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SM.1. ERGODICITY AND STATIONARITY

LET (ζt)∞
t=−∞ be a Markov chain with transition kernel ζ �→ P(ζ� ·) ∈ P (Z) and ζt ∈ Z ⊆

R
d for some d > 0. Also, for any probability measure P over Z and any f : Z → R, let
P[f ](z) ≡ ∫

f (u)P(z�du) (if it exists).

ASSUMPTION 9: There exist constants γ ∈ (0�1), λ ∈ (0�1), b > 0 and R > 2b/(1 − γ),
a function V : Z → [1�∞), and a probability measure � such that: (i) P[V](ζ) ≤ γV(ζ) +
b1{ζ ∈ C} for all ζ ∈ Z with C ≡ {ζ ∈ Z : V(ζ) ≤R}; (ii) infζ∈C P(ζ� ·) ≥ λ�(·), with �(C) >
0.

The next result is used for the proof of Lemma 1; it contains well-known results that are
stated and proved here for convenience. In particular, the first part of Lemma 10 is a re-
statement of Theorem 1.2 in Hairer and Mattingly (2011). The second part of Lemma 10
and Assumption 9(ii) imply that P is Harris recurrent (see Athreya and Lahiri (2006, Ch.
14)) and aperiodic (see Thierney (1996, p. 65)). The proof follows from standard argu-
ments.

Let v �→ ‖v‖V ≡ supζ
|v(ζ)|

1+V(ζ) . Also, for any A ⊆ Z, let TA = inf{t ≥ 0 : ζt ∈ A}. Finally,
for any two sequences (Xn)n and (Yn)n, write Xn � Yn if Xn ≤ CYn for some universal
positive finite constant C.

LEMMA 10: If Assumption 9 holds, then:
(i) P admits a unique invariant measure ν∗, and there exist constants γ ∈ (0�1) and C > 0

such that ∥∥Pn[v] − ν∗[v]
∥∥

V
≤ Cγn∥∥v− ν∗[v]

∥∥
V

for every measurable function v such that ‖v‖V <∞, where ν∗[v] ≡ ∫
v(ζ)ν∗(dζ).

(ii) P(ζ�{TC <∞}) = 1 for all ζ ∈ Z, and P(ζ0�C) > 0 for all ζ0 ∈ C.

PROOF OF LEMMA 10: The proof follows standard arguments and is thus omitted; it
can be found in Pouzo, Psaradakis, and Sola (2021). Q.E.D.
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PROOF OF LEMMA 1: Let (ζt)∞
t=−∞ be the stochastic process given by ζt ≡ (Xt�St). This

process is a Markov chain with transition kernel X× S � ζ �→ P(ζ� ·) ∈P (X× S) given by

P
(
(x� s)�{ζt+1 ∈A1 ×A2}

) =
∑
s′∈A2

Q∗
(
x� s� s′

)
P∗

(
x� s′�A1

)
�

for any Borel sets A1 ⊆ X and A2 ⊆ S.
By Lemma 10, there exists a unique invariant measure ν, provided that the conditions

of Assumption 9 are met. In order to verify the first part of Assumption 9, consider V(ζ) =
U (x), and C ≡ C1 × S with C1 ≡{x ∈ X : U (x) ≤R}. By Assumption 2(i),

P[V](ζ) =
∫
X

U
(
x′){∑

s′∈S
Q∗

(
x� s� s′

)
P∗

(
x� s′� dx′)} ≤ γU (x) + 2b′1{x ∈ C1}�

Thus, b ≡ 2b′. Regarding Assumption 9(ii), observe that, by Assumption 1(i), for C and
any s ∈ S,

P
(
(x� s)�C × {

s′
}) ≥ q(x)P∗

(
x� s′�C

)
�

and, by Assumption 2(iii), P∗(x� s′�C) ≥ λ′	(C) and λ′ ∈ (0�1). Also note that, by As-
sumption 1, q is continuous and q(x) > 0 for all x ∈ X. Furthermore, by Assumption 2(ii),
U is lower semicompact, because {x ∈ X : U (x) ≤ R} is closed (x �→ U (x) is lower semi-
continuous), and is also bounded. Therefore, infx:U (x)≤R q(x) = minx:U (x)≤R q(x) ≥ c > 0
(because it is a minimization of a continuous function on compact set). Therefore,

P
(
ζ�C × {

s′
}) ≥ cλ′	(C)

1
|S| �

and, by putting �=	(·) 1
|S| and λ≡ cλ′, Assumption 9(ii) follows since	(C1) > 0. Since ν

is unique, it is trivially ergodic. Therefore, the process with initial probability measure ν is
stationary. Ergodicity of (ζt)t follows from Theorem 14.2.11 in Athreya and Lahiri (2006)
(recall that P is Harris recurrent and aperiodic). SinceXt is a deterministic function of ζt ,
X∞

0 is also stationary and ergodic. Finally, observe that∫
sup

0≤f≤1

∣∣Pn[f ](ζ) − ν[f ]
∣∣ν(dζ) � γn

∫ ∣∣1 +U (x)
∣∣ν(dζ)�

Since U satisfies Assumption 9(i), it follows that
∫
P[U ](ζ)ν(dζ) ≤ γν[U ] +K. Since ν is

the invariant measure of P and γ ∈ (0�1), this implies that ν(dζ) ≤K/(1 −γ). Therefore,∫
sup

0≤f≤1

∣∣Pn[f ](ζ) − ν[f ]
∣∣ν(dζ) � γn�

thereby implying that (ζt)t is β-mixing with rate βn =O(γn) (see Davydov (1973)). Since
Xt is a deterministic function of ζt , the same holds for X∞

0 . Q.E.D.

SM.2. PROOFS OF SUPPLEMENTARY LEMMAS IN APPENDIX A.1

To prove Lemmas 2 and 3, we use the following result.
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LEMMA 11: Suppose Assumptions 1 and 4(ii) hold. Then, for all t ∈ N and −n ≤ −m ≤
t − 1, a.s.-P̄ν∗ ,

sup
θ∈�

∣∣logpνt
(
Xt |Xt−1

−m �θ
) − logpνt

(
Xt |Xt−1

−n � θ
)∣∣ ≤ C(Xt−1�Xt)

t−1∏
i=−m

(
1 − q(Xi)

)
�

PROOF OF LEMMA 11: Observe that, for any n ∈ N,

logpνt
(
Xt |Xt−1

−n � θ
) = log

∑
s∈S
pθ(Xt−1� s�Xt)P̄νθ

(
s |Xt−1

−n
)
�

and since logx− log y ≤ x/y − 1, it suffices to study
∑
s∈S pθ(Xt−1�s�Xt )(P̄νθ (St=s|Xt−1−m )−P̄νθ (St=s|Xt−1−n ))∑

s∈S pθ(Xt−1�s�Xt )P̄
ν
θ (s|Xt−1−n )

.
This expression can be bounded above by

max
s∈S
pθ(Xt−1� s�Xt)

min
s∈S
pθ(Xt−1� s�Xt)

∥∥P̄νθ(St = · |Xt−1
−m

) − P̄νθ
(
St = · |Xt−1

−n
)∥∥

1
�

By Assumption 4(ii), supθ∈�
maxs∈S pθ(Xt−1�s�Xt )
mins∈S pθ(Xt−1�s�Xt )

≤ C(Xt−1�Xt) a.s.-P̄ν∗ . So it suffices to

bound ‖P̄νθ (St = · |Xt−1
−m ) − P̄νθ (St = · |Xt−1

−n )‖1. By Lemma B.2.2 in Stachurski (2009) and
the fact that −n≤ −m, this is bounded by

1
2

sup
b�c∈S2

∥∥P̄νθ(St = · | S−m = b�Xt−1
−m

) − P̄νθ
(
St = · | S−m = c�Xt−1

−m
)∥∥

1
�

Hence,

sup
θ∈�

∣∣logpνt
(
Xt |Xt−1

−m �θ
) − logpνt

(
Xt |Xt−1

−n � θ
)∣∣ ≤ C ′αθ�t�−m

(
Xt−1

−m
)
�

where αθ�t�−m(Xt−1
−m ) is defined in expression (12). By applying Lemmas 6 and 5 and the

fact that αθ�t�−m(Xt−1
−m ) ≤ ∏t−1

j=−m αθ�j�j+1(Xt−1
−m ), it follows that

sup
θ∈�

∣∣logpνt
(
Xt |Xt−1

−m �θ
) − logpνt

(
Xt |Xt−1

−n � θ
)∣∣ ≤ C(Xt−1�Xt)

t−1∏
i=−m

(
1 − q(Xi)

)
�

a.s.-P̄ν∗ . Q.E.D.

We now prove Lemmas 2 and 3.

PROOF OF LEMMA 2: The result follows from Lemma 11, with m= 0 and n=M , and
Assumption 5. Q.E.D.

PROOF OF LEMMA 3: Recall that, by Lemma 1, the processX∞
−∞ is ergodic and station-

ary under P̄ν∗ .
Part (i). Consider a δ > 0 and an open cover {B(θ�δ) : θ ∈ �} where B(θ�δ) is an

open ball centered around θ with radius δ > 0. Since � is compact (Assumption 3),
there exists a finite subcover Bj ≡ B(θj� δ) with j = 1� � � � � J. Also note that, pointwise
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in θ ∈�, �νT (XT
−∞� θ) −EP̄ν∗ [�νT (XT

−∞� θ)] → 0 a.s.-P̄ν∗ by the ergodic theorem and the fact
that X∞

−∞ �→ �νT (XT
−∞� θ) ∈ L1(P̄νθ∗). Thus, it suffices to show that there exists a T (j� ε)

such that, for all t ≥ T (j� ε),

P̄ν∗

(
sup
θ∈Bj

T−1
T∑
t=1

(
lt
(
Xt

−∞� θ
) −EP̄ν∗

[
lt
(
Xt

−∞� θ
)])
> ε

)
≤ ε�

where lt (Xt
−∞� θ) ≡ log pν (Xt |Xt−1−∞�θ)

pν (Xt |Xt−1−∞�θj )
. Observe that, for any j,

sup
θ∈Bj

T∑
t=1

(
lt
(
Xt

−∞� θ
) −EP̄ν∗

[
lt
(
Xt

−∞� θ
)])

≤
T∑
t=1

sup
θ∈Bj

(
lt
(
Xt

−∞� θ
) −EP̄ν∗

[
lt
(
Xt

−∞� θ
)]) ≡

T∑
t=1

l̄t
(
Xt

−∞
)
�

Moreover, observe that

sup
θ∈Bj

log
pν

(
Xt |Xt−1

−∞� θ
)

pν
(
Xt |Xt−1

−∞� θj
) ≤ sup

θ∈Bj

pν
(
Xt |Xt−1

−∞� θ
)

pν
(
Xt |Xt−1

−∞� θj
) − 1�

By Assumption 4(i), for any ε > 0 there exists a δ > 0 such thatEP̄ν∗ [supθ∈Bj
pν (X0|X−1−∞�θ)

pν (X0|X−1−∞�θj)
] ≤

1 + ε for any j ∈{1� � � � � J} and any t. Therefore, we can choose a δ > 0 such that

EP̄ν∗

[
sup
θ∈Bj

log
pν

(
X0 |X−1

−∞� θ
)

pν
(
X0 |X−1

−∞� θj
)]

≤ ε/4�

This in turn implies thatEP̄ν∗ [l̄t(Xt
−∞)] ≤ ε/2. This result and the ergodic theorem establish

that limT→∞ T−1
∑T

t=1 l̄t (X
t
−∞) ≤ ε/2 a.s.-P̄ν∗ . This implies the result in (11).

Part (ii). Follows directly from the ergodic theorem and the fact thatX∞
−∞ �→ logpν(Xt |

Xt−1
−∞� θ∗) is in L1(P̄ν∗ ). Q.E.D.

SM.3. PROPERTIES OF pθ(X1|X0
−∞)

For any t ∈ N0 ≡ N ∪ {0}, any Xt
−∞ and any θ ∈ �, pν(Xt|Xt−1

−∞� θ) is defined as
lim infM→∞pνθ(Xt|Xt−1

−M); pν∗(Xt|Xt−1
−∞) is defined analogously.

LEMMA 12: Suppose Assumptions 4(ii) and 5 hold. Then:
(1) For any t ∈ N0, x �→ pν(·|Xt−1

−∞� θ) and x �→ pν∗(·|Xt−1
−∞) are densities, a.s.-P̄ν∗ .

(2) Suppose � is compact and that for each n ∈ N0, θ �→ pνθ(X1|X0
−n) is uniformly con-

tinuous a.s.-P̄ν∗ . Then, for any θ0 ∈� and ε > 0, there exists a δ > 0 such that

P̄ν∗
(

sup
θ0∈�

sup
θ∈B(θ0�δ)

∣∣pν(X1|X0
−∞� θ

) −pν(X1|X0
−∞� θ0

)∣∣> ε)< ε�
(3) Suppose � is compact and that for each n ∈ N0, θ �→ pνθ(X1|X0

−n) is uniformly contin-
uous a.s.-P̄ν∗ . Suppose also that there exists functions (x1�x0) �→ (p(x0�x1)�p(x0�x1))
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such that for any p ∈ {pθ : θ ∈ �} ∪ p∗, p(x0�x1) ≤ p(x0� s�x1) ≤ p(x0�x1) for all
s ∈ S, and EP̄ν∗ [p(X0�X1)/p(X0�X1)]<∞. Then Assumptions 3 and 4 hold.

PROOF: (1) We need to show that the functions integrate to 1. By analogous steps to
those in the proof of Lemma 11, it follows that

∣∣∣∣
∫ {
pν

(
x|Xt−1

−∞� θ
) −pνθ

(
x|Xt−1

−n
)}
dx

∣∣∣∣
≤

∫ ∑
s

pθ(Xt−1� s�x) dx lim sup
M→∞

t−1∏
i=−n

(
1 − q(Xi)

)
dx

=
t−1∏
i=−n

(
1 − q(Xi)

)|S|�

Since this holds for any n such that −n≤ t − 1, we can take averages and obtain, for any
ε > 0, that

P̄ν∗

(
1

M + 1

M∑
n=0

∣∣∣∣
∫
pν

(
x|Xt−1

−∞� θ
)
dx− 1

∣∣∣∣> ε
)

≤ P̄ν∗
(

1
M + 1

M∑
n=0

0∏
i=−n

(
1 − q(Xi)

)|S|> ε
)
�

Since this holds for any M , by taking M → ∞, stationarity and Assumption 5 imply that
the RHS vanishes. Thus, it follows that P̄ν∗ (|

∫
pν(x|Xt−1

−∞� θ) dx− 1|≥ ε) = 0. As the ε > 0
is arbitrary, this implies that

∫
pν(x|Xt−1

−∞� θ) dx= 1, a.s.-P̄ν∗ . Following the same logic, an
analogous result can be established for pν∗(·|Xt−1

−∞).
(2) Similarly, for any n such that −n≤ t − 1,

sup
θ∈�

∣∣pν(Xt|Xt−1
−∞� θ

) −pνθ
(
Xt|Xt−1

−n
)∣∣ ≤

∑
s∈S
pθ(Xt−1� s�Xt)

t−1∏
i=−n

(
1 − q(Xi)

)
�

Hence, for any θ0 in �,

sup
θ∈B(θ0�δ)

∣∣pν(Xt|Xt−1
−∞� θ

) −pν(Xt|Xt−1
−∞� θ0

)∣∣

≤ sup
θ∈B(θ0�δ)

∑
s∈S
pθ(Xt−1� s�Xt)

1
1 +M

M∑
n=0

t−1∏
i=−n

(
1 − q(Xi)

)

+ 1
1 +M

M∑
n=0

sup
θ∈B(θ0�δ)

∣∣pνθ(Xt|Xt−1
−n � θ

) −pνθ0

(
Xt|Xt−1

−n
)∣∣�
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For any γ > 0, chooseM such that P̄ν∗ ( 1
1+M

∑M

n=0

∏t−1
i=−n(1−q(Xi)) ≥ γ) < γ; suchM exists

by Assumption 5. Given such M , for any ε > 0 and any δ > 0, it follows that

P̄ν∗
(

sup
θ0∈�

sup
θ∈B(θ0�δ)

∣∣pν(Xt|Xt−1
−∞� θ

) −pν(Xt|Xt−1
−∞� θ0

)∣∣> ε)

≤ P̄ν∗
(

sup
θ∈�

∑
s∈S
pθ(Xt−1� s�Xt) ≥ 0�5ε/γ

)
+ γ/3

+ P̄ν∗
(

1
1 +M

M∑
n=0

sup
θ0∈�

sup
θ∈B(θ0�δ)

∣∣pνθ(Xt|Xt−1
−n

) −pνθ0

(
Xt|Xt−1

−n
)∣∣ ≥ 0�5ε

)
�

Let δ > 0 be such that for each n ∈ {0� � � � �M}, supθ0∈� supθ∈B(θ0�δ)|p
ν
θ(Xt|Xt−1

−n ) −
pνθ0

(Xt|Xt−1
−n )|< 0�5ε a.s.-P̄ν∗ ; such δ > 0 exists by our conditions. So the third term in

the RHS is 0. Also, under our conditions, it follows that supθ∈� pθ(Xt−1� s�Xt) = OP̄ν∗ (1),
and thus the first term in the RHS can be made smaller than ε/3 by a suitably chosen
γ ∈ (0� ε). Thus, the desired result holds.

(3) By the definition of pν(�|�� θ), it follows that pν(X1|X0
−∞� θ) ≤ maxs∈Spθ(X0� s�X1),

and for some n ∈ N0,

pν
(
X1|X0

−∞� θ
) ≥ 0�5

∑
s∈S
pθ(X0� s�X1) Pr

θ

(
S1 = s |X0

−n
) ≥ 0�5 min

s∈S
pθ(X0� s�X1)�

Thus, by our conditions, for any δ > 0 and θ0 ∈�,

sup
θ∈B(δ�θ0)

pν
(
X1|X0

−∞� θ
)

pν
(
X1|X0

−∞� θ0

) ≤ p(X0�X1)
p(X0�X1)

�

and the RHS is in L1(P̄ν∗ ). Thus, by part (2) and the dominated convergence theorem, for
any ε > 0, there exists a δ > 0 such that

EP̄ν∗

[
sup

θ∈B(θ0�δ)

pν
(
X1|X0

−∞� θ
)

pν
(
X1|X0

−∞� θ0

)]
≤ 1 + ε�

for any θ0 ∈�. This readily implies Assumption 4(i). Part (ii) also follows with (x0�x1) �→
C(x0�x1) = p(x0�x1)

p(x0�x1) . Similarly, by noting that

1 − pν
(
X1|X0

−∞� θ
)

pν∗
(
X1|X0

−∞
) ≤ log

pν
(
X1|X0

−∞� θ
)

pν∗
(
X1|X0

−∞
) ≤ pν

(
X1|X0

−∞� θ
)

pν∗
(
X1|X0

−∞
) − 1�

it follows that, for any θ ∈�,
∣∣∣∣log

pν∗
(
X1|X0

−∞
)

pν
(
X1|X0

−∞� θ
) ∣∣∣∣ ≤ 1 + p(X0�X1)

p(X0�X1)
�

Since the RHS is in L1(P̄ν∗ ), the results in part (2) and the dominated convergence theo-
rem imply that θ �→H(θ) is continuous. Q.E.D.
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SM.4. SUFFICIENT CONDITIONS FOR ASSUMPTIONS 5 AND 8

By exploiting the fact that (Xt)∞
t=−∞ is β-mixing and stationary, the following lemma

provides sufficient conditions for Assumption 5.

LEMMA 13: Suppose Assumptions 1 and 2 hold.
(1) Suppose further there exists l ≥ 1 such that

EP̄∗
ν

[(
1 − q(X1)

)l′]
< 1 and EP̄∗

ν

[
C(X1�X0)l

]
<∞�

where 1/l′ + 1/l= 1. Then limT→∞EP̄∗
ν
[T−1

∑T

t=1C(Xt−1�Xt)
∏t−1
i=0 (1 − q(Xi))] = 0. 23

(2) Suppose further EP̄∗
ν
[(1 − q(X1))

2a
1−a ]< 1. Then Assumption 8 holds.

PROOF: (1) By stationarity and the condition that E[C(X−1�X0)l] < ∞, by Jensen’s
inequality (and the fact that 1/l′ ≤ 1, where 1/l+ 1/l′ = 1), it suffices to show that

lim
T→∞

T−1
T∑
t=1

EP̄∗
ν

[
t−1∏
i=0

(
1 − q(Xi)

)l′] = 0�

Note that, for any 1 ≤m≤ T ,

T−1
T∑
t=1

EP̄∗
ν

[
t−1∏
i=0

(
1 − q(Xi)

)l′] ≤ m

T
+ T−1

T∑
t=m+1

EP̄∗
ν

[
t−1∏
i=0

(
1 − q(Xi)

)l′]
�

By employing well-known coupling results for β-mixing sequences (see Yu (1994)), it
follows that24

EP̄∗
ν

[
t−1∏
i=0

(
1 − q(Xi)

)l′] ≤ βqt/q+ (
EP̄∗

ν

[(
1 − q(X1)

)l′])(t/q−1)/2
�

for any q ∈{1� � � � � t}. Therefore, for any 1 ≤m≤ T ,

T−1
T∑
t=1

EP̄∗
ν

[
t−1∏
i=0

(
1 − q(Xi)

)l′] ≤ m

T
+ T−1

T∑
t=m+1

{
βqt/q+ (

EP̄∗
ν

[(
1 − q(X1)

)l′])(t/q−1)/2}
�

By Lemma 1, βq = exp{q logγ}. This fact and the condition EP̄∗
ν
[(1 − q(X1))l′] < 1 im-

ply that we can take, for instance, q ≡ t1/2 and m = √
T , so that the RHS vanishes as T

diverges.
(2) By our previous calculations,

EP̄ν∗

[
t−1∏
i=0

(
1 − q(Xi)

) 2a
1−a

]
≤ βqt/q+ (

EP̄∗
ν

[(
1 − q(X1)

) 2a
1−a ])(t/q−1)/2

�

So the result follows because for q= √
t the RHS is the sum of terms in �1.25 Q.E.D.

23Clearly, by the Markov inequality, Part (1) implies that limT→∞ P̄∗
ν (T−1 ∑T

t=1C(Xt−1�Xt)
∏t−1
i=0 (1 −

q(Xi)) ≥ ε) = 0.
24For the complete derivations, we refer the reader to Pouzo, Psaradakis, and Sola (2021).
25For the complete derivations, we refer the reader to Pouzo, Psaradakis, and Sola (2021).
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SM.5. PROOFS AND RESULTS FOR EXAMPLE 4

In what follows, emax(M) and emin(M) denote the maximal and minimal eigenvalues of
a matrix M .

LEMMA 14: Assumption 2 holds.

PROOF: For each s ∈ S, we apply Theorem 3.3 in Douc, Fort, Moulines, and Soulier
(2004). To do so, we first verify their Assumptions 3.3 and 3.4. In our case, ε∼N(0��(s)),
so their Assumption 3.3 is satisfied for any z0 and γ0 = 1. In their notation, g(x) ≡ μ(s) +
�ᵀx. Observe that ‖g(x)‖ ≤ ‖μ(s)‖ + emax(��ᵀ)‖x‖. By assumption, emax(��ᵀ) ≡ γ < 1
and ∥∥μ(s)

∥∥ ≤ (
1 − emax

(
��ᵀ))‖x‖(1 − ‖x‖−0�5

)
for all x such that ‖x‖ ≥ R0. Such an R0 exists because ‖μ(s)‖ is bounded and
emax(��ᵀ) < 1. This choice ensures that ‖g(x)‖ ≤ ‖x‖(1 − ‖x‖0�5), which in turn, en-
sures the validity of their Assumption 3.4 with r = 1 and ρ = 0�5. By their Theorem
3.3, Assumption 2(i) holds. Assumption 2(ii), (iii) is satisfied because infx∈A P∗(s�x�C) ≥∫
C

infx∈A p(x�a)da, and since A is bounded, it follows that infx∈A p(x�a) ≥ exp{D̃ +
(x′)T F̃a + G̃a}, so the RHS plays the role of the measure 	, which clearly is such that
	(A) > 0. Q.E.D.

Let κ ≡ maxs∈S sup�(s)∈� emax(�(s)) and κ ≡ mins∈S inf�(s)∈� emin(�(s)); m =
maxs∈S supμ(s)∈� ‖μ(s)‖; M = sup�∈� emax(��ᵀ) and M = min�∈� emin(��ᵀ); κ∗ ≡
maxs∈S emax(�∗(s)) and κ∗ ≡ mins∈S emin(�∗(s)); m∗ = maxs∈S ‖μ∗(s)‖; M∗ = emax(�∗�ᵀ

∗ )
and M∗ = emin(�∗�ᵀ

∗ ). By the assumptions in the text, κ, κ∗, κ, κ∗, M , M , M∗, M∗ are all
in (0�∞).

LEMMA 15: There exists a C ∈ [1�∞) such that, for any (x� y) and any s,

fN
((
y −�ᵀx−μ(s)

)
�−1/2(s)

)
≤ C exp

{−0�5κ
(‖y‖2 +M‖x‖2 − 2

√
M‖x‖‖y‖) + κ(‖y‖ +

√
M‖x‖)m}

�

fN
((
y −�ᵀx−μ(s)

)
�−1/2(s)

)
≥ C−1 exp

{−0�5κ
(‖y‖2 +M‖x‖2 + 2

√
M‖x‖‖y‖) − κ(‖y‖ +

√
M‖x‖)m}

�

An analogous bound holds for fN ((y −�ᵀ
∗x−μ∗(s))�−1/2

∗ (s)).

PROOF: The proof involves lengthy but straightforward derivations and is thus omitted;
for details, see Pouzo, Psaradakis, and Sola (2021). Q.E.D.

LEMMA 16: Suppose there exists a l ≥ 1 such that lκ < lκ + κ∗ and lκM < lκM + κ∗.
Then

EP̄∗
ν

[
exp

{−0�5l
(
(b1 − a1)‖Y‖2 + (b2 − a2)‖X‖2 − 2(b3 + a3)‖X‖‖Y‖)

+ l(b4 + a4)‖Y‖ + l(b5 + a5)‖X‖}]<∞�
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where

a1 = b4 = κ� b1 = a4 = κ� a2 = κM� b2 = κM�
a3 = b5 = κ

√
M� b3 = a5κ

√
M�

REMARK 1: Before going to the proof, we discuss the conditions in the lemma. They
basically require that the “spread” of the eigenvalues of the matrices �(·) and ��∗ is
not too large relative to the eigenvalues in �∗(·). This condition comes naturally since
we are essentially requiring that the ratio of two exponential functions is integrable with
respect to a Gaussian measure. For instance, if �(·), �∗(·) and ��ᵀ, �∗�ᵀ

∗ are matrices
with eigenvalues bounded between 0< a and a+ �, then sufficient conditions are given
by l� < a and l(2a�+ (�)2) < a, which is equivalent to l�2

1−2l� < a. �

PROOF: It is enough to show that

EP̄∗
ν

[
T1(Y )

] ≡EP̄∗
ν

[
exp

{−0�5l(b1 − a1)‖Y‖2 + l(b4 + a4)‖Y‖}]<∞�
EP̄∗

ν

[
T2(X)

] ≡EP̄∗
ν

[
exp

{−0�5l(b2 − a2)‖X‖2 + l(b5 + a5)‖X‖}]<∞�
EP̄∗

ν

[
T3(X�Y )

] ≡EP̄∗
ν

[
exp

{
l(b3 + a3)‖X‖‖Y‖)

}]
<∞�

For any d ∈ {1�2}, suppose there exists ϕ such that
∫
Td(b)p∗(x� s�b) db ≤ ϕ(x)Td(x)

for any x, and, for any γ > 0, {x : ϕ(x) ≥ γ} is either empty or compact. Then, for any
γ > 0, ∫

Td(x)ν(dx) =
∫

1
{
ϕ(x) ≤ γ}

Td(x)ν(dx) +
∫

1
{
ϕ(x) > γ

}
Td(x)ν(dx)

=
∫ ∫

1
{
ϕ(x) ≤ γ}

Td(b)p∗(x� s�b) dbν(dx�ds)

+
∫

1
{
ϕ(x) > γ

}
Td(x)ν(dx)

≤ γ
∫
Td(x)ν(dx) + sup

x:ϕ(x)≥γ
Td(x)�

where the second line follows because ν is the invariant probability distribution. Since
{x : ϕ(x) ≥ γ} is bounded and compact (if it is nonempty), supx:ϕ(x)≥γ Td(x) ≤M <∞.
Choosing γ < 1, it follows that

∫
Td(x)ν(dx) ≤ M

1−γ <∞, as desired.
We now show that

∫
T1(b)p∗(x� s�b) db≤ ϕ(x)T1(x) for any x. To do this, note that

∫
T1(b)p∗(x� s�b) db≤

∫
exp

{
0�5l(κ− κ)‖y‖2 + l(κ+ κ)‖y‖}p∗(x� s� y) dy�

and, by Lemma 15,

fN
((
y −�ᵀ

∗x−μ∗(s)
)
�−1/2

∗ (s)
) ≤exp

{−0�5κ∗
(‖y‖2 − 2

√
M∗‖x‖‖y‖

) + κ∗‖y‖m∗
}
B∗(x)�
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with B∗(x) ≡ C∗ exp{−0�5κ∗M∗‖x‖2 + κ∗
√
M∗‖x‖m∗}. Therefore,

∫
T1(b)p∗(x�s�y) dy

B∗(x) is
bounded by∫

exp
{
0�5(κ− κ)‖y‖2 + l(κ+ κ)‖y‖}

× exp
{−0�5κ∗

(‖y‖2 − 2
√
M∗‖x‖‖y‖

) + κ∗m∗‖y‖
}
dy

=
∫

exp
{
0�5

(
l(κ− κ) − κ∗

)‖y‖2 + κ∗

√
M∗‖x‖‖y‖ + (

κ∗m∗ + l(κ+ κ)
)‖y‖}dy�

By our conditions, l(κ − κ) − κ∗ < 0. Hence, the expression above is an integral of
an exponential function of a quadratic form with negative leading coefficient, and is
thus finite. Moreover, after some algebra, there exists a finite constant C , such that∫
T1(b)p∗(x� s� y) dy ≤ CB∗(x) exp{κ∗

√
M∗‖x‖/(−(l(κ − κ) − κ∗))}); we redefine the

RHS as CB∗(x) exp{Dκ∗
√
M∗‖x‖}) with D> 0. Therefore, the result holds with

x �→ ϕ(x) ≡ exp
{−0�5

(
κ∗M∗ + l(κ− κ)

)‖x‖2 + (
κ∗

√
M∗(D+m∗) + l(b4 + a4)

)‖x‖}�
As the coefficient on ‖x‖2 is −0�5(κ∗M∗ + l(κ−κ)), which is negative, the function satis-
fies the required conditions.

The case for d = 2 is analogous and is thus omitted; for this case, we use the restriction
that lκM < lκM + κ∗, instead of l(κ− κ) − κ∗ < 0.

Finally, observe that, if
∫
T3(x� y)p∗(x� s� y)ν(dx�ds) dy ≤ C

∫
exp{c1‖x‖}ν(dx) for

some c1 <∞, then we can follow the same approach as before to show that
∫
T3(x� y) ×

p∗(x� s� y)ν(dx�ds) dy <∞. Observe that, by the same calculations as before,∫
T3(x� y)p∗(x� s� y) dy

≤ B∗(x)
∫

exp
{
l(a3 + b3)‖x‖‖y‖ − 0�5κ

(‖y‖2 − 2
√
M‖x‖‖y‖) + κ‖y‖m}

dy

≤ CB∗(x) exp
{(
l(a3 + b3) + κ

√
M

)‖x‖}�
The RHS is of the form C exp{c1‖x‖}, as desired. Q.E.D.

SM.6. PROOFS OF SUPPLEMENTAL LEMMAS IN APPENDIX A.2

PROOF OF LEMMA 5: For any a, b in S,

P̄νθ
(
Sl+1 = b | Sl = a�Xj

−m
) = P̄νθ

(
X
j
l+1 | Sl+1 = b�Sl = a�Xl

−m
)
Qθ(Xl�a�b)∑

c∈S
P̄νθ

(
X
j
l+1 | Sl+1 = c�Sl = a�Xl

−m
)
Qθ(Xl�a� c)

�

The expression P̄νθ (Xj
l+1 | Sl+1 = b�Sl = a�Xl

−m) equals P̄νθ (Xj
l+1 | Sl+1 = b�Xl) because

of the Markov property. The latter probability depends on the transitions of Xt+1 given
(Xt�St+1) and St+1 given (Xt�St) for each t ≥ l + 1. Since these are the same for the
process with i = 1 and i = 2 and the “original” process” (St�Xt)∞

t=−m, the last line of the
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previous display equals Prθ(η1�l+1 = b | η1�l = a�Xj
−m) = Prθ(η2�l+1 = b | η2�l = a�Xj

−m), as
desired. Q.E.D.

PROOF OF LEMMA 6: Throughout this proof, we omit the dependence on θ in the prob-
ability terms and on other quantities. For any a, c in S,∥∥Pr

(
η1�l+1 = · | η1�l = a�Xj

−m
) − Pr

(
η2�l+1 = · | η1�l = c�Xj

−m
)∥∥

1

≤ ∥∥Pr
(
η1�l+1 = ·�υ1�l = 0 | η1�l = a�Xj

−m
) − Pr

(
η2�l+1 = ·�υ2�l = 0 | η2�l = c�Xj

−m
)∥∥

1

+ ∥∥Pr
(
η1�l+1 = ·�υ1�l = 1 | η1�l = a�Xj

−m
) − Pr

(
η2�l+1 = ·�υ2�l = 1 | η2�l = c�Xj

−m
)∥∥

1

≡ Term1 + Term2

To bound the second term, note that

Pr
(
η1�l+1 = ·�υ1�l = 1 | η1�l = a�Xj

−m
) = Pr

(
η1�l+1 = · | υ1�l = 1�η1�l = a�Xj

−m
)

× Pr
(
υ1�l = 1 | η1�l = a�Xj

−m
)
�

It follows that Pr(υ1�l = 1 | η1�l = a�Xj
−m) = q(Xl), because given Xj

−m, υ1�l is drawn in-
dependently according to a probability function that only depends on Xl (in particular,
it does not depend on η1�l), and is given by q(Xl). By some algebra, the Markov prop-
erty, and the fact that, given υ1�l = 1 and Xl

m, the random variable η1�l+1 is indepen-
dent of its past, it follows that a �→ Pr(η1�l+1 = · | υ1�l = 1�η1�l = a�Xj

−m) is constant (i.e.,
does not depend on η1�l = a). Thus, a �→ Pr(η1�l+1 = ·�υ1�l = 1 | η1�l = a�X

j
−m) is con-

stant (i.e., does not depend on the value of a); since one can obtain the exact result for
c �→ Pr(η2�l+1 = ·�υ2�l = 1 | η2�l = c�X

j
−m) and, moreover, the laws for i = 1 and i = 2

coincide (see the proof of Lemma 5), it follows that Term2 = 0.
To bound Term1, it follows from the previous arguments that

Term1 =
∑
s∈S

∣∣Pr
(
η1�l+1 = s | υ1�l = 0�η1�l = a�Xj

−m
)

− Pr
(
η2�l+1 = s | υ2�l = 0�η2�l = c�Xj

−m
)∣∣

× (
1 − q(Xl)

) ≤ 2
(
1 − q(Xl)

)
�

and thus the desired result follows. Q.E.D.

SM.7. PROOFS OF SUPPLEMENTARY LEMMAS IN APPENDIX A.3

SM.7.1. Proofs of Lemmas 7 and 8

In this section, we provide the proofs of Lemmas 7 and 8. To do this, we use a series of
lemmas, which we state below (their proofs are relegated to the end of this section).

Henceforth, for any j ≥m, let

�(j�m) ≡
(
EP̄ν∗

[
j∏

i=m

(
1 − q(Xi)

) 2a
1−a

]) 1−a
2a

� (15)
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where the constant a is the same as in Assumption 7. We also introduce the follow-
ing notation: for any θ ∈ �, (x′�x� s) �→ �(x′|x� s;θ) ≡ ∇θ logpθ(x� s�x′) and (s�x� s) �→
�(s′|s�x;θ) ≡ ∇θ logQθ(x� s� s′). Furthermore, for any k≥ n and any l ≥m, let

�θ(k�n� l�m) ≡EP̄νθ
[

k∑
j=n
�(Xj|Xj−1� Sj;θ) |Xl

m

]
�

and �θ(k�n� l�m) ≡EP̄νθ
[

k∑
j=n
�(Sj|Sj−1�Xj−1;θ) |Xl

m

]
�

To state the first lemma, for any k, T , and Xk
k−T and any θ, let

�k�k−T (θ)
(
Xk
k−T

)
≡�θ(k− 1�k− T�k�k− T ) +�θ(k− 1�k− T − 1�k�k− T )

−�θ(k− 1�k− T�k− 1�k− T ) −�θ(k− 1�k− T − 1�k− 1�k− T )

+�θ(k�k�k�k− T ) +�θ(k�k�k�k− T ) (16)

The next lemma is analogous to the results in Douc, Moulines, and Rydén (2004) and
Bickel, Ritov, and Rydén (1998), thus the proof is omitted; it can be found in Pouzo,
Psaradakis, and Sola (2021).

LEMMA 17: Suppose Assumption 6 holds. Then, for any k�T ≥ 0 and any θ ∈�,26

∇θ logpνk
(
Xk|Xk−1

k−T ;θ
) = �k�k−T (θ)

(
Xk
k−T

)
a.s.-P̄ν∗ �

This lemma characterizes the asymptotic behavior of the score functions; in particular,
it shows that they are well approximated by (�t�−∞(θ∗))t�, which is to be defined below,
but at this stage is worth pointing out that it is stationary and ergodic; this last fact is
established in Lemma 19 below.

LEMMA 18: Suppose Assumptions 1, 2, 6, 7(i), and 8 hold. Then:
(i) There exists a finite constant C > 0 such that for any k and T ≥ 0,∥∥�k�k−T (θ∗) −�k�−∞(θ∗)

∥∥
L2(P̄ν∗ )

≤ C
(

max

{
k−1∑

j=[k−T/2]

�(j�k− T )�
[k−T/2]−1∑
j=k−T

�(k− 1� j)

})
;

(ii) limT→∞ ‖T−1/2
∑T

t=0{�t�−∞(θ∗) − ∇θ logpνt (·|·� θ∗)}‖L2(P̄ν∗ ) = 0.

LEMMA 19: Suppose Assumptions 1, 2, and 5 hold. Then (�t�−∞(θ∗))∞
t=−∞ is a stationary

and ergodic L2(P̄ν∗ ) process (under P̄ν∗ ).

LEMMA 20: Suppose Assumption 1 holds. Then there exists a finite constant L > 0 such
that:

26When there is no risk of confusion, we will omit the dependence of �k�k−T on the data Xk
k−T .
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(i) For −m≤ j < k and any θ ∈�, a.s.-P̄ν∗ ,

∥∥P̄νθ(Sj = ·|Xk
−m

) − P̄νθ
(
Sj = ·|Xk−1

−m
)∥∥

1
≤L

k−1∏
i=j

(
1 − q(Xi)

)
�

(ii) For −n≤ −m≤ j < k and any θ ∈�, a.s.-P̄ν∗ ,

∥∥P̄νθ(Sj = ·|Xk
−m

) − P̄νθ
(
Sj = ·|Xk−1

−n
)∥∥

1
≤L

j∏
i=−m

(
1 − q(Xi)

)
�

PROOF OF LEMMA 7: Follows directly from Lemmas 18 and 19. Q.E.D.

PROOF OF LEMMA 8: Lemma 8 is analogous to Lemma 10 in Bickel, Ritov, and Rydén
(1998). The proof follows by their Lemma 9, which in turn holds by analogous steps to
theirs and by invoking Lemma 20 (which is analogous to their Lemma 7). Q.E.D.

SM.7.1.1. Proofs of Lemmas

Throughout this section, in cases where the expectations are taken with respect to P̄ν∗ ,
we omit the probability from the notation and simply use E[·].

The proof of Lemma 18 requires the following lemma.

LEMMA 21: Suppose that Assumptions 1 and 7(i) hold. Then there exists a finite constant
C > 0 such that:

(i) for any −n≤ −m≤ −m′ ≤ l ≤ k,

∥∥�θ∗
(
l�−m′�k�−m) −�θ∗

(
l�−m′�k�−n)∥∥

L2(P̄ν∗ )
≤ C

(
l∑

j=−m′
�(j�−m)

)
;

(ii) for any −m≤ −m′ < l ≤ k− 1,

∥∥�θ∗
(
l�−m′�k�−m) −�θ∗

(
l�−m′�k− 1�−m)∥∥

L2(P̄ν∗ )
≤ C

(
l∑

j=−m′
�(k− 1� j)

)
;

(iii) for any −n≤ −m≤ −m′ < l ≤ k,

∥∥�θ∗
(
l�−m′�k�−m) −�θ∗

(
l�−m′�k�−n)∥∥

L2(P̄ν∗ )
≤ C

(
l∑

j=−m′
�(j − 1�−m)

)
;

(iv) for any −m≤ −m′ < l ≤ k− 1,

∥∥�θ∗
(
l�−m′�k�−m) −�θ∗

(
l�−m′�k− 1�−m)∥∥

L2(P̄ν∗ )
≤ C

(
l∑

j=−m′
�(k− 1� j)

)
�
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PROOF OF LEMMA 21: Here, we only prove part (i) as the calculations for the rest of
the parts are analogous.27

Throughout the proof, we omit the dependence of E[·] on P̄νθ∗ . Also, let L denote the
constant in Lemma 22.

Part (i). Observe that, for any j ≤ k,∥∥E[
�(Xj|Xj−1� Sj;θ∗) |Xk

−m
] −E[

�(Xj|Xj−1� Sj;θ∗) |Xk
−n

]∥∥
=

∥∥∥∥∑
a∈S
�(Xj|Xj−1� a;θ∗)

{
P̄νθ∗

(
Sj = a |Xk

−m
) − P̄νθ∗

(
Sj = a |Xk

−n
)}∥∥∥∥

≤ max
a∈S

∥∥�(Xj|Xj−1� a;θ∗)
∥∥∥∥P̄νθ∗

(
Sj = · |Xk

−m
) − P̄νθ∗

(
Sj = · |Xk

−n
)∥∥

1
�

By Lemma 20(ii),∥∥E[
�(Xj|Xj−1� Sj;θ∗) |Xk

−m
] −E[

�(Xj|Xj−1� Sj;θ∗) |Xk
−n

]∥∥
≤Lmax

a∈S

∥∥�(Xj|Xj−1� a;θ∗)
∥∥ j∏
i=−m

(
1 − q(Xi)

)
�

Thus, by the Hölder inequality, for a−1 + b−1 = 1 (with a as in Assumption 7),∥∥∥∥∥
l∑

j=−m′

{
E

[
�(Xj|Xj−1� Sj;θ∗) |Xk

−m
] −E[

�(Xj|Xj−1� Sj;θ∗) |Xk
−n

]}∥∥∥∥∥
L2(P̄ν∗ )

≤
l∑

j=−m′

∥∥E[
�(Xj|Xj−1� Sj;θ∗) |Xk

−m
] −E[

�(Xj|Xj−1� Sj;θ∗) |Xk
−n

]∥∥
L2(P̄ν∗ )

≤L
(∑
a∈S
EP̄ν∗

[∥∥�(X1|X0� a;θ∗)
∥∥2a])1/(2a) l∑

j=−m′

(
EP̄ν∗

[
j∏

i=−m

(
1 − q(Xi)

)2b

])1/(2b)

�

where the second line follows from the triangle inequality and the third follows from
stationarity (Lemma 1). The fact that �(X1|X0� a;θ∗) = ∇θ logpθ∗ (X0� a�X1), Assump-
tion 7(i), and the definition of � imply the desired result. Q.E.D.

PROOF OF LEMMA 18: Throughout the proof, we denote ‖ · ‖L2(P̄ν∗ ) as ‖ · ‖L2 . Also, we
use � and � to denote �θ∗ and �θ∗ , respectively.

Part (i): Observe that�(k−1�k−T� l�k−T ) =�(k−1� [k−T/2]� l�k−T ) +�([k−
T/2]−1�k−T� l�k−T ) and an analogous result holds for�. Therefore, by the definition
of �k�k−T and analogous calculations to those in Bickel, Ritov, and Rydén (1998, pp. 1624–
1626),∥∥�k�k−T (θ∗) −�k�−∞(θ∗)

∥∥
L2

≤ ∥∥�(
k− 1� [k− T/2]�k�k− T ) −�(

k− 1� [k− T/2]�k�−∞)∥∥
L2

27For a complete proof, see Pouzo, Psaradakis, and Sola (2021).
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+ ∥∥�(
k− 1� [k− T/2]�k− 1�k− T ) −�(

k− 1� [k− T/2]�k− 1�−∞)∥∥
L2

+ ∥∥�(
[k− T/2] − 1�k− T�k�k− T ) −�(

[k− T/2] − 1�k− T�k− 1�k− T )∥∥
L2

+ ∥∥�(
k− 1� [k− T/2]�k�k− T ) −�(

k− 1� [k− T/2]�k�−∞)∥∥
L2

+ ∥∥�(
k− 1� [k− T/2]�k− 1�k− T ) −�(

k− 1� [k− T/2]�k− 1�−∞)∥∥
L2

+ ∥∥�(
[k− T/2] − 1�k− T − 1�k�k− T )

−�(
[k− T/2] − 1�k− T − 1�k− 1�k− T )∥∥

L2

+ ∥∥�(k�k�k�k− T ) −�(k�k�k�−∞)
∥∥
L2

+ ∥∥�(k�k�k�k− T ) −�(k�k�k�−∞)
∥∥
L2

≡
8∑
i=1

Termi�

Here, we only bound Term 1 as the bounds for the rest are analogous.28 Observe that∥∥�(
k− 1� [k− T/2]�k�k− T ) −�(

k− 1� [k− T/2]�k�−∞)∥∥
L2

=
∥∥∥∥∥

k−1∑
j=[k−T/2]

EP̄νθ∗

[
�(Xj |Xj−1� Sj;θ∗) |Xm

k−T
]

−
k−1∑

j=[k−T/2]

EP̄νθ∗

[
�(Xj |Xj−1� Sj;θ∗) |Xm

−∞
]∥∥∥∥∥
L2

�

By Lemma 21(i), for i ∈{1�2}, Termi � (
∑k−1

j=[k−T/2]�(j�k− T )).
Part (ii). By part (i) and Lemma 17,∥∥∥∥∥T−1/2

T∑
t=1

{
�t�−∞(θ∗) − ∇θ logpνt (·|·;θ∗)

}∥∥∥∥∥
L2

≤ T−1/2
T∑
t=1

∥∥{
�t�−∞(θ∗) −�t�0(θ∗)

}∥∥
L2

�
(
T−1/2

T∑
t=1

t−1∑
j=[t/2]

�(j�0) + T−1/2
T∑
t=1

[t/2]−1∑
j=0

�(t� j)

)
�

By Kronecker’s lemma, it suffices to show that

T∑
t=1

t−1/2
t−1∑

j=[t/2]

�(j�0) and
T∑
t=1

t−1/2
[t/2]−1∑
j=0

�(t� j) (17)

are bounded uniformly in T , where recall, �(j�k) ≡ (E[
∏j

i=k(1 − q(Xi))
2a

1−a ])
1−a
2a .

28For the complete proof, see Pouzo, Psaradakis, and Sola (2021).
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Moreover, j �→ �(j�k) is nonincreasing and k �→ �(j�k) is nondecreasing since 1 −
q(·) ≤ 1. By Assumption 8, (�(j�0))j isp-summable withp< 2/3, thus limj→∞�(j�0)pj =
0 (if not, then �(j�0) > c/j1/p for some c > 0 and all j above certain point and this violates
the assumption). Hence,

t−1∑
j=[t/2]

�(j�0) <
t−1∑

j=[t/2]

1
j1/p ≤

∫ t

[t/2]+1
x−1/p dx≤ p

1 −p (t/2)1−1/p�

for all t ≥ τ and some τ > 0, and this implies that, for some constant const> 0,

T∑
t=1

t−1/2
t−1∑

j=[t/2]

�(j�0) ≤ C(τ) + const ×
T∑

t=τ+1

p

1 −pt
1−1/p−1/2 ≤ C <∞�

because 1 − 1/p− 1/2<−1 ⇔ p< 2/3 (C is a finite constant, which may depend on τ).
By stationarity of X∞

−∞ (Lemma 1) and some simple algebra,

[t/2]−1∑
j=0

�(t� j) =
[t/2]+1∑
j=0

�(t − j�0)�

Thus,
∑[t/2]+1

j=0 �(t − j�0) ≤ ∑[t/2]+1
j=0

1
(t−j)1/p ≤ ∫ t

[t/2]−1
1

u1/p du and by our previous calcula-
tion the result follows. Thus, the terms in (17) are uniformly bounded. Q.E.D.

PROOF OF LEMMA 19: It is easy to see that �t�−∞(θ∗) is adapted to the filtration as-
sociated with the σ-algebra generated by Xt

−∞. Since X∞
−∞ is stationary and ergodic (by

Lemma 1), so is (�t�−∞(θ∗))∞
t=−∞. Q.E.D.

To prove Lemma 20, we need the following results.

LEMMA 22: Suppose Assumption 1 holds. Then there exists a finite constant L > 0, such
that, for any −m≤ j < n≤ k and any θ ∈�,

max
b�c

∥∥P̄νθ(Sj = ·|Sn = b�Xk
−m

) − P̄νθ
(
Sj = ·|Sn = c�Xk

−m
)∥∥

1
≤L

n∏
i=j

(
1 − q(Xi)

)

a.s.-P̄ν∗ .

LEMMA 23: For any −m< i < l ≤ r ≤ n, let Srl ≡ (Sl� � � � � Sr). Then, for any θ ∈�,

P̄νθ
(
Si|Srl �X

n
−m+1

) = P̄νθ
(
Si|Sl�Xn

−m+1

)
�

that is, the Markov property holds backward in time.

PROOF OF LEMMA 22: Observe that, for any b� c ∈ S
2,∥∥P̄νθ(Sj = ·|Sn = b�Xk

−m
) − P̄νθ

(
Sj = ·|Sn = c�Xk

−m
)∥∥

1

=
∥∥∥∥∑
s∈S
P̄νθ

(
Sj = ·|Sj+1 = s�Xj+1

−m
)(
P̄νθ

(
Sj+1 = s|Sn = b�Xk

−m
)
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− P̄νθ
(
Sj+1 = s|Sn = c�Xk

−m
))∥∥∥∥

1

≤ αθ�j+1�j

(
Xk

−m
)∥∥P̄νθ(Sj+1 = ·|Sn = b�Xk

−m
) − P̄νθ

(
Sj+1 = ·|Sn = c�Xk

−m
)∥∥

1
�

where the second line follows from Lemma 23 with i= j, r = l= j+ 1, and n= k, and the
third follows from Lemma B.2.1 in Stachurski (2009) and the definition of αθ�j+1�j(Xk

−m)
in expression (12). Iterating in this fashion, it follows that

∥∥P̄νθ(Sj = ·|Sn = b�Xk
−m

) − P̄νθ
(
Sj = ·|Sn = c�Xk

−m
)∥∥

1
≤ 2

n∏
l=j
αθ�l+1�l

(
Xk

−m
)
�

Thus, it suffices to show that αθ�l+1�l(Xk
−m) ≤ 1 − q(Xl). Since

αθ�l+1�l

(
Xk

−m
) = 1 − min

a�b

∑
s′∈S

min
{
P̄νθ

(
Sl = s′|Sl+1 = a�Xk

−m
)
� P̄νθ

(
Sl = s′|Sl+1 = b�Xk

−m
)}

(see Stachurski (2009, p. 344)), it suffices to show that, for any (a�b) ∈ S
2,

P̄νθ
(
Sl = a|Sl+1 = b�Xk

−m
) ≥ q(Xl)	

(
Xl

−m+1� a
)
�

where 	(Xk−1
−m+1� ·) ∈P (S).

To do this, first note that P̄νθ (Sl = a|Sl+1 = b�Xk
−m) = P̄νθ (Sl = a|Sl+1 = b�Xl+1

−m), by
Lemma 23, and

P̄νθ
(
Sl = a|Sl+1 = b�Xl+1

−m+1

) = pθ(Xl�b�Xl+1)Qθ(Xl�a�b)P̄νθ
(
Xl

−m+1� Sl = a
)

∑
s∈S
pθ(Xl�b�Xl+1)Qθ(Xl� s�b)P̄νθ

(
Xl

−m+1� Sl = s
)

≥ q(Xl)
P̄νθ

(
Xl

−m+1� Sl = a
)

∑
s∈S
P̄νθ

(
Xl

−m+1� Sl = s
) �

where the last line follows from Assumption 1. Letting 	(·�Xl
−m+1) ≡ P̄νθ (Sl=·|Xl−m+1)∑

s∈S P̄νθ (Sl=s|Xl−m+1)
,

the desired result is obtained. Q.E.D.

PROOF OF LEMMA 23: Throughout the proof, we omit θ from the notation. Let Sri:l ≡
(Si� Sl� Sl+1� � � � � Sr−1� Sr) and note that, by Bayes’ rule,

P̄νθ
(
Si|Srl �X

n
−m+1

) = P̄νθ
(
Xn
r | Sri:l�X

r−1
−m+1

)
P̄νθ

(
Sri:l�X

r−1
−m+1

)
P̄νθ

(
Xn
r | Srl �X

r−1
−m+1

)
P̄νθ

(
Srl �X

r−1
−m+1

) �
By the Markov property, P̄νθ (Xn

r | Sri:l�X
r−1
−m+1) = P̄νθ (Xn

r |Xr−1� Sr), so

P̄νθ
(
Si|Srl �X

n
−m+1

) = P̄νθ
(
Sri:l�X

r−1
−m+1

)
P̄νθ

(
Srl �X

r−1
−m+1

) = P̄νθ
(
Sr | Sr−1

i:l �X
r−1
−m+1

)
P̄νθ

(
Sr−1
i:l �X

r−1
−m+1

)
P̄νθ

(
Sr | Sr−1

l �Xr−1
−m+1

)
P̄νθ

(
Sr−1
l �Xr−1

−m+1

) �
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Observe that P̄νθ (Sr | Sr−1
l �Xr−1

−m+1) = Qθ(Xr−1� Sr−1� Sr), and thus P̄νθ (Si|Xr
−m+1�S

r
l ) =

P̄νθ (Sr−1
i:l �X

r−1
−m+1)

P̄νθ (Sr−1
l
�Xr−1

−m+1)
and, by iterating, it follows that

P̄νθ
(
Si|Srl �X

n
−m+1

) = P̄νθ
(
Si� Sl�X

l
−m+1

)
P̄νθ

(
Sll�X

l
−m+1

) = P̄νθ
(
Si|Sl�Xl

−m+1

)
�

as desired. Q.E.D.

PROOF OF LEMMA 20: Part (i). By Lemma 23 with l= r = k− 1, n= k,

P̄νθ
(
Si|Xk

−m+1

) =
∑
s∈S
P̄νθ

(
Si|Sk−1 = s�Xk

−m+1

)
P̄νθ

(
Sk−1 = s|Xk

−m+1

)

=
∑
s∈S
P̄νθ

(
Si|Sk−1 = s�Xk−1

−m+1

)
P̄νθ

(
Sk−1 = s|Xk

−m+1

)
�

and similarly,

P̄νθ
(
Si|Xk−1

−m+1

) =
∑
s∈S
P̄νθ

(
Si|Sk−1 = s�Xk−1

−m+1

)
P̄νθ

(
Sk−1 = s|Xk−1

−m+1

)
�

Thus, by Lemma B.2.2 in Stachurski (2009),∥∥P̄νθ(Sj = ·|Xk
−m+1

) − P̄νθ
(
Sj = ·|Xk−1

−m+1

)∥∥
1

≤ max
a�b

∥∥P̄νθ(Sj = ·|Sk−1 = a�Xk−1
−m+1

) − P̄νθ
(
Sj = ·|Sk−1 = b�Xk−1

−m+1

)∥∥
1

≤L
k−1∏
l=j

(
1 − q(Xl)

)
�

where the second line follows by Lemma 22 with n = k − 1. Thus, the desired result
follows.

Part (ii). The proof is analogous to that of Lemma 5 (third part) in Bickel, Ritov, and
Rydén (1998). By analogous calculations to those in part (i),∥∥P̄νθ(Sj = · |Xk

−m
) − P̄νθ

(
Sj = · |Xk

−n
)∥∥

1

≤ max
b�b′

∥∥P̄νθ(Sj = · | S−m = b�Xk
−m

) − P̄νθ
(
Sj = · | S−m = b′�Xk

−n
)∥∥

1

= max
b�b′

∥∥P̄νθ(Sj = · | S−m = b�Xk
−m

) − P̄νθ
(
Sj = · | S−m = b′�Xk

−m
)∥∥

1
�

where the last line follows from the fact that, given S−m, it is the same to condition onXk
−m

and on Xk
−n. The results thus follow from following the same steps as those in the proof

of Theorem 2. Q.E.D.

SM.7.2. Proof of Lemma 9

PROOF OF LEMMA 9: To simplify the exposition, we present the proof for the case
where �t�−∞(θ∗)(Xt

−∞) is a scalar; since the dimension of this quantity is finite, the vector
case follows readily from the results below.
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Part (a) follows easily from Lemma 17 in the Supplemental Material SM.7.1.
For part (b), it follows from part (a) that �t+j�−∞(θ∗)(Xt+j

−∞)�t�−∞(θ∗)(Xt
−∞) depends

only on (Xt−L̄� � � � �Xt+j). By Lemma 1, (Xt)∞
t=−∞ is β-mixing. Since, for any fixed j, the

σ-algebra generated by (�s+j�−∞(θ∗)�s�−∞(θ∗))s≤t is contained in the σ-algebra generated
by (Xs+j)s≤t , and the σ-algebra generated by (�s+j�−∞(θ∗)�s�−∞(θ∗))s≥t is contained in the
σ-algebra generated by (Xs)s≥t−L̄, it follows that, for each j, (�t+j�−∞(θ∗)�t�−∞(θ∗))∞

t=−∞ is
also β-mixing with mixing coefficients that decay at rate O(γn−2L̄) as n diverges through
the positive integers; as L̄ is taken to be fixed, the decay rate is O(γn). As is well known,
this result implies that the corresponding α-mixing coefficients (αn)n decay at the same
rate, that is, αn =O(γn) for all n.

Henceforth, let �t+j�t�−∞(θ∗) ≡ �t+j�−∞(θ∗)(Xt+j
−∞)�t�−∞(θ∗)(Xt

−∞) and �̄t+j�t�−∞(θ∗) ≡
�t+j�t�−∞(θ∗) −EP̄ν∗ [�t+j�t�−∞(θ∗)], for any t, j. Observe that, for any j,

EP̄ν∗

[(
T−1

T∑
t=1

�̄t+j�t�−∞(θ∗)

)2]
= T−1EP̄ν∗

[(
�̄j�0�−∞(θ∗)

)2]

+ 2T−1
T−1∑
t=0

(1 − t/T )EP̄ν∗
[(
�̄t+j�t�−∞(θ∗)

)(
�̄j�0�−∞(θ∗)

)]
�

where the last equality follows by stationarity. By Corollary 6.17 in White (2001), for any
m ∈N, ∣∣EP̄ν∗ [�̄j�0�−∞(θ∗)�̄j+m�m�−∞(θ∗)

]∣∣
� (αm)

2
2+2δ

√
EP̄ν∗

[(
�̄j�0�−∞(θ∗)

)2](
EP̄ν∗

[∣∣�̄j+m�m�−∞(θ∗)
∣∣2+2δ]) 1

2+2δ �

for any j (the implicit constant in the display does not depend on j). Thus, for any j,

EP̄ν∗

[(
T−1

T∑
t=1

�̄t+j�t�−∞(θ∗)

)2]

� T−1EP̄ν∗
[(
�̄j�0�−∞(θ∗)

)2]

+ 2T−1
T−1∑
t=0

(1 − t/T )(αt)
2/(2+2δ)

√
EP̄ν∗

[(
�̄j�0�−∞(θ∗)

)2]

× (
EP̄ν∗

[∣∣�̄j+m�m�−∞(θ∗)
∣∣2+2δ])1/(2+2δ)

�

By the Cauchy–Schwarz inequality and stationarity, for any j,

EP̄ν∗
[(
�̄j�0�−∞

(
θ∗))2] �EP̄ν∗

[
�0�−∞(θ∗)

(
X0

−∞
)4]
�

which is bounded by assumption. In addition, by similar calculations,

EP̄ν∗
[(
�̄j�0�−∞

(
θ∗))2+2δ] �EP̄ν∗

[
�0�−∞(θ∗)

(
X0

−∞
)4+4δ] ∀j�
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which is bounded by assumption. Therefore, there exists a finite constant C (which does
not depend on j) such that

EP̄ν∗

[(
T−1

T∑
t=1

�̄t+j�t�−∞
(
θ∗))2]

≤ C
(
T−1 + 2T−1

T−1∑
t=0

(1 − t/T )(αt)2/(2+2δ)

)
�

As αt = O(γt), it follows that
∑T−1

t=0 (1 − t/T )(αt)2/(2+2δ) = O(
∑T−1

t=0 (1 − t/T )(γ2/(2+2δ))t).
Since γ < 1, it follows that

∑T−1
t=0 (1 − t/T )(αt)2/(2+2δ) = O(1), which in turn implies that

EP̄ν∗ [(T−1
∑T

t=1 �̄t+j�t�−∞(θ∗))2] ≤ CT−1. Hence, by the Markov inequality, for any a > 0,

P̄ν∗

(
max

j∈{0�����L}

∥∥∥∥∥T−1
T∑
t=1

�t+j�−∞(θ∗)
(
X
t+j
−∞

)
�t�−∞(θ∗)

(
Xt

−∞
)ᵀ

−EP̄ν∗
[
�j�−∞(θ∗)

(
X
j
−∞

)
�0�−∞(θ∗)

(
X0

−∞
)ᵀ]∥∥∥∥∥ ≥ a

)

≤
L∑
j=0

P̄ν∗

(∥∥∥∥∥T−1
T∑
t=1

�t+j�−∞(θ∗)
(
X
t+j
−∞

)
�t�−∞(θ∗)

(
Xt

−∞
)ᵀ

−EP̄ν∗
[
�j�−∞(θ∗)

(
X
j
−∞

)
�0�−∞(θ∗)

(
X0

−∞
)ᵀ]∥∥∥∥∥ ≥ a

)

≤ Ca−2LT−1�

which implies the desired result. Q.E.D.

SM.8. PROOF OF THEOREM 5

To prove Theorem 5, we use the following results, whose proofs are relegated to the
end of this section. The following lemma shows that we can “quantify” convergence in
probability.

LEMMA 24: Suppose a random sequence XT )∞
T=0 converges to zero in probability. Then

there exists a deterministic positive sequence (rT )∞
T=0 such that rT = o(1), and for any ε > 0,

there exists Tε such that

Pr
(|XT | ≥ rT

) ≤ ε�
for all T ≥ Tε. In particular, |XT|=OPr(rT ).

The next lemma presents some useful properties for the “score process.”

LEMMA 25: Under the Assumptions of Theorem 5, the following are true:
1. ‖ supθ∈B(δ�θ∗) ‖�0�−∞(θ)‖‖L2(P̄ν∗ ) <∞ (δ > 0 is as in Assumption 7).
2. �t�−∞ and �t�−∞�

ᵀ
0�−∞ are continuous inL1(P̄ν∗ )-norm, that is, for any ε > 0, there exists

δ > 0 such that

max
t

∥∥∥ sup
‖θ−θ0‖<δ

∥∥�t�−∞(θ)�t�−∞(θ)ᵀ −�t�−∞(θ0)�t�−∞(θ0)ᵀ∥∥∥∥∥
L1(P̄ν∗ )

≤ ε
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and

	̈(δ) ≡ max
t

∥∥∥ sup
‖θ−θ0‖<δ

∥∥�t�−∞(θ)�0�−∞(θ)ᵀ −�t�−∞(θ0)�0�−∞(θ0)ᵀ∥∥∥∥∥
L1(P̄ν∗ )

≤ ε�

3. There exists a constant C <∞ such that, for any t and M ,∥∥∥ sup
θ∈B(δ�θ∗)

�t�−∞(θ) −�t�t−M (θ)
∥∥∥
L2(P̄ν∗ )

≤ CM1−1/p�

Moreover, by Assumption 8, p ∈ (0�2/3), and thus the RHS vanishes as M diverges.

PROOF OF THEOREM 5: The proof has several parts and steps.
PART (A). We show that∥∥∥∥∥T−1

T∑
t=1

∇2
θ logpνt

(
Xt|Xt−1

0 � θ̂ν�T
) −EP̄ν∗

[
ξ1(θ∗)

]∥∥∥∥∥ = oP̄ν∗ (1)�

We do this by using the triangle inequality and showing the following:

lim
T→∞

∥∥∥∥∥T−1
T∑
t=1

{∇2
θ logpνt (·|·� θ̂ν�T ) − ξt (θ̂ν�T )

}∥∥∥∥∥
L1(P̄ν∗ )

= 0

(which implies convergence in probability), ‖T−1
∑T

t=1{ξt (θ̂ν�T ) − ξt (θ∗)}‖ = oP̄ν∗ (1), and
‖T−1

∑T

t=1 ξt (θ∗) −EP̄ν∗ [ξ1(θ∗)]‖ = oP̄ν∗ (1).
The first expression holds true because by Theorem 1, for any δ′ ≤ δ, θ̂ν�T ∈ B(δ′� θ∗)

w.p.a.1, and hence, by Lemma 8, the desired result follows.
Regarding the second expression, again by Theorem 1, θ̂ν�T ∈ B(δ′� θ∗) w.p.a.1. Thus,

by the Markov inequality and stationarity, it follows that, for any ε > 0, there exists T (ε)
such that, for any t ≥ T (ε),

P̄ν∗

(∥∥∥∥∥T−1
T∑
t=1

{
ξt (θ̂ν�T ) − ξt (θ∗)

}∥∥∥∥∥ ≥ ε
)

≤ε−1EP̄ν∗

[
sup

θ∈B(δ′�θ∗)

∥∥ξ1(θ) − ξ1(θ∗)
∥∥]

+ 0�5ε�

By Lemma 8, ξ1 is continuous, and thus uniformly continuous over compact sets. Since
δ′ > 0 can be chosen to be any number less than δ (δ as in Assumption 7), we can choose
it so that the first term in the RHS is less than 0�5ε. Hence, the desired follows.

Finally, ergodicity of X∞
−∞ (Lemma 1) implies ergodicity of (ξt (θ∗))∞

t=−∞; therefore,
by Lemma 8 and Birkhoff’s ergodic theorem, ‖T−1

∑T

t=1 ξt (θ∗) − EP̄ν∗ [ξ1(θ∗)]‖ = oP̄ν∗ (1).
Hence, ∥∥∥∥∥T−1

T∑
t=1

∇2
θ logpνt

(
Xt|Xt−1

0 � θ̂ν�T
) −EP̄ν∗

[
ξ1(θ∗)

]∥∥∥∥∥ = oP̄ν∗ (1)�

With this result and the Fisher information equality (established in the proof of Corol-
lary 1), the result of part (a) of the theorem follows.

PART (B). STEP 1 To prove part (b), it suffices to show that ‖EP̄ν∗ [ξ1(θ∗)] −HT (θ̂ν�T )‖ =
oP̄ν∗ (1) and ‖�T (θ∗) − JT (θ̂ν�T )‖ = oP̄ν∗ (1).
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The first expression was established in Part (A). Regarding the second expression, we
introduce some notation. For any θ ∈�, let

�t�l�M (θ) ≡ �t�M (θ)
(
Xt
M

)
�l�M (θ)

(
Xl
M

)ᵀ
� ∀t� l�M ∈ N�

where it is left implicit that this quantity depends on Xmax{t�l}
−M . Also,

θ �→ γ̂T�τ�0(θ) ≡ (T − τ)−1
T−τ∑
t=1

�t+τ�t�0(θ)� ∀τ ∈{1� � � � �LT}�

Recall that �t�0(θ)(Xt
0) = ∇θp

ν
t (Xt | Xt−1

0 � θ), so γ̂T�τ�0(θ) is the sample covariance of
�t+τ�t�0(θ).

Given this notation, observe that

�T (θ∗) =T−1
T∑
t=1

EP̄ν∗
[
�t�t�−∞(θ∗)

] + T−1
T∑
t=1

t−1∑
l=0

{
EP̄ν∗

[
�t�l�−∞(θ∗)

] +EP̄ν∗
[
�t�l�−∞(θ∗)ᵀ]}�

The aim is to show that each of the summands above is well approximated by its counter-
part in JT . For the first summand, we show in Step 2 below that∥∥∥∥∥T−1

T∑
t=1

{
�t�t�0(θ̂ν�T ) −EP̄ν∗

[
�t�t�−∞(θ∗)

]}∥∥∥∥∥ = oP̄ν∗ (1)�

Regarding the second summand, we observe that, for any t ≥ l, EP̄ν∗ [�t�l�−∞(θ∗)] =
EP̄ν∗ [�t−l�0�−∞(θ∗)] ≡ γt−l(θ∗) (the first equality, which follows from stationarity, can be es-
tablished by analogous arguments to those presented at the beginning of Step 2). Hence,

T−1
T∑
t=1

t−1∑
l=0

EP̄ν∗
[
�t�l�−∞(θ∗)

] =
T−1∑
j=0

(1 − j/T )γj+1(θ∗)�

Thus, it suffices to show that∥∥∥∥∥
T−1∑
j=0

(1 − j/T )γj+1(θ∗) −
LT−1∑
j=0

ω(j�L)γ̂T�j+1�0(θ̂T�ν)

∥∥∥∥∥ = oP̄ν∗ (1)�

the proof of which is in Step 3 below.
STEP 2 We now show that∥∥∥∥∥T−1

T∑
t=1

{
�t�0(θ̂ν�T )

(
Xt

0

)
�t�0(θ̂ν�T )

(
Xt

)ᵀ −EP̄ν∗
[
�t�−∞(θ∗)

(
Xt

−∞
)
�t�−∞(θ∗)

(
Xt

−∞
)ᵀ]}∥∥∥∥∥

= oP̄ν∗ (1)�

where, by the definition of �t�M , �t�0(θ)(Xt) = ∇θ logpt (Xt |Xt−1
0 � θ).

First, observe that

EP̄ν∗
[
�t�−∞(θ∗)

(
Xt

−∞
)
�t�−∞(θ∗)

(
Xt

−∞
)ᵀ] =EP̄ν∗

[
�0�−∞(θ∗)

(
X0

−∞
)
�0�−∞(θ∗)

(
X0

−∞
)ᵀ]
�
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This follows from stationarity (see Lemma 1) and the fact that �t�−∞(θ∗) can be approxi-
mated (uniformly in t) by �t�t−M (θ∗) (see Lemma 18). Hence, it suffices to show that

∥∥∥∥∥T−1
T∑
t=1

�t�0(θ̂ν�T )
(
Xt

)
�t�0(θ̂ν�T )

(
Xt

)ᵀ −EP̄ν∗
[
�0�−∞(θ∗)

(
X0

−∞
)
�0�−∞(θ∗)

(
X0

−∞
)ᵀ]∥∥∥∥∥

= oP̄ν∗ (1)�

By Lemma 1, ergodicity of �t�t−M (θ∗) for any M follows. This, Birkhoff’s ergodic theo-
rem, and Lemma 18 imply that∥∥∥∥∥T−1

T∑
t=1

�̄∞(θ∗)
(
Xt

−∞
) −EP̄ν∗

[
�̄∞(θ∗)

(
X0

−∞
)]∥∥∥∥∥ = oP̄ν∗ (1)�

where, for any M ∈ Z∪{∞}, �̄M (θ)(Xt
t−M) ≡ �0�−M (θ)(Xt

t−M)�0�−M (θ)(Xt
t−M)ᵀ.

Hence, in order to obtain the desired result it suffices to show that∥∥∥∥∥T−1
T∑
t=1

{
�̄t(θ̂ν�T )

(
Xt

0

) − �̄∞(θ∗)
(
Xt

−∞
)}∥∥∥∥∥ = oP̄ν∗ (1)�

In order to do so, by the triangle inequality, it is sufficient to show that∥∥∥∥∥T−1
T∑
t=1

{
�̄∞(θ∗)

(
Xt

−∞
) − �̄∞(θ̂ν�T )

(
Xt

−∞
)}∥∥∥∥∥ = oP̄ν∗ (1) (18)

and ∥∥∥∥∥T−1
T∑
t=1

{
�̄t (θ̂ν�T )

(
Xt

0

) − �̄∞(θ̂ν�T )
(
Xt

−∞
)}∥∥∥∥∥ = oP̄ν∗ (1)� (19)

Expression (18) holds by Lemma 25, the fact that, for any δ > 0, θ̂T�ν ∈ B(δ�θ∗) w.p.a.1-
P̄ν∗ (by Theorem 1), and the Markov inequality. Regarding expression (19), by the Markov
inequality and the fact that θ̂T�ν ∈ B(δ�θ∗) w.p.a.1-P̄ν∗ (by Theorem 1), it is sufficient to
show that

T−1
T∑
t=1

EP̄ν∗

[
sup

θ∈B(δ�θ∗)

∥∥�̄t (θ)
(
Xt

0

) − �̄∞(θ∗)
(
Xt

−∞
)∥∥]

= o(1)�

The LHS is bounded by

T−1
T∑
t=1

∥∥∥ sup
θ∈B(δ�θ∗)

∥∥�t�0(θ) −�t�−∞(θ∗)
∥∥∥∥∥

L2(P̄ν∗ )

×
(∥∥∥ sup

θ∈B(δ�θ∗)

∥∥�t�0(θ)
∥∥∥∥∥

L2(P̄ν∗ )
+

∥∥∥ sup
θ∈B(δ�θ∗)

∥∥�t�−∞(θ)
∥∥∥∥∥

L2(P̄ν∗ )

)
�
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By Lemma 25(3), the first term in the RHS is bounded (up to constants) by T−1
∑T

t=1 t
1−1/p.

The second term in the RHS is bounded by Lemma 25(1). Thus, under Assumption 8, the
whole expression converges to zero and the desired result follows.

STEP 3. We next show that, for any L ≡ LT such that limT→∞LT = ∞ and
LT (	̈(T−1/2 log logT ) log logT + rT + T−1/2) = o(1),∥∥∥∥∥

T−1∑
j=0

(1 − j/T )γj+1(θ∗) −
LT−1∑
j=0

ω(j�L)γ̂T�j+1�0(θ̂T�ν)

∥∥∥∥∥ = oP̄ν∗ (1)�

where, for any τ ∈{1� � � � �LT} and any M ≤ 1,

θ �→ γ̂T�τ�M (θ) ≡ T−1
T−τ∑
t=1

�t+τ�M (θ)
(
Xt+τ
M

)
�t�M (θ)

(
Xt
M

)ᵀ

(recall that �t�0(θ)(Xt
0) = ∇θp

ν
t (Xt |Xt−1

0 � θ)).
Putting γ̂T�τ ≡ γ̂T�τ�−∞, we have, by the triangle inequality, that ‖∑T−1

j=0 (1 − j/T ) ×
γj+1(θ∗) − ∑LT−1

j=0 ω(j�L)γ̂T�j+1�0(θ̂T�ν)‖ is bounded by

∥∥∥∥∥
T−1∑
j=0

(1 − j/T )γj+1(θ∗) −
LT−1∑
j=0

ω(j�L)γj+1(θ∗)

∥∥∥∥∥ +
∥∥∥∥∥
LT−1∑
j=0

ω(j�L)
{
γj+1(θ∗) − γ̂T�j+1(θ∗)

}∥∥∥∥∥
+

∥∥∥∥∥
LT−1∑
j=0

ω(j�L)
{
γ̂T�j+1(θ∗) − γ̂T�j+1(θ̂T�ν)

}∥∥∥∥∥
+

∥∥∥∥∥
LT−1∑
j=0

ω(j�L)
{
γ̂T�j+1�0(θ̂T�ν) − γ̂T�j+1(θ̂T�ν)

}∥∥∥∥∥�
We now bound each term in the RHS individually.

By assumption, for any l ≥ 0, ‖γl(θ∗)‖ ≤ υ(l), and thus, for any L,∥∥∥∥∥
T−1∑
j=0

(1 − j/T )γj+1(θ∗) −
L−1∑
j=0

ω(j�L)γj+1(θ∗)

∥∥∥∥∥
≤

∞∑
j=L
υ(j) +

∥∥∥∥∥
L−1∑
j=0

{
(1 − j/T ) −ω(j�L)

}
γj+1(θ∗)

∥∥∥∥∥�
Since, υ is integrable, the first term in the RHS converges to zero as L diverges.
Furthermore, since ω(·� ·) is bounded, ‖γj+1(θ∗)‖ ≤ υ(j + 1), which is integrable, and
(1 − j/T ) −ω(j�L) converges to zero pointwise in j as T (and thus L=LT ) diverges, so
by the dominated convergence theorem, the second term also converges to zero as T (and
thus L=LT ) diverges. Therefore, for any ε > 0, there exists Tε such that, for all T ≥ Tε,∥∥∥∥∥

T−1∑
j=0

(1 − j/T )γj+1(θ∗) −
LT−1∑
j=0

ω(j�LT )γj+1(θ∗)

∥∥∥∥∥ ≤ ε�
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We now consider, for any δ > 0,

P̄ν∗

(∥∥∥∥∥
L−1∑
j=0

ω(j�L)

{
T−1

T−j∑
t=1

�t+j�−∞(θ∗)
(
X
t+j
−∞

)
�t�−∞(θ∗)

(
Xt

−∞
)ᵀ − γj(θ∗)

}∥∥∥∥∥ ≥ δ
)
�

Since
∑L−1

j=0 ω(j�L) ≤L, this expression is bounded above by

P̄ν∗

(
max

j∈{0�����LT}

∥∥∥∥∥T−1
T−j∑
t=1

�t+j�−∞(θ∗)
(
X
t+j
−∞

)
�t�−∞(θ∗)

(
Xt

−∞
)ᵀ − γj(θ∗)

∥∥∥∥∥ ≥ δ/L
)
�

By similar arguments to those presented in Step 2 and Birkhoff’s ergodic theorem, for
each L,

max
j∈{0�����L}

∥∥∥∥∥T−1
T−j∑
t=1

�t+j�−∞(θ∗)
(
X
t+j
−∞

)
�t�−∞(θ∗)

(
Xt

−∞
)ᵀ − γj(θ∗)

∥∥∥∥∥ = oP̄ν∗ (1)�

By Lemma 24, for each L, there exists a positive sequence (rT )T such that rT = o(1)
and P̄ν∗ (maxj∈{0�����L} ‖T−1

∑T

t=1�t+j�−∞(θ∗)(Xt+j
−∞)�t�−∞(θ∗)(Xt

−∞)ᵀ − γj(θ∗)‖ ≥ rT ) = o(1).
Thus, by setting δ= 2rTL, for any ε > 0, there exists Tε such that, for all T ≥ Tε,

P̄ν∗

(∥∥∥∥∥
L−1∑
j=0

ω(j�L)

{
T−1

T−j∑
t=1

�t+j�−∞(θ∗)
(
X
t+j
−∞

)
�t�−∞(θ∗)

(
Xt

−∞
)ᵀ − γj(θ∗)

}∥∥∥∥∥ ≥ 2rTL

)
≤ ε�

By Theorem 4, θ̂ν�T ∈ B(T−1/2 log logT�θ∗) w.p.a.1-P̄ν∗ . Hence, for any ε > 0 there exists
Tε such that for all T ≥ Tε,

P̄ν∗

(∥∥∥∥∥
L−1∑
j=0

ω(j�L)
{
γ̂T�j+1(θ∗) − γ̂T�j+1(θ̂ν�T )

}∥∥∥∥∥ ≥L	̈(
T−1/2 log logT

)
log logT

)

≤ P̄ν∗
(

sup
θ∈B(T−1/2 log logT�θ∗)

L−1∑
j=0

ω(j�L)
∥∥γ̂T�j+1(θ∗) − γ̂T�j+1(θ)

∥∥

≥L	̈(
T−1/2 log logT

)
log logT

)
+ ε�

Moreover, by the Markov inequality,

P̄ν∗

(
sup

θ∈B(T−1/2 log logT�θ∗)

L−1∑
j=0

ω(j�L)
∥∥γ̂T�j+1(θ∗) − γ̂T�j+1(θ)

∥∥ ≥L	̈(
T−1/2 log logT

)
log logT

)

≤

L−1∑
j=0

ω(j�L)	̈
(
T−1/2 log logT

)
L	̈

(
T−1/2 log logT

)
log logT

�
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where the last line follows from Lemma 25 and �̃t�−M (θ) ≡ �t�−M (θ)�0�−M (θ)ᵀ for any
t ∈ {0� � � � � T� � � �} and M ∈ N∪{∞}. Since

∑L−1
j=0 ω(j�L)/L≤ 1, the last expression is less

than ε for sufficiently large T . Thus,

P̄ν∗

(∥∥∥∥∥
L−1∑
j=0

ω(j�L)
{
γ̂T�j+1(θ∗) − γ̂T�j+1(θ̂ν�T )

}∥∥∥∥∥ ≥L	̈(
T−1/2 log logT

)
log logT

)
≤ ε�

Finally, since, for any τ ∈ {1� � � � �L}, θ �→ γ̂T�τ�0(θ) ≡ T−1
∑T−τ

t=1 �t+τ�0(θ)(Xt+τ
0 ) ×

�t�0(θ)(Xt
0)ᵀ, by Lemma 25(3) (with M = t),∥∥∥∥∥
L−1∑
j=0

ω(j�L)
{
γ̂T�j+1(θ̂ν�T ) − γ̂T�j+1�0(θ̂ν�T )

}∥∥∥∥∥
L2(P̄ν∗ )

�
L−1∑
j=0

ω(j�L)T−1
T−j∑
t=1

t1−1/p�

By the proof of Lemma 18, T−1/2
∑T

t=1 t
1−1/p vanishes; thus, the RHS is of order o(LT−1/2).

Therefore, we have shown that, for any ε > 0, there exists Tε such that, for all T ≥ Tε,

P̄ν∗

(∥∥∥∥∥
T−1∑
j=0

(1 − j/T )γj+1(θ∗) −
LT−1∑
j=0

ω(j�L)γ̂T�j+1�0(θ̂T�ν)

∥∥∥∥∥
≥ ε+LT

(
	̈

(
T−1/2 log logT

)
log logT + 2rT + T−1/2

)) ≤ ε�

where the ε inside the probability arises from bounding ‖∑T−1
j=0 (1 − j/T )γj+1(θ∗) −∑LT−1

j=0 ω(j�LT )γj+1(θ∗)‖ and requires LT to diverge. Therefore, by taking L ≡ LT such
that limT→∞LT = ∞ and LT (	̈(T−1/2 log logT ) log logT + rT + T−1/2) = o(1), we estab-
lish the desired result. Q.E.D.

SM.8.1. Proofs of Supplementary Lemmas

PROOF OF LEMMA 24: The proof is standard, and thus omitted; it can be found in
Pouzo, Psaradakis, and Sola (2021). Q.E.D.

PROOF OF LEMMA 25: We show that ‖ supθ∈B(δ�θ∗) ‖�0�−∞(θ)‖‖L2(P̄ν∗ ) is bounded (δ is as
in Assumption 7) and that �t�−∞ and �t�−∞�0�−∞ are continuous in L1(P̄ν∗ ) norm, that is,
for any ε > 0, there exists δ > 0 such that

ω(δ) ≡ max
t

∥∥∥ sup
‖θ−θ0‖<δ

{
�t�−∞(θ)�t�−∞(θ)ᵀ −�t�−∞(θ0)�t�−∞(θ0)ᵀ}∥∥∥

L1(P̄ν∗ )
≤ ε (20)

and

	̈(δ) ≡ max
t

∥∥∥ sup
‖θ−θ0‖<δ

{
�t�−∞(θ)�0�−∞(θ)ᵀ −�t�−∞(θ0)�0�−∞(θ0)ᵀ}∥∥∥

L1(P̄ν∗ )
≤ ε� (21)

We also show that there exist a constant C <∞ such that, for any t and M ,∥∥∥ sup
θ∈B(δ�θ∗)

�t�−∞(θ) −�t�t−M (θ)
∥∥∥
L2(P̄ν∗ )

≤ CM1−1/p� (22)
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By Assumption 8, p ∈ (0�2/3) so the RHS vanishes asM diverges. We first establish (22).
To do so, note that, by inspection of the proof of Lemma 18, the conclusion of that lemma
holds uniformly in θ (and also in t), that is,

∥∥∥ sup
θ∈B(δ�θ∗)

�t�−∞(θ) −�t�t−M (θ)
∥∥∥
L2(P̄ν∗ )

�
t−1∑

j=[t−M/2]

�(j� t −M) +
[t−M/2]−1∑
j=[t−M]

�(t − 1� j)� (23)

By the definition of � and stationarity, we have that, for any j ≥ k, �(j�k) = �(j − k�0),
and thus

∑t−1
j=[t−M/2]�(j� t − M) ≤ ∫ M

[M/2]+1 1/(x)1/p dx ≤ p

1−p (M/2)1−1/p, and∑[t−M/2]−1
j=[t−M] �(t − 1 − j�0) ≤ p

1−p (M/2)1−1/p. Thus,∥∥∥ sup
θ∈B(δ�θ∗)

�t�−∞(θ) −�t�t−M (θ)
∥∥∥
L2(P̄ν∗ )

�M1−1/p�

as desired. Since, under Assumption 7, ‖ supθ∈B(δ�θ∗) ‖�0�−M (θ)‖‖L2(P̄ν∗ ) <∞ for any finite
M , (22) implies that ‖ supθ∈B(δ�θ∗) ‖�0�−∞(θ)‖‖L2(P̄ν∗ ) is bounded.

We show next that (21) holds (the proof of (20) is completely analogous so it is omitted).
To this end, observe that, for any t ∈ N∪{0} and M ∈N∪{∞},∥∥∥ sup

‖θ−θ0‖<δ
�̃t�−∞(θ) − �̃t�−∞(θ0)

∥∥∥
L1(P̄ν∗ )

≤
∥∥∥ sup
θ∈B(δ�θ∗)

�̃t�−∞(θ) − �̃t�t−M (θ)
∥∥∥
L1(P̄ν∗ )

+
∥∥∥ sup

{‖θ−θ0‖<δ}∩B(δ�θ∗)
�̃t�t−M (θ) − �̃t�t−M (θ0)

∥∥∥
L1(P̄ν∗ )

+
∥∥∥ sup
θ0∈B(δ�θ∗)

�̃t�−∞(θ0) − �̃t�t−M (θ0)
∥∥∥
L1(P̄ν∗ )

≡ Term1�t�M + Term2�t�M + Term3�t�M�

where �̃t�−M (θ) ≡ �t�−M (θ)�0�−M (θ)ᵀ. We now bound each of these terms.
Regarding terms 1 and 3, by simple algebra and the fact that∥∥∥ sup

θ∈B(δ�θ∗)

∥∥�0�−M (θ)
∥∥∥∥∥

L2(P̄ν∗ )
<∞

for any M ∈ N∪{∞},

Term1�t�M + Term3�t�M ≤ C
∥∥∥ sup
θ∈B(δ�θ∗)

∥∥�t�−∞(θ) −�t�t−M (θ)
∥∥∥∥∥

L2(P̄ν∗ )
�

for some C <∞, and, by (22), the RHS is bounded by O(M1−1/p). Therefore, under As-
sumption 8, for any ε > 0, there exists an M such that, uniformly over t, Term1�t�M +
Term3�t�M ≤ ε. Henceforth, fix this M .

Regarding term 2, observe that M < ∞ and that �̃t�t−M is the product of two func-
tions that are comprised of M-term-sums of products of θ �→ logpθ(x� s�x′), θ �→
logQθ(x� s�x′) and their derivatives, all of which are continuous functions by Assumption
6. Thus, it can be shown that �t�t−M is continuous, thereby implying that, for any ε > 0,
there exists some δM�ε (which could always be chosen to be smaller than δ > 0) such that
Term2�t�M < ε. This completes the proof. Q.E.D.



28 D. POUZO, Z. PSARADAKIS, AND M. SOLA

REFERENCES

ATHREYA, KRISHNA B., AND SOUMENDRA N. LAHIRI (2006): Measure Theory and Probability Theory. New
York: Springer. [1,2]

BICKEL, PETER J., YA’ACOV RITOV, AND TOBIAS RYDÉN (1998): “Asymptotic Normality of the Maximum-
Likelihood Estimator for General Hidden Markov Models,” Annals of Statistics, 26, 1614–1635. [12-14,18]

DAVYDOV, YU A. (1973): “Mixing Conditions for Markov Chains,” Theory of Probability and Its Applications,
18, 312–328. [2]

DOUC, RANDAL, GERSENDE FORT, ERIC MOULINES, AND PHILIPPE SOULIER (2004): “Practical Drift Condi-
tions for Subgeometric Rates of Convergence,” Annals of Applied Probability, 14, 1353–1377. [8]

DOUC, RANDAL, ÉRIC MOULINES, AND TOBIAS RYDÉN (2004): “Asymptotic Properties of the Maximum Like-
lihood Estimator in Autoregressive Models With Markov Regime,” Annals of Statistics, 32, 2254–2304. [12]

HAIRER, MARTIN, AND JONATHAN C. MATTINGLY (2011): “Yet Another Look at Harris’ Ergodic Theorem
for Markov Chains,” in Seminar on Stochastic Analysis, Random Fields and Applications VI, ed. by Robert
Dalang, Marco Dozzi, and Francesco Russo. Basel: Springer, 109–117. [1]

POUZO, DEMIAN, ZACHARIAS PSARADAKIS, AND MARTIN SOLA (2021): “Maximum Likelihood Es-
timation in Markov Regime-Switching Models With Covariate-Dependent Transition Probabilities,”
arXiv:1612.04932v3 [math.ST]. [1,7,8,12,14,15,26]

STACHURSKI, JOHN (2009): Economic Dynamics: Theory and Computation. Cambridge, Massachusetts: MIT
Press. [3,17,18]

THIERNEY, LUKE (1996): “Introduction to General State-Space Markov Chain Theory,” in Markov Chain
Monte Carlo in Practice, ed. by Walter R. Gilks, Sylvia Richardson, and David J. Spiegelhalter. London:
Chapman & Hall/CRC, 59–74. [1]

WHITE, HALBERT (2001): Asymptotic Theory for Econometricians. Revised Edition, London: Academic Press.
[19]

YU, BIN (1994): “Rates of Convergence for Empirical Processes of Stationary Mixing Sequences,” Annals of
Probability, 22, 94–116. [7]

Co-editor Ulrich K. Müller handled this manuscript.

Manuscript received 22 April, 2019; final version accepted 15 February, 2022; available online 4 March, 2022.

http://www.e-publications.org/srv/ecta/linkserver/setprefs?rfe_id=urn:sici%2F0012-9682%282022%2990%3A4%2B%3C1%3ASTMLEI%3E2.0.CO%3B2-D
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:2/bickel98&rfe_id=urn:sici%2F0012-9682%282022%2990%3A4%2B%3C1%3ASTMLEI%3E2.0.CO%3B2-D
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:3/davydov1974mixing&rfe_id=urn:sici%2F0012-9682%282022%2990%3A4%2B%3C1%3ASTMLEI%3E2.0.CO%3B2-D
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:4/douc2004practical&rfe_id=urn:sici%2F0012-9682%282022%2990%3A4%2B%3C1%3ASTMLEI%3E2.0.CO%3B2-D
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:5/douc04&rfe_id=urn:sici%2F0012-9682%282022%2990%3A4%2B%3C1%3ASTMLEI%3E2.0.CO%3B2-D
http://arxiv.org/abs/arXiv:1612.04932v3
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:11/yu1994rates&rfe_id=urn:sici%2F0012-9682%282022%2990%3A4%2B%3C1%3ASTMLEI%3E2.0.CO%3B2-D
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:2/bickel98&rfe_id=urn:sici%2F0012-9682%282022%2990%3A4%2B%3C1%3ASTMLEI%3E2.0.CO%3B2-D
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:3/davydov1974mixing&rfe_id=urn:sici%2F0012-9682%282022%2990%3A4%2B%3C1%3ASTMLEI%3E2.0.CO%3B2-D
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:4/douc2004practical&rfe_id=urn:sici%2F0012-9682%282022%2990%3A4%2B%3C1%3ASTMLEI%3E2.0.CO%3B2-D
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:5/douc04&rfe_id=urn:sici%2F0012-9682%282022%2990%3A4%2B%3C1%3ASTMLEI%3E2.0.CO%3B2-D
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:11/yu1994rates&rfe_id=urn:sici%2F0012-9682%282022%2990%3A4%2B%3C1%3ASTMLEI%3E2.0.CO%3B2-D

	Ergodicity and Stationarity
	Proofs of Supplementary Lemmas in Appendix A.1
	Properties of ptheta(X1|X0-infty)
	Sufﬁcient Conditions for Assumptions 5 and 8
	Proofs and Results for Example 4
	Proofs of Supplemental Lemmas in Appendix A.2
	Proofs of Supplementary Lemmas in Appendix A.3
	Proofs of Lemmas 7 and 8
	Proofs of Lemmas

	Proof of Lemma 9

	Proof of Theorem 5
	Proofs of Supplementary Lemmas

	References

