK(n′)×K for the new exchange n′ is a submatrix of the matrix WN .

Replacing WN ′ by Eq. (S46) simplifies Eq. (S45) in terms of WN itself rather than WN and
WN ′ : (

WN
)′((

�N
)−1 − (�N ′

−n′
)−1)

WN = (WN
)′

[0 Id]′(�N ′
K(n′)

)−1
[0 Id]WN� (S47)

The subscript “−n′” denotes the existing exchanges n′′ �= n′ in market N ′ = N ∪{n′}: that
is, �N ′

−n′ = diag(�N ′
K(n′′))n′′ �=n′ .

(�N ′
does not satisfy B̂N ′ = B̂N). We now show that �N ′

that satisfies Eq. (S47) does
not satisfy B̂N ′ = B̂N unless one of conditions (i)–(iii) holds. The same argument near Eq.
(S41) shows that B̂N ′ = B̂N holds if and only if the following equation holds:

(
WN

)′((
�N + κ

(
�N
)′)−1 − (�N ′

−n′ + κ
(
�N ′

−n′
)′)−1)

WN

= (WN
)′

[0 Id]′(�N ′
K(n′) + κ

(
�N ′

K(n′)
)′)−1

[0 Id]WN� (S48)

Equalization of the per-unit price impact (Eq. (S47)) gives a linear relation between the
demand coefficients C = 1

I−1 (�−1)′ in N and N ′: (WN)′(CN ′
−n′)′WN = 1

I−1 (WN)′(�N ′
−n′)−1WN

is a linear function of (WN)′CNWN and (WN)′[0 Id]′CN ′
K(n′)[0 Id](WN) (Eq. (S47)). How-

ever, given that C = 1
I−1 (�−1)′, Eq. (S48) equalizes the harmonic means of CN ′

−n′ and (CN ′
−n′)′

with the sum of the harmonic means of {CN� (CN)′} and {CN ′
K(n′)� (CN ′

K(n′))
′}.

Using the different relations—linear and harmonic mean—between the inverses of
price impacts (�N)−1 and (�N ′

)−1 in Eqs. (S47)–(S48), we show that if Eq. (S47) holds,
then Eq. (S48) generally does not hold. The RHS of Eq. (S48) has zero elements for
all k�� ∈ K, unless assets k and � are both traded in the new exchange n′, that is,
{k��} ⊂ K(n′). If Eq. (S48) holds, then the LHS of Eq. (S48) must have zero elements
for all k and � such that {k��} �⊂ K(n′). By applying the Woodbury Matrix Identity to
(�N + κ(�N)′)−1 and (�N ′

−n′ + κ(�N ′
−n′)′)−1, the LHS of Eq. (S48) can be represented as

(
WN

)′(
CN − CN ′

−n

)
WN − κ

(
WN

)′(
CN
((

CN
)−1(

CN
)′ + κId

)−1

− CN ′
−n′
((

CN ′
−n′
)−1(

CN ′
−n′
)′ + κId

)−1)
WN� (S49)
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The first term in Eq. (S49) has zero elements for all k�� such that {k��} �⊂ K(n′), while
the second term in Eq. (S49) has a zero (k��)th element if and only if∑

{n′′∈N|{k��}⊂K(n′′)}

(
CN

K(n′′)
((

CN
K(n′′)

)−1(
CN

K(n′′)
)′ + κId

)−1 − CN ′
K(n′′)

((
CN ′

K(n′′)
)−1(

CN ′
K(n′′)

)′ + κId
)−1)

k�

= 0� (S50)

By Eq. (S47), however, the CN ′ that matches the per-unit price impact satisfies∑
{n′′∈N|{k��}⊂K(n′′)}

(
cNk��n′′ − cN

′
k��n′′

)= 0�

The demand Jacobian CN ′
K(n′′) in exchange n′′ has a nonzero off-diagonal element cN ′

k��n′′ ex-
cept when [BB′]k�K(n′′) is proportional to [α�BB′]k�K(n′′) (see Eq. (S20) in Corollary S1),
that is, cN ′

k��n′′ �= 0 unless σk� = 0 (condition (iii)). When condition (iii) does not hold, for
Eq. (S50) to hold, for each n′′ ∈ N , the demand coefficient CN

K(n′′) must either be the same
in market structures N and N ′, that is, CN

K(n′′) = CN ′
K(n′′) , or must be symmetric, that is,

CN
K(n′′) = (CN

K(n′′))
′ so that ((CN

K(n′′))
−1(CN

K(n′′))
′ +κId)−1 = 1

1+κ
Id. The former condition can-

not hold for all exchanges n′′ such that K(n′) �K(n′′) unless condition (i) holds: When an
equilibrium exists, the demand coefficient in the new exchange n′ is positive semi-definite
CN ′

K(n′) > 0 (i.e., demands are downward-sloping); using Eq. (S47), for each {k��}⊂K(n′),
there exists an exchange n′′ such that {k��} ⊂ K(n′) ∩ K(n′′) and CN

K(n′′) �= CN ′
K(n′′) . Hence,

for such an exchange n′′, CN
K(n′′) must be symmetric, that is, condition (ii) must hold. Q.E.D.

LEMMA S4—Price Equalization Across Exchanges: Given a market structure N =
{K(n)}n, the equilibrium prices of asset k are the same in the exchanges where k is traded,

pk�n = pk�n′ ∀n�∀n′ �= n s.t. k ∈ K(n) ∩K
(
n′) ∀k ∀(qi

0

)
i
∈ RIK�

if and only if price impact � is a symmetric matrix, that is, �=�′.

PROOF OF LEMMA S4 (PRICE EQUALIZATION ACROSS EXCHANGES): Using the indi-
cator matrix W (Definition 6), we can write the equilibrium price equation (S16) as fol-
lows:

p = δ+ −Wα�E[q0]−C−1B
(
q0 −E[q0]

)= W
(
δ−α�E[q0]

)−C−1B
(
q0 −E[q0]

)
� (S51)

Prices for each asset k are the same in all exchanges where k is traded if and only if there
exists a price vector p̂ ∈ RK , such that p = Wp̂ = (Wnp̂)n for all realizations of endowments
(qi

0)i ∈ RIK . From Eq. (51), the price equalization holds if and only if C−1B ∈ R(
∑

n K(n))×K

is characterized as WM for a matrix M ∈ RK×K .
We now show that C−1B = WM if and only if C is a symmetric matrix (equivalently, �=

1
I−1 (C−1)′ is a symmetric matrix). Using demand coefficients B and C in Eqs. (S19)–(S20),
the price weight matrix coefficient C−1B ∈ R(

∑
n K(n))×K in Eq. (51) can be characterized as

follows:

C−1B = C−1

(
(1 − σ0)Wα�W′ + 1 − σ0

I − 1
(
C−1

)′ + σ0C−1

)−1

Wα�
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=
(

1 − σ0

I − 1
(
C−1

)′
C + σ0Id

)−1

× W
(

W′
(

1
I − 1

(
C−1

)′ + σ0

1 − σ0
C−1

)−1

W + (α�)−1

)−1

� (S52)

where the second equality applies the Woodbury Matrix Identity (Lemma S1) to ((1 −
σ0)Wα�W′ + 1−σ0

I−1 (C−1)′ + σ0C−1)−1. Equation (S52) shows that C−1B = WM if and only
if ( 1−σ0

I−1 (C−1)′C + σ0Id)−1 is a diagonal matrix whose diagonal elements corresponding
to asset k are the same for all exchanges: that is, (C−1)′C = diag(mk�n)k�n, where mk�n =
mk for all n such that k ∈ K(n). Given C > 0, mk�n = 1 for all k and n must hold, so
C = C′ diag(mk�n)k�n = C′. We conclude that C−1B = WM if and only if C is a symmetric
matrix, that is, C = C′. Q.E.D.

PROOF OF COROLLARY 2: (REDUNDANCY OF CHANGES IN MARKET STRUCTURE:
A CONDITION ON EXCHANGES). Suppose that 0 < |ρk�|< 1 for all k and � �= k. This
assumption is without loss of generality, as shown in the proof of Proposition 4.

(Part (ii) ⇔ �̂ = �c and B̂ = Bc). We show that the equilibrium in the market with
exchanges N is ex post if and only if traders’ equilibrium payoffs are the same as in the
contingent market: The equilibrium price and trades are characterized as a function of
price impact �:

p = δ+ − (Wα�− C−1B
)
E[q0] − C−1Bq0�

qi = ((α�+ +�
)−1

Wα�− B
)(
E[q0] −E

[
qi

0

])+ Bq0 − Bqi
0�

The equilibrium is ex post if and only if B = (α�+ + �)−1Wα� and C−1B = Wα� so
that the equilibrium price and total trades are independent of the distribution of en-
dowments. Applying the Woodbury Matrix Identity (Lemma S1) to (α�+ + �)−1 and
B = ((1 − σ0)(α�+ + �) + σ0(I − 1)�′)−1Wα� (Eq. (S19)), the matrix condition B =
(α�+ +�)−1Wα� simplifies to

(1 − σ0)α�+ (W′((1 − σ0)�+ σ0(I − 1)�′)−1
W
)−1 = α�+ �̂� (S53)

Equation (S53) holds if and only if �̂ = α
I−2α� = �c and � = �′. Then, by Eqs. (S19)–

(S20), B̂ = I−2
I−1 Id = Bc and C−1B = Wα� also hold.

(Part (ii) ⇐ (iii)). From (Part (ii) ⇔ �̂ = �c and B̂ = Bc), an equilibrium in a market
with exchanges N is ex post if and only if it is payoff-equivalent to the equilibrium in
N ′ = {K}. Suppose that for every pair of assets k and � �= k such that 0 <|ρk�|< 1, these
assets are traded in a same exchange in N : that is, k�� ∈ K(n) for some n ∈ N .

We first show that, given market structure N , there exists a symmetric block-diagonal
matrix � = diag(�K(n))n ∈ R(

∑
n K(n))×(

∑
n K(n)) such that (W′�−1W)−1 = �̂

c = α
I−2�, which

we then show is the equilibrium price impact in market N . Given that W is the indi-
cator matrix of market N , the (k��)th element of W′�−1W = (I − 1)W′C′W is the sum
of demand coefficients

∑
{n|k��∈K(n)} c�k�n. Because condition (iii) implies that {n|k�� ∈

K(n)} �= ∅,
∑

{n|k��∈K(n)} c�k�n �= 0 for any k and � �= k except when ρk� = 0 (Proposi-
tion S2). Matching each element of W′C′W and (Cc)′ gives the system of K2 equations for∑

n(K(n))2 variables {{c�k�n}k��}n. Given
∑

n(K(n))2 ≥K2, there exist {c�k�n}{n|k��∈K(n)} such
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that
∑

{n|k��∈K(n)} c�k�n = cc�k for all k and � �= k. Moreover, when � satisfies (W′�−1W)−1 =
�̂

c
, so does its symmetric counterpart 1

2 (�+�′), because �̂
c

is symmetric. It follows that
there exists a symmetric matrix �=�′ that satisfies (W′�−1W)−1 = �̂

c
.

We now argue that a symmetric matrix � such that (W′�−1W)−1 = α
I−2� is the equilib-

rium price impact. We show that it satisfies equilibrium fixed point Eqs. (S20)–(S21), that
is, [(

α�
+ +�− (I − 1)�′)B�B′]

N
= 0� (S54)

Using �=�′, Eq. (S42) for B simplifies to

B =�−1W
((

1 + (I − 2)σ0

)
(α�)−1 + (1 − σ0)�̂

−1)−1
� (S55)

Substituting for B from Eq. (S55) to Eq. (S54), we have

[
W
(
α�− (I − 2)�̂

)(
(1 − σ0)(α�+ �̂) + σ0(I − 1)�̂

)−1

× α��α�
(
(1 − σ0)(α�+ �̂) + σ0(I − 1)�̂

)−1
W′]

N
= 0� (S56)

When condition (iii) holds, for any matrix M ∈ RK×K , [WMW′]N = 0 if and only if M = 0.
This is because mk� = 0 for all � �= k and k if and only if (WMW′)K(n) = (mk�)k��∈K(n) = 0
for all n. This establishes that matrix �̂ satisfies Eq. (S56) given market N if and only if
�̂ satisfies (

α�− (I − 2)�̂
)(

(1 − σ0)(α�+ �̂) + σ0(I − 1)�̂
)−1

× α��α�
(
(1 − σ0)(α�+ �̂) + σ0(I − 1)�̂

)−1 = 0� (S57)

Given the positive definiteness of � and �, �̂ = α
I−2� = �c is the unique matrix that

satisfies Eq. (S57). It follows that � such that �̂ = �c , which hence satisfies Eq. (S57), is
an equilibrium price impact in N .

(Part (ii) ⇒ (iii)). We prove by contradiction: Suppose that a pair of assets k and � �= k
such that 0 <|ρk�|< 1 is not traded in a same exchange in N : that is, {k��} �⊂ K(n) for all
n ∈ N . By Proposition 4, the equilibrium payoffs in N coincide with ex post equilibrium
payoffs only when (W′�−1W)−1 = α

I−2�, or equivalently, W′CW = I−2
I−1 (α�)−1. Following

the argument in (Part (ii) ⇐ (iii)), the (k��)th element of W′CW is zero, because {n|k�� ∈
K(n)} = ∅. This contradicts the equality W′CW = I−2

I−1 (α�)−1, because ((α�)−1)k� �= 0:
(W′�−1W)−1 �= α

I−2�. Therefore, condition (iii) is necessary for ex post equilibrium.
(Part (i) ⇐ (iii)). If condition (iii) holds in a market structure N , an additional exchange

n′ cannot change the set of conditioning variables in traders’ total demands. More pre-
cisely, condition (iii) also holds in market structure N ′ =N∪{n′}: for every pair of assets k
and � �= k such that 0 <|ρk�|< 1, there is an exchange n′′ in which these assets are traded,
that is, k�� ∈ K(n′′) for some n′′ ∈ N ′. By (Part (ii) ⇔ (iii)), the equilibrium payoffs in
both N and N ′ coincide with those in the contingent market, and thus, are the same.

(Part (i) ⇒ (ii)). We prove the contrapositive: if an equilibrium is not ex post, then
there exists a new exchange that is not redundant. Consider exchanges N . By the equiv-
alence between (ii) and (iii), there exist imperfectly correlated assets k and � �= k that
are not both traded in any exchange, that is, there is no n such that {k��} ⊂ K(n). The



EXCHANGE DESIGN AND EFFICIENCY 21

(k��)th element of the total demand’s Jacobian Ĉ = WCW′ is zero, that is, ĉk� = 0. Sup-
pose that a new exchange n′ ≡ {k��} is introduced in the market structure N , that is,
N ′ = N ∪ {n′}. We show that exchange n′ is not redundant: The Jacobian CN ′

K(n′) ∈ R2×2

in exchange n′ has a nonzero off-diagonal element cN ′
k� except when [BB′]k�K(n′) is propor-

tional to [α�BB′]k�K(n′) (Eq. (S20) in Corollary S1), that is, cN ′
k� �= 0 unless σk� = 0. This

shows that ĉN ′
k� �= ĉk� = 0, and hence, the Jacobians of the total demands in N ′ and N dif-

fer: ĈN ′ = WN ′CN ′ (WN ′)′ �= Ĉ. Equivalently, �̂
N ′ �= �̂. By Proposition 4(i), the equilibrium

payoffs differ in N and N ′. Q.E.D.

COROLLARY S2—Nonredundancy of Changes in Market Structure: A Condition on
Primitives: All market structures {K(n)}n give the same equilibrium payoff if and only if the
payoffs of all assets are either perfectly correlated or independent.

PROOF OF COROLLARY S2: (NONREDUNDANCY OF CHANGES IN MARKET STRUC-
TURE: A CONDITION ON PRIMITIVES). The proof is immediate from the proof of Corol-
lary 2. Q.E.D.

PROOF OF PROPOSITION 3: (WELFARE WITH MULTIPLE EXCHANGES VERSUS JOINT
MARKET CLEARING). Suppose that there is no inference error: that is, σcv → 0, σpv →
0, and σ0 ≡ σcv+ 1

I σpv

σcv+σpv
< 1. For a market structure N with multiple exchanges that is not

payoff-equivalent to a single exchange, consider the difference in the equilibrium surplus
Uc −UN :

Uc −UN =
∑
i

(
E[q0] −E

[
qi

0

]) · (ϒ (�c
)−ϒ (�̂)

)(
E[q0] −E

[
qi

0

])
� (S58)

which, by Proposition 4, is zero if the per-unit price impacts �c and �̂ are the same.
The equilibrium surplus difference (Eq. (S58)) is a quadratic matrix function of

E[q0] − E[qi
0] with a quadratic coefficient of ϒ (�c) − ϒ (�̂). If the surplus matrix dif-

ference ϒ (�c) − ϒ (�̂) has a negative eigenvalue μ < 0, then there exist ex ante trading
needs {E[q0] − E[qi

0]}i ∈ RIK such that Uc − UN < 0. Pick a distribution of endowments
such that E[q0] −E[qi

0] is proportional to an eigenvector of matrix ϒ (�c) −ϒ (�̂) (with a
positive or a negative proportionality constant) associated with an eigenvalue μ: for all i,(

ϒ
(
�c
)−ϒ (�̂)

)(
E[q0] −E

[
qi

0

])= μ
(
E[q0] −E

[
qi

0

])
� (S59)

Substituting the trading needs vector {E[q0] − E[qi
0]}i that satisfies Eq. (S59) into Eq.

(S58), we have ∑
i

(
E[q0] −E

[
qi

0

]) · (ϒ (�c
)−ϒ (�̂)

)(
E[q0] −E

[
qi

0

])
=
∑
i

(
E[q0] −E

[
qi

0

]) ·μ(E[q0] −E
[
qi

0

])
< 0�

and hence, UN > Uc . Because the difference in equilibrium surplus (S58) is a quadratic
function of (and hence continuous with respect to) expected trading needs, UN > Uc

holds for trading needs {E[q0] − E[qi
0]}i that are sufficiently close to the eigenvector of
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ϒ (�c) − ϒ (�̂). Furthermore, given σ0, the ex ante equilibrium payoff (25) is a linear
function of (and hence continuous with respect to) variances (σcv�σpv). Therefore, UN >
Uc holds for distribution F ((qi

0)i) with sufficiently small (σcv�σpv).
Lemma S5 gives a sufficient condition for a negative eigenvalue to exist: any market

structure whose exchanges are demergers (Definition 5) of a single venue for all assets.
If the surplus matrix difference ϒ (�c) −ϒ (�̂) does not have a negative eigenvalue, then
Uc −UN ≥ 0 for any distribution of endowments. Q.E.D.

LEMMA S5—Price Impacts in Multiple Exchanges Versus Joint Market Clearing: Let
K > 1 and I < ∞. Consider a market structure N = {K(n)}n that consists of exchanges that
partition the set of K assets: K(n) ∩ K(n′) = ∅ for all n and n′ �= n and

⋃
n K(n) = K. The

equilibrium price impact � in N and the price impact in the contingent market �c are not
ranked in the positive semi-definite sense, that is, neither � ≥ �c nor � ≤ �c holds, except
when �=�c .

PROOF OF LEMMA S5: (PRICE IMPACTS IN MULTIPLE EXCHANGES VERSUS JOINT
MARKET CLEARING). The equilibrium fixed point equation (S20) for the equilibrium
price impact � ∈RK×K can be written as follows:

[(
α�

+ +�− (I − 1)�′)B�B′]
N

= 0� (S60)

To demonstrate that �c − � is neither positive semi-definite nor negative semi-definite,
we argue by contradiction: Suppose that �c −�= α

I−2�
+ −� is positive semi-definite. By

the Trace Inequality for Matrix Product,7 the trace of the matrix on the LHS of Eq. (S60)
is nonnegative:

tr
((
α�

+ +�− (I − 1)�′)B�B′)
≥ (I − 2)μK

(
B�B′) tr

(
α

I − 2
�

+ − 1
2
(
�+�′))≥ 0� (S61)

where μK(M) ∈ R is the lowest eigenvalue of matrix M. Because matrix B�B′ is sym-
metric and positive definite, its lowest eigenvalue is positive, and hence, (S61) holds with
equality if and only if α

I−2�
+ = 1

2 (�+�′), or equivalently �c = �.
Except when �c =�, however, Eq. (S61) contradicts the equilibrium fixed point equa-

tion (S60). Hence, by the definition of operator [·]N , the matrix trace must be zero:

tr
((
α�

+ +�− (I − 1)�′)B�B′)= 0�

An analogous argument shows that �c − � is not negative semi-definite except when
�c = �. Q.E.D.

7For a real matrix S ∈RK×K and a positive semi-definite matrix T ∈RK×K , the following inequality holds:
μK (S) tr(T) ≤ tr(ST) = tr(TS) ≤ μ1(S) tr(T)�

where μk(S) is the kth largest eigenvalue of the Hermitian part 1
2 (S + S′).
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FIGURE S2.—Heterogeneous asset correlations and trading needs. Notes: Each color indicates which
market structure provides the highest ex ante welfare. Red = {{1}�{2}�{3}} (i.e., the uncontingent mar-
ket); Orange = {{1}�{2�3}}; Yellow = {{1�2}�{3}}; Blue = {{1�2}�{1�3}}; Light blue = {{1�2}�{1�3}�{3}};
Purple = {{1�2}�{1�3}�{1}}; Green = {{1�2}�{2}�{3}}; Olive = {{1�2}�{1}�{3}}; and White = {{1�2�3}} (i.e.,
the contingent market). The welfare effect of the inference error is sufficiently small not to dominate the wel-
fare benefit from diversification (σcv = 0�σpv = 0�01). The number of traders is I = 10. The trading needs for
assets 2 and 3 are |E[q0�L] −E[qi

0�L]|= 1 for all i. Panel (A) assumes the asset payoff correlation ρL = 0�2 (i.e.,
substitutes), and panel (B) assumes ρL = −0�2 (i.e., complements).

APPENDIX C: SYMMETRIC MARKETS

C.1. Additional Results: Symmetric Markets

This appendix presents results for markets that are symmetric in the following sense.

DEFINITION S1—Symmetric Market: Assume K = MN for some M ≥ 1. A market
structure N ={K(n)}n is symmetric if

• asset distribution is symmetric, that is, σ ≡ Var[rk] for all k and ρ ≡ Corr[rk� r�] for
all k and � �= k, and

• exchanges N partition the set of K assets into exchanges with the same number of
assets, that is, K(n) ∩K(n′) = ∅ for all n and n′ �= n, and K(n) =M for all n.

For results in this part of the appendix, we assume that traders’ endowments are inde-
pendent across assets: � = Id ∈ RK×K .

In a symmetric market, the asset covariance is � = σ ((1 − ρ)Id + ρ11′) and the price
impact matrix �= diag(�K(n))n ∈RK×K is symmetric across exchanges and assets and can
be written as follows: for all n,

�K(n) = (λk − λk�)Id + λk�11′ ∈ RM×M� (S62)

where λk ∈ R+ is the diagonal price impact for asset k and λk� ∈ R is the off-diagonal
price impact for assets k�� �= k.

PROPOSITION S1—Equilibrium Existence and Uniqueness: Symmetric Environment:
Let I < ∞ and K = MN > 1 for some M ≥ 1. In a symmetric market {K(n)}n defined in
Definition S1, there exists a unique equilibrium.
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PROOF OF PROPOSITION S1: (EQUILIBRIUM EXISTENCE AND UNIQUENESS: SYMMET-
RIC ENVIRONMENT). (Scalar equations for price impact). By Corollary S1 in Appendix A,
the price impact � is determined by Eqs. (S19)–(S21):

[(
α�− (I − 2)�

)(
Id + κ(α�)−1�

)−1(
Id + κ�(α�)−1

)−1]
N

= 0� (S63)

where κ ≡ 1+(I−2)σ0
1−σ0

∈ R+.
We first rewrite the matrix fixed point equation (S63) for � as a system of equations

in R for λk and λk� (Eqs. (S69)–(S70) below). Market symmetry simplifies Eq. (S63). In
particular, the symmetry of the price impact � implies that vector 1 ∈RK is an eigenvector
of �:

�1 = λ1� (S64)

where λ≡ λk + (M − 1)λk� is the sum of elements in each row of �. Using Eq. (S64), the
inverse matrix (Id + κ(α�)−1�)−1 in Eq. (S63) can be decomposed as a linear combina-
tion of a block-diagonal matrix (Id + κ

ασ (1−ρ)�)−1 and matrix 11′ ∈ RK×K :

(
Id + κ(α�)−1�

)−1

=
(

Id + κ

ασ (1 − ρ)
�− κρλ

ασ (1 − ρ)
(
1 + (K − 1)ρ

)11′
)−1

=
(

Id + κ

ασ (1 − ρ)
�

)−1

+ κλρv2

ασ (1 − ρ)
(
1 + (K − 1)ρ

)−Kvκλρ
11′� (S65)

where the second equality applies the Woodbury Matrix Identity (Lemma S1) to (Id +
κ

ασ (1−ρ)�− κρλ

ασ (1−ρ)(1+(K−1)ρ) 11′)−1. Here, v ∈ R+ is the eigenvalue of matrix (Id+ κ
ασ (1−ρ)�)−1

associated with the eigenvector 1:

v1 =
(

Id + κ

ασ (1 − ρ)
�

)−1

1�

v = ασ (1 − ρ)
κ
(
λk + (M − 1)λk�

)+ ασ (1 − ρ)
= ασ (1 − ρ)

κλ+ ασ (1 − ρ)
� (S66)

Substituting (Id + κ(α�)−1�)−1 (Eq. (S65)) into Eq. (S63), the LHS of Eq. (S63) can be
decomposed as a linear combination of a block-diagonal matrix and matrix [11′]N ∈ RK×K :

[(
Id + κ

ασ (1 − ρ)
�

)−1(
α�− (I − 2)�

)(
Id + κ

ασ (1 − ρ)
�

)−1]
N

+ (ασ(1 + (K − 1)ρ
)

− (I − 2)λ
)
K

((
κλρv2

ασ (1 − ρ)
(
1 + (K − 1)ρ

)−Kvκλρ
+ v

K

)2

− v2

K2

)[
11′]

N

= 0� (S67)
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Because (Id + κ
ασ (1−ρ)�)−1 is a block-diagonal matrix, the matrix equation (S67) for � =

diag(�K(n)) simplifies to a fixed point equation for �K(n) in each exchange n:

(
Id + κ

ασ (1 − ρ)
�K(n)

)−1(
α�K(n)�K(n)

− (I − 2)�K(n)

)(
Id + κ

ασ (1 − ρ)
�K(n)

)−1

+ (ασ(1 + (K − 1)ρ
)− (I − 2)λ

)
×K

((
κλρv2

ασ (1 − ρ)
(
1 + (K − 1)ρ

)−Kvκλρ
+ v

K

)2

− v2

K2

)
11′

= 0� (S68)

We remark that the second line of the LHS of Eq. (S68) is proportional to matrix
11′ ∈ RM×M . Thus, for Eq. (S68) to hold, its first line must be proportional to matrix
11′. Equivalently, because (Id + κ

ασ (1−ρ)�K(n))−1 is invertible, multiplying the first line by
(Id + κ

ασ (1−ρ)�K(n)) shows that matrix (α�K(n)�K(n) − (I − 2)�K(n)) is proportional to 11′,
and hence,

ασ − (I − 2)λk = ασρ− (I − 2)λk�� i.e., λk − λk� = α

I − 2
σ (1 − ρ)� (S69)

Furthermore, using Eq. (S69) and vκλ = ασ (1 − ρ)(1 − v) from Eq. (S66), the matrix
equation (S68) simplifies to a fixed point equation for λk in R:

λk − λc
k = ασρ

I − 2

⎛
⎜⎜⎜⎝ K

M + (K −M)
(

1 + (Kv− 1)ρ
1 + (K − 1)ρ

)2 − 1

⎞
⎟⎟⎟⎠ � (S70)

(Equilibrium existence and uniqueness). Substituting λk = 1
M

(λ+ ασ (1−ρ)
I−2 (M −1)) (by the

definition of λ in Eq. (S64) and by Eq. (S69)) and λ= ασ (1−ρ)(1−v)
κv

(by the definition of v in
Eq. (S66)) into Eq. (S70) gives a third-order polynomial equation for v ∈ (0�1):

(I − 2)(1 − ρ)(1 − v) = κ

⎡
⎢⎢⎢⎣1 + ρ

⎛
⎜⎜⎜⎝ KM

M + (K −M)
(

1 + (Kv− 1)ρ
1 + (K − 1)ρ

)2 − 1

⎞
⎟⎟⎟⎠
⎤
⎥⎥⎥⎦v� (S71)

When v = 0, the LHS of Eq. (S71) is positive while the RHS of Eq. (S71) is zero. When
v = 1, the LHS of Eq. (S71) is zero while the RHS of Eq. (S71) is κ(1 + (M − 1)ρ) > 0 by
the positive definiteness of �. Given the continuity of both sides of Eq. (S71), it follows
from the Intermediate Value Theorem that Eq. (S71) has a solution v ∈ (0�1), and hence
an equilibrium exists.
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We show that the equilibrium is unique for ρ ≥ 0 and ρ < 0. Suppose first that ρ ≥ 0.
Twice differentiating the RHS of Eq. (S71) with respect to v, we have

∂2RHS
∂v2

= −2κK2(K −M)Mρ2

1 + (K − 1)ρ

×
((

M + (K −M)
(

1 + (Kv− 1)ρ
1 + (K − 1)ρ

)2)

+ Kρ

1 + (K − 1)ρ

[
(1 − v)

(
M + (K −M)

(
1 + (Kv− 1)ρ
1 + (K − 1)ρ

)2)
− 2

])
/((

M + (K −M)
(

1 + (Kv− 1)ρ
1 + (K − 1)ρ

)2)3)
≤ 0�

Hence, the RHS of Eq. (S71) is concave with respect to v. In addition, the LHS of Eq.
(S71) is linearly decreasing in v. The concavity of RHS and the linearity of LHS imply
that the solution of Eq. (S71) is unique in v ∈ (0�1): by the Mean Value Theorem, Eq.
(S71) cannot have more than two solutions v ∈ (0�1). Otherwise, LHS < RHS must hold
at both boundaries v = 0 and v = 1, which contradicts the discussion below Eq. (S71), that
is, that LHS > RHS when v = 1. Therefore, the solution v to Eq. (S71) and, equivalently,
the equilibrium price impacts λk and λk� in Eqs. (S69) and (S70) are unique.

Suppose now that ρ < 0. Dividing both sides of Eq. (S71) by v makes the LHS and the
RHS convex and concave with respect to v, respectively. Analogously to the argument for
ρ≥ 0, the Mean Value Theorem implies that the solution v to Eq. (S71) and, equivalently,
the equilibrium price impacts λk and λk� in Eqs. (S69) and (S70) are unique. Q.E.D.

A counterpart of Theorem 3, Proposition S2 characterizes the within-exchange equilib-
rium price impact in symmetric markets.

PROPOSITION S2—Price Impact: Comparative Statics; Symmetric Markets, General
Design: The within-exchange price impact �K(n) satisfies the following properties for each n:

(1) (Magnitude) With K assets, the diagonal price impact λk maximally increases N-fold
relative to λc

k = α
I−2σ ; this is the case if and only if |ρ|= 1:

α

I − 2
σ ≤ λk ≤ α

I − 2
Nσ�

(2) (Comparative statics) Relative to the contingent market:
(i) ∂(λk−λc

k
)

∂I
≤ 0 and ∂(λk�−λc

k�
)

∂I
≤ 0 for all k�� ∈K(n);

(ii) ∂(λk−λc
k

)

∂|ρ| ≥ 0 and ∂(λk�−λc
k�

)

∂|ρ| ≥ 0 for all k�� ∈ K(n). Either inequality holds with
equality if and only if ρ= 0.

Note. With one asset per exchange (i.e., N = {{k}}k and M = 1), the proof of Proposi-
tion S2 specializes to that of Theorem 3.
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PROOF OF PROPOSITION S2: (PRICE IMPACT: COMPARATIVE STATICS; SYMMETRIC
MARKETS, GENERAL DESIGN). From the proof of Proposition S1, equilibrium price im-
pact matrix � = diag((λk − λk�)Id + λk�11′) (Eq. (S62)) is characterized by scalar equa-
tions (Eqs. (S69) and (S70)) for λk and λk�:

λk − λk� = α

I − 2
σ (1 − ρ)�

λk − λc
k = ασρ

I − 2

⎛
⎜⎜⎜⎝ K

M + (K −M)
(

1 + (Kv− 1)ρ
1 + (K − 1)ρ

)2 − 1

⎞
⎟⎟⎟⎠ �

(Part (1)). We are now ready to show the inequality λk ≥ α
I−2σ = λc

k. Because λ > 0 in
Eq. (S64), the following inequality holds for v:

0 < v = ασ (1 − ρ)
κλ+ ασ (1 − ρ)

< 1� (S72)

This implies that the term 1+(Kv−1)ρ
1+(K−1)ρ in the denominator of the RHS of (S70) satisfies

sign( 1+(Kv−1)ρ
1+(K−1)ρ − 1) = − sign(ρ), and thus, sign( K

M+(K−M)( 1+(Kv−1)ρ
1+(K−1)ρ )2

− 1) = sign(ρ). Hence,

by Eq. (S70), λk ≥ α
I−2σ = λc

k; λk = λc
k if and only if ρ= 0.

Furthermore, the proof of Theorem 2 demonstrated the existence of an upper bound
� = α

I−2NσId such that equilibrium price impact � satisfies � ≤ �. It follows that λk ≤
α

I−2Nσ for any k. The equality holds if and only if |ρk�| = 1 for all k and � �= k as we
showed in the proof of Theorem 2.

(Part (2i)). We prove the monotonicity of the inference effect with respect to the num-
ber of traders I. By Eq. (S72), v ∼ o(I−1+ε) for some ε ∈ (0�1), given κ = 1+(I−2)σ0

1−σ0
. Then,

Eq. (S70) implies that ∂(λk−λc
k

)

∂I
< 0 because ασρ

I−2 ∼ o(I−1) and K

M+(K−M)( 1+(Kv−1)ρ
1+(K−1)ρ )2

∼ o(I1−ε).

From Eq. (S69), the difference between the off-diagonal and diagonal price impacts is
the same:

λk� − λc
k� =

(
λk − α

I − 2
σ (1 − ρ)

)
− α

I − 2
σρ = λk − λc

k� (S73)

Hence, ∂(λk�−λc
k�

)

∂I
< 0.

(Part (2ii)). For any |ρ|> 0, ∂
∂ρ

1+(Kv−1)ρ
1+(K−1)ρ < 0, because Kv − 1 <K − 1 by Eq. (S72) and

1 + (K − 1)ρ > 0 by the positive definiteness of �. This implies

K

M + (K −M)
(

1 + (Kv− 1)ρ
1 + (K − 1)ρ

)2 − 1 > 0�

∂

∂ρ

⎛
⎜⎜⎜⎝ K

M + (K −M)
(

1 + (Kv− 1)ρ
1 + (K − 1)ρ

)2 − 1

⎞
⎟⎟⎟⎠> 0�
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Hence, in Eq. (S70), sign( ∂(λk−λc
k

)

∂ρ
) = sign(ρ), that is, ∂(λk−λc

k
)

∂|ρ| > 0 when |ρ|> 0. When

ρ = 0, ∂(λk−λc
k

)

∂|ρ| = 0. From Eq. (S73), ∂(λk�−λc
k�

)

∂|ρ| > 0 when |ρ|> 0 and ∂(λk�−λc
k�

)

∂|ρ| = 0 when
ρ= 0 for all k�� ∈K(n). Q.E.D.

PROOF OF COROLLARY 3: (PRICE IMPACT AND MARKET STRUCTURE). (Part (i)).
Suppose that K = 2 and consider market structures N ={K}={{1�2}} and N ′ ={{k}}k =
{{1}�{2}}. We want to show that λN ′

k ≥ λN
k for all k. For simplicity, we dispense with the su-

perscript N ′ for the uncontingent market N ′ and use the superscript c for the contingent
market N .

By the equilibrium fixed point equation (15) in the uncontingent market N ′, the de-
mand slope ck = 1

I−1λ
−1
k for asset k can be decomposed into the direct effect and the

(indirect) inference effect:

ck ≡ −∂q
j
k(·)

∂pk

= −
(

−I − 2
I − 1

(ασkk)−1

︸ ︷︷ ︸
Direct effect

+ I − 2
I − 1

(ασkk)−1ασk�c�
(
VV′)

�k

((
VV′)

kk

)−1

︸ ︷︷ ︸
Inference effect

)
� (S74)

where V ≡ (1 − σ0)C−1B = (C + κ(α�)−1)−1 and κ ≡ 1+(I−2)σ0
(I−1)(1−σ0) ∈ R+. We will show that

sign(σk�) = sign((VV′)�k).8 Given the decomposition in Eq. (S74), the inference effect in

Eq. (S74) is nonnegative, and hence ck ≤ I−2
I−1 (ασkk)−1, and λk = c−1

k

I−1 ≥ λc
k = α

I−2σkk for
all k.

We now characterize matrix VV′. By the definition of V = (C + κ(α�)−1)−1, we have

V = ασ

det
(
V−1

) [ασc2 + κσ11 κσ12

κσ12 ασc1 + κσ22

]
� (S75)

where σ ≡ det(�) = σ11σ22 − σ2
12 > 0 and det(V−1) = (ασc1 + κσ22)(ασc2 + κσ22) −

κ2σ2
12 > 0. Using Eq. (S75), we compute VV′, whose off-diagonal element is

(
VV′)

12
= α2σ2

det
(
V−1

)2κασ12

(
ασ (c1 + c2) + κ(σ11 + σ22)

)
� (S76)

Because κ > 0, Eq. (S76) implies that sign((VV′)�k) = sign(σk�). Hence, λk ≥ λc
k for all k;

the equality holds if and only if σ12 = 0, because (VV′)�k = 0 if and only if σk� = 0 in Eq.
(S76).

(Part (ii)). See Figure 1(B) in Section 3.2.3 for an example of λ̂N
k > λ̂N ′

k . Q.E.D.

PROPOSITION S3—Efficient Market Structure in Symmetric Markets: Consider the
class of symmetric markets (Definition S1). Assume that traders’ ex ante trading needs are
symmetric for all assets E[q0�k] − E[qi

0�k] = E[q0��] − E[qi
0��] for all k and � for each i, and

there is no inference error: (σcv�σpv) → 0 and σ0 < 1. When ρ > 0, the uncontingent market
maximizes total ex ante welfare; when ρ < 0, the contingent market does.

8We note that Eq. (S74) is the counterpart of Eq. (20) for the demand coefficient ck = 1
I−1λ

−1
k (rather than

price impact λk). In Eq. (S74), (VV′)�k = (1 − σ0)2 Cov[p��pk|qi
0] determines the sign of price correlation for

all k and � �= k (see Section 3.2.3).
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PROOF OF PROPOSITION S3: (EFFICIENT MARKET STRUCTURE IN SYMMETRIC MAR-
KETS). We first derive the ex ante equilibrium surplus (Eq. (S30)) in a symmetric market.
Given the symmetry of the ex ante trading needs across assets (i.e., E[q0] − E[qi

0] = ei1
for some ei ∈ R), each trader’s ex ante equilibrium surplus (Eq. (S30)) is

(
E[q0] −E

[
qi

0

]) ·ϒ (�)
(
E[q0] −E

[
qi

0

])
= Kασ

(
1 + (K − 1)ρ

)[
1 − λ

2(
ασ
(
1 + (K − 1)ρ

)+ λ
)2

](
ei
)2
� (S77)

where λ ≡ λk + (M − 1)λk� ∈ R+ is the eigenvalue of a symmetric matrix � that corre-
sponds to eigenvector 1. The ex ante equilibrium surplus (S77) is decreasing in λ, be-
cause λ is nonnegative (i.e., � is positive semi-definite). Therefore, it suffices to show
that sign( ∂λ

∂M
) = sign(ρ).

In the proof of Proposition S2, Eq. (S71) characterizes the price impact � =
diag(�K(n))n = (λk −λk�)Id+λk�[11′]N (and its eigenvalue λ) by an equivalent fixed point
equation for v ≡ ασ (1−ρ)

κλ+ασ (1−ρ) : Dividing both sides of Eq. (S71) by v gives

(I − 2)(1 − ρ)
(

1
v

− 1
)

= κ

⎡
⎢⎢⎢⎣1 + ρ

⎛
⎜⎜⎜⎝ K

1 +
(
K

M
− 1

)(
1 + (Kv− 1)ρ
1 + (K − 1)ρ

)2 − 1

⎞
⎟⎟⎟⎠
⎤
⎥⎥⎥⎦ � (S78)

By the definition of v in Eq. (S66), the equality sign( ∂λ
∂M

) = sign(ρ) holds if and only if
sign( ∂v

∂M
) = − sign(ρ) does and thus, it suffices to show the latter.

From Eq. (S78), the LHS of Eq. (S78) is decreasing with respect to v (at an order
of o(v−1)); the RHS of Eq. (S78) is increasing and concave when ρ < 0 and decreasing
and convex when ρ > 0 (at an order of o(ρv−2)). Suppose ρ > 0. The RHS of Eq. (S78)
increases as M increases, for all v ∈ (0�1). Hence, the solution to Eq. (S78) decreases
because the LHS of Eq. (S78) is independent of M and is decreasing with respect to v.
Therefore, ∂v

∂M
< 0 holds. Similarly, when ρ < 0, the RHS of Eq. (S78) decreases as M

increases, for all v ∈ (0�1); hence, ∂v
∂M

> 0 holds. It follows that sign( ∂v
∂M

) = − sign(ρ), and
hence, sign( ∂λ

∂M
) = sign(ρ). Q.E.D.

PROOF OF COROLLARY 4: (WELFARE WITH MULTIPLE EXCHANGES VERSUS JOINT
MARKET CLEARING (K = 2)). Suppose the ex ante trading needs across assets E[q0] −
E[qi

0] are proportional to (ξ�1)′ ∈ R2 for all i for some nonzero constant: that is, ξ ≡
E[q0�1]−E[qi0�1]

E[q0�2]−E[qi0�2]
. Given the symmetry of asset payoffs, the price impact in {{1}�{2}} is symmet-

ric across assets: that is, �= λId.
We characterize the difference between the ex ante equilibrium surplus (Eq. (S30)) in

the uncontingent market {{1}�{2}} and the contingent market {{1�2}}:

(
E[q0] −E

[
qi

0

]) · (ϒ (�) −ϒ
(
�c
))(

E[q0] −E
[
qi

0

])
� (S79)
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where �c = I−2
I−1�. Substituting � = λId and � = ασ (1 − ρ)Id + ασρ11′ into Eq. (S33),

we characterize the difference between surplus matrices ϒ (�) −ϒ (�c):

ϒ (�) −ϒ
(
�c
)= ασ

(I − 1)2

[
1 − x ρ(1 − y)

ρ(1 − y) 1 − x

]
� (S80)

where x ≡ (I−1)2λ2

((ασ+λ)2−(ασρ)2)2 ((ασ + λ)2 − ασρ2(ασ + 2λ)) ≥ 1 and y ≡ (I−1)2λ2

((ασ+λ)2−(ασρ)2)2 (λ2 −
(ασ)2(1 − ρ2)) ≤ 1. Substituting ϒ (�) − ϒ (�c) (Eq. (S80)) and E[q0�1] − E[qi

0�1] =
ξ(E[q0�2] −E[qi

0�2]) into Eq. (S79) shows that the ex ante equilibrium payoff in the uncon-
tingent market is higher than in the contingent market if and only if

xξ2 + 2ξρy + x < ξ2 + 2ξρ+ 1� (S81)

The necessary and sufficient condition (S81) has a solution ξ ∈ (ξ(ρ� I)� ξ(ρ� I)) with
ξ(ρ� I) > ξ(ρ� I) for any asset correlation ρ �= {0�±1} and any finite number of traders
I < ∞:

(1 − y)ρ−
√

(1 − y)2ρ2 − (x− 1)2

2(x− 1)

≤ ξ ≡ E[q0�1] −E
[
qi

0�1

]
E[q0�2] −E

[
qi

0�2

]

≤
(1 − y)ρ+

√
(1 − y)2ρ2 − (x− 1)2

2(x− 1)
� (S82)

Given that |(1 − y)ρ| >
√

(1 − y)2ρ2 − (x− 1)2, the bounds in the necessary and suf-
ficient condition (S81) are both positive when ρ > 0 and are both negative when
ρ < 0. It follows that inequality (S82) holds if and only if conditions (i) and (ii) hold

with ξ(ρ� I) ≡ (1−y)ρ−
√

(1−y)2ρ2−(x−1)2

2(x−1) and ξ(ρ� I) ≡ (1−y)ρ+
√

(1−y)2ρ2−(x−1)2

2(x−1) when ρ > 0, and

ξ(ρ� I) ≡|(1−y)ρ+
√

(1−y)2ρ2−(x−1)2

2(x−1) | and ξ(ρ� I) ≡|(1−y)ρ−
√

(1−y)2ρ2−(x−1)2

2(x−1) | when ρ < 0. Q.E.D.

C.2. Symmetric Equilibrium Characterization in Markets With Two Assets: K = 2

Suppose that αi = α for all i, and � = (σk�)k�� is characterized by σ11 = σ22 = 1 and
σ12 = σ21 = ρ. Then, the price impact is symmetric across traders and assets: λi

k = λ for
all k and i and λi

k� = 0 for all k, � �= k, and i. Traders’ demand coefficients in (12) are
symmetric: bi

k = bk and cik = c for all i and k. Observe that vector bk is symmetric across
k up to a permutation: that is, if b1 = (x� y), then b2 = (y�x). We will continue to use the
superscript i and subscript k when they are useful.

The equilibrium with uncontingent trading is characterized in two steps (Proposition 2).
Step 1 characterizes the fixed point among trader i’s demand coefficients for assets 1
and 2, taking as given his price impact λ and residual supply intercepts F (s−i|qi

0). Step 2
endogenizes λ and F (s−i|qi

0).
Step 1 (Optimization, given residual supply λ and F (s−i|qi

0)). Taking the derivative of
the expected payoff (9) with respect to qi

k gives the first-order conditions of trader i for
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each k:

E
[
δ1 − αi

(
σ11

(
qi

1 + qi
0�1

)+ σ12

(
qi

2 + qi
0�2

))
|p1�qi

0

]= p1 + λi
1q

i
1

∀p1 ∈ R� (S83)

E
[
δ2 − αi

(
σ22

(
qi

2 + qi
0�2

)+ σ21

(
qi

1 + qi
0�1

))
|p2�qi

0

]= p2 + λi
2q

i
2

∀p2 ∈ R� (S84)

Trader i’s expected marginal utility for asset k depends on the demand coefficients of his
schedule qi

�(·) for asset � �= k. The characterization of a trader’s best-response demand
qi
k(·) requires solving a fixed point problem for trader i’s own demand schedules {qi

k(·)}k
across assets.

Step 1.1 (Parameterization of demands for asset � �= k). To characterize the best-response
demand of trader i for asset 1, assume that his demand for asset 2 is a linear function:

qi
2(p2) = ai

2 − bi
2qi

0 − ci2p2 ∀p2 ∈ R� (S85)

where ai
2 ∈R�bi

2 ∈ R1×2, and ci2 ∈ R+.
Step 1.2 (Price distribution and expected trades, given F (s−i|qi

0)). Market clearing for asset
2 characterizes the distribution of price p2. Equalization of demand qi

2(·) in Eq. (S85) and
residual supply S−i

2 (·) = s−i
2 + (λi

2)−1p2 gives

ai
2 − bi

2qi
0 − ci2p2 = s−i

2 + (λi
2

)−1
p2 ∀s−i

2 ∈ R�

Price p2 maps one-to-one to s−i
2 :

p2 = 1

ci2 + (λi
2

)−1

(
ai

2 − bi
2qi

0 − s−i
2

) ∀s−i
2 ∈ R� (S86)

Equation (S86) characterizes price distribution F (p2|qi
0) as a function of the intercept

distribution F (s−i
2 |qi

0) and the coefficients {ai
2�bi

2� c
i
2} of trader i’s own demand function

qi
2(·) for asset 2.
The one-to-one mapping between p2 and s−i

2 (Eq. (S86)) allows the expected trade
E[qi

2|p1�qi
0] in the first-order condition for asset 1 (Eq. (S83)) to be characterized condi-

tionally on s−i
1 :

E
[
qi

2|p1�qi
0

]=E
[
qi

2|s
−i
1 �qi

0

]
�

From the parameterization of qi
2(·) in Eq. (S85) and price distribution p2 in Eq. (S86),

E
[
qi

2|s
−i
1 �qi

0

]=E
[
ai

2 − bi
2qi

0 − ci2p2|s−i
1 �qi

0

]
= ai

2 − bi
2qi

0 − ci2

ci2 + (λi
2

)−1

(
ai

2 − bi
2qi

0 −E
[
s−i

2 |s−i
1 �qi

0

])
�

The conditional expectation E[s−i
2 |s−i

1 �qi
0] is characterized by the intercept distribution

F (s−i|qi
0), which trader i takes as given.
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Step 1.3 (Best response for asset k, given demands for � �= k). Substituting the expected
trade into the first-order condition (S83) gives the following equation:

δ1 − αi

(
σ11

(
qi

1 + qi
0�1

)+ σ12

(
ai

2 − bi
2qi

0 − ci2

ci2 + (λi
2

)−1

(
ai

2 − bi
2qi

0 −E
[
s−i

2 |s−i
1 �qi

0

])+ qi
0�2

))

= p1 + λi
1q

i
1�

from which the best response qi
1(·) is derived as a linear function of s−i

1 and p1:

qi
1

(
p1� s

−i
1

)= 1
αiσ11 + λi

1

×
(
δ1 − αi�1qi

0 −p1 − αiσ12

(
ai

2 − bi
2qi

0

− ci2

ci2 + (λi
2

)−1

(
ai

2 − bi
2qi

0 −E
[
s−i

2 |s−i
1 �qi

0

])))
� (S87)

The demand schedule qi
1(·) in Eq. (S87) can be written as a function of both p1 and s−i

1 .
Using the one-to-one mapping between p1 and s−i

1 :

qi
1

(
p1� s

−i
1

)= s−i
1 + (λi

1

)−1
p1� (S88)

the best response qi
1(·) in Eq. (S87) is characterized as a function of only p1 as an

endogenous variable. Equations (S87)–(S88) characterize the demand coefficients in
qi

1(p1) = ai
1 − bi

1qi
0 − ci1p1 as functions of ai

2�bi
2� c

i
2, and {λi

k}k. An analogous argument
characterizes the demand coefficients ai

2�bi
2� c

i
2 for asset 2 as functions of ai

1�bi
1� c

i
1, and

{λi
k}k, which creates a fixed point for {ai

k�bi
k� cik}k.

Step 2 (Correct residual supply). Given other traders’ demands (S85) for all k and j �= i,
the correct residual supply of trader i is determined by S−i

k (·) = −∑j �=i q
j
k(·).

Step 2.1 (Correct distribution of residual supply intercepts and expectations). The residual
supply intercepts s−i

k = −∑j �=i(a
j
k − bj

kqj
0) are jointly Normally distributed. From the dis-

tribution of endowments F ((qj
0)j|qi

0), the first and second moments of intercepts (s−i
1 � s−i

2 )
are: for each k and �,

E
[
s−i
k |qi

0

]= −
∑
j �=i

a
j
k + bk

∑
j �=i

(
E
[
qj

0

]+ σcv

σcv + σpv

(
qi

0 −E
[
qi

0

]))
�

Cov
[
s−i
k � s−i

� |qi
0

]= bk

∑
j�h �=i

Cov
[
qj

0�qh
0|qi

0

]
b′
� = I(I − 1)σpvσ0bk · b��

Applying the Projection Theorem to this distribution of the residual supply intercepts
F (s−i|qi

0) gives the expected intercepts E[s−i
� |s−i

k �qi
0]:

E
[
s−i
� |s−i

k �qi
0

]=E
[
s−i
� |qi

0

]+ bk · b�

bk · bk

(
s−i
k −E

[
s−i
k |qi

0

])
�
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Substituting E[s−i
� |s−i

k �qi
0] into Eq. (S87) characterizes trader i’s demand coefficients

{ai
k�bi

k� c
i
k}k as functions of {aj

k�bj
k� c

j
k}k�j �=i and price impacts {λi

k}k. This defines a fixed
point for {ai

k�bi
k� cik}i�k as a function of {λi

k}i�k.
Step 2.2 (Fixed point for best-response coefficients, given price impacts). By the symmetry

across traders and assets, the fixed point for demand coefficients of trader i simplifies to

ai
k = ckδk − ck(1 − σ0)α

((
x
(
α− (I − 2)λ

)+ yρ
)
E[q0�k]

+ (y(α− (I − 2)λ
)+ xρ

)
E[q0�l]

)
� (S89)

c1 = c2 =
(

(α+ λ) + αρ
b1 · b2

b1 · b1

)−1

� (S90)

b1 = (x� y)�b2 = (y�x)� (S91)

where x≡ (1 − σ0)(1 − ρ2)α+ (1 + (I − 2)σ0)λ and y ≡ ρ(1 + (I − 2)σ0)λ. The demand
coefficients ai

k�bk, and ck are closed-form functions of λ (S89)–(S91).
Step 2.3 (Correct price impact). The price impact must equal the slope of the inverse

residual supply, λk = (
∑

j �=i

∂q
j
k

(·)
∂pk

)−1 = 1
I−1c

−1
k for all k. By Eqs. (S90)–(S91), the price im-

pact λ= 1
I−1c

−1
1 = 1

I−1c
−1
2 is characterized by

λ= α

I − 2
+ αρ

I − 2
2xy

x2 + y2 � (S92)

Equation (S92) characterizes the equilibrium price impact, which in turn determines the
demand coefficients in Eqs. (S89)–(S91).
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