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APPENDIX A: PROOFS AND ADDITIONAL RESULTS

PROOF OF PROPOSITION 1: THE PROOF OF PROPOSITION 1 follows from the following
two results. The first states that the price space (ph�pl) ∈ R

2
+ can be partitioned into

five mutually exclusive and collectively exhaustive regions. In three of these regions, the
theory predicts only two of the three options are ever chosen: l or o, h or o, and l or
h, respectively. I refer to these regions as the h-decoy, l-decoy, and o-decoy regions in
the main text, and they are formally defined below by the sets A, B, and C. The second
result builds on the first and establishes existence and uniqueness of the l-o, h-o, and l-h
indifference boundaries within these three regions.

Result 1 (Pairwise Choice Bounds) Suppose A3 holds. Then, for choice set C(ph�pl), the
price space (ph�pl) ∈ R

2
+ can be partitioned into the mutually exclusive and collectively

exhaustive regions depicted visually in Figure A.1 and furthermore:
I. In region A ≡{(ph�pl) ∈ R

2
+ : ph ≥ qh and ql/pl ≥ qh/ph}, l or o is chosen.

II. In region B ≡{(ph�pl) ∈R
2
+ : pl ≥ qh and ph ≤ pl}, h or o is chosen.

III. In region C ≡{(ph�pl) ∈R
2
+ : ph ≤ qh and ql/pl ≤ qh/ph}, l or h is chosen.

IV. In region D ≡ {(ph�pl) ∈ R
2
+ : ph > qh and ql/pl < qh/ph and ph > pl}, o is cho-

sen.
V. In region E ≡ {(ph�pl) ∈ R

2
+ : ph < qh and ql/pl < qh/ph and pl < qh}, h is cho-

sen.

FIGURE A.1.—Preference regions defined in Result 1. The optimal choice for a range-weighting agent is
denoted by j∗

γ ≡ arg maxj[g(�q;γ)qj − g(�p;γ)pj].
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PROOF: Part I. Suppose ph > pl and ph > qh, hence �q = qh and �p = ph. By A3(ii),
Vh = g(qh;γ) ·qh −g(ph;γ) ·ph < 0 = Vo, and therefore h will never be chosen. This con-
dition can be restated as qh/ph < g(ph;γ)/g(qh;γ). Furthermore, a necessary condition
for l to be preferred to o is

g(qh;γ) · ql − g(ph;γ) ·pl > 0

⇔ ql

pl

>
g(ph;γ)
g(qh;γ)

>
qh

ph

�

Part II. If ph < pl, then �q = qh and �p = pl. By A3(ii), g(pl;γ) · pl > g(ph;γ) · ph,
and hence,

Vl = g(qh;γ) · ql − g(pl;γ) ·pl

< g(qh;γ) · qh − g(pl;γ) ·pl

< g(qh;γ) · qh − g(ph;γ) ·ph = Vh

and so l is never chosen. Furthermore, a necessary condition for o to be chosen is Vo > Vh,
which holds whenever

0 > g(qh;γ) · qh − g(pl;γ) ·ph

⇔ 0 > g(qh;γ) · qh − g(pl;γ) ·pl

⇔ g(pl;γ) ·pl > g(qh;γ) · qh

⇔ pl > qh (by A3(ii)).

Part III. Suppose ph > pl and ph < qh, then �q = qh and �p = ph. By A3(ii), Vh =
g(qh;γ) · qh − g(ph;γ) · ph > 0 = Vo, and therefore o will never be chosen. Rearranging
gives qh/ph > g(ph;γ)/g(qh;γ) and therefore, a necessary condition for l to be chosen is
Vh < Vl,

g(qh;γ) · qh − g(ph;γ) ·ph < g(qh;γ) · ql − g(ph;γ) ·pl

⇔ g(qh;γ) · (qh − ql) < g(ph;γ) · (ph −pl)

⇔ qh − ql

ph −pl

<
g(ph;γ)
g(qh;γ)

<
qh

ph

⇔ ql

pl

>
qh

ph

�

Part IV. From Part I, ph > pl and ph > qh implies that h is never chosen and, further-
more, that a necessary condition for l to be chosen is that ql/pl > qh/ph. By definition
of D, all prices must satisfy ql/pl < qh/ph, and therefore l will never be chosen. Hence,
choice-set agents will always choose o in region D.

Part V. First, consider ph ≥ pl. Then from Part III, o will never be chosen, and fur-
thermore, as the necessary condition for l to be chosen fails to hold, h must be chosen.
Second, it was shown in Part II that for ph < pl, l will never be chosen, and as the neces-
sary condition for choosing o does not hold, h must again be chosen. Q.E.D.
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Result 2 (Boundary Existence and Uniqueness): Suppose A3 holds and the choice set is
C(ph�pl) for some (ph�pl) ∈ R

2
+. Then, for any γ, there exists a unique partition of:

I. A into mutually exclusive and collectively exhaustive subsets {Al�Ao�Ai} such that
range-weighting agents are indifferent between l and o for all (ph�pl) ∈ Ai, prefer
o for all (ph�pl) ∈ Ao, and prefer l for all (ph�pl) ∈ Al. Furthermore, any γ′ 	= γ

yields a distinct partition {A′
l�A

′
o�A

′
i} 	={Al�Ao�Ai}.

II. B into mutually exclusive and collectively exhaustive subsets {Bh�Bo�Bi} such that
range-weighting agents are indifferent between h and o for all (ph�pl) ∈ Bi, prefer
o for all (ph�pl) ∈ Bo, and prefer h for all (ph�pl) ∈ Bh. Furthermore, any γ′ 	= γ

yields a distinct partition {B′
h�B

′
o�B

′
i} 	={Bh�Bo�Bi}.

III. C into mutually exclusive and collectively exhaustive subsets {Ch�Cl�Ci} such that
range-weighting agents are indifferent between h and l for all (ph�pl) ∈ Ci, prefer
l for all (ph�pl) ∈ Cl, and prefer h for all (ph�pl) ∈ Ch. Furthermore, any γ′ 	= γ

yields a distinct partition {C ′
h�C

′
l �C

′
i} 	={Ch�Cl�Ci}.

PROOF: Part I. For any (ph�pl) ∈A, fix ph. Define fA(pl) ≡ Vl−Vo = g(qh) ·ql−g(ph) ·
pl, which is continuous and strictly decreasing in pl. fA(0) > 0 and hence j∗(ph�pl) = l.
Then,

fA

(
phql

qh

)
= g(qh)ql − g(ph)

phql

qh

= g(qh)
qlph

qh

[
qh

ph

− g(ph)
g(qh)

]
< 0�

as the term in brackets is less than zero (see the proof of Result 1 Part I), and hence
j∗(ph�pl) = o. Then, by the intermediate value theorem, there exists a unique p̄ > 0 such
that fA(p̄) = 0. As fA(pl) is strictly decreasing, then for all pl ≤ p̄, j∗(ph�pl) = l, and for
all pl ≥ p̄, j∗(ph�pl) = o. Define Ai = {(ph�pl) ∈ A : pl = p̄}, Al = {(ph�pl) ∈ A : pl <

p̄}, and Ao ={(ph�pl) ∈ A : pl > p̄}; then {Al�Ao�Ai} is a unique partition of A.
To show that {Al�Ao�Ai} is distinct for any γ, note that fA(p̄) = 0 implies p̄(γ) =

qlg(qh;γ)/g(ph;γ), which is continuous and strictly decreasing in γ as qh < ph. There-
fore, for any γ′ 	= γ, it follows that p̄(γ′) 	= p̄(γ) and hence {Al�Ao�Ai} 	={A′

l�A
′
o�A

′
i}.

Part II. For any (ph�pl) ∈ B, fix pl. Define fB(ph) ≡ Vh − Vo = g(qh;γ) · qh − g(pl;γ) ·
ph, which is continuous and strictly decreasing in ph. fB(0) > 0 and hence j∗(ph�pl) = h.
fB(pl) < 0 (by A3(ii)) and hence j∗(ph�pl) = o. Then, by the intermediate value theorem,
there exists a unique p̂ such that fB(p̂) = 0. As fB(ph) is strictly decreasing, then for all
ph ≤ p̂, j∗(ph�pl) = h, and for all ph ≥ p̂, j∗(ph�pl) = o. Define Bi ={(ph�pl) ∈ B : ph =
p̂}, Bh = {(ph�pl) ∈ B : ph < p̂}, and Bo = {(ph�pl) ∈ B : ph > p̂}; then {Bh�Bo�Bi} is a
partition of B. Furthermore, fB(p̂) = 0 implies that p̂(γ) = qlg(qh;γ)/g(pl;γ), which is
continuous and strictly decreasing in γ as qh < pl. Therefore, for any γ′ 	= γ, it follows
that p̂(γ′) 	= p̂(γ) and hence {Bh�Bo�Bi} 	={B′

h�B
′
o�B

′
i}.

Part III. For any (ph�pl) ∈ C , fix pl. Define fC (ph) ≡ Vh − Vl = g(qh;γ) · [qh − ql] −
g(ph;γ) · [ph −pl], which is continuous and strictly decreasing in ph (by A3(ii)). fC (qh) =
−g(qh;γ)[ql −pl] < 0 and hence j∗(ph�pl) = l. Recall that for all (ph�pl) ∈ C , qh/ph >

g(ph)/g(qh) (see proof of Result 1, Part III) and in particular for ph = pl(qh/ql), which
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implies ql/pl > g(plqh
ql

)/g(qh). Therefore,

fC

(
plqh

ql

)
= g(qh)(qh − ql) − g

(
plqh

ql

)[
plqh

ql

−pl

]

= g(qh)(qh − ql)
pl

ql

⎡
⎢⎢⎣ ql

pl

−
g

(
plqh

ql

)
g(qh)

⎤
⎥⎥⎦ > 0

and hence j∗(ph�pl) = h. Then, by the intermediate value theorem, there exists a
unique p̃ > 0 such that fC (p̃) = 0. As fC (ph) is strictly decreasing, then for all ph ≤ p̃,
j∗(ph�pl) = h, and for all ph ≥ p̃, j∗(ph�pl) = l. Define Ci = {(ph�pl) ∈ C : ph = p̃},
Ch = {(ph�pl) ∈ C : ph < p̃}, and Cl = {(ph�pl) ∈ C : ph > p̃}; then {Ch�Cl�Ci} is a
unique partition of C.

It remains to show that p̃(γ) is strictly increasing in γ. Recall that by definition, fC (p̃) =
g(qh;γ)(qh −ql) −g(p̃;γ)(p̃−pl) = 0. Taking the total derivative with respect to γ gives

gγ(qh;γ)(qh − ql)

−
[(

gp̃

(
p̃(γ);γ)∂p̃(γ)

∂γ
+ gγ

(
p̃(γ);γ))

(p̃−pl) + ∂p̃(γ)
∂γ

g
(
p̃(γ);γ)] = 0

⇒ ∂p̃(γ)
∂γ

= gγ(qh;γ)(qh − ql) − gγ

(
p̃(γ);γ)(

p̃(γ) −pl

)
gp̃

(
p̃(γ);γ)(

p̃(γ) −pl

) + g
(
p̃(γ);γ) �

To sign the denominator, consider two cases. If g is (weakly) increasing in the � (i.e.,
gp̃(p̃(γ);γ) ≥ 0), then the expression in the denominator is strictly positive. If instead g
is (weakly) decreasing in the range (i.e., gp̃(p̃(γ);γ) ≤ 0), then by A3(ii),

∂
[
p̃(γ) · g(

p̃(γ);γ)]
∂p̃(γ)

= gp̃

(
p̃(γ);γ)

p̃(γ) + g
(
p̃(γ);γ)

> 0

and hence, gp̃(p̃(γ);γ)(p̃(γ) − pl) + g(p̃(γ);γ) ≥ gp̃(p̃(γ);γ)p̃(γ) + g(p̃(γ);γ) > 0.
Therefore, the denominator is always strictly positive. To sign the numerator, note that
fC (p̃(γ)) = 0

⇒ g(qh;γ)
g
(
p̃(γ);γ) = p̃(γ) −pl

qh − ql

� (∗)

Furthermore, as qh > p̃(γ), g(qh;γ)/g(p̃(γ);γ) is strictly increasing in γ, and hence

gγ(qh;γ) · g(
p̃(γ);γ) − gγ

(
p̃(γ);γ) · g(qh;γ)

g
(
p̃(γ);γ)2 > 0�

Combining the above with (∗) gives

gγ(qh;γ)
gγ

(
p̃(γ);γ) >

g(qh;γ)
g
(
p̃(γ);γ) = p̃(γ) −pl

qh − ql

�
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which can be rewritten as g(qh;γ)(qh − ql) − gγ(p̃(γ);γ)(p̃(γ) −pl) > 0 and therefore,
∂p̃(γ)/∂γ > 0. Hence, for γ′ 	= γ, it follows that p̃(γ′) 	= p̃(γ) and hence {Ch�Cl�Ci} 	=
{C ′

h�C
′
l �C

′
i}. Q.E.D.

It follows from Result 2 that for any γ 	= γ′, the choice correspondence j∗(ph�pl;γ) 	=
j∗(ph�pl;γ′) for all (ph�pl) ∈ R

2
+. Therefore, there exists either no γ such that j∗(ph�pl;

γ) = j(ph�pl) for all (ph�pl) ∈ R
2
+, or a unique γ such that j∗(ph�pl;γ) = j(ph�pl) for

all (ph�pl) ∈ R
2
+. Q.E.D.

PROOF OF PROPOSITION 2: Let f denote the joint distribution of error difference
terms. The probability of choosing h or l is

P(h or l) = 1 − P(o)

= 1 − Pr(̂εol > Ul −Uo) Pr(̂εoh > Uh −Uo)

= 1 −
∫ ∞

ε̂ol=Ul−Uo

∫ ∞

ε̂oh=Uh−Uo

f (̂εol� ε̂oh) dε̂oh dε̂ol�

As f (̂εlo� ε̂lh) > 0 for all (̂εlo� ε̂lh), the probability of choosing h or l is strictly increasing
(decreasing) if and only if the bounds of both integrals contract (expand). First, consider
how an increase in ph affects the bounds of the inner integral. By A1, Ul and Uo are
independent of ph, while Uh is strictly decreasing in ph. Therefore, the bound Uh − Uo

is strictly decreasing in ph, which leads to a strict increase in P(o) and hence a strict
decrease in P(h or l). Finally, consider how an increase in pl affects the bounds of the
outer integral. By A1, Uh and Uo are independent of pl, while Ul is strictly decreasing
in pl. Therefore, the bound Ul − Uo is strictly decreasing in pl, which leads to an strict
increase in P(o) and hence a strict decrease in P(h or l). Q.E.D.

PROOF OF PROPOSITION 3: Let j�k�k′ ∈ {h� l�o} denote the three distinct options in
choice set C(ph�pl). The probability of choosing j is

P(j) = Pr(̂εjk > Vk − Vj� ε̂jk′ > Vk′ − Vj)

=
∫ ∞

ε̂jk=Vk−Vj

∫ ∞

ε̂jk′ =Vk′ −Vj

f (̂εjk� ε̂jk′) dε̂jk dε̂jk′ � (A.4)

As f (̂εjk� ε̂jk′) > 0 for all (̂εjk� ε̂jk′), the probability of choosing j is strictly increasing
(decreasing) if and only if the bounds of both integrals expand (contract).

Part (a): h-decoy region. To see how the integral bounds respond to changes in ph in the
h-decoy region, note that for any prices (ph�pl) ∈ A, Vo − Vl = g(ph;γ)pl − g(qh;γ)ql,
Vh − Vo = g(qh;γ)qh − g(ph;γ)ph, and Vh − Vl = g(qh;γ)(qh − ql) − g(ph;γ)(ph − pl).
By the properties of g, it follows that Vh − Vl and Vh − Vo are strictly decreasing in ph for
all γ, while Vo − Vl is strictly increasing in ph if γ > 0, strictly decreasing in ph if γ < 0,
and unaffected by ph if γ = 0. Given these properties and the choice probability formula
(A.4):

(i) The first integral bound for P(h) is Vl − Vh, which is strictly increasing in ph for
all γ. The second is Vo − Vh, which is also strictly increasing in ph for all γ. Thus,
P(h) is strictly decreasing in ph for all γ.
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(ii) The first integral bound for P(l) is Vh − Vl, which is strictly decreasing in ph for all
γ. The second is Vo−Vl, which is strictly increasing in ph if γ > 0, strictly decreasing
in ph if γ < 0, and unaffected by ph if γ = 0. Thus, P(l) is strictly increasing in ph

if γ ≤ 0 and ambiguous if γ > 0.
(iii) The first integral bound for P(o) is Vh −Vo, which is strictly decreasing in ph for all

γ. The second is Vl−Vo, which is strictly decreasing in ph if γ > 0, strictly increasing
in ph if γ < 0, and unaffected by ph if γ = 0. Thus, P(o) is strictly increasing in ph

if γ ≥ 0 and ambiguous if γ < 0.
Part (b): l-decoy region. For any prices (ph�pl) ∈ B, Vl − Vo = g(qh;γ)ql − g(pl;γ)pl,

Vl − Vh = g(pl;γ)(ph − pl) − g(qh;γ)(qh − ql), and Vo − Vh = g(pl;γ)ph − g(qh;γ)qh.
By the properties of g, it follows that Vl − Vo and Vl − Vh are strictly decreasing in pl for
all γ, while Vo − Vh is strictly increasing in pl if γ > 0, strictly decreasing in pl if γ < 0,
and unaffected by pl if γ = 0. Given these properties and the choice probability formula
(A.4):

(i) The first integral bound for P(h) is Vl −Vh, which is strictly decreasing in pl for all
γ. The second is Vo−Vh, which is strictly increasing in pl if γ > 0, strictly decreasing
in pl if γ < 0, and unaffected by pl if γ = 0. Thus, P(h) is strictly increasing in pl

if γ ≤ 0 and ambiguous if γ > 0.
(ii) The first integral bound for P(l) is Vh − Vl, which is strictly increasing in pl for all

γ. The second is Vo − Vl, which is also strictly increasing in pl if γ > 0. Thus, P(l)
is strictly decreasing in pl for all γ.

(iii) The first integral bound for P(o) is Vl −Vo, which is strictly decreasing in pl for all
γ. The second is Vh−Vo, which is strictly decreasing in pl if γ > 0, strictly increasing
in pl if γ > 0, and unaffected by pl if γ = 0. Thus, P(o) is strictly increasing if γ ≥ 0
and ambiguous if γ < 0.

Part (c): o-decoy region. Fix the price difference ph − pl ≡ c > 0. Then for any prices
(ph�pl) ∈ C, Vl − Vo = g(qh;γ)ql − g(ph;γ)pl, Vh − Vo = g(qh;γ)qh − g(ph;γ)ph, and
Vh − Vl = g(qh;γ)(qh − ql) − g(ph;γ)c. By the properties of g, it follows that Vl − Vo

and Vh − Vo are strictly decreasing in ph for all γ, while Vh − Vl is strictly decreasing in
ph if γ > 0, strictly increasing in ph if γ < 0, and unaffected by ph if γ = 0. Given these
properties and the choice probability formula (A.4):

(i) The first integral bound for P(h) is Vo − Vh, which is strictly increasing in ph for
all γ. The second is Vl − Vh, which is strictly increasing in ph if γ > 0, strictly
decreasing in ph if γ < 0, and unaffected by ph if γ = 0. Thus, P(h) is strictly
decreasing in ph if γ ≥ 0 and ambiguous if γ < 0.

(ii) The first integral bound for P(l) is Vo−Vl, which is strictly increasing in ph for all γ.
The second is Vh − Vl, which is strictly decreasing in ph if γ > 0, strictly increasing
in ph if γ > 0, and unaffected by ph if γ = 0. Thus, P(l) is strictly decreasing if
γ ≤ 0 and ambiguous if γ > 0.

(iii) The first integral bound for P(o) is Vh − Vo, which is strictly decreasing in ph for
all γ. The second is Vl − Vo, which is also strictly decreasing in ph for all γ. Thus,
P(o) is strictly increasing in ph for all γ. Q.E.D.

PROPOSITION 4—Equivalence for Binary Choice: Suppose the choice set is {(qh�ph)�
(ql�pl)}, where qh and ql are fixed such that qh > ql and that A3 holds. Let j∗

0 ≡
arg maxj∈{h�l}Uj and j∗

γ ≡ arg maxj∈{h�l}Vj . Then, j∗
γ = j∗

0 for all (ph�pl) ∈ R
2
+ and for all γ.

PROOF: Given choice set C ={(qh�ph)� (ql�pl)}, the quality and price ranges are �q =
qh − ql and �p =|ph −pl|. First, consider the case where pl > ph. Both Vh − Vl = g(qh −
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ql;γ) · (qh − ql) + g(pl − ph;γ) · (pl − ph) > 0 and Uh − Ul = (qh − ql) + (pl − ph) >
0, and therefore j∗

γ = j∗
0 = h for all γ. For ph ≥ pl, h will be preferred whenever Vh =

g(qh − ql;γ) · qh − ql > g(ph −pl;γ) · (ph −pl) = Vl. This holds if and only if g(�q;γ) ·
�q > g(�p;γ) · �p. By A3(ii), this holds if and only if �q > �p, which is equivalent to
Uh >Ul. Likewise, Vh ≤ Vl ⇔ Uh ≤ Ul, and therefore for all γ, j∗

γ = j∗
0 = h if Uh >Ul and

j∗
γ = j∗

0 = l if Uh < Ul, with indifference at Uh = Ul. Thus, j∗
γ = j∗

0 for all (ph�pl) ∈ R
2
+

and γ. Q.E.D.

APPENDIX B: ADDITIONAL EXPERIMENTAL DESIGN DETAILS

B.1. Products

TABLE B.I

PRODUCTS OFFERED IN THE EXPERIMENT.

high variety low variety

Quantity
Lindor Chocolate Truffles 300 pieces 100 pieces
Cinema Card 10 passes 5 passes
Starbucks Coffee 40 cups 20 cups
Gillette Razors 16 blades 8 blades
Insignia TV 24 inch 19 inch
Uber Credit $80 $40

Duration
Blue Apron Subscription 2 weeks 1 week
Yoga Subscription 2 month 1 month
Wine of the Month Subscription 2 month 1 month
Cheese of the Month Subscription 2 month 1 month
Beer of the Month Subscription 2 month 1 month
Flowers of the Month Subscription 2 month 1 month

Functionality
Roku Streaming Device Roku Ultra TV Roku Stick
Amazon Tablet Fire 8 Fire 7

Brand
Bluetooth Speaker Bose Soundlink AmazonBasics
Water Purifier + 6 Filters Brita AmazonBasics
Hardcase Luggage Samsonite AmazonBasics
Rechargable Batteries + Charger Energizer AmazonBasics
Laptop Backpack Northface AmazonBasics
Sunglasses Ray-Ban Sungait
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B.2. Screenshots of the Experimental Tasks

FIGURE B.1.—Example screenshot of the first-stage valuation task. Participants could enter any positive
amount and could reveal product details by clicking on the bold text “here”.

FIGURE B.2.—Example screenshot of the second-stage choice task. Participants decided whether to pur-
chase a given product by responding “yes” or “no”. Prices start at $0 and increase in increments of $5 up to a
maximum of $100.
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FIGURE B.3.—Example screenshots of the incentive animation. The ball highlighted in green is the number
chosen by the participant. In the second-stage choice task, participants can choose one number (i.e., ball to
turn green). During the second-stage valuation task incentive, nine numbers can be chosen. The yellow ball is
the randomly chosen number. A new randomly chosen number is drawn every 0.01 seconds and highlighted in
yellow. The animation stops when the participant hits the space key (labeled “NEXT”). If the animation stops
on the participant’s chosen number, (19 in this example), the participant wins a bonus cash prize of $80 and
their previous choice is implemented for real.

B.3. Additional Price Generation Details

This section provides the precise method used for drawing prices in the experiment.
In the h-decoy region (defined by the set A in Section A), prices were drawn from zone
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m = 1�2�3�4�5�6 by first drawing some ph > qh (subject to the restrictions outlined in
the main text), and then pl was drawn at random from the interval bounded by the in-
difference boundaries for γ̄m and γ̄m+1; more precisely, zone m in h-decoy region was
defined as zA

m = {(ph�pl) ∈ A : pl ∈ (ql(qh/ph)γ̄m� ql(qh/ph)γ̄m+1}. In the l-decoy region
(defined by the set B in Section A), prices from zone m were obtained by first draw-
ing some pl > qh, and then randomly drawing ph from the interval generated by in-
difference boundaries γ̄m and γ̄m+1; specifically, zone m in the l-decoy region was de-
fined as zB

m = {(ph�pl) ∈ B : ph ∈ (qh(qh/pl)γ̄m� qh(qh/pl)γ̄m+1)}). In the o-decoy region
(defined by the set C in Section A), prices were drawn from zone m by first draw-
ing some pl < ql, and then the price of h was drawn such that ph > p∗

h
and ph < �p∗

h,
where p∗

h
is the solution to (qh/p

∗
h
)γ̄m = (p∗

h
− pl)/(qh − ql) and �p∗

h is the solution to
(qh/�p∗

h)γ̄m+1 = (�p∗
h −pl)/(qh − ql); hence, zC

m ={(ph�pl) ∈ C : ph ∈ (p∗
h
��p∗

h)}.

B.4. Instructions to Participants

Stage 1: Valuation Task Instructions. The next few screens will provide detailed instruc-
tions about what this survey entails. It is very important that you understand how it works,
so please read all instructions carefully. Not only will this allow us to collect more precise
data, it will also help you to maximize your payment for participating.

In this survey you will view many goods, one at a time. Your task is to enter the amount
(in $) that makes you indifferent between purchasing the good and not purchasing the
good. There is no deception or “tricks” in this study; we are interested in your preferences
for a variety of goods and your payment will be maximized when you respond truthfully
and accurately. At your in-person session at LEEDR, you will have the opportunity to win
a bonus prize of $80, in addition to your fixed payment of $20. On average, one participant
in every five will win this prize and if you are a winner, one of your decisions from this
survey may be drawn at random to be implemented for real (around a 20% chance).
When a trial is implemented you may end up purchasing a product based on the value
you entered. If your value is above the randomly drawn market price, you will receive the
product and have that market price deducted from your total payment. Since you don’t
know which decision will be selected, you should treat each one as if it was real. The
next few screens will explain to you why it is always in your best interest to enter the true
maximum value that you are willing to pay for each product.

Why is it in your interest to enter your true maximum value for the product? You might
think that your best strategy is to enter an amount less than the item is worth to you. This
is INCORRECT. The price you pay (i.e., the market price) is determined by a random
number generator, and NOT by the price you enter. Thus, if you enter a price less than
your true value, you would not be able to affect the price that you pay, but might end up
losing the opportunity to buy the item at a “good” price.

As an example, suppose the “product” is simply a $10 bill. If you enter your true max-
imum willingness-to-pay (i.e., $10), you will receive the good whenever the randomly
drawn market price is less than $10, and pay that price. For example, if the randomly
drawn market price is $4, you will buy a $10 bill for only $4. If the randomly drawn market
price is above $10, you will not buy the $10 bill. It follows that by bidding your maximum
buying price, you make a “profit” since you always end up paying less than the item is
worth to you. You should never enter more than your maximum willingness-to-pay, as
you may end up paying more than $10 for a $10 bill. What happens if you enter a price
less than your true value? For example, suppose you say you are only willing to pay $1
for a $10 bill and the randomly drawn market price is $5. As the amount you entered is
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less than the randomly drawn market price, you would miss out on the opportunity to
purchase the $10 bill for only $5! Your maximum buying price for the products that you
will see next will not always be as obvious as it is for a $10 bill. However, the logic is the
exact same—you will maximize your payout for participating when you enter your true
valuation for the product as precisely as possible.

Example 1: Let’s go through a hypothetical example. Suppose that you stated that your
maximum buying price for a golden egg was $50. If the randomly drawn market price is
$14, then what outcome would occur?

• $0 will be deducted from your payment and you will receive no golden eggs.
• $14 will be deducted from your balance and you will receive a golden egg.
• $64 will be deducted from your balance and you will receive a golden egg.
• $50 will be deducted from your balance and you will receive a golden egg.
• $14 will be deducted from your balance and you will receive no golden eggs.

That’s correct! As the randomly drawn price of the golden egg is below your maximum
buying price, you will purchase it for the market price of $14.

Example 2: Let’s go through another hypothetical example. Suppose that you stated
that your maximum buying price for a silver egg was $25. If the randomly drawn price was
$32, then what outcome would occur?

• $0 will be deducted from your payment and you will receive no silver eggs.
• $32 will be deducted from your balance and you will receive a silver egg.
• $25 will be deducted from your balance and you will receive no silver eggs.
• $25 will be deducted from your balance and you will receive a silver egg.
• $32 will be deducted from your balance and you will receive no silver eggs.

That’s correct! As the randomly drawn price of the silver egg is above your maximum
buying price, you will not purchase it and $0 will be deducted from your payment. Thank
you for your attention so far. When you are ready to begin the survey, click “Next”.

Stage 2: Choice Task Instructions. Welcome to the LEEDR Lab and thank you for
agreeing to take part in this study. Your base payment for participating is $20 and you
will have several opportunities to win an additional $80. Around one in every five par-
ticipants will win this bonus payment. There are two parts to today’s session—phase 1
and phase 2—and each should take around 20 minutes to complete. There is no decep-
tion or “tricks” involved; we are interested in your preferences and your payment will be
maximized when you respond truthfully and accurately. The next few screens will pro-
vide detailed instructions about phase 1. It is very important that you understand how it
works and how your payment will be calculated, so please read all instructions carefully.
Not only will this allow us to collect more precise data, it will also help to maximize your
payment for participating. If anything is unclear at any point, raise your hand and a lab
assistant will be right over to help clarify.

In phase 1, three options will be displayed onscreen and your job is simply to choose the
one you like the most. Each screen will feature two kinds of the same product, with prices
displayed on an attached tag, along with the option of not buying either. You will see
many choices like this, one after another, and each time you will be asked to choose your
preferred option using the keys labeled “A”, “B”, and “C” on the keyboard in front of you.
In total, you will make 18 choices in phase 1, with each differing in product assortment
and prices.

Each choice that you make today might be implemented for real, so it is important that
you treat each decision as if you are actually purchasing one of the options. After each of
the 18 choices that you make, you will be asked to choose a number between 1 and 144.
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You will then draw a number at random and if the number you chose comes up, then the
following will occur:

1) You will win a bonus payment of $80.
2) You will purchase whichever option you just chose at the posted price.
If you do purchase a product, the buying price will be deducted from your final payment

(i.e., $20 plus bonuses). Purchased products will be delivered electronically where possible
or shipped to a location of your choosing. Note that the price you see will never exceed
your payment, so you will always leave with a positive amount of money. All purchases
are final, so please consider each decision carefully. Finally, it is important to remember
that each decision is independent; your choice and the outcome of one decision have no
bearing on future options or outcomes. Everything “resets” after each decision, so try not
to think about your previous decisions when you are faced with a new choice.

Thank you for your attention so far. To summarize:
(i) Respond each time as if your choice will be implemented for real.

(ii) Treat each decision as if it were the only choice you make today.
(iii) You will leave with a positive amount of money (and possibly a product).

When you are ready to begin, press “NEXT” to proceed.

Stage 2: Valuation Task Instructions. In phase 2 you will view several goods, one at a
time. Each time your task is simply to decide whether or not you would like to purchase
the displayed good at the posted price. Prices will start at zero (i.e., free!) and begin
to increase. Once the price gets sufficiently high, you can switch your preference from
“buy” to “don’t buy”. Remember, there is no deception or “tricks” in this study; we are
interested in your preferences for a variety of goods and your payment will be maximized
when you respond truthfully and accurately. If anything is unclear, raise your hand and a
lab assistant will be right over to help clarify.

You may end up purchasing a product based on the decisions that you’re about to make,
so it is important that you treat each one as if it were real. At the end of phase 2, you will
have another opportunity to win a bonus prize of $80. You will be able to select 9 numbers
(i.e., green balls) between 1 and 144, and if any of your numbers are drawn, the following
will occur:

1) You will win a bonus payment of $80.
2) A decision from phase 2 or your online survey will drawn at random and imple-

mented for real.
If a decision from phase 2 is chosen to be implemented, the price will be determined by

a random draw. Crucially, since you don’t know what price will be selected, treat each buy-
ing decision for a given good as if it were the only one you make. The prices that you will
see next have been pre-selected and, therefore, your answers will have no impact on the
prices you will see. Put differently, it is always in your best interest to respond truthfully
because it will maximize your payment for participating. If you end up purchasing a prod-
uct, the buying price will be deducted from your final payment (i.e., $20 plus bonuses). All
products will be delivered electronically where possible or shipped to a location of your
choosing. Note that the price you see will never exceed your payment, so you will always
leave with a positive amount of money. All purchases are final, so please consider each
decision carefully.

Thank you for your attention so far. To summarize:
(i) Respond each time as if your choice will be implemented for real.

(ii) Treat each decision as if it were the only choice you make today.
(iii) You will leave with a positive amount of money (and possibly a product).

When you are ready to begin, press “NEXT” to proceed.
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APPENDIX C: ADDITIONAL ANALYSIS AND ROBUSTNESS

C.1. Heterogeneous-Agent Structural Estimates

This section takes a parametric approach to estimating individual heterogeneity in the
range-weighting parameter γ. With 18 observations per participant, it is possible to esti-
mate the model separately for each individual in the sample—thus estimating a (γi�λi)
for each i.1 The gray bars in Figure C.1 plot the distribution of the point estimates for
both γi and λi. The majority of the γi point estimates are consistent with relative think-
ing: 75.3% of point estimates are negative. However, the results also reveal substantial
heterogeneity in the magnitude of both γ and λ.

Individual-level estimates based on small samples are inherently noisy, complicating
inference. To obtain more precise estimates of the distributions of γ and λ, I develop a
parametric model of heterogeneity. Figure C.1 suggests that both parameters follow an
approximately log-normal distribution. Therefore, let

log(γi + κ) = xiβγ + εγ� (C.1)

log(λi) = xiβλ + ελ� (C.2)

where (ελ� εγ) are independent normally distributed errors with mean zero, xi is a vec-
tor of individual-specific demographic controls, and κ is a shift parameter that allows
γi to take negative values while preserving the log-normal structure. Gender, age, age-
squared, educational attainment, income bracket, and marital status are all included
in xi. Rather than estimating two parameters per individual (300 in total), this ap-
proach estimates individual-specific means as a function of demographics, μγ�i ≡ xiβγ

and μλ�i ≡ xiβλ, along with variances indexed by σγ and σλ. I estimate the distribution
parameters, θ = (βγ�βλ�σγ�σλ�κ), using simulated maximum likelihood (Train (2009)).

Table C.I presents the heterogeneous-agent model results. The main statistics of inter-
est are the expected value and standard deviation of γi and λi. Column (1) presents the

FIGURE C.1.—Distribution of individual-level estimates. Each (γi�λi) is estimated from equation (1) using
18 choice observations per person. The attribute weights are normalized to sum to 2. The solid black lines
depict the implied distributions of γi and λi based on the parametric model estimates in column (3) of Table
C.I.

1The estimation was unable to produce estimates for four participants. Choices for these individuals could
not be rationalized by any γ values, which resulted in λ estimates indicating random choice.
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TABLE C.I

HETEROGENEOUS MODEL ESTIMATES.

(1) (2) (3) (4)

Range Weighting: γ
Mean Expected Value 0 0 −0.31 −0.31

– – [−0�39�−0�22] [−0�40�−0�21]
Mean Standard Deviation 0 0 0.40 0.37

– – [0�30�0�51] [0�26�0�47]

Scale: λ
Mean Expected Value 12.98 13.03 9.07 9.05

[11�31�15�09] [11�21�15�30] [7�90�10�31] [7�95�11�68]
Mean Standard Deviation 8.18 7.49 5.46 4.69

[5�46�11�50] [4�40�10�01] [3�67�7�56] [2�75�8�87]

Ranging Weighting No No Yes Yes
Demographics No Yes No Yes
# Obs. 2700 2700 2700 2700
# Ind. 150 150 150 150

SLL(θ̂) −2175 −2168 −2070 −2057
Comparison Model – (1) (1) (3)
LR Statistic – 13.86 209.9 26.8
p-value – 0.127 <0.001 0.061

Note: Individual-cluster-robust bootstrapped 95% confidence intervals in brackets. The attribute-weighting function is defined by
g(�x;γi) = (�x)γi for attribute x ∈ {q�p}. λi is the scale parameter of the type-I extreme-value error for individual i. Heterogeneity
is modeled by log(γi + κ) ∼ N(xiβγ�σγ) and log(λi) ∼ LN(xiβλ σλ). Demographic variables included in xi are gender, age, age-
squared, educational attainment, income bracket, and marital status.

estimates of the surplus-maximizing benchmark, γi = 0 for all i. The scale-parameter es-
timates imply large and variable choice noise relative to the average surpluses on offer.
Column (2) includes demographics as mean shifters as described by equation (C.2). The
parameter estimates are quantitatively similar and there is no significant improvement in
model fit based on a log-likelihood ratio test.

Column (3) allows for range-dependent attribute weighting as indexed by γi, but re-
stricts the model to a constant mean: μγ�i = μγ and μλ�i = μλ for all i. The estimated ex-
pected value of γ is −0�31, which is close to the homogeneous model estimate. The stan-
dard deviation estimate of 0.40 indicates substantial heterogeneity relative to the mean.
For example, the estimates imply that surplus maximization lies 0.8 standard deviations
above the mean and the limiting case of relative thinking (γ = −1) is 1.7 standard devia-
tions below the mean. Allowing γi and λi to follow a mixture distribution does not yield
a significant improvement in fit (p> 0�05). This supports individual-level results showing
there is a single, relative-thinking type that differs in the intensity but not the direction of
range weighting.

Column (4) adds the full set of demographic variables to the estimation, hence esti-
mating equations (C.1) and (C.2). Including observable characteristics does not alter the
expected-value estimates, but does yield smaller standard deviations. There is a modest
improvement in model fit based on a likelihood-ratio test, though it is not statistically
significant at the conventional level. The solid black lines in Figure C.1 illustrate the im-
plied population distributions of γ and λ using the preferred specification in column (3)
of Table C.I. Overall, the estimated distributions closely mirror the individual estimates.
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C.2. Additional Tests of Price Signaling

In this section, I describe additional analyses to assess whether price signaling can ex-
plain the experimental results. First, I consider whether the results in Section 5.1 are sensi-
tive to the definition of the price-signal index, sig. Rather than defining an index, I restrict
the analysis to situations in which participants observed opposing price signals between
their first and second encounters with a product. For example, do participants who first
observe low (o-decoy) prices make choices consistent with relative thinking when they
later experience higher (h-decoy) prices? This approach does not rely on any assump-
tions about how prices signaled quality but comes at the expense of statistical power.

Table C.II presents the results. In panel (a), I restrict the sample to participants who
first experienced o-decoy prices and then made a choice at h-decoy prices. Consistent with
relative thinking, higher prices of the decoy option led to an increase in the probability of
choosing l and a decrease in the probability of buying o. Panel (b) restricts the analysis to
participants who saw o-decoy prices followed by l-decoy prices for a good. The estimates
are again consistent with relative thinking: higher decoy prices increased the probability
of buying h and decreased the probability of not buying. Finally, panel (c) analyzes the
choice behavior of participants who first saw h- or l-decoy prices and then made a choice
at o-decoy prices. The results confirm that, despite observing conflicting price signals,
parallel price increases caused demand to shift from l to h.

Next, I explore whether the structural estimates are robust to controlling for price sig-
naling quality. As described in Section 5.1, relative thinking and price signaling make
different predictions when participants make more than one choice per good. The panel
structure of the data therefore allows me to separately identify these two forces. Formally,
I estimate equations (2) and (3). In the estimation, I set initial quality equal to the first-
stage reservation values. Column (1) of Table C.III reproduces the baseline estimates for
αh = αl = 0—see column (2) of Table C.VI. Column (2) allows price to signal quality,
but restricts the model to no range weighting (γ = 0). The estimates are consistent with

TABLE C.II

CHOICE PROBABILITY ESTIMATES WITH CONFLICTING PRICE SIGNALS.

(1) (2) (3)
Dependent Variable: Buy high Buy low Don’t Buy

Panel (a): h-decoy region
Previous price region: o-decoy

Price of h −0�19 0�55 −0�38
(0�11) (0�18) (0�21)

Panel (b): l-decoy region
Previous price region: o-decoy

Price of l 0�40 0�13 −0�56
(0�23) (0�09) (0�23)

Panel (c): o-decoy region
Previous price region: h- or l-decoy

Price of h 0�96 −1�21 0�20
(0�30) (0�34) (0�16)

Note: Average marginal effects derived from logistic regression estimates. The regressions either control for the price of l (panel
a), the price of h (panel b), or the price difference between h and l (panel c). All numbers reported in percentages. Panel (a) contains
153 observations across 103 participants, panel (b) contains 185 observations across 113 participants, and panel (c) contains 316
observations from 138 participants. Individual-cluster-robust standard errors in parentheses.
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TABLE C.III

PRICE AS A SIGNAL OF QUALITY ESTIMATES.

(1) (2) (3)

γ̂ −0.31 −0.24
[−0�40�−0�21] [−0�36�−0�11]

α̂h 0.21 0.09
[0�14�0�29] [−0�04�0�19]

α̂l 0.12 0.06
[0�03�0�21] [−0�04�0�15]

λ̂ 11.78 12.89 11.89
[10�52�13�33] [11�65�14�37] [10�58�13�29]

BIC 4748.3 4771.2 4761.0
Individuals 150 150 150
Observations 2700 2700 2700

Note: Individual-cluster-robust bootstrapped 95% confidence intervals in brackets. Estimation allows for price signaling quality
and range-dependent attribute weighting as defined in equations (2) and (3). Column (1) restricts the estimation to αh = αl = 0 and
column (2) restricts the estimation to γ = 0.

prices signaling quality, with a larger impact for the high-quality option relative to the
low-quality option. Column (3) allows for both range weighting and price signaling qual-
ity. The results show that positive price signals had a small, statistically insignificant im-
pact on perceived quality. Furthermore, the attribute-weighting parameter γ is robust to
the inclusion of price signaling. The range-weighting specification in column (1) provides
the best fit to the data as measured by BIC. A likelihood-ratio test confirms that adding
price signaling yields no improvement in the model fit relative to the range-weighting-only
specification (p= 0�21).

C.3. Modeling Lagged Price Dependency

To model the impact of the previous price ranges, I define the effective price range as

�̃p�it =
K∑

k=0

φik�p�it−k� (C.3)

where φi0 = 1 − ∑K

k=0 φik and K is the number of lags included in the specification. Mod-
eling price range spillovers amounts to simply replacing �p�t by �̃p�t in determining the
attribute weights. In terms of estimation, more structure is required to estimate the pa-
rameters φi = (φi1� � � � �φiK). To model heterogeneity across individuals, let⎡

⎣log(γi + κ)
log(λi)
φi

⎤
⎦ ∼N

⎛
⎝

⎡
⎣μγ

μλ

μφ

⎤
⎦ �

⎡
⎣σγ · ·

0 σλ ·
0 0 �φ

⎤
⎦

⎞
⎠ �

where μφ = (μ1� � � � �μK) and �φ = diag(σ1� � � � �σK). Note that K = 0 is equivalent to the
baseline model with no lagged price dependency. Given this specification, the parameters
θ = (μγ�μλ�μφ�σγ�σλ��φ�κ) can be estimated using simulated maximum likelihood.
Table C.IV reports the results for K ∈{0�1�2�3}.
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TABLE C.IV

LAGGED-PRICE-RANGE ESTIMATES.

(1) (2) (3) (4)
K = 0 K = 1 K = 2 K = 3

Mean γi −0�31 −0�32 −0�31 −0�28
[−0�39�−0�22] [−0�41�−0�23] [−0�39�−0�10] [−0�38�−0�08]

SD γi 0�40 0�44 0�46 0�50
[0�30�0�51] [0�34�0�57] [0�33�0�73] [0�36�0�71]

Mean λi 9�07 9�20 9�21 9�07
[7�90�10�31] [7�87�10�68] [7�84�10�77] [7�74�10�78]

SD λi 5�46 5�95 6�13 5�95
[3�67�7�56] [4�07�8�19] [4�09�9�01] [3�91�8�86]

Mean φ1i 0�07 0�06 0�05
[0�01�0�18] [0�01�0�21] [−0�01�0�20]

SD φ1i 0�10 0�05 0�07
[0�00�0�22] [0�00�0�27] [0�00�0�26]

Mean φ2i 0�02 0�02
[−0�04�0�17] [−0�03�0�14]

SD φ2i 0�07 0�00
[0�00�0�24] [0�00�0�24]

Mean φ3i 0�03
[−0�03�0�10]

SD φ3i 0�01
[0�00�0�06]

SLL(θ̂) −2175 −1954 −1830 −1706
Individuals 150 150 150 150
Observations 2700 2550 2400 2250

Note: Individual-cluster-robust bootstrapped 95% confidence intervals in brackets. The attribute-weighting function is g(�x;γi) =
(�x)γi for attribute x ∈ {q�p}. The effective price range is �̃p�it = ∑K

k=0 φik�p�it−k , where φi0 = 1 − ∑K
k=0 φik and K is the

number of lags included in the specification. Attribute weights are normalized to sum to 2. λi is the scale parameter of an additive
type-I extreme-value error for individual i. Heterogeneity is modeled by log(γi + κ) ∼ N(μγ�σγ), log(λi) ∼ LN(μλ σλ), and φi ∼
N(μφ��φ).

C.4. Reservation Values

The experimental design elicited two reservation value proxies of quality for both the
high- and low-quality variants of the nine products that each participant saw during the
choice task. In Section 4, I used the average of these reservation values as a proxy for qual-
ity in the estimation. In this section, I explore whether there are systematic differences
between these two values and estimate the optimal weighting of these two measures.

Table C.V presents the average first- and second-stage reservation values by product.
The values are systematically higher in the first stage relative to the second stage. This
difference could be driven by differences in methodology. The first elicitation used an
open-ended free response with no upper bound. To the extent that participants may have
perceived a relatively high upper bound on prices, this could have decreased price sen-
sitivity and therefore led to inflated reservation values relative to the underlying qual-
ity. It is also possible that participants misunderstood the incentive mechanism, which
could cause them to report inflated reservation values (Cason and Plott (2014)). Con-
versely, I elicited the second-stage reservation values using an ascending price. Research
has shown that whether prices are increasing or decreasing leads to framing effects (An-
dersen et al. (2006)). In this case, participants might have stated lower reservation values
due to the ascending format.
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TABLE C.V

FIRST- VERSUS SECOND-STAGE QUALITY ELICITIONS (IN $).

First Stage Second Stage RRP∗

Variant high (s.d.) low (s.d.) high (s.d.) low (s.d.) high low

Quantity
Chocolate Truffles 43.3 (22�0) 18.1 (8�9) 27.5 (18�6) 15.4 (8�0) 75�0 35.0
Cinema Passes 56.6 (23�4) 30.6 (12) 45.4 (25�5) 25.7 (14�4) 95�0 50.0
Starbucks Coffee 53.8 (22�6) 28.8 (11�6) 36.1 (21�6) 22.5 (14�2) 100�0 50.0
Gillette Razors 24.1 (14�2) 13.4 (7�7) 20.3 (9�7) 11.8 (5�8) 52�9 21.0
Insignia TV 57.9 (22�3) 39.9 (19�1) 39.7 (26�7) 28.7 (18�5) 80�0 60.0
Uber Credit 61.4 (17�3) 30.0 (8�2) 50.1 (22�6) 26.9 (11) 80�0 40.0

Duration
Meal Kit 49.3 (22�3) 28.3 (12�7) 38.2 (20�3) 23.8 (14�8) 120�0 60.0
Yoga Subscription 52.4 (23�6) 29.1 (13�1) 37.5 (20�4) 22.3 (10�7) 100�0 50.0
Wine of the Month 42.9 (20�9) 23.7 (11�1) 35.8 (20�2) 21.8 (10�9) 79�9 40.0
Cheese of the Month 33.6 (18�5) 18.0 (9�5) 28.8 (18�2) 17.5 (9�8) 97�9 49.0
Beer of the Month 38.8 (16�8) 21.5 (9�0) 31.3 (15�6) 19.7 (10�7) 85�9 43.0
Flowers of the Month 42.9 (19�4) 24.4 (10�6) 36.0 (19�4) 21.2 (10�8) 97�9 49.0

Functionality
Roku 50.6 (22�1) 26.6 (13�7) 34.0 (19�3) 19.2 (11�3) 85�3 50.0
Amazon Tablet 56.2 (19�4) 38.7 (16�0) 44.6 (19�5) 32.2 (16�7) 80�0 50.0

Brand
Bluetooth Speaker 40.4 (19�8) 21.3 (9�6) 27.7 (18�5) 15.9 (9�8) 80�0 20.0
Water Purifier 33.9 (15�7) 23.9 (12�8) 27.9 (11�2) 18.7 (9�1) 60�0 48.0
Hardcase Luggage 59.4 (19�5) 42.0 (17�1) 41.1 (20�8) 27.6 (14�5) 75�0 50.0
Rechargeable Batteries 20.9 (8�3) 15.2 (6�3) 17.6 (9�8) 13.4 (6�9) 40�3 37.0
Laptop Backpack 47.2 (22�5) 25.1 (14�4) 35.8 (17�6) 20.9 (11�4) 78�9 30.0
Sunglasses 44.3 (22�6) 18.1 (11�3) 29.3 (16�1) 15.0 (7�4) 95�0 15.0

∗RRP = Recommended Retail Price.

While the quality estimates are subject to noise and systematic differences, they both
contain information about participants’ quality perceptions. Building on the intuition in
(Gillen, Snowberg, and Yariv (2019)), I estimate the optimal combination of these mea-
sures to obtain a more precise estimate of quality. I define quality as qijt = τqI

ijt + (1 −
τ)qII

ijt , where qI
ijt is the first reservation value and qII

ijt is the second. Column (1) of Ta-
ble C.VI reproduces the baseline structural estimates (τ = 0�5). Columns (2) and (3)
report the estimates using the first reservation value (τ = 1) or the second reservation
value (τ = 0). The γ estimate based on the first reservation values is −0.31, which is sim-
ilar in magnitude to the baseline model. Estimated range weighting is more pronounced
when the second reservation values are used as proxies for quality, γ̂ = −0�47. Column
(4) estimates an optimal τ of 0.25, which implies a 3-to-1 weight on the second reservation
value relative to the first. This shift in weight towards the second reservation value leads
to more pronounced range-based attribute weighting: the γ estimate of −0�42 lies close
to the upper bound of the baseline estimate.

Finally, I assess whether using the first or second reservation values changes the overall
pattern of results. Table C.VII presents the premiums implied by the range-weighting
estimates using the first or the second reservation values. Overall, while there is some
difference in the magnitude of the implied premiums, I find economically meaningful
premiums ranging from 11% to 36% across the three regions.
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TABLE C.VI

ALTERNATIVE QUALITY SPECIFICATION ESTIMATES.

(1) (2) (3) (4)
Reservation Values: Average First Second Optimal

γ̂ −0.34 −0.31 −0.47 −0.42
[−0�42�−0�26] [−0�39�−0�21] [−0�54�−0�40] [−0�49�−0�34]

λ̂ 9.19 11.78 9.61 9.19
[8�18�10�27] [10�45�13�21] [8�48�10�86] [8�19�10�34]

τ 0.5 1 0 0.25
– – – [0�15�0�37]

Note: Individual-cluster-robust bootstrapped 95% confidence intervals in brackets. The attribute-weighting function is defined
by g(�x;γ) = (�x)γ for attribute x ∈ {q�p}. λ is the scale parameter of the type-I extreme-value error. Quality is defined as qijt =
τqIijt + (1 − τ)qIIijt . Columns (1), (2), and (3) provide the estimates based on fixed values of τ. Column (4) estimates the optimal τ.
Observations: 2,700. Individuals: 150.

TABLE C.VII

QUANTIFYING RANGE-DEPENDENT ATTRIBUTE WEIGHTING: FIRST-STAGE RESERVATION VALUES.

(1) (2) (3) (4)

Surplus Max Lower Bound Estimate Upper Bound

Panel A: First-Stage Reservation Values:
Range weighting: γ = 0 −0.39 −0.31 −0.21

Quality: (qh�ql) = ($46, $26)
h-decoy region (ph=$66)

Willingness-to-pay for l $26.0 $29.9 $29.1 $28.0
% premium vs. surplus max – 15.2% 11.8% 7.9%

l-decoy region (pl=$65)
Willingness-to-pay for h $46.0 $52.6 $51.2 $49.5
% premium vs. surplus max – 14.4% 11.3% 7.5%

o-decoy region (ph=$30)
Willingness-to-pay for l $10.0 $13.1 $12.5 $11.7
% premium vs. surplus max – 30.7% 24.8% 17.2%

Panel B: Second-Stage Reservation Values:
Range weighting: γ = 0 −0.54 −0.47 −0.40

Quality: (qh�ql) = ($35, $21)
h-decoy region (ph=$58)

Willingness-to-pay for l $21.0 $27.6 $26.6 $25.7
% premium vs. surplus max – 31.4% 26.8% 22.4%

l-decoy region (pl=$67)
Willingness-to-pay for h $35.0 $49.7 $47.5 $45.2
% premium vs. surplus max – 21.6% 35.7% 29.7%

o-decoy region (ph=$26)
Willingness-to-pay for l $12.0 $14.1 $13.8 $13.6
% premium vs. surplus max – 17.3% 15.2% 13.1%

Note: The price in each region is set to the average realized prices in each decoy region, and each region is defined using the
specified reservation values. The reported premiums are measured in percentage terms relative to the surplus maximization amount
in column (1). The γ values are taken from columns (2) and (3) of Table C.VI. Willingness-to-pay is (i) W TP(γ) = ql (qh/ph)γ in the
h-decoy region, (ii) W TP(γ) = qh(qh/pl)

γ in the l-decoy region, and (iii) defined implicitly by (qh/ph)γ = (ph−W TP(γ))/(qh−ql)
in the o-decoy region.
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