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THIS SUPPLEMENT CONTAINS some omitted details on the existence of belief-
free equilibria for two families of games that are studied in the literature on
reputation. Namely, for the specific cases considered in footnotes 15 and 19, we
claim that it is possible to find games arbitrarily close to the respective original
reputation games such that V ∗ has nonempty interior. In this supplementary
material, we explain this in greater detail.

Consider first a one-sided incomplete information game Γ with known-own
payoffs, where player 2’s payoff matrix is u2, while player 1’s payoff is u1 in state
j = 1 and −u2 in state j = 2. In footnote 15 of the paper, we claim that there
exists a game Γ̂ arbitrarily close to Γ for which the set of belief-free equilibria
is nonempty.

Let us start with a two-player full information game where u1 and u2 are
players’ payoff matrixes, and assume that the set of individually rational pay-
offs of this game has nonempty interior (otherwise the question of reputation is
trivial). Consider a complete information zero-sum two-player game Γ 0, where
player 2’s payoff matrix is u2 with value v1 = v, v2 = −v. Let (s∗

1� s
∗
2) denote a

saddle point of this game. Let Mi denote the highest feasible payoff for player
i and let ai denote the action profile attaining this payoff. First, we shall show
that there always exists a perturbation of payoffs in Γ 0 that generates a full
information game Γ ′ arbitrarily close to Γ 0 and whose set of individually ratio-
nal payoffs has nonempty interior. To this purpose we perturb payoffs in such a
way that (s∗

1� s
∗
2) remains an equilibrium of Γ ′, but there exists a feasible payoff

Pareto dominating (s∗
1� s

∗
2).

1. s∗
i is not completely mixed, for some i = 1�2:

(a) Mi > vi: Let s′
i denote some action assigned zero probability by s∗

i , and
increase u−i(s

′
i� s−i) by ε > 0 for all s−i. Call u′ the new payoff matrix. Since

player i is not using s′
i, s

∗
−i remains a best reply to s∗

i , and since i’s payoff matrix
has not changed, s∗

i also remains a best reply to s∗
−i. So s∗ remains an equi-

librium. Because player i does not use s′
i, it means that ui(s

′
i� s

∗
−i) ≤ vi and so

u−i(s
′
i� s

∗
−i)+ ε > v−i, while also ui(s

′
i� s

∗
−i)+u−i(s

′
i� s

∗
−i)+ ε > 0 (since the game

is zero sum), that is, u′
i(s

′
i� s

∗
−i)+u′

−i(s
′
i� s

∗
−i) > 0. As ai denotes an action profile

such that ui(a
i) = Mi, there exists a mixture λai + (1 − λ)(s′

i� s
∗
−i) that strictly

improves upon the Nash equilibrium (s∗
1� s

∗
2).

(b) Mi = vi: This means that player i is getting his maximal payoff from
playing s∗

i independently of player −i’s action, so that any strategy profile
(s∗

i � s−i), s−i ∈ A−i, is a saddle point. So pick one action s−i and consider the
game in which u′

i(si� s−i) = ui(si� s−i) + ε for all si ∈ Ai and some ε > 0, and
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all other payoffs remain unchanged. Clearly, (s∗
i � s−i) is an equilibrium point of

the game u′, and in this equilibrium point, player i receives vi + ε . We then
proceed as in the previous case: There exists a mixture λa−i + (1 − λ)(s∗

i � s−i)
that strictly improves upon the Nash equilibrium (s∗

1� s
∗
2).

2. Both s∗
1 and s∗

2 are completely mixed: u(a1) ∈ R2 and u(a2) ∈ R2 are the
two extremes of the set of feasible payoffs that is a segment with slope −45◦,
while u(s∗) is somewhere on the interior of this segment. Let a1 = (a1� a2)
and a2 = (a′

1� a
′
2). Both ai and a′

i are in the support of s∗
i for i = 1�2, and

let αi, α′
i denote the probabilities of those actions given s∗

i . Consider the pay-
offs u′ such that u′(a1� a2) = u(a1� a2) + (ε/α2� ε/α1), u′(a1� a

′
2) = u(a1� a

′
2) +

(−ε/α′
2�−ε/α1), u′(a′

1� a2) = u(a′
1� a2) + (−ε/α2�−ε/α′

1), and u′(a′
1� a

′
2) =

u(a′
1� a

′
2)+(ε/α′

2� ε/α
′
1) (all other entries are left unchanged). By construction,

s∗ remains an equilibrium in game u′, leading to payoffs v1 = v and v2 = −v.
Now the action profiles (a1� a2) and (a′

1� a
′
2) provide two points that are above

the −45◦ line, namely (M1 + ε�−M1 + ε) and (−M2 + ε�M2 + ε), respectively.
Hence there exists a convex combination of a1 and a2 that is a Pareto improve-
ment with respect to the Nash equilibrium (s∗

1� s
∗
2).

Let Γ̂ be the one-sided incomplete information game with known-own pay-
offs where player 2’s payoff matrix is u′

2, while player 1’s payoff is u1 in state
j = 1 and u′

1 in state j = 2. Here u′
1 and u′

2 are obtained as described above
and are such that u′

1 and u′
2 are arbitrarily close to −u2 and u2, respectively.

The purpose is to show that the set of belief-free equilibria in Γ̂ is nonempty.
Consider the following construction.

Let α∗ be the occupation measure generated by strategy profile (s∗
1� s

∗
2). Let

AIR2 be the set of occupation measures leading to payoffs that are individ-
ually rational for player 2. This set has nonempty interior and includes α∗.1
Let α1�j be the α ∈ AIR2 preferred by player 1 in state j = 1�2. The payoffs
originated by α1�1 and α1�2 are incentive compatible for player 1 (and gener-
ically strictly incentive compatible provided |A| > 3). We shall show that α1�1

and α1�2 generate strictly individually rational payoffs for player 1, that is to
say, player 2 has a strategy ŝ2 that punishes player 1 in the two states. Let
Bj be player 1’s best reply correspondence in state j. Note first that pay-
offs that strictly Pareto dominate (u′

1(s
∗
1� s

∗
2)�u

′
2(s

∗
1� s

∗
2)) exist by construction

of Γ ′ and are reachable with occupation measures that are in AIR2 . Thus,
u′

1(α
1�2) > u′

1(s
∗
1� s

∗
2). Also, since s∗ minmaxes player 2’s payoff, it results in

u′
2(B

1(s∗
2)� s

∗
2) ≥ u′

2(s
∗
1� s

∗
2) and hence u1(α

1�1) ≥ u1(B
1(s∗

2)� s
∗
2), as (B1(s∗

2)� s
∗
2)

is in AIR2 . Let ε := (u′
1(α

1�2) − u′
1(s

∗
1� s

∗
2))/2 > 0. Then there are strategies s2

close to s∗
2 such that u′

1(B
2(s2)� s2) < u′

1(s
∗
1� s

∗
2) + ε < u′

1(α
1�2). Thus, we can

define player 2’s punishment strategy, ŝ2, as the s2 that solves

inf
s2
u1(B

1(s2)� s2)

1Recall that the set of individually rational payoffs in the initial game has nonempty interior.
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s.t.

u′
1(B

2(s2)� s2) < u′
1(s

∗
1� s

∗
2)+ ε�

Noting that u1(B
1(ŝ2)� ŝ2) ≤ u1(B

1(s∗
2)� s

∗
2) ≤ u1(α

1�1) and considering that the
set of individually rational payoff has nonempty interior in the full information
game corresponding to state j = 1, it follows that generically u1(B

2(ŝ2)� ŝ2) <
u1(α

1�1). Finally note that α1�1 and α1�2 are individually rational for player 2 as
they are in AIR2 . Strict individual rationality can be obtained by slightly per-
turbing α1�1 and α1�2 if necessary. This can be done without violating player
1 individual rationality and incentive compatible constraint since these con-
straints are strictly satisfied at α1�1 and α1�2.

A similar, but simpler, construction works for the case of dominant action
games (footnote 19 in the paper): Pick, for instance, the commitment type’s
payoff (for whom the payoff from the dominant action is only “nearly” inde-
pendent of his opponent’s action) to be such that the ranking over player 2’s
pure actions (given his own dominant action) is the same for both types. Then,
since the minmax action of player 2 is independent of player 1’s type, we can
find a distribution over action profiles that is both weakly incentive compatible
and strictly individual rational for both players (take a “pooling” distribution in
which player 1 plays his dominant action and player 2 does not play for sure his
minmax action)2; since there are two states and four action profiles, there will
also be strictly individually rational, strictly incentive compatible distributions.
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2More precisely, this works if, as in the example in the paper, the dominant action for player 1
is not the action that minmaxes player 2; otherwise, player 1 must also play another action with
small probability.


