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TEST DESIGN UNDER FALSIFICATION

EDUARDO PEREZ-RICHET
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We study the optimal design of tests with manipulable inputs. Tests take a unidimen-
sional state of the world as input and output, an informative signal to guide a receiver’s
approve or reject decision. The receiver wishes to only approve states that comply with
her baseline standard. An agent with a preference for approval can covertly falsify the
state of the world at a cost. We characterize receiver-optimal tests and show they rely
on productive falsification by compliant states. They work by setting a more stringent
operational standard, and granting noncompliant states a positive approval probability
to deter them from falsifying to the standard. We also study how falsification-detection
technologies improve optimal tests. They allow the designer to build an implicit cost
of falsification into the test, in the form of signal devaluations. Exploiting this channel
requires enriching the signal space.

KEYWORDS: Information design, falsification, tests, manipulation, cheating, persua-
sion.

1. INTRODUCTION

IN MODERN ECONOMIES, decisions are increasingly guided by tests, ratings, and algo-
rithms. Yet these information-production technologies are vulnerable to input manipu-
lations, that is, falsification. Consider, for instance, the problem of regulating vehicles’
emissions. Compliance with emission standards must be checked by testing. However,
emissions tests have proved to be manipulable through defeat devices' that artificially re-
duce vehicles’ emissions in testing conditions. Accounting for possible input manipula-
tions is an integral part of designing tests that provide valuable information. We propose
a theory in which an agent can manipulate a test by covertly falsifying its inputs. We show
optimal tests must induce productive falsification, that is, falsification that serves the in-
terests of the designer. We also examine how the availability of a falsification-detection
technology may improve optimal tests and affect their nature. We show enriching the set
of signals and shaping the test so that signals are progressively devalued in proportion
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to the amount of falsification is then optimal, thereby allowing the designer to build an
implicit cost of falsification into the test.

Our analysis is based on a model of test manipulation as costly falsification of inputs.
We now motivate this choice with additional examples. Financial institutions may hide
assets or misreport their holdings when facing stress tests. Teachers may teach their stu-
dents to the test, effectively falsifying their true ability. Online shoppers may adapt their
browsing behavior to get better deals from pricing algorithms.? Falsification costs may
reflect expected fines or reputational damage in case manipulations are discovered, ex-
plicit financial or technological costs, psychological lying costs,® or the opportunity cost
of altering one’s behavior as in the online-shopping example. We examine the impact of
their magnitude. We show that, whereas higher falsification costs benefit the designer,
they have a nonmonotonic effect on the agent’s payoff.

We study a designer-agent-receiver model. A state of the world is drawn from a
bounded interval that contains both positive and negative states. The designer, seeking
to maximize the receiver’s welfare, commits to a test (a Blackwell experiment) that takes
the state of the world as an input, and outputs an informative signal. Based on this signal,
the receiver makes a binary approve-reject decision. Her gain from approval is equated
with the state of the world, so her baseline standard for approval is 0, and her first-best
is to approve positive, henceforth compliant, states, and reject negative, henceforth non-
compliant, states. The agent has a state-independent preference for approval. Knowing
its design, he can covertly falsify the state of the world that goes into the test. We say that
falsification is productive whenever it raises the approval probability of compliant states
while preserving that of noncompliant ones compared to no falsification.

In the emissions example, the test designer is the regulator (the EPA in the US).* The
state of the world is the difference between the emission standard and the true emission
level. The EPA also acts as the receiver, deciding whether a vehicle conforms to environ-
mental standards.’ The agent is a car manufacturer, who can resort to defeat devices to
falsify emission levels while being tested.

We assume the cost of falsification, yc(¢|s), depends on the (true) source state s and
the target state t, and is increasing in the distance between ¢ and s. The scaling factor y
captures the magnitude of falsification costs. We make two additional assumptions: First,
for noncompliant states, falsifying as the highest state is more costly than falsifying as the
lowest state. Second, the cost function satisfies the triangular inequality for upward fal-
sification. Given our monotonicity assumption, we can interpret the triangular inequality
as a form of increasing returns to the scale of falsification.

Theorem 1 characterizes a receiver-optimal test. A recommendation principle allows us
to focus on obedient tests with two signals, approve and reject. The optimal test recom-
mends approval with top approval probability p for states above an operational standard §,

2As another example, the German artist Simon Weckert hacked the Google Maps algorithm for a perfor-
mance, creating a fake traffic jam by walking a cart filled with cell phones along a street of Berlin.

SEvidence that lying is costly is documented in Abeler, Nosenzo, and Raymond (2019), for example.

4“All new cars and trucks sold in the U.S. must be certified to meet federal emission standards, such
as limits on the amount of smog-forming and greenhouse gas emissions that they can produce. Most test-
ing is performed by auto manufacturers at their own facilities. EPA then audits the data and performs its
own testing on some of the vehicles to confirm the manufacturers’ results.” https://www.epa.gov/greenvehicles/
testing-national-vehicle-and-fuel-emissions-laboratory

>We show the designer’s problem and optimal outcome are identical if the designer can commit both to a
test and a contingent approval rule (Proposition 1), so our results are valid whether or not the designer and
the agent are the same entity, as long as they have aligned preferences.


https://www.epa.gov/greenvehicles/testing-national-vehicle-and-fuel-emissions-laboratory
https://www.epa.gov/greenvehicles/testing-national-vehicle-and-fuel-emissions-laboratory
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and with nominal probability {p — yc(S|s)}* for other states.® For every state below § with
a positive nominal approval probability, the agent is then indifferent between two optimal
falsification strategies: not falsifying, or falsifying to the standard §. Then, breaking this
indifference in the receiver’s favor is optimal, requiring that noncompliant states do not
falsify while compliant states below § falsify to §. Falsification is then productive because it
allows all compliant states to be approved with top probability p, whereas noncompliant
states are approved with their nominal probability.

The optimal values of p and § depend on the magnitude of falsification costs. If falsifica-
tion costs are high, the optimal outcome is obtained by setting p = 1 and the standard § so
that yc(§]|0) = 1, which is just high enough to deter all noncompliant states from falsifying
to §. Productive falsification by compliant states then implies they are all approved with
certainty, whereas noncompliant states are rejected with certainty due to the high falsifi-
cation cost, yielding the receiver’s first-best. With intermediate falsification costs, setting
the highest possible operational standard and p =1 is optimal. All compliant states are
then approved with certainty, but some noncompliant states must be approved with posi-
tive probability to deter them from falsifying to the standard. When falsification costs are
low, setting the highest operational standard and approving some noncompliant states
with positive probability is still optimal. But the top approval probability must also be re-
duced (p < 1) to avoid approving extremely low states with positive probability, leading
compliant states to be rejected with positive probability.

The intuition underlying the optimal test is that, by assigning the top approval proba-
bility p only to compliant states above § and letting lower compliant states falsify to the
standard, the designer minimizes the approval probability of noncompliant states. If, in-
stead, the test directly assigned probability p to all compliant states, some noncompliant
states would falsify and get approved with probability p. We show inducing productive
falsification is in fact necessary for optimal testing, so the truth-telling implication of the
revelation principle fails in our framework.

We proceed to examine the effect of falsification-detection technologies on test design.
Sophisticated tests and algorithms may include falsification-detection capabilities. We can
think of such tests as relying on additional inputs that indicate whether the agent is falsi-
fying the state, and to what extent. We model these technologies by simply assuming they
make the agent’s falsification strategy observable to the receiver. Thus, we study optimal
test design under overt falsification. Overtness endows the designer with a new lever in
the form of signal devaluations. Indeed, because deviations from an anticipated falsifi-
cation strategy are observed, they lead the receiver to adjust her expectation following
each signal. Devaluations occur when the posterior mean following a signal is adjusted
downward, possibly leading the receiver to switch from approval to rejection. By building
the threat of devaluation into the test, the designer creates an implicit cost of falsification
that makes deviations less attractive, and improves test performance. To take advantage
of this devaluation channel, however, the designer must use more than two signals.

To illustrate this idea, we characterize an optimal test when the state-space is binary in
Theorem 2, and show it uses a continuum of signals that get progressively devalued as the
amount of falsification increases. This characterization is possible because, in the binary-
state setting, a falsification-proofness principle akin to the truth-telling implication of the
revelation principle holds.

We then go back to the continuous-state model, where neither the falsification-
proofness principle nor the recommendation principle hold. In Proposition 9, we show

®Throughout the paper, we denote z+ = max{z, 0}.
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how to improve on the test from Theorem 1 by adding a third signal that leverages the
devaluation channel. We thus obtain a new test that relies on both productive falsification
and devaluations. The gains allowed by falsification detection are most important when
falsification costs are low. If falsification is costless, relying on such technologies is the
only way to deliver useful information to the receiver.

Our analysis contributes to practical test design by conceptualizing two levers to im-
prove test performance: productive falsification and devaluations. Our test is equivalent
to a mechanism in the tradition of Myerson (1982), and the literature on mediation and
communication equilibria (Aumann (1974), Forges (1986)). Indeed, as the principal in
Myerson (1982), our designer commits to a mapping that takes the agent’s report as input
and output messages to the receiver. In this literature, the revelation principle is twofold,
combining a truth-telling (or falsification-proofness) principle and a recommendation prin-
ciple. This contrasts with our framework where costly falsification causes the falsification-
proofness principle to fail with more than two states, and overt falsification causes the
recommendation principle to fail.” Hence, we contribute to mechanism design theory by
deriving optimal mechanisms in situations where the revelation principle fails. We also
contribute to the literature on mechanism design with costly reporting, or falsification,
by providing the first (to our knowledge) characterization of an optimal mechanism that
induces falsification. Lacker and Weinberg (1989) incorporate costly state falsification in
a model of risk-sharing contracts and characterize optimal falsification-proof contracts,
but also show they may be outperformed by contracts that induce falsification.?

Related Literature. By introducing the agency, in the form of costly state falsification,
to the standard information design’ setting of Kamenica and Gentzkow (2011) or Berge-
mann and Morris (2016), we add to a growing literature on information design when an
agent can react to the experiment by undertaking an action that alters its informational
content. For example, the agent can choose whether to take the test in Rosar (2017), or
to disclose additional information in Bizzotto, Riidiger, and Vigier (2020) and Terstiege
and Wasser (2020).'°

Frankel and Kartik (2021) and Ball (2021) study the optimal design of linear scores in
a setting in which the agent has a privately known gaming ability (akin to our publicly
known cost-scaling parameter y) and the receiver has a continuum of actions and seeks
to most accurately match the agent’s fundamental type, which is the analog of our state
of the world, and is multidimensional in Ball (2021). The logic of their results is that
information about gaming ability tends to crowd out information about fundamental type.
Under their assumptions, falsification does not distort information when gaming ability is
public because higher types falsify higher. This is in stark contrast to our model, despite
the fact that we study similar agency frictions. Another distinction is that we characterize
optimal tests without restrictions on the class of tests the designer can choose from.

The two aforementioned papers build on Frankel and Kartik (2019), who study the
effect of gaming without taking a design perspective. In an analogous vein, Hu, Immorlica,

"Without costly falsification or overtness, a Myersonian principal cannot achieve anything in our framework
(see Remark 1).

8The relatively small economics and computer science literature on mechanism design with reporting costs
(Kephart and Conitzer (2016), Deneckere and Severinov (forthcoming), Severinov and Tam (2019)) focuses
on mechanisms with transfers. All these papers provide conditions on reporting costs to ensure truth-telling is
without loss.

?See Bergemann and Morris (2019) and Kamenica (2019) for reviews of this literature.

00ther examples include Lipnowski, Ravid, and Shishkin (2021) and Nguyen and Tan (2021), where the
agent is the sender, who can manipulate the output of the experiment.
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and Vaughan (2019) analyze strategic manipulations of a given classification algorithm,
and Cunningham and Moreno de Barreda (2015) equilibrium state falsification in a model
with a fixed testing technology.

Falsification can be interpreted as lying, which connects our paper to the literature on
strategic communication and interactions with costly lying (Kartik, Ottaviani, and Squin-
tani (2007), Kartik (2009), Sobel (2020)). The key difference from these works is that we
design optimal channels (tests) rather than relying on direct unmediated communication.
Falsification can also be thought of as signaling (Spence (1973)), in a model in which each
type of the agent (state of the world) corresponds to a distinct natural (least costly) action,
and the test takes these actions as inputs. The agent might then find choosing a different
action so as to influence the decision of the receiver is optimal. The cost of falsification is
simply the opportunity cost of deviating from the natural action.

2. THE COVERT-FALSIFICATION MODEL

A decision-maker, henceforth receiver, can choose between two actions, which we label
approve and reject. The receiver’s payoff depends on a state of the world. She faces an agent
with a state-independent preference for approval. The receiver can rely on information
provided by a test that takes the state of the world as an input and outputs a signal. The
agent can, however, manipulate the test by covertly falsifying the state of the world. We
seek to solve the problem of a designer who can commit to a test so as to maximize the
receiver’s payoff.

States and Payoffs. 'We normalize the receiver’s rejection payoff to 0, and equate the
state of the world s € § with her payoff from approval, where S =[—s, 5], and —s < 0 <5.
We let S~ =[—s,0) and ST = [0, 5], and henceforth refer to states in S~ as negative, or
noncompliant, and to states in St as positive, or compliant. Thus, the receiver wishes to
approve compliant states, and reject noncompliant states. We say 0 is the baseline standard
for approval. The agent obtains payoff 1 upon approval, and 0 otherwise.

Prior.  The prior distribution of states of the world is a probability measure 7, which
we assume to be atomless and have full support on S. We denote its cdf as F,, and its
mean as u, = E (s). If u, <0, we let s, denote the largest state such that the receiver
would approve if she knew all lower states are excluded. Hence, s, is the unique state
such that E,,(s|s > so) = 0. For convenience, we adopt the convention that s, = —s when
Mr = 0.

Tests. A test is a Blackwell experiment (Blackwell (1951, 1953)): a measurable space
of signals X, and a Markov kernel 7 from S to X, so that 7(s) € AX denotes the distri-
bution of signals generated by state s. The prior 7 and the test 7 together define a joint
probability measure on X x S that we denote by 7.

Falsification. A falsification strategy ¢ is a Markov kernel from S to S. If T is a Borel
subset of S and s € S a state of the world, ¢ (7'|s) denotes the probability that the true state
s, or source, is falsified as a target state in T. We denote by ¢(s) € AS the distribution of
falsified states generated by the true state s. The truth-telling strategy is the Markov kernel
o6 that maps each state s to the Dirac measure &,, which puts probability 1 on target state s.
Together, the prior 7 and the falsification strategy ¢ define the joint probability measure
¢monS xS.
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FIGURE 1.—Outcomes, tests, and strategies.

Falsifying s as ¢ comes at cost yc(¢|s), where ¢: S x § — R, is a measurable function,
and y > 0 is a scaling parameter that captures the magnitude of falsification costs. The
cost of falsification strategy ¢ is then C(¢) =y [, ccdpm.

Information Structures. Together, a falsification strategy ¢ and a test = define an infor-
mation structure embodied by the Markov kernel 7¢ : § — X, which combined with the
prior 7, defines a joint distribution 7¢p7 on X x S. Then 7¢(s) € AX denotes the distri-
bution of signals generated by state s. Note that, although 7¢ cannot be more Blackwell
informative than 7, it is not necessarily less Blackwell informative. In particular, the re-
ceiver may prefer 7¢ to 7. This possibility plays an important role in our results as we find
that optimal tests induce productive falsification by the agent.

Approval. The action space of the receiver is A = {a, r}, where a stands for approval
and r for rejection. An approval strategy of the receiver is a Markov kernel a from X to
A. We denote by 8 the Markov kernel from A to itself that, to each action a € A, assigns
the Dirac measure §,, which puts probability 1 on a. If the signal space is X = A4, we refer
to 84 as the obedient strategy for the receiver.

Outcome and Expected Payoffs. An outcome w is a Markov kernel from S to A4, which
defines the approval probability of any state (see Figure 1). Then w7 is a joint distribution
on A x S. Falsification costs aside, both players only care about outcomes. Specifically,
the receiver’s payoff is ' (w) = E,, . (s|a), and the approval probability under w is Il(w) =
wm({a} x §). Together, a test 7, a falsification strategy ¢, and an approval strategy «
determine an outcome at¢. The agent’s payoff is then U(at¢, ¢) =Il(ard) — C(¢).

Timing. 'The timing of the game is as follows:
1. Test: A test 7 is exogenously given and publicly observable.
2. Falsification: The agent covertly chooses a falsification strategy ¢.
3. State: The state s is realized according to 7.
4. Testing and results: The falsification strategy generates a falsified state of the world
t according to ¢(s), and the test generates a publicly observable signal x about the
falsified state of the world according to 7(¢).
5. Receiver decision: The receiver forms beliefs and chooses to approve or reject.
For convenience, we assume the agent chooses his falsification strategy ex ante, before
the state is realized. However, this choice of timing is inconsequential because ex ante
and interim falsification (knowing the state) are essentially equivalent.!!

1See Lemma S1.2 in the Appendix in the Online Supplementary Material (Perez-Richet and Skreta (2022)).
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Solution Concept and Equilibrium. Our solution concept is a perfect Bayesian equilib-
rium. A pair (¢, «) is an equilibrium under 7 if (i) the receiver’s posterior is derived using
Bayes’ rule given 7¢ whenever possible, (ii) the receiver approves optimally given her be-
lief, and (iii) the agent’s falsification strategy ¢ is optimal given the receiver’s approval
strategy.

Posterior Beliefs. For each signal x occurring with positive probability under ¢, a
receiver anticipating ¢ forms a posterior belief in AS according to Bayes’ rule whenever
possible, that is, for every x € | J,.¢supp 7¢(s), and arbitrarily otherwise. In both cases,
we denote this belief by T .. Let u(x|r¢) = [ sd7¢m, denote the associated posterior
mean.

Receiver-Optimality. Given 1, the approval strategy « of a receiver anticipating ¢ is
optimal if and only if it satisfies a(a|x) = 1 if u(x|7¢) > 0, and a(a|x) =0 if w(x|7¢) <O.
The receiver’s value function only depends on the information structure, and we denote
it by V(7¢) = max, V (a7d).

Equilibrium Feasibility. 'We say that a pair (7, ¢) is equilibrium feasible, or that ¢ is
equilibrium feasible under 7, if an approval strategy « exists such that (¢, «) is an equi-
librium under 7, that is, if and only if

Vx, u(x|td)>0= a(ax) =1,
Ja, Vx, u(x|td) <0= a(alx)=0, (EF)
Vo', Ul(atd,dp) > U(Ol’Td)/, <;b/).

The Designer’s Problem. We consider a test designer who seeks to maximize the re-
ceiver’s payoff. His problem is then to find an information structure (7, ¢) that maximizes
V (7¢) subject to (EF). In the remainder of this paper, we refer to such an information
structure as optimal. By extension, we also refer to the test 7 as optimal.

Falsification Costs. 'We assume the cost function satisfies some basic properties. First,
truth-telling is costless, c(s|s) = 0. Second, it is monotonic in the sense that falsifying to
and from states that are further away is strictly more costly. Formally, c(¢|s) < c(?'|s)
for all s, ¢, ¢ such that ¢ <t <s or s <t < t; and c(t|s) < c(t|s") for all s, s, ¢ such
that s’ <s <t or t <s < . Finally, it is continuous. We also make two more substantial
assumptions that play an important role for our results.

DEFINITION 1: The cost function:
(i) has the costlier-to-top property if

¢(50) > min{c(—s|0), 1}; (CTT)
(ii) satisfies the upward triangular inequality if, for every s <m <,
c(tlm) + c(m|s) > c(t]s). (UTI)

The costlier-to-top property says that falsifying from the baseline standard to the high-
est state is more costly than falsifying to the lowest state that is worth falsifying to. By
monotonicity, this comparison extends to all noncompliant states. (CTT) thus captures in
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a relatively unrestrictive manner the intuitive idea that falsifying upward is more costly
than falsifying downward.

The upward triangular inequality can be interpreted as putting a bound on the cost in-
crease of falsifying further up, as c(t|s) — c(mls) < c(¢|m). If the cost function is differ-
entiable, it implies that the cost increase of falsifying to a marginally higher target state is
bounded by the cost of a marginal falsification from the initial target: ¢,(¢|s) < c,(¢[t). In
particular, the cost of a marginal upward falsification must then be everywhere positive.

Consider a cost function such that, for ¢ > s, c(t|s) = f(s)g(¢ — s), where f is a positive-
valued and g is a nonnegative-valued increasing function with g(0) = 0. Then it satisfies
(UTI) whenever g is concave, or more generally subadditive, and f is nondecreasing.
Subadditivity then captures increasing returns to scale in the size of falsification.'

3. TEST DESIGN UNDER COVERT FALSIFICATION

We start with two key preliminary results that simplify the analysis. First, we establish a
recommendation principle that allows us to restrict attention to tests that equate signals to
action recommendations. Second, we show ex ante and interim falsification are essentially
equivalent. We then solve the designer’s problem.

3.1. Preliminary Results

Recommendation Principle. Mimicking standard results in Myerson (1982) and Ka-
menica and Gentzkow (2011), we establish a recommendation principle. According to
this principle, if a test 7 gives rise to an equilibrium (¢, «), it can equivalently be replaced
by the garbled test ar, with signal space X = A, that gives rise to an equilibrium consist-
ing of the same falsification strategy ¢ for the agent and the obedient approval strategy
54 for the receiver. Both equilibria are outcome equivalent since ar¢ = 84 (at)¢d and,
therefore, lead to the same payoffs for both players. Whereas the result that obedience
is a best response to ¢ under the new test is standard, the result that ¢ remains a best
response to 6 is specific to our setting, and leverages the fact that, in equilibrium, covert
deviations from ¢ do not affect the receiver’s decisions."

For the remainder of our analysis, we therefore, in a slight abuse of notation, rede-
fine tests as measurable functions 7: S — [0, 1], where 7(s) is the probability that the test
recommends approval in state s. We refer to this probability as the nominal approval prob-
ability of state s. Because X = A, the composition of a test 7 and a falsification strategy
¢ defines an outcome w = 7¢. We say that w = 7¢ is an equilibrium outcome if (1, ¢) is
equilibrium feasible. The true approval probability, henceforth also denoted by w(s), may
differ from the nominal probability.

With this redefinition, we can write the agent’s payoff as

U(ré, ) = [ T db(t.s) = C(@),

Sx

2Note that convexity in the size of falsification can also be accommodated provided that the cost scaler
increases sufficiently fast with the source as is the case with the cost function c(¢|s) = e**/*{a(t —s) + B(t —s5)*}
for t > s, where a > 0 and 8 > 0.

BThe formal statement (Lemma S1.1) and proof of this result are in the Appendix in the Online Supple-
mentary Material.
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and the receiver’s payoff as

Ve = [

Sx

st(t)dom(t,s).

Obedience requires the receiver’s posterior mean following the approve signal to be non-
negative, [, (s7(t)d$m(t,s) =0, and her posterior mean following the reject signal to
be nonpositive, [ (s(1 —7(t))dpm(t,s) = pr — [; 57(t)ddpm(t,s) < 0. Piecing these
two inequalities together, the obedience constraint puts a lower bound on the receiver’s
payoff, requiring that she obtains at least her payoff in the absence of information:

V(r$) = max{u,,0}. (RO)

Equivalence of Ex Ante and Interim Falsification. Working with the recommendation
principle, the receiver’s obedience constraint takes care of the receiver’s side of the equi-
librium feasibility condition (EF), which can therefore be reduced to requiring optimality
of the agent’s falsification strategy ¢:

/ {T(t) — yc(t|s)} dom(t,s)> / {T(t) — yc(t|s)} do'w(t,s), V¢ (EF)
Sx§ Sx§

If, instead, the agent chooses ¢ at the interim stage, after observing the state, the condi-
tion for ¢ to be interim equilibrium feasible is

c]f)(argmax T(t) — 'yc(t|s)|s> =1, Vs (IEF)

Standard arguments show'* (EF’) is equivalent to the interim condition holding for almost
every s. Because falsification from a subset of states with measure 0 has no effect on the
players’ ex ante payoffs, we restrict attention to falsification strategies that satisfy (IEF).

Costless Falsification. 'We briefly consider costless falsification (y = 0) as a benchmark.
In this case, the truth-telling implication of the revelation principle applies and, combined
with (IEF), implies the test must give a constant approval probability to all states. By the
recommendation principle, this probability must be 0 if w, <0, and 1 if w, > 0.

REMARK 1—Costless falsification: When falsification is costless, the unique equilib-
rium outcome is uninformative, and the receiver rejects if u,, < 0, and approves if w, > 0.
Her payoff is equal to max{u,, 0}.

The Designer’s Program. By the recommendation principle and interim-ante equiva-
lence, we can find an optimal test by solving the following designer’s program:

sup V(r¢) s.t. (IEF), (RO) (P)
7.¢

Next, we argue (RO) is redundant and can be relaxed without loss of generality. Indeed,
a test with a constant nominal approval probability is uninformative and satisfies (IEF)

For a formal statement and a proof, see Lemma S1.2 in the Apendix in the Online Supplementary Mate-
rial.
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because it makes falsification irrelevant for the agent. Furthermore, the uninformative
test achieves the lower bound required by (RO). Any solution to the relaxed program

supV(r¢) s.t. (IEF) (P)
nd

must give the receiver a higher payoff than the uninformative test and, therefore, also
satisfy (RO). Hence, it is also a solution to (P).

Interestingly, this redundancy implies the designer does not benefit from more commit-
ment power. Indeed, the program of a designer with the power to commit to an approval
strategy of the receiver based on reports about the state, or to a test and an approval
strategy together, is exactly (P’).

PROPOSITION 1—Value of commitment: Commitment to an approval strategy, or to a test
and an approval strategy, has no additional value than commitment to a test for the designer.

The relaxed program (P’) can also be interpreted as that of a principal seeking to allo-
cate a good to an agent of type s, where s is the principal’s payoff of allocating the good
to the agent. The principal’s payoff from the outside option (not allocating the good) is
0; the agent gets a state-independent payoff from getting the good. The principal com-
mits to an allocation probability 7 that depends on the agent’s report and misreporting
is costly. Indeed, in such a problem the principal maximizes [,  s7(t) d¢m(t,s) which is
equal to V' (7¢) subject to (IEF). This interpretation connects our analysis to the litera-
ture on the design of optimal allocation rules without transfers. Ben-Porath, Dekel, and
Lipman (2014) solve such a problem by exploiting costly verification, whereas Kattwinkel
(2019) exploits private information of the principal correlated with the agent’s type. We
exploit costly reporting costs.

3.2. An Optimal Test

We start by introducing a simple class of tests. We then show we can restrict atten-
tion to this class, and characterize the optimal test within this class. Finally, we study its
properties.

An Optimal Class of Tests. We consider a class of tests characterized by two param-
eters: a top nominal approval probability p € [0, 1] and an operational standard 5§ € S*. A
test sets the nominal approval probability of states above the operational standard to p
and gives states below § the lowest nominal approval probability that deters them from
falsifying to the standard:

if s>,
7p5(8) =1 p— ye@Sls) ifse[3(p,$),5]
if s <3(p,9),

&S]

e

where $(p, §) is equal to the state s € S~ that solves yc(§|s) = p when it exists. Otherwise,
we set §(p, §) equal to —s.

Under (UTI), a test 7,; makes truth-telling optimal in all states. To see why, we only
need to consider the payoff of falsifying s as ¢ > s, with s, t € [$(p, §), §]:"°

7p3(t) — ye(t|s) = p — ye(8]t) — ye(t|s) < p — ye(8ls) = 7,5(s),

50ther cases follow from cost monotonicity, and the flatness of the test outside of this interval.
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FIGURE 2.—On the left panel, the black curve shows the nominal approval probabilities of 7, ;, whereas
the red dotted curve shows approval probabilities under the equilibrium outcome w, ;. On the right panel, the

curve illustrates the falsification strategy ¢, ;. The cost function is yc(t|s) = :fI:I ift>s.

where the inequality is implied by (UTI).

By construction, 7, ; also makes the agent indifferent between falsifying to the opera-
tional standard and truth-telling for states in [$(p, §), §]. Therefore, the agent has multi-
ple optimal falsification strategies. Among these, the designer can break indifferences in
favor of the receiver, requiring the agent to only falsify compliant states below § to the
standard. Let

6; ifse]0,5],
o, otherwise

dpi(s) = {

denote this strategy. The resulting outcome w, ; = 7, ;¢ ; is that all compliant states are
approved with top probability p, whereas noncompliant states are approved with their
nominal approval probability, as illustrated in Figure 2. Formally,

)4 if s >0,

p—vc@ls) ifse[3(p,$),0),
0 ifs <3(p,5).

Wps =

In summary, we have shown these are equilibrium outcomes, as stated in the following
lemma.

LEMMA 1: If the cost function satisfies (UTI), the falsification strategy ¢, ; satisfies (IEF)
under 7, ;.

Optimal Test. Optimizing the receiver’s payoff within the class of equilibrium out-
comes {w, ;} reduces the original infinite-imensional problem to a two-dimensional one.
Our next result, Theorem 1, characterizes an outcome w, ; within our class that solves
the designer’s program (P). To simplify the exposition, we only state the theorem in the
case where ., < 0, and refer the reader to Theorem 3 in the Appendix for a complete
statement and a proof.

THEOREM 1: Suppose the cost function satisfies (UTI) and (CTT). Then (73, ¢3) solves
(P), where 7% = Tpsss, ¢ = s, 85 = max{s € § : yc(s]0) < 1}, and p} = min{yc(s]so), 1}.
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FIGURE 3.—Optimal test and outcome in the different regions, where = = U([-3,2]) so sp = —2,

c(t|s) = 1&\7:'31 ift>s,and ye{l1,1.3,2}.

We denote the optimal equilibrium outcome by o} = 7;¢7. The shape of the optimal
test and outcome are illustrated in Figure 3. We can divide the range of y into three
regions as follows.

In the high-cost region, y > 1/c(5|0), setting p% =1, and § > 0 to solve yc(5*|0) =1 is
optimal, so that

1 ifs >3,
Ti(s) =1 —yc(8ls) ifse[0,5],
0 if s <0.

The optimal outcome is the receiver’s first-best w;(s) = 1,0, SO noncompliant states are
rejected and compliant states approved with certainty. To reach first-best, the designer
only needs to raise the operational standard §; above the baseline standard, and let the
agent do the correction by falsifying. Indeed, a test that recommends rejection below and
approval above §%, both with certainty, also yields the optimal outcome'® w?.

In the intermediate-cost region, 1/c(5|sy) <y < 1/c(5]0), setting p> =1 and §; =75 is
optimal, so that

7(8)= {1 =Gl
with corresponding equilibrium outcome:

1 if s >0,
wy(s) = y{l — c(§|s)} if s € [5(1,5),0),
0 if s < 5(1,5).

Hence, optimality requires setting the highest possible operational standard. Compliant
states are approved with certainty, but some noncompliant states must be approved with
positive probability to deter them from falsifying to the standard.

In the low-cost region, y < 1/c(5]s,), setting p? = yc(s|sy) and §% =75 is optimal, so that

ooy ) Y1eGlso) = cGls)} if s € [0, 5]
TV(S) o if s < s

16See our discussion on multiplicity of optimal tests and their characterization below.
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with corresponding equilibrium outcome:

ve(s|so) ifs>0,
w(s) = { y{cGls) — cGls)} it s €[, 0),
0 if s < sp.

As in the intermediate-cost region, optimality requires setting the highest possible oper-
ational standard and approving some noncompliant states with positive probability. But
now, it also requires rejecting compliant states with positive probability to deter very low
states (below s,) from falsifying to the standard. To illustrate this trade-off, consider using
instead the test 7,5, with p = p; + ¢, for a small & > 0. Under this test, the true approval

probability of all states above s, increases by &, leading to a null gain as ¢ || z sdF,(s)=0.

But the receiver also incurs a strict loss over states below s, as some of those states are
approved with positive probability.

Characterization of Optimal Tests. Our optimal test is not unique. The optimal equilib-
rium outcome, however, is essentially unique. Furthermore, we can characterize the set of
optimal tests that do not penalize the agent relative to the test of Theorem 1. To see why
our optimal test is not unique, consider two types of variations. First, we can lower the
nominal approval probability of compliant states below §* without changing the agent’s
equilibrium falsification strategy or the outcome. Indeed, this operation only strengthens
the incentive of these states to falsify to the standard."” Second, when the standard is not
set to the highest state (in the high-cost region), we can also lower the nominal approval
probability of states above § so as to make them falsify (downward) to the standard, with-
out changing the equilibrium outcome or the receiver’s payoff. However, this operation
lowers the agent’s payoff, because he needs to falsify more. If we rule out optimal tests
that unnecessarily penalize the agent, only variations of the first type are possible. Vari-
ations of this type are in some sense more robust since they can make the incentive for
productive falsification strict. See Proposition S1.1 in the Appendix in the Online Supple-
mentary Material for a formal statement and a proof.

A corollary of this characterization is that productive falsification is necessary for op-
timality. Optimal tests that do not penalize the agent must induce essentially the same
falsification strategy. Other optimal tests induce even more falsification.

Theorem 1: Proof Overview. We next provide a sketch of the proof, which can be found
in its entirety in the Appendix. Working with the relaxed program (P’), the main step to
prove Theorem 1 consists in showing that for every equilibrium outcome w = 7¢, we can
find an outcome w, ; that makes the receiver better off.

Consider such an equilibrium outcome w = 7¢. Assume, for simplicity, ¢ is degenerate
and the function 7 admits a unique maximizer §, = argmax 7(s) on S, and let p = 7(§,).
Then we can distinguish three cases, depending on the location of §,. To provide intuition
about the role of the (CTT) assumption, we next discuss two of these cases.

Suppose first that §, > 0 and yc(5,|0) < p. Then we set the standard § = §,. Under the
outcome w,;, each compliant state is approved with probability p, which is at least as

7To complete the argument, we show the modification cannot incentivize the agent to change his falsifica-
tion strategy in any other way.
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high as under w. However, some noncompliant states are approved with positive proba-
bility. Let s € [$(p, §), 0) be such a state. Let ¢(s) = argmax, 7(¢') — yc(t'|s) be an optimal
falsification target for s under 7, so w(s) = 7(¢(s)). Then, by optimality of #(s),

w(s) = 7(t(s)) — ye(t(9)ls) = 7(8) — yeBls) = p — ye(@ls) = w,5(s).

So, s is approved with lower probability under w, ; than under w.

Suppose next that §, < 0 and yc(5,|0) < p. Then we choose the standard § > 0 such
that c(s|0) = ¢(5,]0). (CTT) ensures that doing so is possible. Under w P> each compliant
state is approved with probability p, which is higher than under w. As in the former case,
consider a noncompliant state s approved with positive probability under w. Then

w(s) =7(t(5)) = 7(£(5)) — ve(t(s)ls) = 7(8:) — ve@ils) = p — ye(ls) = w,,5(5),

where the second inequality is due to the optimality of falsifying as #(s), and the third
inequality is due to cost monotonicity. Again, the approval probability of noncompliant
states is lowered under w ;.

3.3. Properties of Optimal Tests

We discuss the shape of the optimal test, its welfare properties, and comparative statics
with respect to the cost parameter y. We state our results under the assumption w, <0,
but it is easy to adapt the results.'

Comparative Statics and Asymptotics. The receiver’s payoff under the optimal outcome
is

V= /sw’;(s) dF,(s).

Because the agent is indifferent between ¢ and truth-telling, we can evaluate his payoff
as if he were using the truth-telling strategy; hence,

U;:/Tf;(s)dF,,(s).

PROPOSITION 2—Comparative statics: V* is increasing in vy in the low, and intermediate-
cost regions, but constant and equal to the full-information payoff in the high-cost region. U
is increasing in vy in the low, and high-cost regions, and decreasing in the intermediate-cost
region.

It is natural that the receiver’s payoff increases as falsification becomes more costly.
The agent’s payoff, however, is nonmonotonic in the cost. To see why, note the cutoff
state §7 = 5(p3, §3) at which the nominal approval probability starts increasing is fixed
to 0 in the high-cost region, and to s, in the low-cost region. Therefore, a steeper cost
function (higher +y) leads to higher nominal approval probabilities for all states above this
cutoff. In the intermediate-cost region, by contrast, the top approval probability is fixed to

8When u, > 0, the low cost region does not exist, but the comparative statics of Proposition 2 is otherwise
unchanged. The only difference in Proposition 3 is that the uninformative payoffs are 1 for the agent and u,
for the receiver.
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1, and it is awarded exclusively to the highest state, whereas the positive probability cutoff
5} increases with y. A steeper cost function therefore leads to decreasing the nominal
approval probabilities of all states. The next result considers limit tests and payoffs, and
its proof is immediate by taking limits in y for the optimal test and outcome functions.

PROPOSITION 3—Asymptotics: Both the outcome and the test converge to the uninforma-
tive test as y — 0. As y — o0, the outcome converges to 1., and the test to 1. Payoffs con-
verge accordingly, to the uninformative payoffs in the first case: lim, o U} = lim, oV =0,
ancé to th)e full-information payoffs in the latter: lim, ., V. = E(s|s > 0) and lim, ., U; =
P.(s>0).

Welfare. Falsification is a friction that generates inefficiencies. Our optimal outcome
is constrained efficient by definition, because it maximizes the receiver’s payoff under fal-
sification. However, it is never unconstrained efficient, and the welfare loss generated by
falsification can be decomposed into two channels: First, a direct loss due to the cost of
productive falsification by the agent; second, an informational loss arising indirectly from
distortions the designer needs to build into the outcome to optimally manage the falsifi-
cation friction.

We measure total welfare loss, the direct falsification loss, and the informational loss
as follows. First, we equate the direct loss to the total falsification cost incurred by the
agent C(¢%). The agent’s payoff net of this cost is his expected approval probability
I} = E(w}(s)), so by restoring the falsification cost to the agent, we reach the point
(V;5, II7) in the payoff space. Starting from this point, we measure the informational loss
as the sum of payoff gains to both players that can be obtained by moving to the closest
point on the unconstrained Pareto frontier. To do so, we start by measuring the payoff
gain the receiver could obtain by freely reorganizing approval probabilities according to
an outcome function ', while keeping the expected approval probability of the agent
constant II(w’) = IT;. Because the receiver prefers to concentrate the probability of ap-
proval on higher states, a solution to this reorganization problem is the threshold function
w'(s) = 1,55 for § > 5, such that P (s > §) = II*. This reorganization might lead to an ap-
proval threshold § > 0 if the approval probability IT* is too low, which is the case for low
values of y. Then, choosing instead § = 0 leads to higher payoff gains for both players, and
we measure the informational loss as the sum of these gains. To summarize, we measure
total welfare loss as

WL=C(6;)+ V(@) -V +1(w) - 1L,
——
direct loss informational loss

where o’ = 1.5 and § = max{s € [s, 0] : P, (s > §) > 117}

This decomposition implies that our constrained optimal outcome suffers from an in-
formational loss in the low and intermediate-cost regions but not in the high-cost region.
The direct loss, however, is always present. It is increasing in the low and intermediate-
cost regions, decreases in the high-cost region, and asymptotically vanishes as falsification
becomes arbitrarily costly.

Figure 4 illustrates both the comparative statics and asymptotic behavior of payoffs, as
well as the welfare loss due to falsification. The grey area depicts the set of feasible payoffs
in the absence of falsification. As it shows, the falsification cost borne by the agent can be
heavy: in the high-cost region (III), the agent may lose more than half his full-information
payoff in falsification cost, while the receiver still benefits from her full-information pay-
off.
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FIGURE 4.—The grey area depicts the set of attainable payoffs under all possible information structures
in the absence of falsification. The curve shows the payoffs from the optimal test as a function of y. The
curve starts at the no-information payoffs for y = 0, moves successively across the low-cost region (I), the
intermediate-cost region (II) and the high-cost region (III), and heads toward the full-information payoffs as
v increases. y : 0 — 5; c(t|s) = |t — s|/(1 + |t — s]), if t > 5; 7 = Uniform(-3, 2).

4. TEST DESIGN WITH FALSIFICATION DETECTION

We seek to understand how the availability of a falsification-detection technology af-
fects test design. To focus on the effect of detection in its purest form, we assume a tech-
nology that perfectly reveals the falsification strategy of the agent to the receiver, so that
falsification is overt rather than covert. The timing of the game is the same, but the receiver
now learns the agent’s falsification strategy ¢ before choosing her action. Her posterior
beliefs therefore reflect actual rather than anticipated falsification.!” In most of this sec-
tion, to simplify the exposition, we assume upward-only falsification: the agent can only
falsify to higher states.”

A few remarks are in order. First, the optimal equilibrium of Theorem 1 remains an
equilibrium in the overt case.” Thus, the ability to detect falsification does not hurt the
receiver, and indeed, the same test remains optimal in the high-cost region where it at-
tains first-best. We show it can be improved when the cost is lower. Second, neither the
recommendation principle nor the ante-interim equivalence hold any longer, making the
analysis of the overt case substantially more difficult. Third, the result of Proposition 1
on the value of more commitment no longer holds: if the designer can commit to the re-
ceiver’s action, committing to reject whenever falsification is present delivers the first-best
outcome.

Intuitively, falsification detection provides the designer with a new lever in the form of
signal devaluations. Indeed, deviations from equilibrium by the agent lead the receiver
to revise the posterior mean associated with a given signal downward (devaluation), or
upward (appreciation), and adjust her action accordingly. By ensuring deviations induce

YFor a full definition of equilibrium under overt falsification, see Online Appendix S2.

2 A condition on downward falsification costs ensuring our results hold when downward falsification is pos-
sible always exists. We state this condition explicitly for the binary-state case in Proposition 8.

21t also remains optimal in the covert case under upward-only falsification, as we show in Theorem S1.1 of
the Online Appendix.
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detrimental devaluations, the designer can therefore impose implicit devaluation costs
to the agent in addition to the explicit falsification costs. In this section, we show how
the designer can use these implicit devaluation costs to improve on the best equilibrium
outcome of the covert case.

We proceed as follows. To address the technical difficulties, we first study a binary-
state version of our model. This simplifies the analysis by the availability of a falsification-
proofness principle that allows us to restrict attention to tests that the agent has no in-
centive to falsify. In this setup, we characterize an optimal test relying on the idea of
devaluations. Our characterization shows using the devaluation channel requires a rich
signal space: although adding a third signal is sufficient to allow the designer to get a sig-
nificant improvement from the devaluation effect, optimality requires using tests with a
granular signal space, even in our simple binary-state binary-action framework. We then
go back to our initial model with a continuum of states, and show how to use ideas from
the binary-state model to improve on the optimal test of the covert case from Theorem 1
when falsification costs are low.

4.1. Falsification Detection in the Binary-State Model

The Binary-State Model. In this model, the state space is S = {—s, 5}. Slightly abusing
notation, we denote by 7 the prior probability of the high state 7 (5). We assume w, =

7s — (1 —m)s <0, and we let ¢y = (12)5 denote the probability with which the low state
needs to be pooled with the high state toibring the expectation attached to the pool to 0.
We let ¢ = (5| — 5), ¢ = d(—s|5), ¢ = yc(5| — 5), and ¢ = yc(—s|5). With upward-only
falsification, a falsification strategy is simply defined by the probability ¢, and truth-telling
corresponds to ¢ = 0. N

Fully-Informative and Binary-Signal Tests. To gain intuition, consider first a fully in-
formative test with X = {x, X} and 7(x|s) = 7(x| — s) = 1. Suppose ¢ < 1. Following the
75— (1-m)ds
Trr(i-m
¢ < ¢y. Because the agent can only falsify upward, the receiver is certain the state is —s
after x, and rejects. The agent’s payoff is therefore equal to {7 + ¢(1 — 7)(1 — ¢)} L4y,
so he optimally chooses ¢ = ¢, which is the falsification level that makes the receiver
indifferent between both actions when receiving the high signal. The resulting informa-
tion structure is the one the agent would design if given the opportunity (as in Kamenica
and Gentzkow (2011)). It is agent-optimal and receiver-pessimal. The receiver’s payoff
is zero, as without any information. When falsification is costless, the agent obtains his
first-best payoff. As the falsification cost increases, the agent’s payoff falls, but the test
and the receiver’s payoff remain unchanged. Note this is in fact the best outcome for both
the agent and the receiver under any binary-signal test.

high signal X, the receiver’s expected payoff from approval is so she approves if

A Three-Signal Test. Under overt falsification, enriching the test with additional sig-
nals can make the receiver better off. The intuition is that additional signals allow the
designer to get more traction from the devaluation effect. We next illustrate this idea
with a three-signal test that dominates all binary-signal tests. As a corollary, it proves the
recommendation principle no longer holds in the overt case.

2, is analogous to sy in the continuous-state model.
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FIGURE 5.—Three-signal test: The expectation column shows the devaluation effect of upward falsification
on posterior means.

Consider a test with discrete signal space X = {x, @, x}, and such that 7(5) is the prob-
ability distribution (0, p, 1 —p), and 7(—s) = (1 — DD 0), as illustrated in Figure 5. We
set p/P = ¢y, SO that, in the absence of falsification:

Eq"n'(sly) = E, ET,,T(Slﬂ) = 0’ ETﬂ(sli) — _§’

leading the receiver to approve after ¢ and X, and reject otherwise. With upward-only
falsification, for any ¢ > 0, we have

E,¢-(s]%) o (75 — $(1- m)s),
Erpr(5]0) o ¢p(75 — (1 — m)s) <0, E,4-(s]x) = —s.

Therefore, any amount of falsification triggers the devaluation of signal ¢, leading the
receiver to reject. The agent trades off this implicit cost of falsification against the benefit
of increasing the probability that signal —s generates signal X. If the agent chooses ¢ >
0, he must ensure E,,(s|x) > 0 so the receiver approves after x, implying ¢ < ¢,. The
agent’s payoff for 0 < ¢ < ¢, is therefore N

7(1=D)+7plyo+(1 —m)p{l —p —c}.

Hence, setting p > % ensures the agent has no incentive to falsify. The receiver is then
certain the state is compliant when she gets the high signal and is strictly better off under
this test than with no information or any binary-signal test. Furthermore, the receiver is
better off with smaller values of p (and hence p), because it lowers her probability of ap-
proving noncompliant states. Therefore, the best test she can pick in this class is obtained
by setting p = s§1+__2§) With this test, the receiver obtains ”ﬁ%g)s ars, which is strictly positive
even if ¢ =0.

Pushing the intuition that additional signals are key to leveraging devaluations, the op-
timal test we derive next uses a continuum of signals. The reader can now either proceed
to Section 4.2 where we characterize the optimal test in the binary-state model, or pro-
ceed directly to Section 4.3 where we derive a three signal test that simultaneously relies
on devaluation and productive falsification in the continuum of states setting.

4.2. Optimal Testing in the Binary-State Model

A Falsification-Proofness Principle. In the binary-state case, we can rely on a revelation-
principle type of result allowing us to restrict attention to tests that induce truth-telling as
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an equilibrium falsification strategy.”® To understand why it holds in the binary-state case,
suppose a falsification strategy ¢ is equilibrium feasible under test 7. Then consider the al-
ternative test 7 = 7¢. Any information structure 7'¢’" attainable under 7' can be attained
under 7 by using the falsification strategy ¢ ¢’, generating the same best-response from
the receiver in each case. However, in the binary-state case, C(¢') > C(¢¢') — C(¢),
implying ¢’ can be a profitable deviation from truth-telling under 7’ only if ¢ ¢’ is a prof-
itable deviation from ¢ under 7, a contradiction. Therefore, 7' yields an equilibrium under
which the agent does not falsify and the receiver obtains the same payoff as under 7¢.
Note that, in contrast to the usual revelation principle, the payoff of the agent is higher
under 7’6 than under 7¢ because he saves C(¢). The receiver’s payoff and the outcome
are identical.

Normalizing Signals as Means. ~As in much of the information design literature, we can
use the mean-based (or, equivalently, in the binary-state case, belief-based) approach to
simplify our problem.?* We thus describe tests by the distribution of posterior means they
generate, which amounts to normalizing signals as means. A test is therefore represented
as a distribution of posterior means with cdf H over [—s, 5] with the martingale property

that f_z xdH (x) = u,, which is equivalent to (integrating by parts)

fSH(x)dxzi—Mw. (MP)

As in Kolotilin (2018) and Gentzkow and Kamenica (2016), this test can be equivalently
represented by the function H(x) = fi H(y)dy from [—s, 5] to [0, 5 — u], which is non-
decreasing and convex, with H(—s) = 0 and H(5) =35 — u,. Let A® denote the set of
nondecreasing convex functions from [—s, 5] to [0, 5 — w] that satisfy these properties.
This representation is known to be without loss of generality in the absence of falsifica-
tion. With falsification, we need to show that pooling together all signals leading to the
same posterior mean does not modify the falsification incentives of the agent. Using this
representation, we hereafter equate signals with the posterior mean they generate given
the test (and in the absence of falsification).

Rewriting Payoffs. Under test H, and in the absence of falsification (¢ = 0), the re-
ceiver’s payoff is®

V(H,0)= /Sx dH (x) = p, +H(0)

0

and the agent’s payoff is
U(?‘[, 0) =1- HK(O)7

where H,(x) = limyyz? H(y) is also the left derivative of H at x and gives the probability
of generating a posterior mean strictly below x.

2We establish this principle in Proposition S2.1 of the Online Appendix. It holds under either overt or covert
falsification. With more than two states, the cost inequality C(¢') > C(¢¢') — C(¢$) may fail: if ¢ falsifies m
to ¢ and ¢’ falsifies s to m, with s < m < ¢, then ¢ ¢’ must falsify both s and m to ¢.

2See Lemma S2.1 in the Online Appendix for a formal treatment.

BThe second expression for the receiver’s payoff is obtained using integration by parts.
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Equilibrium Characterization. Increasing ¢ sends the noncompliant state toward any
positive signal x at a higher rate, thus lowering the posterior mean formed by the receiver
when observing x. If x is sufficiently close to 0, this devaluation leads the receiver to no
longer approve x. In effect, falsification results in a new threshold signal X(¢) such that
the receiver only approves for signals x > X(¢). Interestingly, this threshold_depends on
falsification only: it is independent of the test.

7/""175?
TGt —ds

LEMMA 2: If ¢ > ¢y, all signals lead to rejection. If ¢ < ¢y, a threshold x(¢) =
exists such that the receiver approves for signals x > X(¢), and rejects otherwise.

Lemma 2 implies falsification levels outside of [0, ¢(] are dominated for the agent. Fur-
thermore, because a one-to-one relationship exists between any falsification level ¢ in this
range and the threshold it generates on [0, 5], we can reformulate the agent’s falsification
problem as the choice of an approval threshold® x € [0, 5] for the receiver, induced by
falsification level:

_ (§ + Mw)x
C(x—a)s

$(x)

PROPOSITION 4—Equilibrium characterization: Given a test H, an equilibrium is char-
acterized by an approval threshold x € [0,5] for the receiver, and a falsification level ¢ €

[0, ¢o] such that ¢ = é(x), and x maximizes the agent’s payoff,

x (1= m)(s+na)x

Ul ) =1 (14§ Ao + e - E PR

(x - /-"“77)

The only part of the proposition that needs an explanation is the calculation of the
agent’s payoff. Given the prior, falsification level, and threshold, we only need to know
the distributions of signals generated by each of the two states s and —s to perform this
computation. Their cdfs are, respectively,?’

H(x) = {(x +9)H(x) — H(x)} (CDF)

M+ S

and

H(x) =

{5 —x)H(x) +H(x)}. (CDE)

S— Mx

The Designer’s Program. Using the falsification-proofness principle, we can formulate
the designer’s program as that of choosing a test function H € A? to maximize H(0),

%In a slight abuse of notation, we denote this threshold by x, because every nonnegative signal can be
induced as a threshold by some falsification strategy.
2To understand these expressions, note the joint probability that the state is compliant and the signal below

x can be written both as wH(x) and as [~ B(z) dH(z), where B(z) = % is the updated probability of the
compliant state conditional on having received signal z, and must therefore satisfy 8(z)s — (1 — B(2))s = z.

Integration by parts leads to the final formula.
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under the falsification-proofness constraint that the agent has no incentive to induce any
falsification threshold other than 0:

m:g?—[(())
st. U(H,0)>U(H, (x)), Vxel0,5]. (FPIC)

Using the expression of the agent’s payoff in Proposition 4, the constraint becomes

X S Ocx

O = et —ay T 2 O e

Vx €[0,5], (FPIC")

where 6 = (s — u,)(s + ur) /(s +5).

Next, we derive a solution to the designer’s program in two steps. First, we show we can
restrict attention to tests that generate a single negative signal, or equivalently to tests
such that H is linear over negative signals. Second, we show distributing positive signals
so as to make the agent indifferent across all undominated falsification levels is optimal,
or equivalently, making the incentive constraint of the agent (FPIC’) bind everywhere.

Linearization for Negative Signals. First, we can focus on test functions H that are
linear on [—s, 0]. Indeed, for any test function H € A? that satisfies (FPIC’), the test
function

H(0)
Hx)=1 s
H(x) ifx>0

(x+s) ifx<0,

isin AB, delivers the same payoff to the receiver as H, a higher payoff to the agent because
H,(0) =1 (0)/s < H,(0) by convexity of #, satisfies (FPIC’) by the same argument, and
is linear below 0.

Going back to the interpretation of test functions, this linearization implies we can
focus on tests that generate a single negative signal equal to —s. This signal is generated
only by the low state.

Making the Agent Indifferent. Next, we characterize the unique test function that is
linear below 0 and makes the agent indifferent across all thresholds induced by undomi-
nated falsification levels. By linearity, we can denote its slope below 0 by « > 0, which is
also the size of the atom it places on the negative signal. Our test function must then solve
the indifference differential equation®

X KS Ocx

HO) = =) T = 5~ om0

(IDE)

on [0, 5], with initial condition H(0) = «s. This linear differential equation has a unique
solution parameterized by k. For this solution to be a test function, it must satisfy the
martingale property H(5) =5 — p,, which pins down « to a value that we denote by «,

28Note the subscript £ is no longer needed, because writing that H, satisfies this equality implies it is contin-
uous and, therefore, H, = H.



1130 E. PEREZ-RICHET AND V. SKRETA

yielding the unique test function

H (1) = 5 8) + (2G5 — e){("_“)—(+)_ -1

M

M
_ s — - nrts §_|_ S\ Amts
* _M‘IT g
K

where

Kg - 1228

_ s — » ) AT +s ﬁ
® s

— M7

An Optimal Test. 'We show H is in fact optimal.

THEOREM 2: H is the unique test function that solves (IDE) on [0,5], and it solves the
designer’s problem under upward-only falsification.

To understand why, note that in the class of partially linear tests we identified, the
receiver’s payoff depends on the size « of the atom on the unique rejected signal —s, which
is only generated by the low state. /! puts an atom of size ! on this signal, and makes
the agent indifferent across all approval thresholds he could induce through falsification.
Increasing the size of this atom implies violating the falsification proofness condition for
at least one falsification-induced threshold. For intuition, note that if  is a test that puts
an atom of size k > « on the rejected signal, a signal x’ between 0 and s must exist such
that H first crosses H; from above at x’ (if nowhere else, (MP) implies the two curves
cross at 5). Furthermore, the left derivative H,(x") must be lower than H(x"). However,
combined with the fact that H; makes the agent indifferent across all thresholds, this
inequality implies the agent prefers inducing falsification threshold x’ to not falsifying
under H.

Properties of the Test H;.  The following proposition derives some key properties of our
optimal test. We depict its conditional and unconditional cdfs and densities in Figure 6.

PROPOSITION 5—Properties of CDF and PDF: H? has support {—s}U [0, 5], with atoms
at —s and 5, and a positive, continuously differentiable, and decreasing density on [0,5).
ﬁ: has support [0, s], with a positive, continuously differentiable, and decreasing density on
[0,5), and a single atom at 5. H* has support {—s} U [0, 5], with a single atom at —s, and a
positive, continuously differentiable, and decreasing density on [0, s). Furthermore, Ej first-
order stochastically dominates H’. B

In spite of the binary-state and binary-action environment, the optimal test has a con-
tinuum of positive signals, and a single negative signal. A clustering of signals occurs close
to 0 as illustrated in Figure 6. Furthermore, the test makes the agent indifferent across all
undominated falsification levels® as it satisfies (IDE).

PIndifference of the “agent” at the optimal information structure also appears in Roesler and Szentes
(2017) and Ortner and Chassang (2018).
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CDFs for the optimal test
PDFs for the optimal test

Test PDF | e e e e e mm— = 4
- -~ low type

...... high type

Test CDF
0.50 |--- low type

------ high type

0.0

0.0 0.5 1.0 5 2.0 0.00

signal

FIGURE 6.—PDF and CDF of the optimal test under overt falsification. —s = —2,5=2, # =0.3.

Granularity of positive signals, as well as the shape of the test, which is dictated by
indifference, contribute to maximizing the implicit falsification cost at every falsification
level. Increasing ¢ devalues positive signals up to a threshold that does not depend on
the test. When a signal is missing, the falsification level that would make this signal the
new approval threshold is strictly dominated. By putting weight on such a signal, the de-
signer can increase the associated implicit falsification cost, and at the same time lower
the probability that the noncompliant state generates positive signals, thus increasing the
receiver’s payoff.

Next, we examine the effect of falsification costs on payoffs. In contrast to the covert
case, higher falsification costs are always detrimental to the agent and beneficial to the
receiver.

PROPOSITION 6—Comparative statics: The optimal test H is increasing in c in the Black-
well informativeness order, and converges to the fully informative test function as ¢ — 1. The
receiver’s payoff is also increasing in c. The agent’s payoff is decreasing in c. Furthermore, H*
is more Blackwell informative than any other optimal test function at c. B

We proceed to discuss the welfare properties of the optimal test. In contrast to the
covert case, the falsification friction does not induce any inefficiency. Indeed, falsification-
proofness implies the absence of a direct loss, and there is no informational loss, because
the compliant state is approved with certainty. Note that in the binary-state model, the
direct loss is also absent in the covert case by the falsification-proofness principle, but
informational inefficiencies persist when the falsification cost is low.*

PROPOSITION 7—Welfare: The optimal test H} is unconstrained efficient. It delivers at
least half of the receiver’s payoff under full information, and this bound is tight when ¢ = 0.

The optimal test restores at least half of the receiver’s full information payoff, even if
falsification is costless. This is again in stark contrast with the covert case, as the receiver

3We provide a comparison of attainable payoffs under covert and overt falsification in the binary-state
model in Online Appendix S3.
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can then get no information at all under costless falsification. Next, we provide a neces-
sary and sufficient condition on costs for H; to remain optimal when both upward and
downward falsification are allowed.

PROPOSITION 8—Robustness to upward falsification: With both upward and downward
falsification, constants A > 0 and B exist such that the test H* is optimal if and only if Ac +
Bc>1. -

To understand this result, note first that deviating to a falsification strategy (¢, ) such

that ¢ + ¢ <1 is dominated by the strategy (¢,0), because it leads the receiver to use
a threshold X > %(¢), while lowering the probability that the compliant state generates

passing signals. Since (¢, 0) is, by construction, unprofitable, (¢, @) is also unprofitable.
Therefore, we only need to show that under the condition of the proposition, deviations
such that ¢ + ¢ > 1 are also nonprofitable. The best of these deviations is such that ¢ =

1— ¢y and ¢ = 1. It gives the agent his best possible approval probability 7+ (1 — ) ¢y, at
cost w¢ + (1 — ) (1 — ¢o)c. By comparing this payoff with the truth-telling payoff 1 — «Z,
we obtain the condition of the proposition. B

4.3. Falsification Detection in the Continuous-State Model

To illustrate how devaluations help the designer in the continuous-state model, we focus
on the low-cost region where the optimal outcome in the covert case, @, from Theorem 1,
mandates both rejecting compliant states and approving some noncompliant states with
positive probability. We construct a sequence of three-signal tests that rely on devalua-
tions, and mirror the three-signal test from Section 4.1. However, they are modified to
accommodate the continuum of states and, more importantly, to leverage productive fal-
sification as 5. We show outcomes from this sequence converge to an outcome under
which compliant states are approved with certainty, and the receiver is better off than in
the covert case. In contrast to the covert case, in which the optimal test is uninforma-
tive when falsification is costless, the tests we construct provide useful information to the
receiver even under costless falsification.

We assume w, < 0 and yc(s]sy) < 1, so that we are in the low-cost region. We work with
the signal space X = {x, @, x}. For each sufficiently small ¢ > 0, and each p < 1 — yc(5]0),
we define the test 7, . as follows (see Figure 7):

Tpe(Bls)=pand 7, .(X|s)=1— p,

Forall s € [0,5), 7, .(4|s) = pand 7, .(x]s) =1 — p,

Forall s € [—s, 50 — &), T . (x]s) =1,

Forall s € [s) — &,0), 7, .(9|s) =r.(p) and 7, .(x|s) =1 —r.(p), and r.(p) satisfies

rg(p)(— /:_ede,,(s)) = p/OSSde(S)- (MO)

In the absence of falsification, X leads to a positive posterior mean, and x to a negative
posterior mean, whereas (M0) ensures that ¢ leads to mean 0 and implies r.(p) < p. The
receiver then rejects compliant states in [0, 5) with probability 1 — p. But this inefficiency
is overcome by productive falsification.
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5 Falsification ¢ Test 7pe Bz, .x(s]x) Bz, ¢+ (s]2) Es, .p.x(s]7)
K S S
T
[ ] T
[ ]
0
[ ]
0 0
[ ]
! ?.
= T
—s —s

—3 —s

FIGURE 7.—Incentives for productive falsification are built into part A of the test, whereas the threat of
devaluation is built into part B and ensures that ¢* is optimal. Under ¢*, all compliant states (productively)
falsify as 5. Signal @ is devalued when noncompliant states are falsified as s, as with ¢,,). This is illustrated in
the last column, which shows posterior means under ¢ ;).

Productive Falsification. The test 7,, (see part A of Figure 7) ensures the agent
prefers falsifying all states s € [0,5) as 5, because it increases their approval probabil-
ityby 1 — p > yc(5|0) > yc(sls). Let ¢* denote this falsification strategy. Under ¢*, ¥ still
leads to a positive posterior mean, whereas ¢ still leads to a posterior mean of 0. Hence,
all compliant states are approved with certainty, whereas noncompliant states above sy — ¢
are approved with probability r.(p), and lower noncompliant states are rejected with cer-
tainty. Next, we find conditions such that the threat of devaluation ensure ¢* is indeed
the agent’s best response.

Devaluation. For ¢* to be a best response, devaluation must in particular dissuade
the agent from falsifying noncompliant states as 5. If a mass of noncompliant states above
sy — ¢ falsify as 5, it increases the rate at which they generate ¢ as p > r.(p), leading the
receiver to form a negative posterior mean following ¢. Hence, falsifying noncompliant
states as s bears both the explicit falsification cost, and the implicit falsification cost of
devaluating signal ¢. Because any amount of falsification by noncompliant states leads to
this devaluation, the best strategy of the agent that falsifies noncompliant states is then
to falsify noncompliant states as much as the explicit cost allows as long as the posterior
mean associated with X remains positive. The optimal deviation from ¢* is therefore to
falsify as 5 all states (compliant and noncompliant) between z(p) = min{s > s, : yc(5|s) <
1 — p} and 5§ (strategy ¢.(, in Figure 7). It has the benefit of increasing the probability
that noncompliant states generate X, at the cost of devaluing signal ¥J. Ensuring the agent
is worse off under this strategy than under ¢*, and that ¢* is therefore a best response to
7,2, puts a lower bound p, on p. Indeed, the gain over ¢* from this strategy is

/ {1 2 ')’C(EIS)}+de(S) - p[l - F,.,(O)] - rg(p)[F,.,(O) - Frr(SO - ‘9)],

S0

where the first term captures the new payoff for noncompliant falsifying as 5, whereas the
two remaining terms capture the loss from devaluation. This gain is decreasing in p, so
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a minimal value p, of p exists ensuring a negative gain. The lower bound p, is then the
value of p that makes the gain equate 0.

Because r.(p) is increasing in p, lower values of p ensure a higher payoff for the re-
ceiver. To maximize the receiver’s payoff while ensuring ¢* is an equilibrium response,
we therefore choose p to be equal to the lower bound p,. This choice provides us with
the family of tests 7,_. and equilibrium outcomes @,, . = 7,, .¢*. The next proposition
formally establishes these claims and shows the receiver’s payoff from these outcomes in-
creases as ¢ decreases to (. Furthermore, the limit payoff dominates the receiver’s payoff
from w3.

PROPOSITION 9: For every sufficiently small € > 0, &, . is an equilibrium outcome. The
receiver’s payoff V(& ,,..) is decreasing in e. Furthermore, in the low-cost region, her limit
payoff is higher than under w, that is, lim, oV (@, .) > V.

The test 7,_ . improves performance by relying both on productive falsification and de-
valuations. Compared to 77, we add a middle signal fated for approval. This operation
provides incentives for productive falsification by making every state above s, — &, except
the top state, randomly generate either the low or the middle signal with almost equal
probabilities when & — 0. Compliant states then have a strict incentive to falsify to the
top state to be approved with certainty. The middle signal is constructed to make the re-
ceiver indifferent between his two actions when only compliant states falsify, but to be
devalued whenever some noncompliant states falsify to the top. This devaluation effect
is achieved by giving noncompliant states above s, — £ a marginally lower probability of
generating ¢ than compliant states. Note the limit test with ¢ = 0 mutes the devaluation
effect because compliant and noncompliant states then generate ¢ with the same prob-
ability, so it is important that & > 0. The limit outcome of these tests can be arbitrarily
closely approximated, and it is that compliant states are approved with certainty and non-
compliant states above s, with uniform probability p, = lim,_,, p., whereas lower states
are rejected with certainty.

5. CONCLUSION

In the emissions cheating scandal, falsification by car manufacturers was detrimental as
it enabled vehicles with noncompliant emission levels to pass the environmental test. Our
analysis suggests that tests designed without accounting for falsification perform poorly
when falsification is possible. In our model, the receiver-optimal test without falsifica-
tion recommends approval for all compliant states, and rejection for noncompliant ones.
Under falsification, however, this test induces detrimental falsification by noncompliant
states sufficiently close to the baseline standard.

Our results point to practical and simple features that can significantly improve the
performance of emissions (and other) tests. Under covert falsification, the structure of
the optimal test in Theorem 1 suggests raising the operational standard above the base-
line standard. A test with a high standard, on one hand deters detrimental falsification,
whereas on the other hand it relies on productive falsification to generate approvals of
compliant states. With high falsification costs simply raising the standard suffices to elimi-
nate approvals of noncompliant states. With lower falsification costs, optimality addition-
ally requires randomly approving a fringe of noncompliant states to deter detrimental
falsification. When falsification costs are even lower, randomly rejecting compliant states
becomes necessary to prevent extremely low states from falsifying to the standard.
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When a falsification-detection technology is available, Theorem 2 and Proposition 9
show the threat of devaluation provides a powerful channel to improve test performance,
which is especially appealing when falsification costs are low. In practice, a testing agency
could accompany test outputs with a report on detected amounts of falsification, or even
perform the devaluation on the receiver’s behalf by directly reporting the expectation she
should form following each output. A rich set of test outputs is key to harnessing this tool.
Adding only a few signals might already yield strong benefits in practice. Indeed, in the
binary-state case, a numerical analysis shows the three-signal test of Section 4.1 delivers
at least 80% of the value of the optimal test to the receiver. Although we did not explicitly
model the case of imperfect detection technologies, intuition suggests the devaluation
lever should remain operational in this context.

APPENDIX

PROOF OF THEOREM 1: We prove a more general version of the theorem that also cov-
ers the case u, > 0.

THEOREM 3: Suppose the cost function satisfies (UTI) and (CTT). Then (7, ¢%) =
(Tps.355 & ps 1) solves (P), where:

(i) 83 =max{s € S:yc(s|0) <1} and p} =min{yc(s|so), 1} if pr <O0.

(i) 85 =max{s e S:yc(s[0) <1} and p:=1if p, > 0.

PROOF: We first show that for every pair (7, ¢) that satisfies (IEF), an outcome w, ;
exists that makes the receiver better off. Then we optimize the receiver’s payoff within
this class. The proof follows the outline given in the paper, but accounts for the possibility
of 7 being discontinuous.

Step 1: Optimality of Class. Suppose w = 7¢ is an equilibrium outcome. Let p =
sup,, 7(s), which exists because 7(-) is bounded. For every ¢ > 0,let S(g) ={s € S : 7(s) >
p — ¢}, and let S(¢&) be the closure of S(&). By definition of p, each S(¢), and hence, each
S(e), is nonempty. Furthermore, S(¢) is clearly nonincreasing in ¢ for the inclusion or-
der. Therefore, by Cantor’s intersection theorem, S =("),_, S(¢) is a nonempty compact
subset of S.

If some s € S* exists such that yc(s|0) > p, we can set § € ST to be the unique state
such that yc(5|0) = p. Then, under the outcome w,;, every compliant state is approved
with probability p, whereas every noncompliant state is rejected with certainty, making
the receiver as least as well off as under w. Otherwise, (CTT) implies yc(s|0) < p for
every s € S. Then we consider two cases.

First, suppose S N S* = ¢. This set is then a nonempty compact set, and we let § be its
minimal element. Then, under w,;, every compliant state is approved with probability
p, which is at least as high as under 7¢. Next, we show noncompliant states pass with
lower probability under w , ;. To see why, let {#,} be a sequence of nonnegative states that
converges to § and such that the sequence p, = 7(¢,) converges to p. Such a sequence
exists because § € S N S*. Then, for every noncompliant state s, and every n, sup, 7(t) —
ve(tls) > p, — ye(t,|s), and going to the limit in n implies

@(s) Zsup 7(t) = ye(tls) = p = ye(dls) = ©,5(s).

Otherwise, we must have S C S—, and then we let § = maxS < 0 and let § > 0 be the
unique compliant state such that ¢(5]0) = ¢(5|0), which must exist by (CTT). Then again,
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under w , ;, every compliant state is approved with probability p, which is at least as high as
under w. Next, we show noncompliant states pass with lower probability under w , ;. To see
why, let {¢,} be a sequence of states that converges to § and such that the sequence p, =
7(t,) converges to p. Such a sequence exists because § € S. Then, for every noncompliant
state s, and every n, sup, 7(t) —yc(t|s) > p, — yc(t,|s), and going to the limit in # implies

w(s) > sup (1) — ye(tls) = p — ye(Sls) = p — ye(Sls) = w,:(s).

Because, in each case, noncompliant states are approved with lower probability, and
compliant states with higher probability, the receiver is better off under w, ;.

Step 2: Choosing parameters optimally. Let V), ; =V (w,;) denote the receiver’s payoff
from an equilibrium outcome in our class. We distinguish four parameter regions and a
change of p or § that increases the receiver’s payoff in each of these regions. Together,
these four operations imply the optimal values for § and p given in the theorem.

First, suppose wu, < 0 and yc(5|sy) < p. Then setting p’ = yc(5|sy) is strictly better.
Indeed,

50

Vs =Vps=(p' — p)[ sdF,(s)— sw,(s)dF,(s) > 0.

50 5(p.5)

=0 <0

Second, suppose p < min{1, yc(5§|sy)}. Then setting p’ = min{1, yc(5§|s,)} is strictly bet-
ter. Indeed,

5(p.%)

Vs —=Vos=(p — p)/ sdF,(s) +/ (p — vc(8ls)) sdF.(s) > 0.
5(p',5) 5(p',%) —,0—
>0

Third, suppose u, >0 and yc(5| — s) < p < 1. Then setting p’ = 1 (strictly if u, > 0) is
strictly better. Indeed,

Vs =Vos= (P, - P)/

sdF.(s)=(p' — p) -

Finally, suppose yc(5|0) < p. Then setting §' = max{s <5 : yc(s|0) < p} is strictly bet-
ter. Indeed, this strictly lowers the approval probability of noncompliant states above
5(p, §) while keeping the approval probability of compliant states constant at p. Q.E.D.

PROOF OF THEOREM 2: Step 1: ‘H} solves (IDE). (IDE) is a linear differential equation
with a well-known unique solution:

i = {“(1 [ e ) —oe [ =T TII0) dy}“x)’

Xx(x) £(x)

where

cw=en( [ G=ea )
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A bit of algebra yields our closed-form expression for ;. First,

X

log(y +s) | ,
+M og(y g)]

m 0

log () = y= | tonty - o) +

/ (r— V«ﬂ)(y + S)

leading to £(x) = (=£) RS () 75 . Next,

e e R o )

Finally, using the closed form for ¢,

X(0) = (cu) g [ (- p) #E 49 T ay
0

= (—Mﬂ)ﬁgﬁ |:1<M> u7+s:|
S\ y+s .

_Km _5
— M M +S X — - wats .
s X+s s

Plugging these expressions back into our expression for H(x) yields our closed-form ex-
pression, and we get H’ by choosing « as indicated, yielding the expression. k! can be
written in closed form as in the body of the paper, or in the following form, which will be
useful in proofs:

ke - (-1
s(1+x®)LG)  ~sLE)(1+x(6)) s{@)(1+x(G))

Step 2: H is a test function. By construction, H}(s) =0 and H!(5) =5 — w,. Further-
more, we see from its closed-form expression that #; is twice continuously differentiable,
with -

. . . X x_Mﬂ ﬁ x+§ lﬁﬂ
HE(X):K£+(K£(MW+£)_0£)(X+S)(X—/.L )< —n ) ( P ) ]]-x>07

= Ky + 0c €]

and, differentiating once more,
1 X— My T (x4 s\ R
(x) = (k*(u, +5) — 0c = T,og. 2
0=+ -0 () () T @

This density has the same sign as (k% (u, +s) — 6c) for x > 0, implying it is strictly positive
because -

S— _
Kp(r+8)>0c & 5—p,> 0£<1+ = ) =c(5— ma)
- S+ Mn

& c<1.

Hence, H; is convex and increasing. Therefore, it must lie below the fully informative test
function H;. It remains to show that ’HZ also lies above the uninformative test function
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Hy:- Here, we only show this is true when ¢ = 0. We show in step 3 that, for every c €
(0,1), Hpr = H: > Hg, which will expand the conclusion to any c.

For ¢ =0, it is sufficient to show that H;(5) < 1 (note that in our notation, it can be
strictly below 1, denoting the presence of an atom at 5). To see why, first note that, by
(IDE), H;(5) = % + K?;ﬁ. Hence, to show H;(5) < 1, it is sufficient to show that «j < 1.
We can use our closed-form solution to write

- N

_pm s
_ . e . . E_/Jvﬂ' s E.’.g s
5 e = HE) = 5+ 9) — ki 49+ i+ ) ()T (22)
% (= % (= §+:u'7r E_/vLaT ﬁ §+§ ﬁ
o)) ()
—Mz —Mr M

- S+ o\ (5= \ P75 (54 5\ T
=l () (50) ()
—Ma M s

>0

implying the result.

Step 3: Optimality for the receiver. To see why H?* is optimal, suppose H is another test
function such that 7(0) > :(0). Without loss of generality, we can take this function to
be linear below 0, and let « be its slope below 0. Then k > k* as ks = H(0) > H*(0) = «’s.
Let x' = min{x € [0, 5] : H(x) = H*(x)} be the smallest crossing point between # and H.
It exists as the minimum of a nonempty (H(5) = H:(5)) and compact (by continuity of
‘H — H?) real subset. Then we must have )

() = tim P ZHOD gy M) D)
Then
H,(x) = o H(x) < H(x) = oM (%)
(s+x)(x — ) : +x)(x—p,) <
K.S Ocx
Tstx (x—po)(sta)
KS Ocx

“itr (o)t

where the equality is due to the fact that H; satisfies (IDE). However, this inequality
implies H does not satisfy (FPIC”). Q.E.D.

PROOF OF PROPOSITION 9: Step 1: We show that for each € > 0, (7, ., ¢*) is equilibrium
feasible.

Note first that any upward falsification strategy of noncompliant states leads to de-
valuating signal ¢, regardless of how compliant states are falsifying. Therefore, the only
falsification strategies of noncompliant states that are possibly beneficial for the agent
must target 5. To be beneficial, such a strategy must ensure the posterior mean associated
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with X remains positive. Consider a falsification strategy such that a mass m of noncom-
pliant states falsify as 5, and assume it keeps the posterior mean associated with X above
0. Then consider the alternative falsification strategy that concentrates this mass on the
higher noncompliant states, that is, where only states in [z, 0) with m = F,(0) — F,(2)
falsify as 5. The falsification cost of this alternative strategy must be lower by cost mono-
tonicity. Furthermore, the posterior mean following X must increase, because falsification
originates from higher noncompliant states, so both strategies lead to the same ex ante
approval probability. Hence, the alternative falsification strategy dominates the former,
implying we can restrict attention to falsification strategies such that the mass of falsifying
noncompliant states is concentrated on an interval [z, 0).

Suppose no noncompliant state falsifies as 5. Then falsifying any mass of states in [0, 5)
as s leads to a gain equal to 1 — p — yc(s|s) for each state, which is positive given our
assumption that p < 1 — y¢(5]|0). Indeed, the posterior mean following @ is 0, whereas the
posterior mean associated with X remains positive. Therefore, falsifying all states in [0, 5)
as s is optimal.

If an interval [z, 0) of noncompliant states falsifying as § exists, signal ¢ is devaluated,
so states in [0,5) are rejected unless they also falsify as 5. Because the latter can only
increase the posterior mean associated with X, the gain for each compliant state falsified
tosis 1 — p — yc(s|s) > 0. Therefore, falsifying all states in [0, 5) as 5 is optimal.

Overall, these arguments imply we can restrict attention to the family of falsification
strategies

ifs>z,

85
() = 8, otherwise,

with z < 0. Note ¢* = ¢o. Whenever z < 0, signal ¢ is devaluated. If z < s, signal X is
also devaluated and rejection is certain, so we can restrict attention to z > s,. The agent’s
payoff is then

[ 1= p = cOWIFL®) =D = F(s0- )]

which is maximized by choosing z equal to z(p) = min{s > s, : yc(5|s) <1 — p}. Overall,
we have shown the best deviation from ¢* is ¢.(,. The net gain of the agent if she deviates
to (,‘bz(p) is

I'(p,e)= / {1=p—vcGls)} dFo(s) = p[1 = F1(0)] = ro(p)[Fr(0) — Fa(so — &)]

/Edeq,(s)

=A {1—p—vc(ls)) dF.(s) — p[1 - F.(0)] +pEW(S|(())ZS2So —

This function is decreasing and continuous in p and —e. Furthermore, I'(0, &) > 0 >
I'(1 — yc(5]0), &), so a unique value p, € (0,1 — yc(5]0)) exists such that I'(p,, &) =0,
and to ensure ¢, is not a profitable deviation, we must therefore choose p > p,. Hence,
o, . is equilibrium feasible for every p > p..
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Step 2: The receiver’s payoff is decreasing in e.
The receiver’s payoff from the equilibrium outcome @, , is

/sde,,(s) +r.(p) /0 sdF.(s)=(1-p) /Sde,,(s),

which is decreasing in p. Hence for any & > 0, the best equilibrium outcome is @, .. Fur-
thermore, p, is increasing in &, so the receiver’s payoff at the equilibrium outcome @, .
is also decreasing in €. As ¢ — 0, p, converges to p, < p,, where p, is the unique value of
p such that I'(p, 0) =0, and the receiver’s payoff converges to V= 11— po) fos sdF,(s).
Step 3: The limit payoff of the receiver is strictly higher than V} in the low-cost region.
The value of p, is characterized by the formula

0

I'(po,0) = / {1 — Po— YC(§|S)} dF.(s) — Po[l - Fw(so)] =0,

z(po)
implying
/( ){1 — yc(sls)} dF.(s) / {1—yc(ls)} dFa(s)
P RG RO -EEm) BB O

because, in the low-cost region, we have yc(s|s) < yc(s|so) < 1, for all s € [sy, 0]. The
difference between the limit receiver payoff 1" and V* in the low-cost region is

V- Vr=(1- po) /Osdew(s) - (yc(§|s0) /Sdew(s) —/ yc(§|s)de,T(s))
= (=) [ 9P = [ 1eGI)(-9)dF.()
- / (1= ye(ls)} (=5) dF, (s) — po / (—5)dF,(s)

0 / {1—ycGls)} dFa(s)
> [ 1=y ) s

>0,

(=5) dFx(s)

S0

where the first inequality is from (3), and we repeatedly use that | zde,,(s) =
/. g sdF,(s) + [} sdF,(s) = 0. For the last inequality, consider the two probability dis-

S

tributions on [s,, 0] defined by

dF,(s)
Fr(0) = Fa(s0)

(1= ye(5ls)) dF,(s)

{1—ycGls)} dF.(s)

dG(s) = and dH(s)=

S0
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The ratio Zgg; is proportional to 1/(1 — yc(s|s)), which is increasing in s, implying G
dominates H in the likelihood ratio order, so Es(s) > Ey(s), which yields the desired
inequality. QE.D.
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