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S1. PROOF OF THEOREM 1

WE BREAK OUR PROOF into simpler claims.

CLAIM 1: M is IIR.

PROOF: Arbitrarily fix i ∈ [n] and a′
−i ∈A−i, and let ai = (i�0� θi). We need

to prove

ui
(
ai� a

′
−i

) ≥ 0�(S1)

In the outcome of (ai� a′
−i), ifw �= i, then Pi = −δi, and thus ui(ai� a′

−i)= −Pi =
δi > 0. If w= i, then θi ≥ 2ndv and Pi = 2ndv− δi, thus

ui
(
ai� a

′
−i

) = θi − Pi ≥ 2ndv− 2ndv+ δi = δi > 0�

Therefore Equation (S1) holds, and so does Claim 1. Q.E.D.

To prove our revenue lower-bound, we make use of the following relations.
For any two pairs of nonnegative integers (�� v) and (�′� v′), we write

(�� v)� (
�′� v′)

if v > v′ or (v = v′ and � < �′). We write (�� v) � (�′� v′) if (�� v) � (�′� v′) or
(�� v) = (�′� v′). Notice that the relation defined by “�” is complete: for any
two pairs (�� v) �= (�′� v′), either (�� v)� (�′� v′) or (�′� v′)� (�� v). Also notice
that the order defined by “�” is consistent with how the mechanism breaks
ties.
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CLAIM 2: Let δi and δ′
i respectively be the rewards that player i gets in Step c

according to the action profiles (ai� a−i) and (a′
i� a−i), where ai = (i� �i� vi) and

a′
i = (i� �′

i� v
′
i). Then,

(�i� vi)� (
�′
i� v

′
i

)
implies δi > δ

′
i�

PROOF: By definition, (�i� vi) � (�′
i� v

′
i) means that either vi > v′

i, or vi = v′
i

and �i < �′
i.

If vi > v′
i, we have

δi − δ′
i

= ε

2n

[
1 + vi

1 + vi − �i

(1 + �i)(1 + vi)2

]

− ε

2n

[
1 + v′

i

1 + v′
i

− �′
i(

1 + �′
i

)(
1 + v′

i

)2

]

= ε

2n

[
vi − v′

i

(1 + vi)
(
1 + v′

i

) + �′
i(

1 + �′
i

)(
1 + v′

i

)2 − �i

(1 + �i)(1 + vi)2

]

≥ ε

2n

[
vi − v′

i

(1 + vi)
(
1 + v′

i

) + �′
i(

1 + �′
i

)
(1 + vi)2 − �i

(1 + �i)(1 + vi)2

]

= ε

2n

[
vi − v′

i

(1 + vi)
(
1 + v′

i

) + �′
i − �i

(1 + �i)
(
1 + �′

i

)
(1 + vi)2

]

>
ε

2n

[
1

(1 + vi)2 + �′
i − �i

(1 + �i)
(
1 + �′

i

)
(1 + vi)2

]

>
ε

2n

[
1

(1 + vi)2 − 1
(1 + vi)2

]
= 0�

where the first inequality holds because 0 ≤ v′
i < vi and �′

i ≥ 0, the second
because 0 ≤ v′

i < vi and both vi and v′
i are integers, and the third because

�′i−�i
(1+�i)(1+�′i)

≥ −�i
(1+�i)(1+�′i)

≥ −�i
1+�i >−1 and 1 + vi > 0. Thus δi > δ′

i as desired.
If vi = v′

i and �i < �′
i, we have

δi − δ′
i =

ε

2n
· �′

i − �i
(1 + �i)

(
1 + �′

i

)
(1 + vi)2 > 0�

thus again δi > δ′
i.

Therefore Claim 2 holds. Q.E.D.

Let us now prove that a player i never “underbids his beliefs.”
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CLAIM 3: ∀k ∈ {1� � � � �K + 1} we have that

∀ai = (i� �i� vi) ∈ RATk
i (τi)�(S2)

(�i� vi)� (
min

{
� : g�i (τi)= gk−1

i (τi)
}
� gk−1

i (τi)
)
�

PROOF: We prove Claim 3 by induction on k. Because the analysis for the
Base Case (k= 1) and the Inductive Step (k > 1) are almost the same, below
we focus on the Inductive Step and point out the differences with the Base
Case when needed.

Assume Equation (S2) holds for all k′ < k. To prove it for k, we proceed by
contradiction. Let �̂i = min{� : g�i (τi)= gk−1

i (τi)} and v̂i = gk−1
i (τi), and assume

(�i� vi)� (�̂i� v̂i). By the definition of “�” we have (�̂i� v̂i)� (�i� vi).
Let âi � (i� �̂i� v̂i), and arbitrarily fix t−i ∈ Bi(τi) and a′

−i ∈ RATk−1
−i (t−i). Be-

low we show

ui
((
âi� a

′
−i

)
� θi

)
> ui

((
ai� a

′
−i

)
� θi

)
�(S3)

which contradicts the fact ai ∈ RATk
i (τi).

To prove Equation (S3), let δ̂i and δi respectively be the rewards that player i
gets in Step c of the mechanism according to (âi� a′

−i) and (ai� a′
−i). Because

(�̂i� v̂i)� (�i� vi), by Claim 2 we have

δ̂i > δi�

Let (ŵ� P̂) and (w�P) respectively be the outcomes of the two action profiles,
and denote a′

j by (j� �′
j� v

′
j) for each j �= i. We distinguish two cases.

Case 1. �̂i = 0.
This case applies to both the Base Case (k = 1) and the Induction Step

(k> 1). In this case, we have v̂i = gk−1
i (τi) = g0

i (τi) = θi, and we further dis-
tinguish three subcases.

Subcase 1.1. w= i.
In this subcase, we have ŵ = i as well, since according to M the triple

(i� �̂i� v̂i) is ordered before (i� �i� vi). Therefore Pi = maxj �=i v′
j − δi and P̂i =

maxj �=i v′
j − δ̂i. Accordingly,

ui
((
âi� a

′
−i

)
� θi

) = θi − P̂i = θi − max
j �=i

v′
j + δ̂i > θi − max

j �=i
v′
j + δi

= θi − Pi = ui
((
ai� a

′
−i

)
� θi

)
�

where the inequality holds because δ̂i > δi. Thus Equation (S3) holds.
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Subcase 1.2. w �= i and ŵ= i.
In this subcase, v̂i ≥ maxj �=i v′

j , P̂i = maxj �=i v′
j − δ̂i, and Pi = −δi. Thus

ui
((
âi� a

′
−i

)
� θi

) = θi − P̂i = θi − max
j �=i

v′
j + δ̂i = v̂i − max

j �=i
v′
j + δ̂i

≥ δ̂i > δi = −Pi = ui
((
ai� a

′
−i

)
� θi

)
�

and Equation (S3) holds.
Subcase 1.3. w �= i and ŵ �= i.
In this subcase, Pi = −δi and P̂i = −δ̂i. Thus

ui
((
âi� a

′
−i

)
� θi

) = −P̂i = δ̂i > δi = −Pi = ui
((
ai� a

′
−i

)
� θi

)
�

and again Equation (S3) holds.
Case 2. �̂i ≥ 1.
This case applies to the Induction Step only. (In the Base Case, we have

�̂i = 0.)
In this case, we shall prove that ŵ �= i. To do so, first note that, by the defini-

tion of �̂i,

g
�̂i−1
i (τi) < g

�̂i
i (τi)�(S4)

Because t−i ∈ Bi(τi), we have

g
�̂i
i (τi)= min

t′−i∈Bi(τi)
max

{(
g
�̂i−1
i (τi)� g

�̂i−1
−i

(
t ′−i

))}
(S5)

≤ max
{(
g
�̂i−1
i (τi)� g

�̂i−1
−i (t−i)

)}
�

Combining Equations (S4) and (S5), we have

g
�̂i−1
i (τi) <max

{(
g
�̂i−1
i (τi)� g

�̂i−1
−i (t−i)

)}
�

Letting t = (τi� t−i) and j = arg maxr∈[n] g
�̂i−1
r (tr) with ties broken lexicograph-

ically, we have

g
�̂i−1
j (tj)= max

{(
g
�̂i−1
i (τi)� g

�̂i−1
−i (t−i)

)}
�

Accordingly,

j �= i and g
�̂i−1
j (tj)≥ g�̂ii (τi)�

thus
(
�̂i − 1� g�̂i−1

j (tj)
) � (

�̂i� g
�̂i
i (τi)

)
�(S6)
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Because �̂i ≤ k− 1 and a′
j ∈ RATk−1

j (tj), we have a′
j ∈ RAT�̂i

j (tj). Thus by the
inductive hypothesis,2 we have

(
�′
j� v

′
j

) � (
min

{
� : g�j (tj)= g�̂i−1

j (tj)
}
� g

�̂i−1
j (tj)

) � (
�̂i − 1� g�̂i−1

j (tj)
)
�

which together with Equation (S6) implies

(
�′
j� v

′
j

) � (
�̂i� g

�̂i
i (τi)

) = (
�̂i� g

k−1
i (τi)

) = (�̂i� v̂i)�(S7)

By Equation (S7), we have that the triple (j� �′
j� v

′
j) is ordered before (i� �̂i� v̂i)

according to M , and thus ŵ �= i. Since (�̂i� v̂i)� (�i� vi), we have w �= i as well.
Therefore Pi = −δi and P̂i = −δ̂i, which implies

ui
((
âi� a

′
−i

)
� θi

) = −P̂i = δ̂i > δi = −Pi = ui
((
ai� a

′
−i

)
� θi

)
�

Thus Equation (S3) holds.
In sum, Equation (S3) holds in all possible cases, contradicting the fact that

ai ∈ RATk
i (τi). Therefore Claim 3 holds. Q.E.D.

Following Claim 3, we have that for every action profile a ∈ RATk+1(τ), 2ndv
is at least the second highest value in the set {gki (τi)}i∈[n], which is precisely
Gk(C). Because for each player i

δi = ε

2n

[
1 + vi

1 + vi − �i

(1 + �i)(1 + vi)2

]
≤ ε

2n
· 2 = ε

n
�

we have

rev
(
M(a)

) = 2ndv−
∑
i

δi ≥Gk(C)−
∑
i

δi ≥Gk(C)−
∑
i

ε

n

=Gk(C)− ε�
This concludes the proof of Theorem 1.

S2. PROOF OF THEOREM 2

We first prove the theorem for n= 2. Arbitrarily fix V �k≥ 1 (the case where
k = 0 is degenerated and will be briefly discussed at the end) and c < V . As-
suming there exists an IIR mechanism M̂ that level-k rationally implements

2Claim 3 is stated with respect to context C and player i. But due to the arbitrary choice of C
and i, the claim applies also to context C ′ = (n�V �T � (τ−j� tj)) and player j.
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�

t1�2
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���
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FIGURE S1.—Type structure T in context C .

Gk − c for Cn�V , we prove the following statement:

There exist C = (2� V �T � τ) ∈ Cn�V and a ∈ RATk(τ)(S8)

s.t. rev
(
M̂(a)

)
<Gk(C)− c�

which leads to a contradiction. To prove statement (S8), we set T = (T�Θ�ν�B)
as follows: for each player i,

• Ti = {ti�� : � ∈ {0�1� � � � �k}};
• νi(ti��)= 0 ∀� < k, and νi(ti�k)= V ; and
• Bi(ti��)= {t−i��+1} ∀� < k, and Bi(ti�k)= {t−i�k}.

The type structure T is illustrated in Figure S1, and we set τi = ti�0 for each i.
Below, we show that there exists an action profile a ∈ RATk(τ) such

that rev(M̂(a)) < Gk(C) − c. For doing so, we use an auxiliary context C ′ =
(2� V �T ′� τ′), where T ′ = (T ′�Θ�ν′�B′) is defined as follows: for each player i,

• T ′
i = {t ′i�� : � ∈ {0�1� � � � �k}};

• ν′
i(t

′
i��)= 0 ∀�; and

• B′
i(t

′
i��)= {t ′−i��+1} ∀� < k, and B′

i(t
′
i�k)= {t ′−i�k}.

The type structure T ′ is illustrated in Figure S2, and we set τ′
i = t ′i�0 for each i.

We first prove the following claim.

CLAIM 4: In type structure T , for any player i and any ��k′ ∈ {0�1� � � � �k},
gk

′
i (ti��)= 0 if k′ + � < k and gk′

i (ti��)= V otherwise.

τ′
1 : t ′1�0
ν′

1 : 0

1

���
��

��
��

��
��

t ′1�1
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1

��
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��

��
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��
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�
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���
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��
��

�
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���
��

��
��

��
��
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· · ·
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FIGURE S2.—Type structure T ′ in context C ′.
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PROOF: We proceed by an induction on k′. The case with k′ = 0 holds im-
mediately, since g0

i (ti��)= νi(ti��), which is 0 when � < k and V otherwise. For
k′ ≥ 1, assuming the case is true for k′ − 1, we show that it is true for k′ as well.
Indeed, for any player i,

gk
′
i (ti�k)= max

{
gk

′−1
i (ti�k)� g

k′−1
−i (t−i�k)

} = max{V �V } = V �
where the second equality is by the inductive hypothesis and the fact that k′ −
1 + k ≥ k. For any � < k, we have gk′

i (ti��) = max{gk′−1
i (ti��)� g

k′−1
−i (t−i��+1)}. If

k′ + � < k, then (k′ − 1)+ � < k and (k′ − 1)+ (�+ 1)= k′ + � < k; thus, by
the inductive hypothesis, we have

gk
′
i (ti��)= max{0�0} = 0�

If k′ + �≥ k, then (k′ − 1)+ (�+ 1)≥ k; thus, by the inductive hypothesis, we
have

gk
′
i (ti��)= max

{
gk

′−1
i (ti��)� V

} = V �
where the second equality is because gk

′−1
i (ti��) ≤ V . Therefore Claim 4

holds. Q.E.D.

By Claim 4, gki (ti�0)= V for each i; thus,

Gk(C)= V and Gk(C)− c = V − c > 0�

Accordingly, to prove statement (S8), it suffices to prove the following two
propositions:

RATk(τ)= RATk
(
τ′)�(S9)

and

there exists a ∈ RATk
(
τ′) such that rev

(
M̂(a)

) ≤ 0�(S10)

To prove Equation (S9), recall that, by definition,

RAT0
i (ti��)= RAT0

i

(
t ′i��

) =Ai for any player i and any �≤ k�

whereAi is the set of actions for player i in M̂ . Because νi(ti��)= ν′
i(t

′
i��)= 0 for

each i and each � < k, and because of the definitions of B and B′, by a similar
induction as the one in the proof of Claim 4 we have that, for any player i and
any ��k′ ∈ {0�1� � � � �k},

RATk′
i (ti��)= RATk′

i

(
t ′i��

)
whenever k′ + �≤ k�

In particular, RATk
i (ti�0)= RATk

i (t
′
i�0) for each i, and Equation (S9) holds.
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To prove statement (S10), notice that ν′
i(τ

′
i)= 0 for each player i. Thus, for

each action profile a, we have rev(M̂(a))= −u1(a�0)− u2(a�0). Accordingly,
it suffices to prove the following statement:

there exists a ∈ RATk
(
τ′) such that ui(a�0)≥ 0 for each i.(S11)

Since M̂ is IIR, for each player i, there exists an action ai such that

ui
((
ai� a

′
−i

)
�0

) ≥ 0 ∀a′
−i ∈A−i�

This equation and the definition of RAT1
i (τ

′
i) together imply that, for each i,

there exists an action a1
i ∈ RAT1

i (τ
′
i) such that

ui
((
a1
i � a

′
−i

)
�0

) ≥ 0 ∀a′
−i ∈A−i = RAT0

−i
(
t ′−i�1

)
�

Indeed, if ai ∈ RAT1
i (τ

′
i), then a1

i = ai; else a1
i is the action in RAT1

i (τ
′
i) that

dominates ai.
Because B′

i(τ
′
i)= {t ′−i�1}, by induction we conclude that for each i, there exists

an action aki ∈ RATk
i (τ

′
i) such that

ui
((
aki � a

′
−i

)
�0

) ≥ 0 ∀a′
−i ∈ RATk−1

−i
(
t ′−i�1

)
�

Note that ak ∈ RATk(τ′). Accordingly, to prove statement (S11), it suffices to
show that ak−i ∈ RATk−1

−i (t
′
−i�1) for each i, because then we have ui(ak�0)≥ 0 for

each i, as desired. Thus it is left to show

aki ∈ RATk−1
i

(
t ′i�1

) ∀i�(S12)

To prove Equation (S12), notice that

RAT0
i

(
t ′i��

) = RAT0
i

(
t ′i��+1

) =Ai for each i and each � < k�

Because the players’ valuations are always 0 in T ′, by another induction we
have that, for any i, k′, �,

RATk′
i

(
t ′i��

) = RATk′
i

(
t ′i��+1

)
whenever k′ + � < k�

Thus

RATk−1
i

(
t ′i�0

) = RATk−1
i

(
t ′i�1

)
for each i�

Accordingly, we have aki ∈ RATk
i (t

′
i�0)⊆ RATk−1

i (t ′i�0)= RATk−1
i (t ′i�1) for each i,

and Equation (S12) holds. Therefore statement (S11) also holds, and so does
statement (S10). Combining Equation (S9) and statement (S10), we have that
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statement (S8) holds, a contradiction. Thus Theorem 2 holds for n = 2 and
k≥ 1.

The analysis is very similar for the degenerated case where n= 2 and k= 0.
Indeed, we consider the context C = (2� V �T � τ) with T = (T�Θ�ν�B) defined
as follows: for each player i,

Ti = {ti}� νi(ti)= V � and Bi(ti)= {t−i}�
Also we consider the auxiliary context C ′ = (2� V �T ′� τ′) with T ′ =
(T ′�Θ�ν′�B′) defined as follows: for each player i,

T ′
i = {

t ′i
}
� ν′

i

(
t ′i
) = 0� and B′

i

(
t ′i
) = {

t ′−i
}
�

Because M̂ is IIR, in auction (C ′� M̂) there exists an action profile a such that
ui(a�0) ≥ 0 for each i. Thus rev(M̂(a)) ≤ 0 < V − c = G0(C) − c. Because
a ∈ A = RAT0(τ), M̂ cannot level-0 rationally3 implement G0 − c. In sum,
Theorem 2 holds for n= 2.

Finally, for n > 2, we construct the desired type structures (and contexts)
essentially by adding dummy players to the type structures T and T ′. More
precisely, the n-player type structure T̂ = (T̂ �Θ� ν̂� B̂) is defined as follows:

• ∀i ∈ {1�2}, T̂i = Ti;
• ∀i /∈ {1�2}, T̂i = {t̂i};
• ∀i ∈ {1�2}, ν̂i(ti)= νi(ti) for any ti ∈ T̂i;
• ∀i /∈ {1�2}, ν̂i(t̂i)= 0;
• ∀i ∈ {1�2}, B̂i(ti)= Bi(ti)× {t̂−{1�2}} for all ti ∈ T̂i;
• ∀i /∈ {1�2}, B̂i(t̂i)= {(t1�0� t2�0� t̂−{1�2�i})}.

In the context Ĉ = (n�V � T̂ � τ̂), we let τ̂ = (τ� t̂−{1�2}). The auxiliary type struc-
ture T̂ ′ = (T̂ ′�Θ� ν̂′� B̂′) is constructed from T ′ in the same way, and so is the
auxiliary context Ĉ ′. The analysis is essentially the same, and thus omitted.

In sum, Theorem 2 holds.

S3. VARIANTS OF MECHANISM M

Discrete versus Continuous Valuation Space. From the examples that we have
discussed in the main paper and the analysis in the Supplemental Material, it is
not hard to see that the revenue guarantee of our mechanism is facilitated by
the fact that the valuation space and thus the action space of the mechanism
are discrete—so that a player i who wants to increase vi must increase it by at
least 1 and the bigger reward he gets from this offsets the smaller reward due to

3Level-0 rationality naturally means that the players are “irrational” and may use any actions.
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the possible increase of �i. If the values can be reals and the mechanism allows
the vi’s to be reals, then in the second round of elimination in the first example
of Section 5.2, player 1 wants to announce v1 smaller than but arbitrarily close
to 200, believing that player 2 will announce v2 ≥ 200 and �2 = 0. However,
any action (�1� v1) of player 1 with v1 < 200 is dominated by (0� v1 + 200−v1

2 ) and
thus should be eliminated. The limit, (0�200), is not dominated, but it does not
dominate the actions (�1� v1) with v1 < 200 either.

More generally, with a continuous valuation space Theorem 1 remains true
under a slightly different analysis, but our mechanism becomes unbounded
(Jackson (1992)): the dominated strategies are not dominated by any of the
surviving ones. Following Jackson (1992), we focus on bounded mechanisms,
and that is why we only consider discrete valuation spaces in our model. It is
an interesting open problem whether there exists a bounded mechanism for
continuous valuation spaces that leads to Theorem 1.

Finite versus Infinite Action Spaces. We would like to point out that the fi-
nite valuation bound V and level bound K are needed only to ensure that
our mechanism has a finite action space. We impose this restriction because
our epistemic characterization in Section S4 of level-k rationality (i.e., by
means of an iterated deletion procedure) only applies to finite games, simi-
lar to many other characterizations of higher-level rationality (Dekel, Fuden-
berg, and Morris (2007), Bergemann and Morris (2014), Brandenburger and
Dekel (1987), Battigali and Siniscalchi (2003), Weinstein and Yildiz (2007),
Halpern and Pass (2013)).

We note, however, that the analysis in Theorem 1 (which focuses only on
the set of actions surviving the iterated deletion procedure) applies also to a
variant of our mechanismM without these finite bounds: namely, a mechanism
M ′ defined identically to M except that each player i announces (i� �i� vi) ∈
{i} ×Z+ ×Z+, where Z+ is the set of nonnegative integers. We emphasize that
this holds as long as we consider a finite rationality level k, as we next discuss.

Infinitely Rational Players. With a finite action space, our mechanism M can
only elicit the players’ beliefs up to level K, even when they are infinitely ra-
tional. As mentioned above, the variant M ′ can elicit the players’ beliefs up to
any finite level k, as long as the players are level-(k + 1) rational. When the
players are infinitely rational—that is, level-k rational for every k≥ 0, consider
g∞
i = maxk gki for each i and let G∞ be the second highest of the g∞

i ’s.
As long as either the type space or the valuation space is finite, each g∞

i is
finite and can be attained at some finite belief level ki. Roughly speaking, g∞

i

is the highest “rumored” valuation according to player i’s beliefs and ki is the
“closeness” of the rumor. In this case, the variant M ′ leverages the players’
infinitely high rationality levels without having any information about the g∞

i ’s
or the ki’s. Allegedly, each player i announces (a) vi = g∞

i , the highest value v
such that i believes “there exists some player who believes” . . . some player values
the good v, and (b) �i = ki, the smallest level of beliefs about beliefs needed
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to attain vi. The analysis is almost the same. In particular, M ′ guarantees the
revenue benchmark G∞ − ε under common belief of rationality.

If both the valuation space and the type space are infinite, then there exist
contexts where, for each player i, gki goes to infinity as k goes to infinity. In this
case, there is no action profile consistent with common belief of rationality in
M ′, since each action (i� �i� vi) will be eliminated in some round ki where gkii
exceeds vi.

Our Mechanism Under Different Solution Concepts. Although our solution
concept only requires a very weak notion of rationality, it is interesting to
consider how the mechanism behaves under other solution concepts that im-
pose stronger assumptions about the players’ rationality and/or their beliefs
about each other’s types. For example, following Aumann and Brandenburger
(1995), sufficient conditions (which are tight in some sense) for Nash equilib-
rium require that the true type profile is mutual knowledge among the players,
which implies the players have correct beliefs under our model. When the play-
ers do have correct beliefs, it is easy to see that our elimination procedure pre-
serves all (including mixed) equilibrium actions, since it only eliminates actions
that are strictly dominated. Thus the set of Nash equilibria actually implements
the benchmark G∞ as defined above. A characterization for the structure of
Nash equilibria in our mechanism remains unknown (e.g., for many type struc-
tures there is no pure Nash equilibrium, since the winner can improve his util-
ity by bidding a higher value to get a higher reward). Such a characterization,
although interesting to explore, is beyond the scope of this paper.

When additional probabilistic structure is added to the type structure, one
can consider a stronger notion of rationality based on the players’ expected util-
ities, and define corresponding iterated elimination of dominated actions (see,
e.g., Abreu and Matsushima (1992)). However, a probabilistic structure must
be consistent with the players’ possibilistic beliefs: namely, a player never as-
signs positive probability to a type that he believes to be impossible according
to his possibilistic beliefs. It is easy to see that for any consistent probabilis-
tic structure, any action that is eliminated under our solution concept must
also be eliminated based on the stronger notion of rationality. Thus our mech-
anism continues to implement our benchmarks and Theorem 1 continues to
hold. Moreover, when there is a common prior over the type structure, our
mechanism implements the benchmark G∞ under Bayesian Nash equilibria,
although the structure of such equilibria has not been characterized yet.

Different Reward Functions. The total reward given to the players by our
mechanism is upperbounded by an absolute value ε > 0. A similar analysis
shows that the mechanism could choose to reward the players with an ε frac-
tion of the price charged to the winner. In this case, the guaranteed revenue
would be (1 − ε)Gk rather than Gk − ε.
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S4. CHARACTERIZATION OF LEVEL-k RATIONALITY

We consider rationality and rationalizability for finite normal-form games
of incomplete information in which the players have possibilistic beliefs about
their opponents. In this setting, we prove that the actions consistent with the
players being level-k rational coincide with the actions surviving a natural k-
step iterated elimination procedure. We view the latter actions as the (level-k)
rationalizable ones in our possibilistic setting. Section S4.2 and Definitions S4
and S5 are the main conceptual novelty in this Supplement (even though some
notions in Section S4 are similar to those in Halpern and Pass (2009), the
characterization of level-k rationality and the connection between possibilis-
tic structures and type structures are quite nontrivial).

Rationalizability was defined by Pearce (1984) and Bernheim (1984) for
complete-information settings. Our iterated elimination procedure is similar to
that proposed by Dekel, Fudenberg, and Morris (2007) and by Bergemann and
Morris (2014) in a Bayesian setting. For other iterated elimination procedures
and corresponding notions of rationalizability in Bayesian settings, see Bran-
denburger and Dekel (1987), Tan and Werlang (1988), Battigalli and Sinis-
calchi (2003), Ely and Peski (2006), Weinstein and Yildiz (2007), and Halpern
and Pass (2013).

S4.1. Possibilistic Structures and Rationality Models

Given an n-player normal-form game Γ , let Ai be the finite set of pure ac-
tions of player i in Γ andA=A1 ×· · ·×An. To model the players’ uncertainty
about each other’s utility and action in Γ , we consider a possibilistic version of
Harsanyi’s type structure (Harsanyi (1967)).

DEFINITION S1: A possibilistic structure G for Γ is a tuple of profiles, G =
(T�u�B� s), where for each player i,

• Ti is a finite set, the set of i’s possible types;
• ui :A× T → R is i’s utility function;
• Bi : Ti → 2T−i is i’s belief correspondence; and
• si : Ti →Ai is i’s strategy function.

A possibilistic structure does not impose any consistency requirements
among the beliefs of different players. Indeed, a player may have totally wrong
beliefs about another player’s beliefs. For instance, in a single-good auction,
player i may believe that player j’s valuation for the good is greater than 100,
whereas player j may believe that player i believes that j’s valuation is less
than 10. Moreover, each utility function ui has domain A × T rather than
A× Ti. This enables us to deal with interdependent-type settings as well.

Below, we define the players’ rationality, higher-level rationality, and com-
mon belief of rationality, in the same way as Aumann (1995). The notions we
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use and the basic properties we prove about them can be considered as the
possibilistic analog of those in Halpern and Pass (2009).

DEFINITION S2: Let G = (T�u�B� s) be a possibilistic structure for Γ and t
be a type profile in T . Player i is rational at ti if, for every action a′

i of i, there
exists t ′−i ∈ Bi(ti) such that

ui
((

si(ti)� s−i
(
t ′−i

))
�
(
ti� t

′
−i

)) ≥ ui
((
a′
i� s−i

(
t ′−i

))
�
(
ti� t

′
−i

))
�

Player i is rational at t if he is rational at ti.

Based on this definition, we define the following events.
• Let RATi = {t ∈ T |i is rational at t} be the event that player i is rational.
• For any event E ⊆ T , let Bi(E) = {t ∈ T |(ti� t ′−i) ∈ E ∀t ′−i ∈ Bi(ti)} be the

event that player i believes that E occurs.
• Let RAT0

i = T be the event that player i is level-0 rational (namely, irra-
tional), and for any k ≥ 1, let RATk

i = RATi ∩Bi(
⋂

j �=i RATk−1
j ) be the event

that player i is level-k rational.
Clearly, RAT1

i = RATi ∩Bi(
⋂

j �=i RAT0
j ) = RATi ∩Bi(T ) = RATi ∩T =

RATi. That is, being level-1 rational is equivalent to being rational.
• For any k≥ 0, let RATk = ⋂

i RATk
i be the event that every player is level-

k rational, and let RAT = RAT1 be the event that every player is rational.
• For any event E ⊆ T , let EB0(E)=E, EB1(E)= EB(E)= ⋂

i Bi(E) be the
event that every player believes that E occurs, and EBk(E) = EB(EBk−1(E))
for any k≥ 2.

• Let CB(RAT)= ⋂
k≥0 EBk(RAT) be the event that the players have com-

mon belief of rationality.

DEFINITION S3: For any t ∈ T and k ≥ 0, player i is level-k rational at t if
t ∈ RATk

i . For any ti ∈ Ti, player i is level-k rational at ti if there exists t−i ∈ T−i
such that i is level-k rational at (ti� t−i). For any t ∈ T , the players have common
belief of rationality at t if t ∈ CB(RAT).

Notice that whether player i is level-k rational or not at t solely depends on
ti and player i’s belief hierarchy at ti, and does not depend on t−i at all. Thus it
is immediately clear that
(∗) Player i is level-k rational at ti if and only if, for all t−i ∈ T−i, player i is

level-k rational at (ti� t−i).
Basic Properties of Our Model. The following three properties (which are

standard in epistemic game theory) help understanding our model.

PROPERTY S1: For any player i and any k≥ 1, RATk
i ⊆ RATk−1

i .
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PROPERTY S2: For any player i and any k ≥ 1, RATk
i = RATi∩

Bi(
⋂

j RATk−1
j ).

PROPERTY S3: CB(RAT)= ⋂
k≥0

⋂
i∈[n] RATk

i .

In particular, Property S1 shows that the players’ higher levels of rational-
ity are nested. Property S2 is a trivial corollary of Property S1 and is also a
natural way to think about level-k rationality—that is, being level-k rational
is equivalent to being rational and believing that every player is level-(k − 1)
rational. It will be used in the proof of Theorem S2. Finally, Property S3 pro-
vides an alternative definition for common belief of rationality. Its proof relies
on Properties S1 and S2, and it will also be used in the proof of Theorem S2.
To prove these properties, we first state without proofs the following simple
observations.

1. For any player i, RATi = Bi(RATi).
That is, a rational player believes that he is rational.
2. For any player i and any k≥ 0, RATk

i = Bi(RATk
i ).

That is, a level-k rational player believes that he is level-k rational.

PROOF OF PROPERTY S1: By induction on k. For k = 1, RAT1
i ⊆ T =

RAT0
i . For k > 1, by the induction hypothesis we have RATk−1

j ⊆ RATk−2
j

for each j, thus Bi(
⋂

j �=i RATk−1
j ) ⊆ Bi(

⋂
j �=i RATk−2

j ). Accordingly, RATk
i =

RATi ∩Bi(
⋂

j �=i RATk−1
j ) ⊆ RATi ∩Bi(

⋂
j �=i RATk−2

j ) = RATk−1
i , as desired.

Q.E.D.

PROOF OF PROPERTY S2: Since RATk
i = RATi ∩Bi(

⋂
j �=i RATk−1

j ) by defini-
tion, RATk

i ⊆ RATk−1
i by Property S1, and RATk−1

i = Bi(RATk−1
i ) by Observa-

tion 2, we have

RATk
i = RATi ∩Bi

(⋂
j �=i

RATk−1
j

)
∩ RATk−1

i

= RATi ∩Bi

(⋂
j �=i

RATk−1
j

)
∩ Bi

(
RATk−1

i

)

= RATi ∩Bi

(⋂
j

RATk−1
j

)
�

as desired. Q.E.D.

PROOF OF PROPERTY S3: We show by induction that, for any k ≥ 1,⋂
i RATk

i = EBk−1(RAT). For k = 1,
⋂

i RAT1
i = RAT1 = RAT = EB0(RAT)
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as desired. For k> 1,

⋂
i

RATk
i =

⋂
i

(
RATi ∩Bi

(⋂
j

RATk−1
j

))

=
⋂
i

(
Bi(RATi)∩ Bi

(⋂
j

RATk−1
j

))

=
⋂
i

(
Bi

((
RAT1

i ∩RATk−1
i

) ∩
(⋂
j �=i

RATk−1
j

)))

=
⋂
i

Bi

(
RATk−1

i ∩
(⋂
j �=i

RATk−1
j

))

=
⋂
i

Bi

(⋂
j

RATk−1
j

)

= EB
(⋂

j

RATk−1
j

)
= EB

(
EBk−2(RAT)

) = EBk−1(RAT)�

The first equality is due to Property S2, the second to Observation 1, the fourth
to Property S1, and the seventh to the induction hypothesis. Since

⋂
i RAT0

i =
T , we have

⋂
k≥0

⋂
i

RATk
i =

⋂
k≥1

⋂
i

RATk
i =

⋂
k≥0

EBk(RAT)= CB(RAT)�

as desired. Q.E.D.

S4.2. Type Structures and Iterated Elimination of Strictly Dominated Actions

In many scenarios, the players’ beliefs about each other’s (payoff) types are
given exogenously, and they reason about each other’s actions based on their
beliefs about types. To model this kind of information structure and reason-
ing procedure, we define type structures: a type structure T for Γ is a tuple of
profiles, T = (T�u�B), where T , u, B are as defined in a possibilistic structure
for Γ . Thus a type structure can be considered as a possibilistic structure with
the strategy function removed.

DEFINITION S4: A possibilistic structure G = (T�u�B� s) for Γ is consistent
with a type structure T ′ = (T ′�u′�B′) for Γ if there exists a profile of functions
ψ with ψi : Ti → T ′

i ∀i such that,
• ∀i and ∀t ∈ T , ui(·; t)= u′

i(·;ψ(t)); and
• ∀i and ∀ti ∈ Ti, ψ−i(Bi(ti))= B′

i(ψi(ti)).
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B S

B 2, 1 0, 0
S 0, 0 1, 2

B S

B 2, 0 0, 2
S 0, 1 1, 0

(a) Utilities under (t1� t2) (b) Utilities under (t1� t
′
2)

FIGURE S3.—A revised BoS game.

We refer to such a ψ as a consistency mapping.

The notion of consistency captures that introducing actions into the picture
does not cause the players to change their beliefs about types, but causes them
to form additional beliefs about actions.

Illustratively, both possibilistic structures and type structures can be repre-
sented by directed graphs, with nodes corresponding to the players’ types and
edges corresponding to their beliefs. The only difference is that, in a possibilis-
tic structure, each node is also associated with an action.

EXAMPLE: Consider a revised version of the BoS game, where player 1 has
a unique type t1 and player 2 has two types t2 and t ′2—whether he wants to meet
or avoid player 1. The players’ utilities are specified in Figure S3.

Figure S4(a) provides an elementary type structure T ′ for the revised BoS
game, where player 1 believes that player 2’s type can be either t2 or t ′2 and
player 2 believes that player 1’s (unique) type is t1. Figure S4(b) provides an el-
ementary possibilistic structure G consistent with T ′. Here player 1’s two types
t11 and t12 induce the same utility function but different actions for him, and
under both types player 1 believes that player 2 will use action B under type t2
and S under t ′2. The type structure T obtained from G by removing the actions
is then illustrated in Figure S4(c). It is immediate to see that the consistency
mapping ψ= (ψ1�ψ2) is such that ψ1 maps both t11 and t12 to t1, and ψ2 maps
t2 to t2 and t ′2 to t ′2. Indeed, under such mapping, the utilities are preserved and
“the belief correspondence and ψ commute.”

We now define rationality for type structures.

t1
��

����
��

��
� t2��

t ′2

���������

(t11�B)
��

���������
(t2�B)��

(t12� S)
��

��������� (
t ′2� S

)
��

t11
��

����
��

��
� t2��

t12
��

���������
t ′2��

(a) Type structure T ′ (b) Possibilistic structure G (c) Type structure T

FIGURE S4.—A type structure and a consistent possibilistic structure.
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DEFINITION S5: Given a type structure T = (T�u�B) for Γ , for any player
i, type ti ∈ Ti, action ai, and integer k≥ 0, ai is consistent with level-k rationality
for ti if there exists a possibilistic structure G = (T ′�u′�B′� s) and a type t ′i ∈ T ′

i ,
such that G is consistent with T under a consistency mapping ψ, ψi(t ′i) = ti,
si(t ′i)= ai, and i is level-k rational at t ′i .

Action ai is consistent with common belief of rationality for ti if there exists a
possibilistic structure G = (T ′�u′�B′� s) and a type profile t ′ ∈ T ′, such that G
is consistent with T under a consistency mapping ψ, ψi(t ′i)= ti, si(t ′i)= ai and
the players have common belief of rationality at t ′.

Slightly abusing notations, we denote by RATk
i (ti) the set of actions consis-

tent with level-k rationality for ti and by RATi(ti) the set of actions consistent
with common belief of rationality for ti. Notice that our concept of consistency
with level-k rationality or common belief of rationality is called rationalizability
in other studies; see Battigali and Siniscalchi (2003). Next we define an iterated
elimination procedure for refining the players’ actions, and use it to charac-
terize actions that are consistent with level-k rationality or common belief of
rationality.

DEFINITION S6: Let T = (T�u�B) be a type structure for Γ . For each player
i, type ti ∈ Ti, and integer k≥ 0, we define NSDk

i (ti), the set of actions surviving
k-round elimination of strictly dominated actions for ti, inductively as follows:

• NSD0
i (ti)=Ai.

• For each k ≥ 1 and each ai ∈ NSDk−1
i (ti), ai ∈ NSDk

i (ti) if there does not
exist an alternative action a′

i ∈ NSDk−1
i (ti) such that ∀t−i ∈ Bi(ti) and ∀a−i ∈

NSDk−1
−i (t−i),

ui
((
a′
i� a−i

)
� (ti� t−i)

)
> ui

(
(ai� a−i)� (ti� t−i)

)
�

where NSDk−1
−i (t−i)=×j �=i NSDk−1

j (tj).

In the definition for NSDk
i (ti), if the required action a′

i does exist, we say
that ai is strictly dominated (by a′

i) for ti over level-(k− 1) surviving actions. It
is easy to see that defining NSDk

i (ti) by eliminating strictly dominated actions
from NSDk−1

i (ti) is the same as defining it by eliminating strictly dominated
actions from Ai. Indeed, we have the following lemma, whose proof has been
omitted.

LEMMA S1: For any k≥ 1 and ai ∈Ai, ai ∈ NSDk
i (ti) if and only if there does

not exist an alternative action a′
i ∈Ai such that ai is strictly dominated by a′

i for ti
over level-(k− 1) surviving actions.

Given player i’s knowledge about T , he can iteratively compute NSDk
i (ti)

for any ti and k. Since both the game Γ and the type structure T are finite,
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the elimination procedure ends for all types of all players after some round
K when no action is strictly dominated over level-(K − 1) surviving actions.
Letting

NSDi(ti)=
⋂
k≥0

NSDk
i (ti)�

we have NSDi(ti) = NSDK
i (ti) �= ∅. We say that an action ai survives iter-

ated elimination of strictly dominated actions for ti if ai ∈ NSDi(ti). Follow-
ing Battigali and Siniscalchi (2003), we refer to NSDk

i (ti) as the set of level-k
rationalizable actions for ti, and to NSDi(ti) as the set of rationalizable actions
for ti.

An immediate consequence of Lemma S1 is the following lemma, stated
without proof.

LEMMA S2: For any k ≥ 1 and ai ∈ Ai, ai ∈ NSDk
i (ti) if and only if there

exists B′
i ⊆ Bi(ti) and Z−i(t−i) ⊆ NSDk−1

−i (t−i) for each t−i ∈ B′
i, such that, for

each a′
i ∈Ai, there exists t−i ∈ B′

i and a−i ∈Z−i(t−i) with

ui
(
(ai� a−i)� (ti� t−i)

) ≥ ui
((
a′
i� a−i

)
� (ti� t−i)

)
�

Intuitively, ai survives k-round elimination if, given i’s belief that other play-
ers’ types are among (some subset of) Bi(ti) and they use (some subset of)
actions that survive (k− 1)-round elimination, no other action according to i’s
belief can lead to higher utility than what he gets by using ai. Lemma S2 is a
possibilistic analog of Pearce’s lemma (Pearce (1984)) which, in probabilistic
models, relates best responses and rationalizability to strict dominance. Note
that whereas in the possibilistic case (which is what we consider) the proof is
trivial, Pearce’s original lemma for the probabilistic case requires additional
work.

S4.3. Characterizing Level-k Rationality and Common Belief of Rationality

THEOREM S1: Given a type structure T = (T�u�B) for Γ , for any player i, type
ti, action ai, and integer k≥ 0, ai is consistent with level-k rationality for ti if and
only if ai ∈ NSDk

i (ti); that is, RATk
i (ti)= NSDk

i (ti).

PROOF: We first prove the “only if” direction. Assuming ai is consistent with
level-k rationality for ti, we prove ai ∈ NSDk

i (ti) by induction on k. For k= 0,
the property trivially holds since NSD0

i (ti)=Ai by definition.
For k > 0, by Definition S5 there exists a possibilistic structure G =

(T ′�u′�B′� s) and a type t ′i ∈ T ′
i , such that G is consistent with T under a con-

sistency mapping ψ, ψi(t ′i)= ti, si(t ′i)= ai, and i is level-k rational at t ′i .
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By Definition S3 and property (∗), player i being level-k rational at t ′i im-
plies: (a) i is rational at t ′i ; and (b) for each type subprofile t ′−i ∈ B′

i(t
′
i), we

have (t ′i� t
′
−i) ∈ ⋂

j �=i RATk−1
j . According to (a) and Definition S2, for each ac-

tion a′
i ∈Ai there exists t ′−i ∈ B′

i(t
′
i) such that

u′
i

((
ai� s−i

(
t ′−i

))
�
(
t ′i� t

′
−i

)) ≥ u′
i

((
a′
i� s−i

(
t ′−i

))
�
(
t ′i� t

′
−i

))
�(S13)

According to (b), for each t ′−i ∈ B′
i(t

′
i) and each j �= i, player j is level-(k− 1)

rational at t ′j . By Definition S5, sj(t ′j) is consistent with level-(k− 1) rationality
for ψj(t ′j) and thus, by the induction hypothesis,

sj
(
t ′j
) ∈ NSDk−1

j

(
ψj

(
t ′j
))
�(S14)

For each t−i ∈ Bi(ti), let Z−i(t−i) = s−i(ψ−1
−i (t−i)). Because ψ−i(B′

i(t
′
i)) =

Bi(ti), Z−i(t−i) �= ∅. By Equation (S14),

Z−i(t−i)⊆ NSDk−1
−i (t−i)�

For each a′
i ∈ Ai, let t ′−i ∈ B′

i(t
′
i) be such that Equation (S13) holds, t−i =

ψ−i(t ′−i), and a−i = s−i(t ′−i). Accordingly, a−i ∈ Z−i(t−i). Since ui(·; (ti� t−i)) =
u′
i(·; (t ′i� t ′−i)), Equation (S13) implies

ui
(
(ai� a−i)� (ti� t−i)

) ≥ ui
((
a′
i� a−i

)
� (ti� t−i)

)
�

By Lemma S2, we have ai ∈ NSDk
i (ti), concluding the proof of the “only if”

direction.
Now we prove the “if” direction. By definition, proving this direction is

equivalent to proving that, if ai ∈ NSDk
i (ti), then there exists a possibilistic

structure G = (T ′�u′�B′� s) for Γ and a type t ′i ∈ T ′
i such that G is consistent

with T under a consistency mapping ψ, ψi(t ′i)= ti, si(t ′i)= ai, and i is level-k
rational at t ′i . Notice that G, t ′i , and ψ may depend on k, i, ti, and ai.

In fact, we shall prove a stronger statement. Namely, for each k, there exists
a universal possibilistic structure G = (T ′�u′�B′� s) for Γ , consistent with T
under a consistency mapping ψ, such that, for every player i, type ti ∈ Ti, action
ai, and nonnegative integer k′ ≤ k,

if ai ∈ NSDk′
i (ti), then there exists a type t ′i ∈ T ′

i such that

ψi
(
t ′i
) = ti� si

(
t ′i
) = ai� and i is level-k′ rational at t ′i�(S15)

which implies that ai is consistent with level-k′ rationality for t ′i .
We define G as follows: for each player i,

• T ′
i = {(ti�k′� ai) : ti ∈ Ti�k′ ∈ {0� � � � �k}� ai ∈ NSDk′

i (ti)};• for each type profile t ′ ∈ T ′, letting t ∈ T be the type profile obtained by
projecting each t ′j to its first component, u′

i(·; t ′)= ui(·; t);
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• for each type t ′i = (ti�k′� ai), si(t ′i)= ai; and
• for each type t ′i = (ti�k

′� ai) and type subprofile t ′−i ∈ T ′
−i, t

′
−i ∈ B′

i(t
′
i) if

and only if there exist t−i ∈ Bi(ti) and a−i ∈ NSDmax{k′−1�0}
−i (t−i) such that t ′j =

(tj�max{k′ − 1�0}� aj) for all j �= i.
It is easy to check that G is consistent with T under the consistency mapping ψ
where ψi(ti�k′� ai)= ti for each player i and type (ti�k′� ai) ∈ T ′

i .
We now prove by induction on k′ that, for any i� ti ∈ Ti, and ai ∈ NSDk′

i (ti),
player i is level-k′ rational at t ′i = (ti�k

′� ai). For k′ = 0, since RAT0
i = T by

definition, it trivially holds that player i is level-0 rational at t ′i .
For k′ > 0, for any t ′−i = (tj�k

′ − 1� aj)j �=i ∈ B′
i(t

′
i), by construction we have

t−i ∈ Bi(ti) and a−i ∈ NSDk′−1
−i (t−i). By the hypothesis induction, for any player

j �= i, j is level-(k′ − 1) rational at t ′j and thus at (t ′i� t
′
−i). Therefore

(
t ′i� t

′
−i

) ∈
⋂
j �=i

RATk′−1
j �

Since this is true for any t ′−i ∈ B′
i(t

′
i), we have

(
t ′i� t

′
−i

) ∈ Bi

(⋂
j �=i

RATk′−1
j

)

for any t ′−i ∈ B′
i(t

′
i), as again whether player i believes some event or not only

depends on t ′i and not t ′−i.
Since ai ∈ NSDk′

i (ti), by Lemma S1 we have that, for any a′
i ∈Ai, there exist

t−i ∈ Bi(ti) and a−i ∈ NSDk′−1
−i (t−i) such that

ui
(
(ai� a−i)� (ti� t−i)

) ≥ ui
((
a′
i� a−i

)
� (ti� t−i)

)
�

Letting t ′−i = (tj�k
′ − 1� aj)j �=i, we have t ′−i ∈ B′

i(t
′
i), ψ(t

′
i� t

′
−i)= (ti� t−i), si(t ′i)=

ai, and s−i(t ′−i)= a−i. Thus

u′
i

((
si

(
t ′i
)
� s−i

(
t ′−i

))
�
(
t ′i� t

′
−i

)) ≥ u′
i

((
a′
i� s−i

(
t ′−i

))
�
(
t ′i� t

′
−i

))
�

Accordingly, player i is rational at t ′i and (t ′i� t
′
−i) ∈ RATi for any t ′−i ∈ B′

i(t
′
i).

By definition, (t ′i� t
′
−i) ∈ RATi ∩Bi(

⋂
j �=i RATk′−1

j ) for any t ′−i ∈ B′
i(t

′
i), and thus

i is level-k′ rational at t ′i . This concludes the induction step and the proof of
Statement (S15). Therefore the “if” direction holds, concluding the proof of
Theorem S1. Q.E.D.

Similarly, we characterize common belief of rationality in our model by the
following theorem.
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THEOREM S2: Given a type structure T = (T�u�B) for Γ , for any player i,
type ti, and action ai, ai is consistent with common belief of rationality for ti if and
only if ai ∈ NSDi(ti); that is, RATi(ti)= NSDi(ti).

PROOF: We first prove the “only if” direction. Assume ai is consistent with
common belief of rationality for ti. By Definition S5, there exist a possibilis-
tic structure G = (T ′�u′�B′� s) and a type profile t ′ ∈ T ′, such that G is con-
sistent with T under a consistency mapping ψ, ψi(t ′i) = ti, si(t ′i) = ai, and
t ′ ∈ CB(RAT).

By Property S3, for any k ≥ 0, t ′ ∈ RATk
i and player i is level-k rational

at t ′i . Thus, by Definition S5, ai is consistent with level-k rationality for ti. By
Theorem S1, ai ∈ NSDk

i (ti) for any k≥ 0. Thus ai ∈ NSDi(ti) and the “only if”
direction holds.

The “if” direction holds from the following lemma, which we prove sepa-
rately.

LEMMA S3: There exists a universal possibilistic structure G = (T ′�u′�B′� s)
for Γ , consistent with T under a consistency mapping ψ, such that

(1) CB(RAT) = T ′—that is, common belief of rationality holds everywhere,
and

(2) for every player i, type ti ∈ Ti, and action ai ∈ NSDi(ti), there exists a type
t ′i ∈ T ′

i such that ψi(t ′i)= ti and si(t ′i)= ai.
Indeed, Lemma S3 implies that, for any i, ti, and ai ∈ NSDi(ti), ai is consis-

tent with common belief of rationality for ti.
In sum, Theorem S2 holds. Q.E.D.

PROOF OF LEMMA S3: Similarly to the second part of the proof of Theo-
rem S1, we construct structure G as follows: for each player i,

• T ′
i = {(ti� ai) : ti ∈ Ti�ai ∈ NSDi(ti)};

• for each type profile t ′ ∈ T ′, letting t ∈ T be the type profile obtained by
projecting each t ′j to its first component, u′

i(·; t ′)= ui(·; t);
• for each t ′i = (ti� ai) ∈ T ′

i , si(t ′i)= ai; and
• for each t ′i = (ti� ai) ∈ T ′

i and t ′−i ∈ T ′
−i, t

′
−i ∈ B′

i(t
′
i) if and only if there exist

t−i ∈ Bi(ti) and a−i ∈ NSD−i(t−i) such that t ′j = (tj� aj) for all j �= i.
Below, we only show part (1) of Lemma S3, as part (2) holds by construction.

By Property S3, to show CB(RAT) = T ′ it suffices to show
⋂

j∈[n] RATk
j =

T ′ for every k ≥ 0. We proceed by induction. For k = 0, by definition,⋂
j∈[n] RAT0

j = ⋂
j∈[n] T

′ = T ′.
For k > 0, it suffices to show RATk

i = T ′ for each player i. Arbitrarily fixing
a player i, by the induction hypothesis we have

⋂
j∈[n] RATk−1

j = T ′, and thus
Bi(

⋂
j∈[n] RATk−1

j )= T ′ as well. By Property S2, it is left to show RATi = T ′, or
equivalently, player i is rational at every type t ′i ∈ T ′

i .
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Arbitrarily fix a type t ′i = (ti� ai) and an action a′
i of i. Since ai ∈ NSDi(ti),

by definition and by Lemma S1 we have that ai is not strictly dominated by a′
i

for ti over level-� surviving actions for any �≥ 0. In particular, ai is not strictly
dominated by a′

i for ti over level-K surviving actions, where K is such that the
elimination procedure ends after round K for all types of all players. That is,
there exists t−i ∈ Bi(ti) and a−i ∈ NSDK

−i(t−i) such that

ui
(
(ai� a−i)� (ti� t−i)

) ≥ ui
((
a′
i� a−i

)
� (ti� t−i)

)
�

Since NSDK
−i(t−i)= NSD−i(t−i), letting t ′j = (tj� aj) for any j �= i, we have t ′−i ∈

B′
i(t

′
i) and

u′
i

((
si

(
t ′i
)
� s−i

(
t ′−i

))
�
(
t ′i� t

′
−i

)) ≥ u′
i

((
a′
i� s−i

(
t ′−i

))
�
(
t ′i� t

′
−i

))
�

Thus player i is rational at type t ′i , and RATi = T ′ as desired. In sum,
CB(RAT)= T ′ and Lemma S3 holds. Q.E.D.
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