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BY ISAIAH ANDREWS

THIS APPENDIX CONTAINS asymptotic results and proofs for the paper “Con-
ditional Linear Combination Tests for Weakly Identified Models,” by Isaiah
Andrews.

APPENDIX 1: ASYMPTOTIC PROPERTIES OF CLC TESTS

The results of Sections 3-7 of the main text treat the limiting random vari-
ables (g, Ag,y) as observed and consider the problem of testing H, : m =0,
€ M against Hy : m € M(p) \ {0}, u € M. In this appendix, we show that un-
der mild assumptions, our results for the limit problem (2) imply asymptotic
results along sequences of models satisfying (1). We first introduce a useful in-
variance condition for the weight function a and then prove results concerning
the asymptotic size and power of CLC tests.

We previously wrote the weight functions a of CLC tests as functions of D
alone, since, in the limit problem, the parameter vy is fixed and known. In this
appendix, however, it is helpful to instead write a(D, ). Likewise, since the es-
timator fip used in plug-in tests may depend on vy, we will write it as ap(D, y).

1.1. Postmultiplication-Invariant Weight Functions

Our weak convergence assumption (1), together with the continuous map-
ping theorem, implies that Dy —, D for D normally distributed, where we
assume that D is full rank almost surely for all (6, y) € @ x I'. In many appli-
cations, such convergence will only hold if we choose an appropriate normal-
ization when defining Agr, which may seem like an obstacle to applying our
approach. In the linear IV model, for instance, the appropriate definition for
Agr will depend on the strength of identification.

EXAMPLE I—Weak IV (Continued): In Section 2, we assumed that the in-

A_l
struments were weak, with 7, = ﬁ, and showed that Agr = JTO ﬁ? % fr(Bo)
converged in distribution. If, on the other hand, the instruments are strong,

Al

mr = and ||m || > 0, then % fr(B) —, EIX.Z]# 0 so ﬁgffz 2 fr(Bo) di-
Al

verges and we should instead take Agr = (2, % fr(Bo).

This apparent dependence on normalization is not typically a problem, how-
ever, since many CLC tests are invariant to renormalization of (g7, Agr, ¥). In
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particular, for 4 any full rank p x p matrix, consider the transformations

hag(Agr; A) =AgrA,

saso=(s er)a(t or)

and let h,(y; A) be the transformation of y such that 3(h,(y; A)) =
hs(3(y); A). Let

(21) h(gTaAgT’ ’9’A)Z(gT’hAg(AgTaA)ahy(il’ A))

and note that the statistics J; and K are invariant to this transformation for
all full rank matrices A, in the sense that their values based on (g7, Agr, ¥)
are the same as those based on h(gr, Agr,¥; A). Thus, if we choose a weight
function a(D, y) which is invariant, the CLC test ¢,p,. 5 Will be invariant as
well. Formally, we say that the weight function a(D, ) is invariant to postmul-
tiplication if, for all full rank p x p matrices A, we have

a(Da 7) = a(hAg(D§ A)? hy(y’ A))a

where we have used the fact that D calculated using 4(g, Ag, v; A) is equal to
hAg(D; A)

Invariance to postmultiplication is useful since, to obtain results for invariant
tests based on (g7, Agr, ¥), it suffices that there exist some sequence A7 such
that

(&gr> Agr, ¥) = h(gT, Agr,y; Ar)

satisfies the weak convergence assumption (1), without any need to know the
correct sequence Ay for a given application. Thus, in the linear IV example
discussed above, we can take Agr as originally defined and make use of results
derived under the convergence assumption (6) without knowing identification
strength in a given context.

The class of postmultiplication-invariant weight functions a is quite large,
and includes all the weight functions discussed above. In particular, we can
choose the minimax regret weight function ayyr to be invariant to postmul-
tiplication. Likewise, provided we take the estimator pp(D, y) to be equiv-
ariant under transformation by £, so that hs,(p(D, v); A) = ip(hag(D; A),
h,(y; A)), the plug-in weight function ap; will be invariant as well.

1.2. Asymptotic Size and Power of CLC Tests

Let F(g,Ag, y) denote the distribution of (g, Ag, y) in the limit problem,
noting that the marginal distribution for vy in the limit problem is a point mass.
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Since we have assumed that D is full rank almost surely, J and K are F-almost-
everywhere continuous functions of (g, Ag, y) and the continuous mapping
theorem implies

(JT7KT’DT) —d (J’K’D)'
To obtain asymptotic size control for the CLC test

d)a(DT,ff) = 1{(1 - a(DT) /)\/)) : KT + a(DTa /)\/) : ST > ca(a(DTa /)\/))})

all we require is that a be almost-everywhere continuous. Indeed, this test is
asymptotically conditionally similar in the sense discussed by Jansson and Mor-
eira (2006).

PROPOSITION 1: Assume (gr, Agr, V) satisfies the weak convergence as-
sumption (1) and let a(D,y) be F(g, Ag, v)-almost-everywhere continuous for
(69, v) € {6y} x I'. Then, under (0,, v), we have that

(22) lm Ex g9 [bany ] = a.

Moreover, for F the set of bounded functions f (D) which are F(g, Ag, y)-almost-
everywhere continuous under ( 0y, y),

(23) Tﬁ_{gloET,wo,v)[(%(Dr,&) —a)f(Dr)]=0 VfelF.

It is important to note that Proposition 1 only establishes sequential size
control, and, depending on the underlying model, establishing uniform size
control over some base parameter space may require substantial further re-
strictions. In Example I, however, we can use results from D. Andrews, Cheng,
and Guggenberger (2011, henceforth ACG) to prove that a large class of CLC
tests based on postmultiplication-invariant weight functions control size uni-
formly in heteroscedastic linear IV with a single endogenous regressor. Unfor-
tunately, however, matters are less clear in the case with multiple endogenous
regressors. In that context, D. Andrews and Guggenberger (2014) showed that
while K tests have uniformly correct asymptotic size over a large parameter
space, the asymptotic size of QCLR tests depends on the construction of the
weighting function (D). Correspondingly, only a subset of conditional linear
combination tests will have correct asymptotic size in that context.

EXAMPLE I—Weak IV (Continued): Define  and 3 in the usual way (de-
tailed in the proof of Proposition 2 below). Define a parameter space A of null
distributions as in ACG, Section 3, noting that y consists of the elements of
(2f, I+, 2r) in the notation of ACG. Building on results in ACG, it is straight-
forward to prove the following proposition:
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PROPOSITION 2: Consider the CLC test ¢,p, 5, based on a postmultiplication-
invariant weight function a(D, y) which is continuous in D and vy at all points
with || D|| > 0 and satisfies

(24) lim( sup a(D, y)) = lim( inf a(D, y))

3=0X(D,y):| D> e, maxeig(3p) <5 =0 \(D,y):||D||> &, maxeig(3p) <8

=a0

for some constant a, € [0, 1], maxeig(A) the maximal eigenvalue of A, and all
&> 0. The test ¢up,.3 Is uniformly asymptotically similar on A:

lim )i\releT,A[qsa(DT,i/)] = Tlim SUPET,A[¢a(DT,9)] =a.

T—o0 =0 A

The assumption (24), together with the assumed postmultiplication invari-
ance of a(D, y) and the restrictions on the parameter space A, ensures that
under sequences with VT| 77| = oo, we have that a(D7, 9) — p» @o asymptoti-
cally, and hence that under all strongly identified sequences, the test converges
to the linear combination test ¢,,. We show in the next section that, for ay =0,
this condition plays an important role in establishing asymptotic efficiency of
CLC tests in linear I'V under strong identification, and will verify this condition
for PI tests ¢p; in linear IV. The conditions needed to ensure that ap; satisfies
the continuity conditions in Proposition 2 are much less clear, but we can al-
ways create a sufficiently continuous weight function a which approximates ap;
arbitrarily well by calculating ap; on a grid of values for (D, ) and taking a to
continuously interpolate between these values.'’

Power results in the limit problem (2) also imply asymptotic power results
under (1). In particular, for a(D, y) almost-everywhere continuous with re-
spect to F (g, Ag, v), the asymptotic power of ¢,p, ;) is simply the power of
¢,y in the limit problem.

PROPOSITION 3: Assume (gr, Agr, ) satisfies the weak convergence assump-
tion (1) and let a(D, y) be F(g, Ag, y)-almost-everywhere continuous for some
(0,7y) €©® x I'. Then, under (0, v),

lim E7, g, [bunr 5] = Empupy[Pan.p]s
T—o0

where m = m(0, 0y, y) and wp are the parameters in the limit problem.

YTo ensure that & is invariant to postmultiplication, we can fix | D] = 1 in the grid used to
calculate a and evaluate a for other values by rescaling the problem to || D|| =1 using the trans-
formation (21).
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Thus, under mild continuity conditions on a(D, y), the asymptotic size and
power of tests under (1) are just their size and power in the limit problem.
Moreover, sufficiently continuous postmultiplication-invariant weight func-
tions a(D, y) which select a fixed weight a, under strong identification yield
uniformly asymptotically similar tests in heteroscedastic linear I'V.

1.3. Asymptotic Efficiency Under Strong ldentification

The power results above concern the asymptotic properties of CLC tests
under general conditions that allow for weak identification, but since the com-
monly used non-robust tests are efficient under strong identification, we may
particularly want to ensure that our CLC tests share this property.

As noted in Section 3, under strong identification we typically have that
399 =0, 3y, =0, that u is full rank, and that M(u) ={u-c:ceR’}. We
say that (gr, Agr,?¥y) converges to a Gaussian shift model under (0, y) if
(8r,Agr,Y) —a (g, Ag,y) for

(25) (Vec((gAg)) ~N ((v&kﬁ)) ’ <(I) 8>) ,

where p is full rank and b € R”. Under strong identification, general GMM
models parameterized in terms of local alternatives converge to Gaussian shift
models. In many cases, strong identification is not necessary to obtain con-
vergence to (25), however, and sequences of models between the polar cases
of weak and strong identification, like the “semi-strong” case discussed in
D. Andrews and Cheng (2012), often yield Gaussian shift limit problems under
appropriately defined sequences of local alternatives.

EXAMPLE [—Weak IV (Continued): Suppose that 77 = rrc for ¢ € R? with

lc|l > 0 for any sequence {rr}32, such that r; — r as T — oo and VTrr — .
For 0 < r < oo this is the usual, strongly identified case, while for » = 0 this
falls into the “semi-strong” category of D. Andrews and Cheng (2012): the
first stage converges to zero, but at a sufficiently slow rate that many stan-

dard asymptotic results are preserved. Let 2 be a consistent estimator for
~ 1
limy_ o, Var((V/T fr(Bo), 7" fr(Bo)')') and define gr(B) = VT, fr(B) and
vy = vec({2) as before. Consider sequences of local alternatives with Br =
* ~ _ ~_1 ~ ~ ~
Bo + rTb—ﬁ and let Agr = rTlﬂffz %fT(B). As T — oo, (g7,Agr, y) converges
to the Gaussian shift limit problem (25) with u = E[Z,Z}]c and b = b*.

In the Gaussian shift limit problem (25), the Neyman—Pearson lemma im-
plies that the uniformly most powerful level « test based on (J, K, D) is ¢k
as defined in (16). Further, under the weak convergence assumption (1) for
(g,Ag) as in (25), the test ¢x, = H{Kr > X?),l—a} is asymptotically efficient
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in the sense of Miiller (2011) for a family of elliptically contoured weight
functions.” Under strong identification ¢x, = 1{Ky > X?;,l—a} is also gener-
ally equivalent to the usual Wald tests, though we will need conditions beyond
(1) to establish this. It is straightforward to show that a CLC test based on
the weight function a(D, ) will share these properties, and so be asymptoti-
cally efficient under sequences converging to (25), if and only if a(Dr, ) —, 0
under such sequences.

PROPOSITION 4: Denote by A, the class of weight functions a(D, vy) that are
continuous in both D and vy for all full rank D. Fix (6, y) € © x I" with 0 # 6, and
suppose that (gr, Agr,y) converges weakly to the Gaussian shift limit problem
(25) with b # 0. For a(D, ) almost-everywhere continuous with respect to the
limiting measure F(g, Ag, v) under (0, ),

lim E7 9.9)[buns.5)] = sup lim Er ) [dan,.5)]
T—00 acAc T—o0

if and only if a(D, y) = 0 almost surely with respect to F(g, Ag, y). Thus

lim Er 9.5 [¢x,]1=sup lim Er g [dan,.5]-
T—o0 GeAc T—o0

Using this proposition, it is easy to see that the condition (24) that we used
to ensure uniformly correct size for CLC tests in linear IV Example I will also
ensure asymptotic efficiency under strong and semi-strong identification pro-
vided a, =0.

It is straightforward to give conditions under which MMRU tests select
a(up,y) = 0 asymptotically in sequences of models converging to Gaussian
shift experiments:

THEOREM 5: Suppose that for some pair (up, y) € Mp x I' with up full rank
and 3o, (7y) = 2ge(y) =0, for all C > 0 and all sequences (up.,,y,) € Mp x I"
such that (/"LD,na ’Yrt) - (MD: ’)’)7 we have

dp(Mp(pns ¥a) N Be, {mp - b:b e R} N Bc) — 0,

where Bc = {m : |m| < C} and dy( Ay, A,) is the Hausdorff distance between
the sets A, and A,,

dp(Ai, As) =max{ sup inf [[x; — x|, sup inf [lx; —x2||}.
X1€A1xze 2 )(2€1‘12xlE 1

2Formally, in the limit problem u = Ag is known so to derive weighted average power optimal
tests we need only consider weights on b. For any weights G(b) with density g(b) that depends
on b only through ||ubl|, so that g(b) o< g([|ubl), ¢k is weighted average power maximizing in
the limit problem, and by Miiller (2011) ¢, is asymptotically optimal over the class of tests with
correct size under (1) and (25).
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Then for By, .. . yn = SUPacio,1) Emup pvn[@al and all (pp,n, va) — (mp,y), the
MMRU weight

aMMRU(IJfD,na yn) = arg min Sup (Byun,MD nYn - Em,/.LD,,,,yn[d)a])
a€(0,1] meMp(ip,ns>¥Yn) ’

satisfies ayru (D .n> Yn) = 0.

Using Theorem 5, we can show that PI tests will be efficient under strong
and semi-strong identification in Example I, while MMR tests will be efficient
under strong and semi-strong identification in Example II, where the MMR
and MMRU tests coincide.

EXAMPLE I—Weak IV (Continued): Define (gr, Agr,¥) as in Section 1,
and as above, let 77 = rrc for ¢ € R? with ||c|| > 0. For simplicity we take
fup = D7, but the extension to other estimators is straightforward.

COROLLARY 2: Provided /Try — 0o, we have that, in the linear IV model,
api(fip, ¥) — p 0 and thus that the PI test based on (gr, Agr, ¥) is efficient under
strong and semi-strong identification.

EXAMPLE II—Minimum Distance (Continued): We can model semi-strong
identification in this example by taking (2, = ry£2,, where r — 0 and

r;'f),, — , 0,0, noting that r7 = 1 is the typical strongly identified case. Again

define y = VGC(!},,) and note that M(¥y) = {!Al;,% (f(0) — f(6y))}. Defining
Al AT

gr(0) =12, (71— f(6)) and Agr(0) = L gr(0) = {2, - f () as before, a global

identification assumption yields that PI tests are asymptotically efficient.

COROLLARY 3: Assume that 0 is in the interior of O and that, for all 6 > 0,
there exists £(8) > 0 such that | f(0) — f(0)| < &(8) implies |6 — 0| < 8. Pro-
vided ry — 0, the MMR weight function auwr satisfies ayvr(y) — , 0 and the
MMR test is efficient under strong and semi-strong identification.

Hence, in our examples, the plug-in test ¢p; is asymptotically efficient under
strong and semi-strong identification.

APPENDIX 2: PROOFS
Proof of Theorem 2

Statement (1) follows from results in Monti and Sen (1976) and Koziol and
Perlman (1978). Specifically, both papers note that if (A4, B) ~ (xi_ (74,

Xi(TB)) and (74, 78) = A - (t4, tp) for t4, tg > 0, then for ¢ any size « test
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for Hy: 74 = 73 =0 based on (A, B), there exists some A > 0 such that for
O0<A<A,

tA IB

for ¢ the 1 — & quantile of a k%p Xi,+ % x;, distribution. Statement (1) then
follows immediately by the fact that (J, K)|D =d ~ (x}_,(71), X>(7x)).

Establishing statement (2) is similarly straightforward. In particular, for F,, ,,
as described in Theorem 2, Koziol and Perlman noted that we can use the
Neyman-Pearson lemma to establish that the weighted average power maxi-
mizing level « test based on (A, B) ~ ()(ifp(m), Xi(TB)) is ¢3 = 1{l;ﬁ1A +
#B > ¢}, where c is the 1 — « quantile of a thK+1 X5+ # Xi_, distribution. In
particular, for @, the class of level « tests based on (A4, B),

pedy

o€ argmax/ E. , s p1dF (74, Tp).
T(d)

Statement (2) again follows from the fact that (J,K)|D =d ~ ()(ifp(*r]),
X5 (TK))-

Proof of Theorem 3

By the independence of J, K, and D under the null, conditional on the event
D=d,

K+a(D)-JID=d~ x,+a(d) x;_,
Hence
Pr{K +a(D)-J > c,(a(D))|D=d} =«

SO Eco,upl@a)|D = d] = a for all d in the support of D and all values wp.
E,—0,,[¢ap)] can then be written as

/Em—o,ul)[d)a(D)lD = d] dFD = / OldFD =«

for Fj, the distribution of D, proving the theorem.

Proof of Lemma 1

We prove that E,,, ., [¢.n)|D] > a almost surely, from which E,,, ., [$un)] >
a follows immediately. Fix some CLC weight function a(D). Recall that condi-
tional on D =d, J and K are independently distributed x; ,(7,) and x;(7x),
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respectively, and
K +a(D)-J|D=d~ x}(tx) + a(d) - x;_, (7).

The CLC test ¢,p) Will reject if and only if K + a(d) - J > c,(a(d)), and the
conditional probability of this event under 7; = 7¢x = 0 is «. To establish the
result, we need only show that the probability of this event is at least « under
any pair (7, 7¢) # 0. However, this follows from the form of the CLC test
statistic and the observation that a non-central y* distribution is increasing in
its non-centrality parameter (in the sense of first-order stochastic dominance).

Proof of Theorem 4

We first argue that, conditional on D = d, the test ¢ocrr, is exactly equiv-
alent to the level a test that rejects for large values of the statistic K +

Ga(r(d) : fe g _
PRETIFTE) J. This result is trivial for r(d) = oco. For r(d) < oo and K > 0 or

J —r(D) > 0, note first that, for fixed d, the QCLR statistic is strictly increasing
in (J, K). Further, for any L > 0, the L level set of the QCLR, statistic is of the

form L =K + 77 - J, so that fixing D = d,

o e L
{(J,K>eR+-QCLRr—L}—{(J’K)GR+'L_K+L+r<d> ]}'

To verify that this is the case, note that if we plug K =L — +f( 7 +J into the
QCLR, statistic and collect terms, we have

OCLR, = 1(L + D

2 L+r(d)
r(d) ?
+\/(L+r(d)+L+r<d) 'J> _4J'r(d)>'
However,
r(d) ? B r(d) ?

and thusfor K =L — —£t—.J,

L+rd)

1 r(d)
QCLR_E(L+mJ_r(d)

2
+/(L+r<d>_ D))
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Since we have taken K = L — - +f( o ° J and we know K > 0, we have that

J<L+r(d). Thus L+r(d)— L:(f()d) -J > 0 and we can open the square root and
collect terms to obtain QCLR, = L on the set {(J, K) € R? : L = K 4+ % - J},
as we claimed.

Conditional on D = d, the rejection region of ¢ocir, is

4o(r(d)) J}‘

4o(r(d)) +r(d)

{(J,K) R 1 q.(r(d)) <K+

Since J and K are pivotal under the null,

4. (r(d)) J)D:d} e

Pr,._ up | 4a d K+ —7-—"—-
b, :q (i) <K+ 4. (r(d)) + r(d)

. qa(,(d)) . . . . . .
so since K + 4= - T is continuously distributed with support equal R,,

q.(r(d)) must be the 1 — « quantile of this random variable. Hence, if we define
the test ¢;p) as in (18) with a(D) = #%, we can see that ¢, (a(d)) =
q.(d) and thus that ¢ocrr, = b conditional on D = d. Since this holds for all
d, dociLr, = Pan)- Thus, for any function r : D — R, U {oo}, there is a function
a:D — [0, 1] such that ¢ocrr, = dan)-

To prove the converse, that for any CLC test ¢,p, for a : D — [0, 1] we
can find a function r : D — R, U {oo} yielding the same test, fix the func-
tion a(D) and note that g,(r(D)) is a continuous function of »(D) which is
deceasing in r(D) and is bounded below by x3 ,_, and above by x; ,_, (see

Moreira (2003)). Hence for any value d, as r(d) goes from zero to infinity,

qa(r(d)) : : : : Ga(r(d))
ot varies contllrlluously between zero and 1, with lim,_¢ T =
: Ga(r(d)) _ _Ga(®)  __ _ ~ —
1 and lim,s)- 00 D = Taoim = 0. If a(d) = 0, define 7(d) = oo; If
qa(r*)

a(d) > 0, note that there exists a value r* < oo such that a(d) > PREIFTE
so by the intermediate value theorem we can pick 7(d) € [0, r*] such that
a(d) = 5. Repeating this exercise for all values d, we can construct
a function 7 : D — R, U {oo} such that ¢,p) = bocrr., completing the proof.

Proof of Proposition 1

The discussion preceding Proposition 1 establishes that under (6,,y),
(Jr,Kr,Dr) =4 (J,K,D) and y —, v. Since we assume that a(D,y) is
almost-everywhere continuous with respect to the limiting distribution F and
¢,(a) is a continuous function of a, the continuous mapping theorem estab-
lishes that

K7+ a(Dr, 9)Jr — co(a(Dr, 9)) —a K+ a(D, y)J — co(a(D, y)).
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Since zero is a point of continuity of the distribution of the right-hand side, this
implies that

PrT,(Bq,y){KT +a(Dr, ¥)Jr > ci(a(Dr, i/))}
— Prygup {K + a(D, y)J > c,(a(D, y))} =a,

which proves (22). To prove (23), note that the results above establish that
bup.y) 1s almost-everywhere continuous with respect to F, and hence for f € F,

(¢a(DT,i/) - Ol)f(DT) —>d (¢a(D,y) - a)f(D).

Since the left-hand side is bounded, convergence in distribution implies con-
vergence in expectation, proving (23).

Proof of Proposition 2

Let us take the estimator £ to be

O (*(:fo Qfﬁ)
Qﬁf "(233
1 1:(Bo) — fr(Bo)
= — J J
T %ﬁ(ﬁo) - %fr(ﬁo)

t

x (fz(ﬁo)/ — fr(Bo) %fx(ﬁo), - %fr(ﬁo)/)

and

Alla oAl

$— Iy O Qpeldyy

I P RN B RO

Oy Doy Q7 Qppldy
These choices imply that our Sy and K7 coincide exactly with AR and LM in

Al A R
ACG, and that our Dy is v/T12 s D for D as in ACG. To prove the proposition,
we will rely heavily on their results. ACG considered two cases: sequences Ay
for which /T || 7, || converges to a constant and those for which it diverges to
infinity.

Let us begin by considering the case where VT 77 converges. ACG es-
tablished ttlat for this case their (LM, AR, D) converges in distributign to
(x1, xi_,» D) where all three random variables are independent and D has

a non-degenerate Gaussian distribution. Since .(Afo — , {2y which is full rank
by assumption, this proves that (Kr, Sr, D7) =4 (x3, xi_;, D), where again
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all the variables on the RHS are mutually independent and D has a non-
degenerate Gaussian distribution. Thus, by the continuous mapping theorem

and consistency of ZAgg and ZA%, which under the null follows from (6.7) and
(6.9) in ACG, we have that

(1 —a(Dr, i’))KT +a(Dr,y)Sr — Ca(a(DT’ UA’))
—4(1—a(D,y)K +a(D,y)S —c.(a(D, y)),

which establishes correct asymptotic size under sequences with /T ||7r7|| con-
verging.
Next, consider the case where /T || 77| diverges. Let

(gT, AgTy 5’) = h(gT7 AgTa ’3\/7 ||7TT||_1)a

and define the random variables Dy, 3, and 3 accordingly. ACG equation
(6.22) establishes that, in this case, Dy —, D* for |D*|| > 0, and equations
(6.7) and (6.21) together establish that 3, — , 0. Our assumption on a(Dy, ¥)

thus implies that a(Dr, y) —, a,. Since ACG established the convergence in
distribution of (LM, AR) under sequences of this type, we have that

(1 —a(Dr, 5’))KT +a(Dr, ér)Sr — Ca(a(DT, fT))
—q (1= ag)K + ayS — c.(ay)

and thus that the CLC test ¢, 5, has asymptotic rejection probability equal
to « under these sequences. By the assumed invariance to postmultiplication,
however, this implies that ¢,p,, , has asymptotic rejection probability « as
well.

To complete the proof, following ACG we can note that the above argument
verifies their Assumption B* and that we can thus use ACG Corollary 2.1 to
establish the result.

Proof of Proposition 3

Follows by the same argument as the first part of Proposition 1.

Proof of Proposition 4
As discussed in the text, ¢k is efficient in the limit problem (25) by the
Neyman-Pearson lemma, and ¢, = ¢panp,.5 for a(D,y)=0,a e A, so

Tlif{.lo ET,(e,y)[¢KT] = Sup Tlim ET,((-),y)[d)&(DT,&)]

acA 17>
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follows from Proposition 3.

If a(D, y) =0 almost surely, then we have that limy_. E7 g, [Pan,.5)] =
limy_, o E7 5,y [¢k,] by Proposition 3. If, on the other hand, Pr{a(D, y) #
0} = 6 > 0, note that D = p is non-random in the limit problem, so this im-
plies that a(u, y) = a* # 0. Note, however, that the test ¢, does not sat-
isfy the necessary condition for a most powerful test given in Theorem 3.2.1
in Lehmann and Romano (2005) and thus has strictly lower power than the
test ¢k in the limit problem, which together with Proposition 3 implies that
limy_ ET,(o,y)[Q')a(DT,«Q)] <limy_, ET,(o,y)[Q-')KT]-

Proof of Theorem 5

Define M, = {up - b: b € R*}. Note that for any { > 0, there exists C; > 0
such that

inf inf E, . b d>1-{.

ael0,1] meMy:|m|>C¢

Note further that C; — oo as { — 0. Since the test ¢ is UMP over the class of
tests depending on (J, K, D) against m € M, for 3, = 0, we can see that for

Bn.np.y = SUP.cio.1) Emup o [Pl we have B, =E, ., ,[¢x] ¥Ym € M. Thus,
S]‘j\g (B;;'MDJ’ - Em,,u,),y[d)a]) = Sl}\g (Em,uu,y[(ﬁK] - Em,,u,),y[d)a])-
meMy, meMy,

Next note that, as discussed in the proof of Proposition 4, none of the tests ¢, :
a € (0, 1] satisfy the necessary condition for an optimal test against m € M/
for 3 =0 given in Lehmann and Romano’s (2005) Theorem 3.2.1. Thus if we
define

e(a) = sup (Enup [dx] — Enupr[dal),

memMy,

we have that e(a) > 0 Va € (0, 1]. Moreover, for all a, there is some m* € M,
such that

8(61) - Em*,,u,g,y[¢K] - Em*,y,D,y[d)a]’

which can be seen by noting that for { = ‘92‘”, Be={m:|m| <C},and A =

M. N Bg{ (for Bgz the complement of B, ),

Sup(Em,Ml),v[¢K] - Em,w),y[¢a]) <1- ?

meA

by the definition of C,. Thus, for A=M,n Be,,

e(a) = sup(Em,MD,y[cpK] — Epupy[da]).

meA
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Since A is compact and E,, ,, ,[éx] — E ., y[¢.] 1S continuous in m, the sup

must be attained at some m* € A.
Since E,, ., ,[¢.] is continuous in a for all m, the fact that

8(61) = Sup (Em,,u.D,y[(;bK] - Em,MD,y[d)a])

meMy,

is achieved implies that e(a) is continuous in a. We know that £(0) = 0 by
definition, so 0 is the unique minimizer of (a) over [0, 1]. By the compactness
of [0, 1], this implies that for any & > 0, there exists £(8) > 0 such that e(a) <
£(6) only if a < 8. Further, by the intermediate value theorem, there exists
a(8) > 0 such that £(a(8)) = 2.

To prove Theorem 5, we want to show that under the assumptions of the
theorem, for all » > 0 there exists N such that n > N implies

b u
arg min sup (Bm,MDWW — Epp vl ) <.
aclo, ]meMD(I-LD,n:'Yn)

Fixing v, let & = &(v), a* = a(v), for &(-) and a(-) as defined above. Let
= ‘94—*, and take C* to be such that

inf  E,[de]>1—C"

meRk:||m||>C*

Under our assumptions and the continuity of E,, ., ,[¢.] in (m, up, vy, a),
there exists some N such that for n > N,

inf Sup (B;l:l,lu,D‘myn - Em,pD’,,,y,,[d)a]) > 35*7

A€ 11 e Mp (s yn) B

while

sup (Bospyn = Emup ol bar]) <38

mEMD(MD,na'Yn)nBC*

and

sup ('Bfﬂn B Em’/*"D,n’%l[¢a*]) <27

mGMD(#l),nﬁn)ﬂBg*

Thus, for n > N we have

Sup (B:‘n,/.LD’n,'yn - Em,,lLD,m‘Yn [¢a*])

meMp(pup,nsyn)

< inf sup (Brwonn = Emsp il da))

aclv1] meMp(up,n,yYn)NBex

and thus that a(up ., v,) < v since a* < v. Since we can repeat this argument
for all » > 0, we obtain that a(up ,, v,) — 0 as desired.
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Proof of Corollary 2

Let (87, AZr, 7) = h(gr, Agr, %: r7'/~/T) for h as defined in (21), and note
that this is the same definition of (g7, Agr, ¥) given near the beginning of Ap-
pendix 1. By the postmultiplication-invariance of plug-in tests with equivariant
fLp, tests based on (g7, Agr, ¥) with plug-in estimate fip = D, will be the same
as those based on (gr, Agr, ¥) with estimate ap = Dr. To prove the result, we
will focus on tests based on (g7, Agr, 7).

As established in the main text, (g7, Agr, ¥) converges in distribution to
(g, Ag, v) in a Gaussian shift model with u = E[Z,Z,]'c and b = b*. Note that
in linear I'V, we have

Mp(up, V) ={UI =35 -b) 'up -b:beR}.

Hence, for any sequence (wp ., v,) With wp, = w, |nll > 0, and Zg(y,) — 0,
we can see that for any C > 0,

d(Mp (s ¥a) N Be, {pp -b:b e RP} N Be) — 0,

so by Theorem 5 we have that ap;(wp ., v,) — 0. Note, however, that under our
assumptions (fp,y) —, (u, y) with u|l > 0 and 34,(y) = 3p(y) = 0. Thus,
the continuous mapping theorem yields that ap(dp, ¥) —, 0.

Proof of Corollary 3
Note that

M) = (55 (f(0) = f(80)) : 0 € O}
= (7 2,) (8 - f(80) 6 < 0).

For any sequence 7', 7 — 2, o and Bc = {m € R? : |m|| < C} for C > 0, we
have that

lim dy ({r;* (7702, 1) > ((0) — £(60)) : 0 € O} N B,

T—o00
11
{172 0.3(£(0) — f(80)) : 6 € O} N Bc) = 0.
From the definition of differentiability, we know that

Jd
f(0) —f(6) — —
lim " 98

680 16— 6ol

f(60)(6— b))
=0.
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Thus, for any sequence 67 — 0,

1
lim sup <f(0)—f(90)—

870 166y <67 OT

ae/f((’“)(o 00))

Moreover, by our identifiability assumption on 6,, we know that for any con-
stant K > 0,

lim sup 10— 6yl =0

T—o0 1 1 1
Orp 212, § F(0)-0, § (00)I<K

Combined with the previous equation, this implies that

1
lim sup T’

T—oo | 1 1
Oy unmgfw)fﬂ,,jf<90>nsl<

(f(9)—f(90))

f(Go)(G 6o)

nOé)O/

which in turn shows that for any C > 0, provided 6 belongs to the interior of 6,

dy (ri% (2,3(F(8) — £(8)) : 0 O} N B,

é! Vb (80) b beRP}ﬂBC>—>O.

Thus, we see that for any r;'Q,r — ,,, the convergence required by
Theorem 5 holds, so for the corresponding sequence {yr}3_, we have that
amvr (yr) — 0. Hence, by the continuous mapping theorem we have that, un-
der our assumptions, aymgr (¥) =, 0.

1
One can show that sequences of local alternatives of the form 6; = 6, + r; b*
yield Gaussian shift limit problems in this model. The fact that aymgr (¥) —, 0
implies, by Proposition 4, that the MMR test is asymptotically efficient against
such sequences, and hence that the MMR test is asymptotically efficient under
strong and semi-strong identification, as we wanted to prove.
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