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A. RESULTS WITHOUT REAL ANALYTICITY IN THE SPACE VARIABLES

IN THIS SECTION, we show that analyticity in the space variables is not neces-
sary to obtain the existence of an equilibrium with complete markets and we
provide the counterpart of our results in the absence of this property. To work
in this relaxed setting, we replace Assumptions A and B with the following
assumption:

ASSUMPTION A.1:

(a) n=d and rank(ox(t,x))=d forall (t,x) €[0,T] x R".

(b) The functions uy and oy are jointly C° in (t,x) € [0, T] x R" and are
time-independent if the economy has an infinite horizon. Furthermore, all their
space derivatives are real analyticin t € [0, T1].

(c) The vector of state variables takes values in X C R and admits a transition
density p(t, x, 1, y) that is jointly C" in (t, x, 7, y) forall (x,y) € X*and t <7 €
[0, T]fort <.

(d) There are locally bounded functions (K, L), a metric d that is lo-
cally equivalent to the Euclidean metric, and constants ¢, a, ¢ > 0 such that
p(t, x, 1, y) is analytic with respect to t # 7 in the set

Pi={t,1)eC:Rr<Tand |I(t — )| < eR(r — 1)}
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and satisfies
—a ,¢|T—t|— 27— -
|p(t, x, 7, Y)| < K(X)L(y)|7 — 1| eV = B, x, 7, y)
forall (t,7,x,y) € P? x X%

ASSUMPTION A.2: The function u, € C>(0, 00) is increasing, is strictly con-
cave, and satisfies the Inada conditions u(0) = oo, u/ (c0) = 0. The dividend
rates g; and individual endowments €, belong to C*(X).

PROPOSITION A.1: The candidate price function S(t,x) and its gradient
LS(t, x) are real analytic in t € (0, T) and S(t, x) € C*((0, T] x X).

PROOF: The proof is entirely analogous to that of Proposition 2. The only
new claim is the real analyticity of ZS(z, x). Using the fact that the candidate
price function solves

(98(;; 0 _ —A(S(t, x)) — g(x)

in conjunction with the Cauchy formula, we obtain that A(S(z, x)) is real ana-
lyticin ¢ € (0, T') and the real analyticity in ¢ € (0, T') of the derivative %S (t,x)
now follows by standard ellipticity arguments; see Shimakura (1992). Q.E.D.

The following theorems constitute the direct counterpart to Theorem 1 un-
der the weaker assumptions of this section.

THEOREM A.1: If det(o,(T, x)) # 0 for almost every x € X, then there exists
an equilibrium with dynamically complete markets.

PROOF: It follows from Proposition A.1 and the same approximation argu-
ment as in the proof of Theorem 1 that det(o(¢, x)) is real analytic in ¢ and
almost everywhere nonzero for ¢ sufficiently close to 7. The claim follows now
from Lemma A.1 below. O.E.D.

Similarly, Theorems 2 and 3 have direct analogs whose proofs follow, by the
same argument as Theorem A.1, from Lemma A.1 below.

THEOREM A.2: Assume that the utility functions are real analytic and that the
relative risk aversion of all agents is bounded between vy, and vy, for some 0 < y; <
v,. If det(B,1(x)) + - - - + det(B, 4(x)) # 0 for some a and almost every x € X,
then an equilibrium with dynamically complete markets exists for all matrix n of
initial endowments outside of a closed set of measure zero.

The proof is completely analogous to that of Theorem 2. We omit the details.
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THEOREM A.3: In the infinite horizon case, if the relative risk aversion of all
agents is bounded between vy, and vy, for some 0 < y; < v,, and either
(a) det(o,(x)) # 0 for almost every x € X or
(b) the utility functions are real analytic and det(B,(x)) + --- +
det(B, (x)) # 0 for some a and almost every x € X,
then an equilibrium with dynamically complete markets exists for all n and p > R
outside of a closed set of measure zero.

Note that the only difference between these results and Theorems 1-3 is that
the condition is required here to hold for almost every x, whereas in Theorems
1-3, we require it to hold in a single point. The reason is that in Theorems 1-
3, all functions are real analytic in x and therefore are automatically almost
everywhere nonzero if they are nonzero at a single point.

REMARK A.1: The reason we have to assume that the utility functions are
real analytic in Theorems A.2 and assertion (b) of Theorem A.3 is that we need
the consumption price function m(t, x, A) to be real analytic in A so as to apply
the result of Lemma A.1 below.

LEMMA A.1: Assume that F:R, x X — R is continuous and real analytic in
t e R, and that F(-, x) # 0 for Lebesque almost every x € X. Then there exists a
countable set O C R, such that

F(t,x)#0
foreach fixed t e R, \ O and almost every x € X.

PROOF: Suppose to the contrary that there exists a bounded uncountable’
set O and a family {4, : t € O} of Lebesque-measurable subsets of X of positive
measure such that

{(t,x):xe A} C Zr={(t,x) e R, x X:F(t,x) =0}

for each fixed ¢ € O. By application of Lemma A.2 below, this implies that
there exists a countably infinite sequence {#}32, € O such that the set A, =
Nz, A, has strictly positive Lebesgue measure. By construction, F(#, x) =0
for all k and all x € A,,. By the uniqueness theorem for analytic functions of
one variable, F (¢, x) =0 for any x € A,,, which is a contradiction. Q.E.D.

LEMMA A.2: Let 3 C R be an uncountable set and let {A,: o € 3} denote
a family of Lebesque-measurable subsets of X such that A, has strictly positive
Lebesgue measure for every o € 3. Then there exists a countably infinite set @ C 3
such that A* = (), .4 A has strictly positive Lebesgue measure.

Tf © is unbounded and uncountable, then there exists an 7 € N such that @ N[0, ] is uncount-
able (since otherwise O itself would be countable) and we may simply replace O with O N[0, n].
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PROOF: Let v denote Lebesgue measure on R”". Since {1, : o € 3} is a non-
empty subset of L'(X, v), it follows from well known results in functional anal-
ysis that there exists a nontrivial subset A of X" and a sequence {A4,, };>, of
elements of {A4, : o € 3} such that

fim [ 11,0 = Lol fim o(4,, & 4) =0

where A denotes the set theoretic symmetric difference. Let now @ = {¢,}2,
be a subsequence of {0} }7, such that

(A, A AS) <2 Dp(A%)
foralln>1andset A=, .p Ay =, Ag,. With this notation

v(A*) > v(A N AY) > v(A) —v(A* A A°)

> v(A9) =) w(Ay, & A)
n=l1
v(A°)
2

> V(AC) . sz(nH)V(AC) —

n=1

and the desired result now follows from the fact that the set A° has strictly
positive measure by construction. Q.E.D.

B. A GENERAL MODEL WITH TERMINAL DIVIDENDS

To establish a direct connection with Anderson and Raimondo (2008), we
show in this section how our results can be modified to include terminal divi-
dends, heterogenous discount rates, and time-dependent aggregate consump-
tion.

Consider a finite horizon economy as in the paper and assume that instead
of paying only intermediate dividends, stock i is represents a claim to a cumu-
lative dividend process of the form?

tNT
Dy = / gi(7, X.) d7 + Ly, Gi(X1),
0

where g; > 0 is a real analytic function that represents a flow rate of dividends
and the function G; > 0 represents a terminal lump dividend. As in Anderson
and Raimondo (2008), we assume that the function G; is continuous and that

2If the economy has an infinite horizon, then we naturally assume that stocks do not pay ter-
minal dividends and we set G; = 0 for all i.
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there exists a open set V C X such that G, € C'(V) for every i. Furthermore,
we assume that the state variables satisfy Assumptions A and D.

Since the stocks now pay lump-sum dividends at the terminal time, we need
to assume that agents derive utility from terminal wealth as well as from inter-
mediate consumption. Specifically, we assume that the preferences of agent a
over lifetime consumption plans are represented by an expected utility index
of the form®

T
U,c,C)=E, |:/ e Pu,(c.)dr + e”“Tva(C)].
0

In the above equation, the constant p, > 0 is the agent’s subjective rate of time
preferences and (u,, v,) is a pair of utility functions that satisfy Assumption B.
As in the paper, agent a is endowed with 7, € [0, 1] units of stock i and re-
ceives income at rate £,(¢, X,) > 0 for some real analytic function ¢,,.

The following result provides a characterization of the equilibrium consump-
tion price process as the marginal utility of a representative agent and consti-
tutes the counterpart of Proposition 1 for the present model.

PROPOSITION B.1: Assume that
T
(B.1) E[/ e"'ul (g(t, X)) A)g(t, X,)dt
0
+e””Tv/a(5(XT)/A)E(XT)] < 0

for each a < A, where G = G 1, denotes the aggregate terminal dividend. Then
the set of Arrow-Debreu equilibria is nonempty and in any such equilibrium,

du _ Jv —
m,=m(t, X,) = 1{t<T}E(ta A, g(t, X))+ 1{::7}%(/\, G(X71))

for some vector A € S, of Pareto weights, where

A
v(A,C) = maxz Aee P Ty, (a,C),
a=1

aeSy

A

u(t, A, ¢) = max E Ae€ P ug (0 0),
aeSy I
a=

31f the economy has an infinite horizon or if there are no terminal dividends, then we naturally
assume that agents have no utility for terminal consumption and set v, = 0 for all a.
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and S denotes the unit simplex. In particular, the equilibrium consumption price
function mis real analytic in (¢t,x,A) € (0,T) x X x S,.*

PROOF: The fact that condition (B.1) is sufficient to guarantee the existence
of an Arrow-Debreu equilibrium follows from Proposition C.1 below. The sec-
ond part of the statement follows from arguments similar to those used in the
proof of the second part of Proposition 1. Q.E.D.

As shown by the above result, the equilibrium consumption price is continu-
ous on [0, T) but has a predictable jump

J — d
A(X7) = (Tlc)()" G(X7)) — &—Z‘m A, Z(T, X1))

at the terminal time. In the present context, this somehow unnatural jump re-
flects the potential misalignment between the agents’ preferences for interme-
diate and terminal consumption on the one hand, and between intermediate
and terminal dividends on the other.’ It can be avoided by assuming that ei-
ther dividends and utilities are aligned in the sense that g(7, x) = G(x) and
u,(c) = v,(c) for each a or that the stocks do not pay lump-sum dividends at
the terminal date.

Consider now a fixed Arrow—Debreu equilibrium and denote by m(¢, X,)
the corresponding consumption price. Using arguments similar to those of the
main text, we have that the candidate prices are given by B, = exp(A,) and

S, =1yn/P(t, X)) + 1=nG(X7),

where
" D(m(r, X)) A(X7)
A =— _— lyoplogll — —————
’ /0 m(r, X,y 47T hen °g< m(T,XT))
and P is the function defined by
T m(r, X,) m(T, Xr)
B.2 P(t,X,))=E, ——g(r, X,))dT+ ——G(X7) |.
B2y P U mii—, X 8T AT = 3 T)}

As can be seen from these definition, the candidate price processes are contin-
uous on [0, T') and have a jump at the terminal time which they inherit from

“If the traded security do not pay terminal dividends, the statement can be strengthened to
show that m is real analytic in (¢, x,A) € (0, T] x X x S,.

3Other examples of diffusion driven equilibrium models where prices have singular compo-
nents include the case of finite marginal utility at zero studied by Karatzas, Lehoczky, and Shreve
(1991), the liquidity constraints model of Detemple and Serrat (2003), and the portfolio insurance
model of Basak (1995), among others.
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the discontinuity in the equilibrium consumption price. However, and as re-
quired to guarantee that prices are arbitrage-free, the relative jumps on all
traded securities are equal:

. Br . S A(X7)
Iim— =1lim— = X )=1— —.
Sr B, T AT, Q(Xr) m(T, Xr)

If this were not the case, then trivial arbitrages could be implemented by buying
a security with a larger relative jump and short-selling the same amount of
another with a smaller relative jump just prior to the terminal time.

The following result shows that market completeness obtains provided that
the volatility op(t, x) = % (t,x)ox(t, x) of the candidate pre-horizon price
function is invertible at one point of the state space and constitutes the coun-
terpart of Propositions 2 and 3 for the model of this section.

PROPOSITION B.2: Assume that the conditions of Proposition B.1 are satisfied
and that either Assumptions A and C or Assumptions A and D hold true. Then the
function P belongs to C*((0, T] x X) and is real analytic in (t,x) € (0,T) x X.
As a result, if det(os(t, x)) # 0 for some point (t,x) € (0,T) x X, then there
exists an equilibrium with dynamically complete markets.

PROOF: The first part of the statement follows from arguments similar to
those of the proof of Theorem 4 below. As in the main text, the second part
follows from the real analyticity of det(os (¢, x)) in (¢, x) € (0, T) x X and the
fact that a real analytic function is either identically zero or almost everywhere
different from zero. O.E.D.

As we now show, the above result can be used to derive a simple sufficient
condition for market completeness in finite horizon economies with termi-
nal dividends. Using the definition of the pre-horizon price function in equa-
tion (B.2), we obtain

. G _
}EI}P(I‘, X) = 00 = G(x),

and appealing to Proposition B.2 for the required smoothness gives
oP G
—(t,x)=— 1
LX) =) +oll)
for all x € V. This equation shows that close to the terminal date, the volatility

of the candidate prices can be approximated by that of the vector G(X,) of
effective terminal dividends. In particular,

det(op(t, x)) = det(og(T, x)) + o(1)
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for all x € V, where o4(¢, x) = G'(x)ox (¢, x) denotes the volatility of the ef-
fective terminal dividends, and combining this with the second part of Propo-
sition B.2 delivers the following theorem.

THEOREM B.1: If det(o4(T, x)) # 0 for some x € V, then there exists an equi-
librium with dynamically complete markets.

Theorem B.1 shows that an equilibrium with dynamically complete markets
exists as soon as the volatility of effective terminal dividends is nondegenerate
at one point of the state space. If one assumes, in addition, that there is no jump
in the equilibrium consumption price at the terminal time, then this condition
simplifies further and only requires that the volatility o (¢, x) = G'(x)ox (¢, x)
of the terminal dividends be nondegenerate. In that case, our condition is sim-
ilar to that of Anderson and Raimondo (2008), albeit with a slightly different
market structure.®

C. EXISTENCE OF ARROW-DEBREU EQUILIBRIA

In this section, we establish an existence result that covers both finite and
infinite horizon economies in the setting of Section B above, that is, with ter-
minal dividends, heterogenous discount rates, and time-dependent aggregate
consumption.

PROPOSITION C.1: Assume that

T
E[ / e " 'u,(8(t, X))/ A)g(t, X,) dt + e—"”Tv;@(XT)/A)@(XT)}
0
<00
for every a < A. Then an Arrow-Debreu equilibrium exists.

PROOF: To facilitate the exposition, we assume throughout that v, = G, =0
for all a, i, but our arguments can be extended in a straightforward way to in-
clude terminal dividends. Consider the excess utility map e:R7, — R defined
by

T"mt, X, A
ea()\)=E/ M
0 Aa

|: (epalm(t, XUA)
x| I,| ——————

)\ )_Ea(t)Xt)_nzg(taXt)} dta

SSpecifically, Anderson and Raimondo (2008) assumed that in place of instantaneously risk-
free bonds, the menu of traded securities includes a zero net supply security with terminal payoff
Gy(x) > Oforall x € V and price Py. In that case, a straightforward modification of our arguments
shows that Theorem B.1 remains valid provided that we replace P with P/P, and G with G/ Gy.
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where I, denotes the inverse marginal utility of agent a. By Lemma C.1 below,
we have that e has all the properties of a finite-dimensional excess demand
function. Consequently, there exists some A* € S, such that e(A*) =0, and
it now follows from standard arguments that the consumption price process
m(t, X,, A*) and the allocation associated with A* constitute an Arrow—Debreu
equilibrium. Q.E.D.

LEMMA C.1: The excess utility map satisfies the following statements:
(a) e is homogeneous of degree zero.

(b) Y4 Ae,=0.
(c) eis continuous in R, .
(d) e, is bounded from above forall a on S, and e, - —oo as A, — 0.

PROOF: The first two properties are straightforward. To establish the re-
maining two, observe that since the function m(¢, x, A) solves the goods market
clearing condition

A
(€1 Fx)=) L(e™m(t, X, N/,

a=1
we have that it is continuous in A and satisfies
A
(C2) e_pjt)\ju}(g(t, x)) <m(t,x,A) < Ze_p“t)\au;(g(f, x)/A)
a=1

for all j. Indeed, using equation (C.1) and the fact that the functions /; are
nonnegative gives

g(ta -x) > Ij(epjtm(t’ Xt’ )\)//\1)7

and the lower bound of equation (C.2) now follows from the decrease of I;.
Similarly, the definition of the functions /, implies that

A
81, %) =Y L(u,(8(1,x)/ 4))

a=1

A A
ePat ) L
> Zl()\_ Y e AUl (E(t, x)/A))
a=1 j=1

a

and the upper bound of equation (C.2) follows from the decrease of /. Using
this upper bound in conjunction with the definition of the aggregate consump-
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tion and the fact that n,; € [0, 1], we deduce that

(C3)  m(t, X;, M) (L (t, X)) +m, 81, X))
5 m(ty Xt7 /\)g(t7 Xt)

A
<D et AL (3t x) ] AZ(, X)),

a=1

and since
A T
(C4) ZE[/ e il (3(t, X))/ A)g(t, Xt)dt] <0
a=1 0
by assumption, it follows from the dominated convergence theorem that

T
fa(V) = E/ m(t, X, \)(L.(t, X))+, g(t, X,))dt
0

is continuous in A. Similarly, since
m(t, Xt’ A)Ij(epjl’/n(l‘a Xta A)/Aj) = m(ta Xt’ A)g(t’ Xt)

by application of equation (C.2) it follows from (C.3), (C.4), and the dominated
convergence theorem that

T
ho(A) = E / mt, Xos VL ("' m(t, X, A)/Ao) di
0

is continuous in A, and (c) follows by noting that e,(A) = (1/A,)(f,(A) +
h,(A)). To show that e, - —oo as A, — 0, observe that since m is finite and
the utility functions satisfy the Inada conditions, we have

(C5)  lim I,(e"'m(t, X, A0)) =0.

Combining this with (C.3), (C.4), and the dominated convergence theorem
shows that lim,, ., f,(A) = 0. As a result, it now suffices to show that £, is
bounded from below on &, but this follows from (C.4), the lower bound of
equation (C.2), and the fact that since A € S, some of its coordinates must be
nonzero. The proof of the fact that e, is bounded from above on S, follows
from similar arguments and therefore is omitted. QE.D.

D. COUNTEREXAMPLES

In this section, we present counterexamples that show that the requirement
that the candidate prices be real analytic in time cannot be relaxed if one wants
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to deduce market completeness from the primitives of the economy. To high-
light the intuition behind our construction, we start with an explicit example of
a single stock economy before we move on to economies with multiple stocks.

D.1. A Single Stock Economy

Assume that the uncertainty is generated by a one-dimensional Brownian
motion and consider a finite horizon economy populated by a representative
agent with initial portfolio n = 1, time preference rate p > 0, and logarithmic
utility for both intermediate and terminal consumption.

Since there is a representative agent, we know that this economy admits a
unique equilibrium independently of whether markets are complete or not.
Furthermore, exploiting the assumption of logarithmic utility, we obtain that
in this equilibrium the stock price is

Sz = 1(z<T]P(t> Xz) + 1[t:T)G(XT);
where the pre-horizon price function is defined by

P(t, X)) =g(t, X)((1/p) + """ "(1 = 1/p)).

This expression shows that in this example, dynamic market completeness is
entirely determined by the intermediate dividends. In particular, if we assume
that there exists a set of strictly positive measure R C (0, T') such that

og _
(D.1) ﬁ(t,x)_O

for almost every (¢, x) € R x &, then the stock volatility vanishes on R and
it follows that markets are dynamically incomplete in equilibrium even though
the effective terminal dividend

G(x)=P(T,x)=g(T, x)

may be chosen’ in such a way as to satisfy the nondegeneracy condition of
Theorem B.1. The reason the result of Theorem B.1 does not apply here is
that if (D.1) holds on a set of strictly positive measure, then the equilibrium
price function fails to be real analytic in time over (0, 7) and so we cannot
propagate the nondegeneracy of the stock volatility from a neighborhood of T
to the whole interval.

7A simple example of a smooth function that satisfies the condition of Theorem B.1 as well
as equation (D.1) on a set of strictly positive measure is I'(¢, x) = a + Bexp(—x2/(t — yT)™) for
some strictly positive constants «, 8, and y < 1. In that case, the set over which the price function
fails to be real analytic in time is simply given by R = (0, yT].
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D.2. Multiple Stocks Economies

Consider now a finite horizon economy where the uncertainty is generated
by a Brownian motion of dimension 4 > 1, and assume that the economy is
populated by a representative agent with time preference rate p > 0 and utility
function u for both intermediate and terminal consumption.

Additionally, let, (g, G) denote the vectors of intermediate and terminal div-
idends and assume that the dividends of the first stock are uniformly bounded
from above and away from zero. The following proposition allows us to extend
the construction of the previous example to economies with multiple risky se-
curities.

PROPOSITION D.1: Consider an economy as above and let F; € C**((0, T) x
X) be a nonnegative function. Then there exist nonnegative intermediate dividend
functions g, ..., gs and a nonnegative constant K such that the equilibrium price
of the first stock satisfies S;, = Fi(t, X,) + K forall t € [0, T).

In the equilibrium just described, market completeness depends to a large
extent on the choice of the exogenous function F;. In particular, let R C [0, T']
be an open set of strictly positive measure and assume that

JF,
—(t,x) =0,
ax

for almost every (¢, x) € R x X. In that case, the volatility matrix of the equi-
librium prices is automatically degenerate on R and it follows that markets are
incomplete even though the effective terminal dividends of the risky securities,

G(x)
Gi(x)’

G(x)= }LII}P(t, x)=F(T,x)+K)

can be chosen in such a way as to satisfy the nondegeneracy condition of Theo-
rem B.1. As in the previous example, the reason the result of Theorem B.1 does
not apply here is that, given our choice for F;, the equilibrium price function
fails to be real analytic over the whole time interval. This clearly shows that real
analyticity cannot be dispensed with if one is to deduce dynamic completeness
from the properties of the dividends of traded securities.

REMARK D.1: Proposition D.1 bears some close connection with the litera-
ture on viable diffusion price processes; see Bick (1993), He and Leland (1993),
and Wang (1993), among others. In particular, it complements this literature
by showing that in an economy with multiple stocks, fixing the dividends of one
stock does not impose any constraint on its equilibrium price except for a lower
bound.



COMPLETENESS OF EQUILIBRIUM MARKETS 13

PROOF OF PROPOSITION D.1: Assume without loss of generality that d =2
and consider the nonnegative process defined by

H,=H(t, X)) = E[e "™ %%y (G(X1)G1(X1)]
with

gl(ta x)

(DIZ(I)(t,Xt) = m.
1

Since all the terms are bounded, we know that H is bounded, and by choosing
K large enough, it can be guaranteed that the function

e’ H(t, x)

K+F1(t,x)) _gl(tax)

g(t,x) = (u/)'<

is nonnegative for all (¢, x). Taking g, as the intermediate dividend on the sec-
ond stock, we obtain that the equilibrium consumption price process is

e”m(t, X,) = L/ §(t, X)) + Li=rv (G(X)))
and it follows that the (pre-horizon) equilibrium price of the first stock is

m(taXt)Pl(ta Xt)
_ HtP](t7 Xt)
Fi(t,X,)+K

T
:Ez[/ m(r, X,)g: (7, X,)d7 + e ""m(T, XT)GI(XT)]

Using this expression in conjunction with the definition of the functions g, and
m, we easily get that

d( H.P\(t, X,)

(D.2) L R
K+ F(t, X))

) =—®,H,dt +dM!

for some uniformly integrable martingale M”. On the other hand, we have that
the dynamics of the process H are given by

dH, = —®,H,dt + ¢ i *X0 b qM, — —@,H, dt + dM ",
where M is the bounded martingale defined by
M, =eli™*H, — H,
= E[e T %4y (G (X1))Gy(X7)] — Ho.
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Using the boundedness of M in conjunction with the nonnegativity of @ and
the Burkholder—Davis—Gundy inequalities (see Karatzas and Shreve (1998,
Theorem 3.28)), we get that

EO[ sup |Mf’|] < C-EO[ sup |Mt|] <

te[0,T1] t€[0,T1]

for some strictly positive constant C and it follows that M* is a uniformly inte-
grable martingale. Using this property in conjunction with equation (D.2), we
deduce that

Pl(taXt)

N=H|1—————
' ( K+ F(t, X))

)=N0+Mf’—Mf’

is also a uniformly integrable martingale, and since lim,_.r N, = 0 by definition
of g, and H, we finally conclude that P, = K + F;. O.E.D.

E. DETAILS OF SOME ARGUMENTS

DETAILS OF THE PROOF OF PROPOSITION 1: The result follows directly
from Assumption A(d), Assumption C, the fact that for any v > 1 we
have p(0,x,7,y) < C,p(0, x,vr,y) for some constant C, > 0 and Proposi-
tion C.1. Q.E.D.

DETAILS OF THE PROOF OF LEMMA 1: Recall that by the first part of the
proof, we have that the transition density is a classical solution to

ap(t,x,7,y)

(E1)  Dpt,x,1,y) = ~

+A(p(t, x,7,¥))

for all (x,y) € X and ¢ # 7. The proof of the required bound is carried out
by induction on k. Since the transition density satisfies the required bound
by assumption, the fact that 9% p/dt*o also satisfies it can be established by
standard arguments based on Cauchy’s theorem (see, e.g., Davies (1997, Proof
of Theorems 3 and 4)). Indeed, by application of Cauchy’s theorem, we have
that

b

Jop(t,x,1,y) _E/ p(z,x,7,y)
gtk 2w ) (t—2)'th

where I' is a small complex circle centered at ¢. Since by Assumption A the
domain of analyticity of the transition density in (¢, 7) contains P?, we can
choose I' in such a way that |z — ¢| > &;|7 — ¢| for some &; > 0. By analyticity,
we know that equation (E.1) holds for ¢ # 7 in a small complex neighborhood.
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Shrinking I' if necessary, we can assume that |z — ¢| < (1 + &)|7 — ¢] for all
z € I'. Therefore, it follows from Assumption A that

op(t, x,T,y) - ko!
&t(l)‘ 2
ko! —(1+kg) —(a+ko)
52—81 Ulr =TT K(x)L(y)
T

« ebUHelT—tl=d(x.y?/((+e)lr—1)

—(1+ko) —(14k
g lT—1l ””)/Ip(z,x, 7, y)lldz|
r

and the arbitrariness of k, shows that g% p/dt*o satisfies the required bound
for all ky € N. To proceed further, let us first fix some notation. For a function
u(x) and an arbitrary multi-index k € N¢, we let

ky+-+kg

D*u(x) = o u(x)

ky
oxy -+ dxy

and define a norm by setting

1/p
||u||k,p,ns< / Z|Dfu<x>|"dx) :
0

L=l

Using the fact that the transition density is a solution® to equation (E.1) to-
gether with the Calderon—Zygmund estimates (see, e.g., Gilbarg and Trudinger
(1983, Theorem 9.13)) shows that

letll2, p:Bix,rr2) < Cl(”u”p,B(x,r) + ”Au”p,B(x,r))

<G sup (Ju(w)| + [Au(w)])

weB(x,r)

for some constants C;, C, > 0, where B(x, r) denotes the ball of radius r cen-
tered at x in the metric d and we have set |u|l, o = |lullo, 0. Now the Morrey
estimates (see, e.g., Gilbarg and Trudinger (1983, Section 7.9)) imply that

Sup (|u(w)| + |VM('LU)|) S C3||u||2,p;B(x,r/2)

weB(x,r/2)

for any p > d and some constant C; > 0 that depends on the size of the deriva-
tives of the coefficients of A but not on the function u itself. Combining the
above estimates shows that

(E.2) sup  [Vu(w)| <Gy sup (Ju(w)| + |Au(w)])

weB(x,r/2) weB(x,r)

8In the time-inhomogeneous case, the generator A has complex coefficients for complex values
of . However, when the complex neighborhood is sufficiently small, this operator can be viewed
as a small perturbation of its real part and the results of Auscher (1996) apply.
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for some constant C, > 0. Fix (¢, 7, y) € [0, T]*> x X with ¢ # 7 and let w = x,
u(w) = p(t,w, 7, y). Using the first part of the proof in conjunction with the
fact that the transition density is a solution to (E.1) then shows that

& t’ b bl
(E3)  |Au(w)| = ‘w‘

< A(w)L(y)|1 — 1|7 0+® gt Urelr—ti=dawy)?/((+elr—1)

for some locally bounded function A. Furthermore, picking r sufficiently small,
we may assume that

d(x,y)*
2
d(w,y) > <5

for all w e B(x,r/2) and x € X such that d(x, y) > . Combining this with
(E.2), (E.3), and Assumption A(d) then shows that the required bound holds
for ky =0, |k| = 1. Repeating the same argument as in the first part shows that
the required bound also holds for ky, = |k| = 1, and since

Fpt,x,7,y) _ IA(P(L X, T,y))
&tﬁx[ (7x,»

=Vi(Ap(t,x,1,y))

due to equation (E.1), we conclude that the function V;(Ap) also satisfies the
required bound. Finally, using the Schauder estimates (see, e.g., Gilbarg and
Trudinger (1983, Theorem 6.2)), we obtain that

sup <Z|D1u(w)|)§C5< sup |u(w)|+ sup ]V,(.Au(w))D

weB(x,r) <2 weB(x,r) weB(x,r),i<d

for some constant Cs > 0. It follows that the required bound holds for ky =0
and |k| = 2, and repeating the argument of the first part of the proof shows
that it also holds for £y = 1 and |k| = 2. To complete the proof, suppose that
we have established the required bound for k, =1, |k| < ¢, and let

, B &k1+~>+kd+1p(t’ X, T, y)
qi(axaTay):(?xkl“.(j)x "ﬁxkd’
1 d

e i=1,...,d.
Kt

Differentiating equation (E.1), we obtain that

(7515(t, X, T, Y)

&t :A(qi(t’xa Ta}’))‘FC}i(tax’T,}’),

where ¢; contains derivatives of p of order less than |£| as well as partial deriva-
tives of the coefficients oy and uy of the infinitesimal generator. Since §; sat-
isfies the required bound due to the induction hypothesis, the same argument
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as above applies and we get that g; also satisfies the required bounds. This es-
tablishes the required bound for ky = 1, k € N¢, and the result for k, > 1 now
follows from the same Cauchy theorem-based argument as in the first part of
the proof. Q.E.D.

DETAILS OF THE PROOF OF THEOREMS 1 AND 2: Here we provide a proof of
the second order expansion of the price volatility matrix given in equation (5)
and establish the expansion of the determinant that was used as a basis for the
proof of Theorems 1 and 2.

The assumptions of the statement and the definition of the candidate prices
imply that Q = m.S is a solution to

—&Qf;t’x) _ m(t, )g(x) + AQ(t, x))

for all (¢, x) € (0, T) x X and has terminal value zero. Since m > 0 is smooth
by Proposition 1, this implies that S(z, x) is a solution to

aS(t,x) A(mS)(t, x) dlogm
TR _g(x)+7m(t,x) +8(¢, x)

for all (¢, x) € (0, T) x X and has terminal value zero. Using the smoothness
of the coefficients in conjunction with Propositions 1 and 2, we obtain

dlogm(t’ ) = lim A(mS)(t, x) _
ot T  m(t, Xx)

(E4) (t, x)

lim S(z, x) 0,
t—T
and it now follows from equation (E.4) that

(ES)  lim 225D
t—>T Jt

=—g(x).

Since S € C3((0, T] x X) by Proposition 1, this further implies

t 2
lim 905(t, ) :1im< S ox + 5 (?UX)(t,x)

P AP >\ 9t dx Jdx dt
3*S(t, x)

=y X (X
=—0,(T, x).

Differentiating with respect to time on both sides of equation (E.4), we obtain
’S(t,x) 9 (AmS)(t,x)
oz at\ m(t, x)

aS(t, x) dl
4 (z, x) dlogm
ot

(E.6)

d*logm
(1, x) +S(t,x)T(t,x)-
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Using the assumed regularity of the coefficients in conjunction with Proposi-
tion 1, Proposition 2, and equation (E.5), we obtain

7 (A(msxt, x)) AT, x)g(x))

(E.7) lim .5 (T x)

t—T Jt

On the other hand, it follows from equation (E.5) and the continuity of the
candidate price function that we have

dlogm
Jat

lim

t—>T

(T, x),

8 dlogm +So7210gm
Jat  Jt ar?

)(t,X)=—g(X)

and combining this with equations (E.6) and (E.7), we conclude that

.St x)  Am(T, x)g(x)) dlogm

I — e = Ty TEW 5 (T®
_ D(im(T, x)g(x))
o m(T, x)

Since S € C3((0, T] x X) by Proposition 2, this further implies

. Pog(t,x)
lim ———=
t—>T é)tZ
(93S (925 070'X A (90')(
= li 2 — t
tl—>n}<(?t2(9x0X+ gtax ot T ax ot >( %)
d (Dm(T, x)g(x)) dox
=— T —2¢'(x)—(T
ax< m(T,x) O-X( ax) g(x) &t( 5x)
= H(x)

and, therefore,
1
D(t,x)=o05(t,x) — (T =)o (T, x) — E(T —1)’H(x) =o(T —t)*,

where we have used the fact that the candidate price function converges to
zero at the terminal time. To obtain an expansion of det(os(t, x)), consider
the matrix-valued functions defined by

D(t,
A(x) = 0(T, x), K(r,x>=%,

B(t,x)=K(t,x)+ %H(x).
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With these notations, we have that
os(t,x)=(T — ) A(x) + (T — 1)*B(t, x)
and, therefore,
(E.8)  I(t,x)=det(os(t,x)) = (T — t)det(A(x) + (T — t)B(t, x)).

Well known results from linear algebra show that for any two matrices M, and
M,, the determinant of the sum M; + M, is given by

k=0 1<ij<--<ip=d

where C, . ; is obtained from M, by replacing its rows numbered iy, ..., i
with the corresponding rows of the matrix M,. Applying this to (E.8), we obtain

d
I(,x)=) (T—0 " " det(C,.; (1, x))
k=0

1<ij<--<ip=d

= (T — t)?det(A(x))

d
+Y (T =0k > det(C..., (1, X)),
k=1

1<ij<--<ip=d

where C;, _; (f,x) is obtained from A(x) by replacing its rows numbered
i1, ..., iy with the corresponding rows of the matrix B(t, x). Expanding the sec-
ond term on the right hand side and using the fact that

1
det(Ci(t, x)) = 3 det(B;(x))
forall 1 <i <d, where

Bi(x) = 0,(T, x) +ee] (H(x) — 0,(T, x))

and e, is the ith vector in the orthonormal basis of R?, we thus obtain that the
determinant of the price gradient satisfies

d
I(t,x)=(T — t)d<det(0'g(T, X)) + %(T — 1) Zdet(Bi(x)))

i=1

+o((T — H'),
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which is the expansion used as basis for the proof of Theorems 1 and 2.
Q.E.D.

DETAILS OF THE PROOF OF THEOREM 3: To justify the differentiability of G
which was used in the proof of Theorem 3, it suffices to prove that the functions

]a()\)EE/ m(t’ Xt’)\)la(eptm(t7Xt7 )\)/Aa)dts
0

k(M) = E/oom(t, X, M(La(X)) + (X)) dt
0

are both continuously differentiable with respect to A. Differentiating the mar-
ket clearing condition (C.1) with respect to A; shows that

1 omt,x,N) _ AZe’m(t,x, VI (e"m(t,x, N)/\)
m(t,x,A\)  dr;

(E.9) -
D oAle m(t, x, DI (e m(t, x, 1)/ \e)

k=1
Since I, is the inverse of u, we have that I} (z) = 1/u} (I, (z)) and, therefore,

1 <_ZI,’((Z) . u, (I (z)) - 1

v~ L(z) L@u(2) "7

since the agents’ relative risk aversions are assumed to be bounded between vy,
and y,. Combining this with (E.9) gives

1 om(t, x, ) Y2
0< <
m(t,x, )\) (9)\1 /\j‘yl

and, therefore,

Y2

J

om(t, X;, A)
‘&—/\j(ea(Xt) +g8/(X))

=

m(ta Xta A)g()(t)
1

so that the differentiability of k, now follows from the upper bound of equa-
tion (C.2), Lemma 2, Assumption C, and the dominated convergence theorem.
Using similar arguments, it can be shown that

é)m(taXla/\)[ eptm(t’Xt’ /\)
IN; ‘ A

S Cm(t) Xt7 /\)g(x)

for some C > 0 and the differentiability of j, now follows from equation (C.2),
Lemma 2, Assumption C, and the dominated convergence theorem. Q.E.D.
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Verification of the Bound for Square Root Processes: Here we verity the claim
that the transition density of the square root process satisfies the bound of
Assumption A(d) for real values of ¢ # 7. Assume that

(ElO) dX,'t = (a,- — biXit) dt =+ T/ |Xit| dZ[,

for some constants a; > 0, b;, and o; such that v; = (2a;/0?) — 1 > 0.7 Using
well known results on square root diffusions (see, e.g., Feller (1951) and Cox,
Ingersoll, and Ross (1985)), we have that the transition density is given by

1 y vil2 —b:t 2
(1x,y) = et mo [o—bit
(%) ( ) ¢ l(ﬂ(t) ¢ xy)

(1) \ ebilx

for all (¢, x, y) € [0, TT* x (0, 00)?, where the function J,, is the modified Bessel
function of the first kind with index v; and we have set

2

. — O-i _ —b;t
Ti(t) = 2bi(l e,

Since the function 7; is uniformly bounded above and away from zero on [0, 77,
we have that there are constants C; = C;(T) > 0 such that

Cit <7i(1) < Gut.
Combining this property with the inequality
e U= o oG ED2 y(p x ) e R, x R

and the fact that I, (x) < Ky(x/2)"e* for some strictly positive constant K, (see
Joshi and Bissu (1991)), we obtain that the transition density satisfies

1i(t, x, )| < Koi(t) "0 ytigm1/mO o=V e ey

< Klt—(1+Vi)yVie—(l/fi(t))(f—\/e’bi‘X)z

< KZt_(l-H}i)yVi€K3(x_y)_(K4/t)(ﬁ—ﬁ)2

for some strictly positive constants (K;)%,. The desired result now follows by
noting that the formula

d
d(x, y)’ =K Y (V% — /%)
i=1

°This parametric restriction is meant to guarantee that the solution to (E.10) never reaches
zero and can be relaxed at the cost of increased notational burden.
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defines a metric that is locally equivalent to the Euclidean distance.

Verification of the Bound for Constant Elasticity of Variance Processes: Here we
verify the claim that the transition density of the constant elasticity of variance
process satisfies the bound of Assumption A(d) for real values of ¢ # 7. Assume
that

(E11) dX;=uX;dt+ &1 Xu"PidZ,

for some constants u;, &;, and B; > 0. To establish the required bound, consider
the nonnegative process defined by

Y= (&B:XE) 2

Applying 1td’s lemma to the right hand side and using equation (E.11) shows
that this process evolves according to equation (E.10) with the constants a; =
2+4+1/Bi, b; =2w;B;, and o; = —2. Combining this simple observation with the
arguments used in the square root case immediately gives the desired result.

FE PROOFS OMITTED FROM THE MAIN TEXT

PROOF OF PROPOSITION 3: Let m, = m(t, X,, A) and ¢,, = (1) 7' (e*'m,/A,)
be an Arrow—Debreu equilibrium, denote by

1 T
S, =5(t, X)= —E, f m.g(X,)dr
m; t

the corresponding vector of candidate prices, and assume that the correspond-
ing volatility matrix os, = o(¢, X,) is almost surely nondegenerate.

To prove that this Arrow-Debreu equilibrium gives rise to an equilibrium,
we start by showing that for each a, the consumption plan ¢, belongs to
C.(m, B, S) and is optimal for agent a. Consider the wealth process defined
by

1 T
w.= LE / M, (Cor — Lo(X,)) dT.
m, t
Since the process

t
W + / 1 (Cor — £a(X.)) d
0

is a martingale, it follows from the martingale representation theorem, the def-
inition of B, and the assumed invertibility of the stock volatility matrix that

t t t
E1)  Wa=Wa+t / a, dB, + / 7l d(S+ D), - f (Car — La(X.)) d7
0 0 0
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for some trading strategy («,, 7,). On the other hand, we have

T T
/ mT(CaT_Ka(XT))dT = / |m7(ca7_za(XT))|dT
t 0

T
< / m.g(X,)dr
0

and, since the right hand side is integrable as a result of (C.3) and Assump-
tion C, it follows from the dominated convergence theorem that

T
lim Elm, W] = lim E / M (Cor — £a(X.)) d7 =0,
11— 11— ¢

which, together with equation (F.1) and the definition of W,,, implies that the
consumption plan ¢, is feasible for agent a. To show that it is in fact optimal,
let ¢’ € C,(m, B, S) denote another feasible plan and denote by W’ the corre-
sponding wealth process. Using the martingale property of the process

mW/ +f m.(c, —L,(X;))dt
0

together with the definition of the set of feasible strategies and the same argu-
ment as above, we deduce that

0
(F2)  myWy=mW= gin}<E[m9W;] + E/ m.(c, —£,(X)) dT)
- 0

6
> limE/ m.(c, —£,(X.))dr
0

6—T
T
= E/ m.(c, —L,(X,))dr.
0

On the other hand, by concavity of the utility function, we have

uy(c;) — Ug(Car) < U,(Car)(C; — Car),

and combining this inequality with (F.2) and the definition of the wealth pro-
cess associated with ¢, shows that

T
E/ e (uu(c,) — uy(cer))dr
0

T
< Ef e U, () (C, — Cor) dT
0
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T
= E/ m.(c, —c,;)dt
0

T
=E [ e~ (X)) dr — i <0
0

and establishes the optimality of ¢,. To complete the proof, it remains to show
that the financial markets clear. Since

A n
> Wu=)_S,
a=1 i=1
A

by definition of the consumption and wealth processes (c,, W,):_,, we have that
the market for the risky asset clears. On the other hand, applying It6’s lemma
to both sides of this equality and matching diffusion terms gives

A
oy, (Z Tt — St) =0
a=1

and the clearing of the stock market now follows from the assumed invertibility
of the stock volatility matrix. Q.E.D.

PROOF OF LEMMA 2: The fact that m > 0 follows from the fact that g is
finite. On the other hand, using an argument similar to that which led to (C.2),
we obtain

A
m(x) < Y A, (3(x)/A),
a=1

which is the desired result. O.E.D.

PROOF OF LEMMA 5: We first note that
[’} 4]
/ e‘p‘f(t)dt—/ e’ f(t)ydt=0(e ")
0 0
for any ¢, > 0 because
+o0 +oo
/ e f(t)dt=e*0 / e P f(t)dt.
] fy

Integrating by parts, we get

/ e f(ydt=p ' (f(0)—e " f(tp))+p" / e ”'f'(t)dt.
0

0



COMPLETENESS OF EQUILIBRIUM MARKETS 25

Repeating this calculation, we get by induction that
IN) k
e f(ydt="Yy p'fP(0)
[ e >e

L}
+ p—k—l / e—ptf(k+1)(t) dt + O(e—ptg)
0
and the desired follows because
fy
/ e " fED(dt — 0
0
by application of the dominated convergence theorem. Q.E.D.

PROOF OF PROPOSITION 4: The result of Proposition 4 follows directly from
that of the following lemma (Lemma FE.1). Q.E.D.

LEMMA E1: Let T < oo and assume that the state variables evolve according
to

(E3) dX,=b(t) — A)X,)dt+ ox(t)dZ,

for some real analytic functions such that rank(ox(t)) = d forall t € [0, T]. Then
the following assertions hold:

(a) The state variables admit a transition density p(t, x, T, y) that is real ana-
Wticin (t,7) € [0, TP\ {r=1}.

(b) There are constants C, € > 0 as well as a complex neighborhood P 2
[0, T such that p(t, x, 7, y) is analytic for

(t,yeP:={t,1)ePs=1—1#0,|3(s)| < eN(s)}
and satisfies
|p(t,x, 7, )| < K(x)|7 — 1|42 0/ Clr=th

for all quadruples (x,y, t,7) € X* x P2, where d(x, y) = ||x — y|| is the standard
Euclidean distance and K is a locally bounded function.

PROOF: By the analytic implicit function theorem (see Lunardi (1995, The-
orem 8.3.9)), we have that the unique solution to

dd(t)
=A@
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with initial condition I, is analytic in a neighborhood of [0, T]. Furthermore,
the inverse of this unique solution solves

d(®~'(1)

-1
=T (AW

with initial condition I, and hence is analytic as well.

Using the above notation in conjunction with well known results on lin-
ear stochastic differential equations (see Karatzas and Shreve (1998, Chap-
ter 5.6)), we obtain that the unique solution to equation (F.3) is a Gaussian
process with mean

w(t,x, ) =E[X.|X,=x]=P(1)D ' (H)x + / O(T)D 1 (s)b(s)ds,

t

and variance—covariance matrix
0(t,7) = E[X. X]|X,] - E[X,| X, ]E[X,|X,]"

= /t (@)D ()ax (H)NP(T)P ™ (s)ax(s)) " ds.
In particular, the transition density of the state variables is given by
(F4)  pt,x,7,y)= ¢y, u(t, x,7), 21, 7)),
where
¢ (y,m, B) = (2m) 7| det(B)| e 0

denotes the d-dimensional Gaussian probability distribution function. Since
the functions b, oy, @, and @' are analytic, we have that the functions u and
() are also analytic, and it now follows from equation (F.4) that the transition
density exists and is real analytic in (¢, 7) € [0, T1*\ {t = 7}.

Since the horizon is finite and the matrix oy (¢) is by assumption nondegen-
erate for all ¢ € [0, T], we know that there are strictly positive constants ¢ and
6 such that

81, > Sx(t) = ox(ox () > el

for all ¢ € [0, T'], where, for two symmetric matrices, A > B means that 4 — B
is nonnegative definite. Now consider the function defined by

_ 0,7

T—1t

(1, 7)
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Since the function {2 is analytic in a neighborhood of [0, T]?, we know that the
function (2 is jointly real analytic for ¢ = 7. On the other hand, since

lim (1, 7) = Sx(7),

we have that the singularity at 7 = ¢ is removable and it thus follows from Sha-
bat (1992, Theorem 3, p. 92 and Hartog’s Theorem, p. 28) that (i) the function

0 is real analytic in (¢, 7) € [0, T')* and satisfies
81, > 01, 7) = el

for all (¢, 7) € [0, T]?, and (ii) there exists a neighborhood C > P 2 [0, T'] such
that

R A 1
12(t, 7) — Q(RE, A7) < 7

for all (¢, 7) € P?, where the notation ||M|| denotes the Euclidean norm of the
matrix M. Using these properties we readily obtain that

1202, )| = [12(Re, Rr) || — 12(2, 7) — Q(%it, %K) |
M e n o Les
I — U, NT)—— — &€= <€
Al Ml 27 =2

for any 4 € R and it follows that
. 2
(E5) 127l e =

for all (¢, 7) € P?. Using similar arguments and setting (¢, 7) = (¢, x, 7) —
& (1)P~'(t)x, it can be shown that the vector-valued function

n(t, x,7) = M
T—1
(I = ¢(T)‘P‘1(t))x G
o T—1 T—1

is real analytic in (¢, 7) € [0, T]* and, since real analytic functions are locally
bounded, it follows that there exists a constant C, > 0 such that

(E6)  lIm(t,x, 1) = Co(1 + llxl)

for all (¢, 7, x) € P> x X. After these lengthy preparations, we now turn to
assertion (b). Using the expression of the transition density in conjunction with
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equation (ES5) and the fact that

1 _ 12 _
Tdet((r. )2 = |det(.(2 (7, t))| <@, "
=l(r =072, < &P r — 117,
we deduce that

|p(t, %, 7, )| < Cplm — 1| Pem it
for all (¢, 7, x, y) € P* x X* and some constant C, > 0, where
Ay =(y—x)" R, 1))y —x),

A= |(y =) RO, T2, x, 7))

b

As = |R((r = O, x, 1) Q7 (1, )L, x, 7).

Using equations (E.5) and (F.6), we obtain that
Ar <y = 2127 (1, Dt 2, 7))
< Ny = xIQ7" ¢, Dlllin(t, x, DI < G+ 1xDly — xII,
As < |7 = tlin(t, x, )7 (8, )m (2, x, 7))
< |7 — 1127, DI (e, x, DI < Co(1+ [1x[)?

for all (¢, 7,x,y) € P* x X? and some nonnegative constants C;, where the
last inequality follows from the boundedness of P. Now let ¢ > 0 be a fixed

constant. Since Q-'(¢, 7) > &, and J(2-'(¢, 7)) = 0 for some constant &, > 0
and all real (¢, 7), we can assume by shrinking the neighborhood if necessary
that

A 1 A
R (7, 1) > 582]1117 IS, )| < des

for all (¢, 7) € P?. Using these estimates in conjunction with the fact that |3 (7 —
1)| < eR(r— 1) in the set P2, we deduce that there exists a C; = C(¢$) > 0 such
that

(=0 TONT — DR (1, 7)) + (1 — OIQ (1, 7)) (Y — x)
B |7 — 1]

- N(r—1) (1/2— pe)eslly — x| - (1/2—de)e lly —x|*
|7 — ¢ |7 — ¢ - 1+¢ |7 — ¢

A,

for all (x,y, t, 7) € X* x P? and assertion (b) follows. O.E.D.
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REMARK F.1: Assume that the economy has an infinite time horizon and
that the coefficients oy, b, and A are time-independent. In this case, it can be
shown that the result of Lemma F.1 remains valid provided that the variance—
covariance matrix of the state variables

(1) =E[(X, — E[X,)(X, — E[X,])]]

is positive definite for all 7 > 0 and that either all the eigenvalues of 4 have
strictly positive real parts or the matrix A is diagonalizable and all its eigenval-
ues have nonnegative real parts.

PROOF OF PROPOSITION 5: Assume that each of the coordinates of the vec-

tor of state variables follows an autonomous process as in equation (8), let
3(x) =diag(oi(x1),...,04(x4)), and let

T “ 2pi(2)
o =550 eXp(/y[ 0.2 dz)’

where y in an arbitrary point in the interior of the state space. With these
notations, we have that the drift of the state variables can be written as

14 et(E(X ( h(x)? )
E7 i =5 i '
(E7) ) 221 h(x)*  dx;\/det(3(x)) o

This shows that the infinitesimal generator A of the state variables is a
weighted Laplace-Beltrami operator with weight function 4* (see Grigor’yan
(2006)) and the desired conclusion now follows from the results of Davies
(1997). Q.E.D.

REMARK E2: The result of Proposition 4 holds not only for autonomous
diffusions, but also for any multidimensional diffusion process whose drift can
be expressed as in equation (E7) for some function #: X — R. No particular
conditions need to be imposed on the volatility matrix except for the fact that
it be of full rank.

PROOF OF THEOREM 4: To establish Theorem 4, it suffices to show that un-
der Assumption D the candidate prices are real analyticin ¢ € (0, 7). As can be
seen from the proof of Lemma 3, this follows once we show that there exists a
complex neighborhood P O [0, T'] such that m(t, x)g;(t, x) is analytic in t € P
forall x € X and

T
(E8) / / sup  |m(6, x)gi(6, )| p(0, x, v7, y) dy d < 0o,
0

X (0eP:Ro=T)
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Using the result of Lemma F.2 below together with Assumption D, we have
that there exists a constant K and a complex neighborhood P > [0, T'] such
that

A
sup  |m(6,x)g:(0, )| <Y Ki|u,(g(r, x))g(7, x)|

{beP:Ro=r) P

A
< E Kze*PaT
a=1

for all 7 € [0, T] and some K, K, > 0, where the second equality follows from
the concavity of the utility function and the finiteness of 7. Combining this
estimate with Assumption D then shows that (E8) holds and completes the
proof. Q.E.D.

u, (g(r, x)/ A)g(7, x)|

LEMMA E2: Under Assumption D, there exists a complex neighborhood P D>
[0, T'] such that m(0, x) is analytic in 0 € P for all x € X and satisfies

A
Im(6, x)| <Y Ku,(g(%06, x))

a=1

forall (6, x) € P x X and some constant K > 0.

PROOF: Assumption D implies that for z close to 0 and oo, all the utility
functions behave asymptotically as Constant relative risk aversion (CRRA)
functions and, for simplicity of exposition, we assume that all utilities are, in
fact, CRRA. The general case follows by a modification of the arguments. As-
sume that

v —1

Ui (c) = =y

for some vy, > 0, define b, = 1/v,, and consider the function

A

d(x,z,u)= Z e Pabazybag g(z,x).

a=1

With these notations we have that the consumption price solves ¢ (x, z, m(z,
x)) = 0 and we want to apply the analytic implicit function theorem to obtain
analyticity of m(z, x) with respect to z € P for some complex neighborhood
‘P O [0, T that is independent of the choice of x € X. To this end, we argue as
follows. For real values of ¢ € [0, T'], we have that

A
max (e *"'uPc,0) = e (cu ) Ay = e PP U (ciy ) A)
1<a<A
- a=1
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for any index 1 < i < A. Since the horizon T is finite, it follows that there exists
a strictly positive constant C; such that

A A
(F9)  (1/C)Y gt x) ™ <m(t,x) <C Y _g(t,x)7".

a=1 a=1

By Chang, He, and Pradhu (2003, Theorem 1.1), we know that the ra-
dius of time analyticity of the function m depends only on two quanti-
ties: a lower bound on |d¢/du| at the point (x, ¢, m(t,x)) and an upper
bound on |¢(x, z, u)| for (x, z,u) in a complex neighborhood of the point
(x, t,m(t, x)).1°

By compactness, when g(t, x) varies in a fixed bounded interval, the claim
follows from the analytic implicit function theorem. Now we have to consider
two regimes: that where g(¢, x) is large and that where it is small. Assume first
that g(¢, x) > K, for some sufficiently large constant K4, let y,;, = min, vy,, and
consider the function £(z, x) = m(z, x)g(z, x)"in. By equation (F.9), we have
that

A A
G+ G Z g(t, x)™n % < m(t,x) < Cs 4 Cy Z 2(t, x)min~7a
Ya>Ymin Ya>Ymin

for some constants C,, C; > 0, and it follows that £(z, x) varies in a bounded
interval as long as the aggregate dividend is bounded away from zero. On the
other hand, a direct calculation shows that ¢(z, x) solves ¥ (x, z, £(z, x)) =0,
where

A

W(z,x,u) = Z e Pabarg(z, x)tmin/Yaly~hag  — 1.

a=1
In particular, we have that

Ip(z,x,u)

—pibiz. —b;
o > —be” """ U ¢y,

where i = argmin, y, denotes the agent with the smallest risk aversion and it
follows that the derivative is uniformly bounded away from zero as u = £(z, x)
is bounded away from zero. Since

18(z, )| = [Ng(z, x)| = K5|g(Nz, x)| = K4Ks

0Even though the conditions of Chang, He, and Pradhu (2003) only require a bound on
|¢(x,t,u)| for real values of ¢, a close inspection of their proof shows that one in fact needs
abound on |¢ (x, z, u)| for complex values of z.
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for some constant Ks > 0, we can make g(z,x) arbitrarily large by in-
creasing the constant K,. Sending g(z, x) to infinity and using the identity
¥(z,x,£(z,x)) =0 in conjunction with the fact that £(z, x) stays uniformly
bounded, we obtain

A
lim E e—Pabazg(Z’ x)')’min/'}’a—lu—ba co=0

8(z,x)—>00
Ya>"Ymin

and, therefore,

~lim £(z,x) = e P,

g(z,x)—>00
where the convergence is uniform in x € X such that g(z, x) > K, for all
t € [0, T] and some sufficiently large K,. Hence, |/(z, x, u)| can be made arbi-
trarily small when |u — £(t, x)| 4 |z — t| < & uniformly in x for some sufficiently
small ¢ and it follows that the radius of time analyticity of ¢(z, x), which is
equal to that of m(z, x), is uniformly bounded from below when the aggregate
dividend is large.

In the regime where the aggregate dividend is small, the desired result fol-
lows from a similar argument using s(z, y) = m(z, x)g(z, x)"> with ypn.. =
max, v, instead of the function £(z, x). We omit the details.

To complete the proof, let P 2 [0, T] denote the domain of complex ana-
lyticity of m(z, x). Using the definition of the consumption price function in
conjunction with the triangle inequality, we obtain that

A
8(z, 1) <Ko »_ Im(z,x)| ™"

a=1

for some constant K; > 0. As a result, we have that there exists an index a =
a(x) as well as a strictly positive constant K; such that

18(z, )| _ ig(z, x)|
AK¢ —  AK,

Im(z, x)| e > > K,g(Nz, x)

and the desired conclusion follows. Q.E.D.
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