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THIS APPENDIX PROVIDES supplementary material to accompany the main text. Ap-
pendix S.A studies alternative specifications of milestone utility. Appendix S.B concerns
stationary and steady states in the model with bounded income. It characterizes station-
ary states for the model with bounded income. It shows by example that stationary states
may not always exist and proves the existence of the weaker notion of a steady state.
It contains an extension to technological progress in the model with bounded income.
Appendix S.C provides some comparative statics results in the constant elasticity growth
model. Appendix S.D proves Observations 2 and 3 of Section 5.4.1 in the main text. Ap-
pendix S.E discusses minimal monotonicity and connects this idea to upward-looking as-
pirations. Throughout, we number equations, figures, propositions, and lemmas using an
“S.” prefix, to avoid possible confusion with references to similar objects in the main text.

APPENDIX S.A: ALTERNATIVE MILESTONE UTILITIES

In the main text, the aspiration utility is given by w1(e), illustrated in Figure S.1(a),
where e = max{z − a�0} is the excess of their child’s wealth z over the aspiration a of
the parent and w1 is increasing, smooth, and strictly concave. Our results are robust to an
alternative utility term, illustrated in Figure S.1(b), in which the crossing of the threshold
also engenders a jump in utility; that is, w1 is strictly increasing with w1(0) > 0.

We could also assume a more generalw1-function that incorporates additional disutility
in departing downwards from a, as illustrated in Figure S.1(c) (and used in Genicot and
Ray (2009)). We work with such a form below to deliver a richer version of Proposition 2
in the main text.

A final alternative, illustrated in Figure S.1(d), would be to define utilities around mul-
tiple “milestones” and interpret those thresholds as an aspiration vector. The crossing of
each milestone is “celebrated” by an extra payoff. These “add-on” payoff functions are
defined on the extent to which outcomes exceed the milestone in question, and are exoge-
nous. But the social environment determines the milestones, and consequently individual
incentives to invest and bequeath. Even if this aspiration vector were to be common to
all in society, heterogeneity in wealth would play an important role as higher thresholds
would become more relevant as an individual moves further up the income scale.

For the rest of this section, we return to the specification in Figure S.1(c). Consider an
aspirational utility function of the form w1(z�a)= s(a)w(z/a), where w picks up a purely
relative component and s picks up scale effects. Assume (a) w is smooth and increasing
with w′ > 0, (b) w′′(x) > 0 for x < 1 and w′′(x) < 0 for x > 1, (c) s(a) is smooth, with
s(a) > 0 for all a > 0 and s(a)/a nonincreasing.

Assumption (b) imparts an S-shaped form to aspirational utility, as shown in Fig-
ure S.1(c). Assumption (c) allows for scale effects but does not insist on them (s(a) is
permitted to be a constant or even decline in a). What is important is that there be a
restriction on how quickly utility can increase in the scale term, which is captured by the
requirement that s(a)/a is weakly decreasing.

Notice that, in contrast to the specification used in our paper, the choice of continuation
wealth z is no longer insensitive to a for the frustrated (unlike Proposition 2 in the main
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FIGURE S.1.—Aspirations and payoffs.

text). The first-order condition that guides the choice of continuation wealth is given by

w′
0(z)+ s(a)

a
w(z/a)= u′(y − k(z))/f ′(k(z))� (S.1)

As in the main text, by the concavity of w to the right of a, there can be at most one
solution to (S.1) that exceeds a. However, owing to the convexity ofw to the left of a there
could be several solutions to the first-order condition that involve frustration. Finding an
optimal solution involves comparing payoffs over all the continuation incomes for which
(S.1) holds.

Inequality (4) from the main text, which we continue to assume, guarantees a solution
that strictly exceeds aspirations when aspirations close to zero, and so aspirations are
satisfied when they are low. As aspirations continue to rise, there comes a threshold when
the solution makes a switch from satisfaction to frustration; typically, this switch will arrive
with a discontinuous fall in investment, as in the main text.

But higher aspirations can do more than switch individuals from satisfaction to frustra-
tion. Once in the “frustration zone,” economic growth is actually lowered by an increase
in a: higher aspirations encourage less investment. This is because the function becomes
flatter to the left of a. It follows that every candidate for an optimal solution already below
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FIGURE S.2.—Satisfaction and frustration as aspirations change.

a must decrease still further. These findings are formalized in Proposition S.1 (which is
the counterpart of Proposition 2 in the main text) and illustrated in Figure S.2.

PROPOSITION S.1: For given y , there is a unique threshold value of aspirations below which
aspirations are satisfied, and above which they are frustrated. Once aspirations are frustrated,
chosen wealth declines as aspirations continue to grow.

PROOF: By (4), if aspirations are small enough, then aspirations must be satisfied. Be-
cause y is fixed, aspirations must be frustrated once a is high enough. So there is cer-
tainly a threshold at which a changeover occurs from satisfaction to frustration. Below,
we shall prove that such a threshold must be unique. To go further, we employ the follow-
ing lemma:

LEMMA S.1: Consider any selection from the optimality correspondence that links a to an
optimal choice z. Then that mapping cannot exhibit a discontinuous upward jump.

PROOF: Suppose that z1 and z2 are both optimal choices at a, with z2 > z1. We claim
that

(z2/a)w
′(z2/a)−w(z2/a) > (z1/a)w

′(z1/a)−w(z1/a)� (S.2)

To prove this, recall the first-order condition (S.1) for z1 and z2:

w′
0(zi)+ s(a)

a
w′(zi/a)= u′(y − k(zi)

)
k′(zi)= u′(ci)/f ′(y − ci) (S.3)

for i= 1�2, where ci is consumption under zi. At the same time, by the joint optimality of
z1 and z2, u(c1)+w0(z1)+ s(a)w(z1/a)= u(c2)+w0(z2)+ s(a)w(z2/a), or equivalently,

s(a)w(z2/a)− s(a)w(z1/a)= [
u(c1)+w0(z1)

] − [
u(c2)+w0(z2)

]
� (S.4)

Multiplying both sides of (S.3) by zi = f (yi − ci), combining the result with (S.4), and
defining �i ≡ (zi/a)w′(zi/a)−w(zi/a) for i= 1�2, we see that

s(a)(�2 −�1)=
[
u′(c2)f (y2 − c2)

f ′(y − c2)
+ u(c2)

]
−

[
u′(c1)f (y1 − c1)

f ′(y − c1)
+ u(c1)

]

(S.5)− [
z2w

′
0(z2)−w0(z2)

] + [
z1w

′
0(z1)−w0(z1)

]
�
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Simple differentiation plus the strict concavity of u, w0 (and the concavity of f ) show that
zw′

0(z)−w0(z) is decreasing in z while [u′(c)f (y − c)/f ′(y − c)] +u(c) is decreasing in c
(for given y). Using this information in (S.5) along with the fact that z2 > z1 and c2 < c1,
we establish (S.2), as desired.

Let z(a) be any selection from the optimality correspondence. Suppose, contrary to the
lemma, that it jumps up at a. By the upper-hemicontinuity of optimal choices, that implies
(i) there are z∗

1 and z∗
2 with z∗

2 > z
∗
1 , both optimal at a, (ii) z∗

1 is a limit point of optimal
choices z(a′) for a′ < a, and (iii) z∗

2 is a limit point of optimal choices z(a′) for a′ > a.
Note that (S.2) holds with zi = z∗

i for i= 1�2, so that, transposing terms,
(
z∗

2/a
)
w′(z∗

2/a
) − (

z∗
1/a

)
w′(z∗

1/a
)
>w

(
z∗

2/a
) −w(

z∗
1/a

)
�

Because z∗ > z∗
1 and w is increasing, both terms in the inequality above are positive. So,

because s(a)≥ as′(a) by Assumption (c),1 we can conclude that

s(a)

a

[(
z∗

2/a
)
w′(z∗

2/a
) − (

z∗
1/a

)
w′(z∗

1/a
)]
> s′(a)

[
w

(
z∗

2/a
) −w(

z∗
1/a

)]
�

so that, transposing terms again,

s(a)
(
z∗

2/a
2
)
w′(z∗

2/a
) − s′(a)w(

z∗
2/a

)
> s(a)

(
z∗

1/a
2
)
w′(z∗

1/a
) − s′(a)w(

z∗
1/a

)
� (S.6)

With (S.6) in mind, we can pick a1 < a and a2 > a (but close enough) along with zi optimal
for ai and close enough to z∗

i for i= 1�2, such that

s(η2)
z2

η2
2

w′(z2/η2)− s′(η2)w(z2/η2) > s(η1)
z1

η2
1

w′(z1/η1)− s′(η1)w(z1/η1) (S.7)

for every η1 and η2 in the interval [a1� a2].
Viewing s(a)w(zi/a) as a function of a, and applying the mean-value theorem,

s(a1)w(zi/a1)− s(a2)w(zi/a2)= (a2 − a1)
[
s(ηi)zi/η

2
i w

′(zi/ηi)− s′(ηi)w(zi/ηi)
]

(S.8)

for i= 1�2, where η1 and η2 are the points in [a1� a2] where the relevant mean values are
attained. Combining (S.7) and (S.8), it follows that

s(a1)w(z2/a1)− s(a2)w(z2/a2) > s(a1)w(z1/a1)− s(a2)w(z1/a2)� (S.9)

Now, z2 is an optimal choice at a2, so in particular we have

u(c2)+w0(z2)+w(z2/a2)≥ u(c1)+w0(z1)+w(z1/a2)�

where c1 and c2 are the levels of consumption corresponding to the choices z1 and z2.
Applying (S.9) to this inequality, we must conclude that

u(c2)+w0(z2)+w(z2/a1) > u(c1)+w0(z1)+w(z1/a1)�

but this contradicts the fact that z1 is an optimal choice at a1. Q.E.D.

1To see this, simply differentiate s(a)/a with respect to a and use Assumption (c) on s(a).
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Let us now return to the main proof, and suppose that aspirations are frustrated at a1:
z1 is an optimal choice with z1 < a1. Consider an increase from a1 to a2, with z2 optimal
at a2. Then

u(c1)+w0(z1)+w1(z1� a1)≥ u(c2)+w0(z2)+w1(z2� a1)�

where c1 and c2 are the levels of consumption corresponding to the choices z1 and z2, and
likewise

u(c2)+w0(z2)+w1(z2� a2)≥ u(c1)+w0(z1)+w1(z1� a2)�

Adding both these inequalities and transposing terms, we must conclude that

w1(z1� a1)−w1(z2� a1)≥w1(z1� a2)−w1(z2� a2)� (S.10)

For a small increase in aspirations from a1 to a2, Lemma S.1 implies that max{z1� z2} <
a1 < a2 for any optimal choice z2 at a2. But over this zone, the cross partial derivative

∂2w1(z�a)

∂z ∂a

is strictly negative (for details, see this footnote).2 It follows from (S.10) that z1 must be
no smaller than z2. Moreover, the first-order condition

w′
0(z1)+ s(a1)

a1
w′(z1/a1)= u′(y − k(z1)

)
k′(z1)

can no longer hold when a1 increases to a2, so z1 is actually strictly larger than z2.
This argument can obviously be extended to any change in aspirations, small or not, as

long as aspirations are frustrated to begin with.
The above argument, coupled with Lemma S.1, also proves that the critical threshold of

movement from satisfaction to frustration is unique. For once aspirations are frustrated,
they can never be satisfied at higher levels of aspirations. Q.E.D.

APPENDIX S.B: STEADY STATES AND STATIONARY STATES WITH BOUNDED INCOMES

S.B.1. Characterization of Stationary States

Recall the definitions from the main text: a stationary state is a distribution on positive
wealths such that each dynasty replicates its starting wealth generation after generation.
A steady state is a distribution that replicates itself period after period. Under the lat-
ter definition, dynasties might “cross paths,” generating persistent mobility but with an
unchanging distribution.

A natural setting for steady or stationary states is one in which wealths are bounded,
as in the Solow model. It is implied by the end-point restriction: f (x) < x for all x large
enough. Proposition 6 in the main text tells us that if aspirations are range-bound, scale-
invariant, and socially monotone, then a stationary state is concentrated on just two posi-
tive values of incomes.

2We have w1(z�a) = s(a)w(z/a). Differentiating with respect to z, we see that ∂w1(z�a)/∂z =
φ(a)w′(z/a), whereφ(a)≡ s(a)/a. Differentiating the result with respect to a, we see that ∂2w1(z�a)/∂z ∂a=
φ′(a)w′(z/a)−φ(a)w′′(z/a)z/a2. We have φ′(a) ≤ 0 by Assumption (c) on w1, while w′′(z/a) > 0 by z < a
and Assumption (b) on w1. Therefore, ∂2w1(z�a)/∂z∂a < 0, as claimed.
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Let us examine what such a stationary state—call it F∗—would look like. Let us say that
there are two incomes, y� and a higher level yh, and p is the proportion of the population
located at y�. For each group i= ��h, ai is then given by

ai =Ψ
(
yi�F

∗)� (S.11)

The proof of Proposition 6 tells us that both these aspirations cannot be satisfied. Both
cannot be frustrated either, because the corresponding income for failed aspirations is
determined uniquely, given condition (4) in the main text. So a� must be a failed aspiration
and ah a satisfied aspiration. In particular, y� is fully pinned down by

d(y�)= 0� (S.12)

for which the solution is unique, as just discussed. On the other hand, because ah is satis-
fied, yh is determined by

d(yh)+w′
1

(
yh −Ψ (

yh�F
∗)) = 0� (S.13)

This generates four equations for five unknowns that need to be satisfied in a stationary
state (y�� yh�p�a�� ah), but in part the extra degree of freedom will be used up in guaran-
teeing that we can find configurations that are compatible with the failure of aspirations at
y� and the satisfaction of aspirations at yh. Sometimes this will work, as in the case of Ex-
ample 1 in the main text, where there is a continuum of stationary states. But sometimes
a stationary state may fail to exist.

S.B.2. Possible Nonexistence of a Stationary State

To prove this last assertion, fix any utility function (u�w0�w1) satisfying our assump-
tions. Observe first that y� is uniquely given by (S.12). Next, note that a� must be bounded
below by a, defined as the lowest aspiration for which an individual at y� is just indifferent
between her lower choice z = y� and some upper choice z′ > a. In turn, that places a lower
bound on the size of yh. At that value, it is possible that f (yh)− yh is low enough so that
yh is not worth maintaining for any aspiration ah. That proves that a stationary state may
not always exist.

The problem is that as a parent, I obtain my payoff from the value of the child’s wealth,
whereas the child does not value her own wealth directly; only the consumption she ob-
tains from it. If there is enough curvature in the production function, the implied level of
consumption that maintains wealth may be too low. This is not to assert that nonexistence
is the rule rather than the exception, but only to caution that nonexistence is a possibility.

S.B.3. Existence of Steady States

Faced with this possible nonexistence of a stationary state, one must then retreat to the
weaker definition of a steady state, which is an invariant equilibrium distribution F∗. De-
spite the lack of stochastic shocks, there could be mobility within the distribution, so that
the stationarity of the outcome only happens at the aggregate and not at the individual
level.

In what follows, we will assume that Ψ , the aspirations formation function, is addition-
ally continuous in F , in the topology of weak convergence on distributions. This assump-
tion is not entirely innocuous: for instance, in the case of upper mean aspirations, it is
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not automatically satisfied.3 However, a little smoothing restores that continuity. For ex-
ample, suppose that the edges of the cognitive window are not sharply defined but are
delineated by a continuous weighting function that drops to zero. Then the resulting as-
pirations function will indeed be continuous in the weak topology on distributions.

PROPOSITION S.2: If the aspirations formation function is continuous in (y�F), then there
exists a steady state.

Proposition S.2 is a corollary of the more general Proposition S.3, which we now state
and prove.

Fix some compact interval [0�Y ] of real numbers, with Y > 0. Let M be the space of all
probability measures μ defined on [0�Y ], equipped with the weak convergence topology.

For each μ and each y ∈ [0�Y ], let Φ(y�μ) be the set of “choices” made by y . We
assume:

(i) Φ(y�μ) is nonempty and takes values in [0�Y ].
(ii) Φ is upper-hemicontinuous (u.h.c.) in (y�μ).

A transition probability p defined on [0�Y ] agrees with Φ and μ if, for every B, and for
μ-a.e. y , p(y�B) > 0 only if B ∩Φ(y�μ) 	= ∅.

PROPOSITION S.3: Under Assumptions (i) and (ii) onΦ, there exists a probability measure
μ∗ on [0�Y ] and a transition probability p∗(y� ·) that agrees with Φ and μ∗ such that

μ∗(B)=
∫

[0�Y ]
p∗(y�B)μ∗(dy)� (S.14)

for every Borel set B.

Before proving the proposition, we make some remarks. First, Proposition S.2 is a near-
immediate consequence. If the aspirations function a= Ψ(y�F) is continuous in (y�F),
then the policy correspondence

Φ(y�F)≡ arg max
z

[
u
(
yt − k(z)

) +w0(z)+w1

(
max{z− a�0})]

is nonempty-valued and u.h.c. on [0�Y ], so that Assumptions (i) and (ii) are satisfied.
Therefore, an invariant measure μ∗ and a transition probability p∗ satisfying (S.14) exist.
Because p∗ agrees with Φ and μ∗, it only picks out optimal continuation choices. The
c.d.f. F∗ corresponding to μ∗ is therefore a steady state.

Second, Proposition S.3 is conceivably of independent interest as it applies to a variety
of situations in which the ambient distribution of types influences individual choice, not
just aspirations. There is also ample scope to expand the proposition to a larger domain,
not just some compact subset [0�Y ] of the reals.4

PROOF OF PROPOSITION S.3: Let R be the space of all probability measures ρ on the
product space [0�Y ]2. For any ρ ∈R, letm1(ρ) andm2(ρ) stand for the induced marginals
on each dimension of [0�Y ]2.

3Fix y , and think of a sequence of distributions in which a mass point approaches the boundary of the
cognitive window from below. In the limit, the upper conditional expectation will move discontinuously.

4We are very grateful to Andy McLennan, who suggested the line of proof of this proposition. A similar
approach—though for a result that does not apply to the case at hand—is also to be found in Duffie, Geanako-
plos, Mas-Colell, and McLennan (1994).
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Let G(μ) stand for the graph of Φ in [0�Y ]2; that is,

G(μ)= {
(y� z) ∈ [0�Y ]2

∣∣z ∈Φ(y�μ)}�
For any μ ∈M, define

Γ (μ)= {
ρ ∈R

∣∣ρ(G(μ)) = 1 and m1(ρ)= μ}
�

and

H(μ)=m2

(
Γ (μ)

) = {
ν ∈M

∣∣ν =m2(ρ) for some ρ ∈ Γ (μ)}�
LEMMA S.2: Γ is nonempty- and convex-valued, and is upper-hemicontinuous (u.h.c.).

PROOF: To show that Γ is nonempty-valued, consider the upper-semicontinuous selec-
tion φ(y�μ)≡ maxΦ(y�μ). This is easily seen to be a deterministic transition probabil-
ity,5. so that ρ̄ defined by

ρ̄(A)≡ μ{
y : (y�φ(y�μ)) ∈A}

for all BorelA⊆ [0�Y ]2 belongs to Γ (μ). Convex-valuedness is trivial: the convex combi-
nation of two joint probabilities sharing the same marginal must have that marginal, and
if each places full weight on some common set, their convex combination must do so as
well.

For u.h.c., let μn be a sequence in M with μn ⇒ μ, and suppose that for some sequence
ρn ∈ Γ (μn), ρn ⇒ ρ ∈ R. Because marginals are continuous in weak convergence (see,
e.g., Billingsley (1999, p. 23)), it must be that m1(ρ)= μ.

For any ε > 0, define Gε to be the set of all points (y� z) ∈ [0�Y ]2 such that
d((y� z)�G(μ)) ≤ ε, where d is the infimum of Euclidean distance between (y� z) and
points (y ′� z′) ∈ G(μ). Because Φ is u.h.c. and [0�Y ]2 is compact, it is easy to see that
there exists N(ε) such that, for all n ≥ N(ε), G(μn) ⊆ Gε. Because Gε is closed, we
know from the Portmanteau theorem for weak convergence (see, e.g., Billingsley (1999,
Theorem 2.1, part iii)) that

1 = lim sup
n

ρn
(
G

(
μn

)) ≤ lim sup
n

ρn(Gε)≤ ρ(Gε);

or in other words, ρ(Gε) = 1. Because
⋂

ε Gε = G(μ) and all these sets are closed, it
follows that ρ(G(μ))= 1. Therefore, ρ ∈ Γ (μ), so Γ is u.h.c. Q.E.D.

Again, by the continuity of marginals, H inherits all the properties of Lemma S.2
from Γ , so it is also nonempty-valued, convex-valued, u.h.c. By the Fan–Glicksberg fixed
point theorem, there exists (μ∗�ρ∗) such that ρ∗ ∈ Γ (μ∗) and μ∗ =m2(ρ

∗).
By the so-called disintegration theorem, which can be proved at varying levels of

generality (Parthasarathy (1967, p. 147, Theorem 8.1), can be easily adapted for our
purposes), there exists a transition probability p∗(y� ·) such that, for every product set
A×B⊆ [0�Y ]2,

ρ∗(A×B)=
∫
A

p∗(y�B)μ∗(dy)� (S.15)

5An upper-semicontinuous function is certainly measurable, and therefore satisfies all the conditions for it
to be a transition probability; see, for example, Remark 2 in Neveu (1965, p. 74).
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Notice that ρ∗(G(μ∗)) = 1, so that p∗ must agree with μ∗.6 Moreover, because
m2(ρ

∗) = μ∗, it follows that for every set B, μ∗(B) = ρ∗([0�Y ] × B). Applying this to
(S.15), we see that

μ∗(B)=
∫

[0�Y ]
p∗(y�B)μ∗(dy)�

which establishes (S.14) and completes the proof. Q.E.D.

S.B.4. Bounded Incomes: Exogenous Technological Progress

In this section, we introduce exogenous technological progress in the model with
bounded income. Assume that a unit measure of individuals supplies one unit of labor
inelastically and at zero disutility cost. Society has access to an aggregate production func-
tion Y =G(K�L), where K is capital and L is effective labor. Effective labor is the prod-
uct of the labor supply 1 and a labor enhancing technology that grows exogenously at a
factor η> 1. We can therefore write

Lt = ηt for all t ≥ 0�

Assume that G is strictly increasing, strictly concave in each input, and exhibits constant
returns to scale. Define capital per effective unit of labor by kt ≡Kt/Lt and income per
effective unit of labor by yt = Yt/Et . By constant returns to scale, these are connected
by a “per-capita production function” yt = f (kt)=G(kt�1) that is strictly increasing and
strictly concave. It is well known that this device of exogenous technological change is
often used to allow for growth in the Solow model. As in that model, we impose the
assumption that f (k) < k for all k large enough, and recall that while this bounds wealth
per unit of effective labor, wealth per-capita is fully capable of growth without bound.

Given the possibility of unbounded exponential growth, it will be useful to assume (as
with linear production) that utilities are constant-elasticity, with the same elasticity for
each utility indicator:

u(c)= c1−σ� w0(z)= δz1−σ� and w1(e)= δπe1−σ� (S.16)

where σ ∈ (0�1), δ > 0 is a measure of discounting, and π > 0 is a measure of the impor-
tance of milestone utility relative to intrinsic utility.

An individual with starting wealth Yt and aspirations At chooses Kt+1 to maximize

(Yt −Kt+1)
1−σ + δ[G(Kt+1�Lt+1)

1−σ +π(
max

{
g(Kt+1�Lt+1)−At�0

})1−σ]
� (S.17)

Dividing throughout byLt+1, we see that the maximization in (S.17) is equivalent to choos-
ing yt+1 that maximizes

[
yt

η
− f−1(yt+1)

]1−σ
+ δ[y1−σ

t+1 +π(
max{yt+1 − at�0})1−σ]

� (S.18)

where at ≡At/Lt+1.

6Details: Suppose on the contrary that for some set B, p(y�B) > 0 for y in some set A with μ∗(A) > 0, but
at the same time, B ∩Φ(y�μ∗)= 0 for each such y . Then it should be obvious that (A×B)∩G(μ∗) is empty,
but (S.15) informs us that ρ∗(A×B) > 0. That contradicts ρ∗(G(μ∗))= 1.



10 G. GENICOT AND D. RAY

The central question here is: with systematic technical change, how might At be deter-
mined? If the rate of technical progress is used as a normalization factor for aspirations,
we could have (for instance):

At = ηΨ(Yt�Ft)�
which is related to (though not the same as) the “future-based aspirations” variation in
Genicot and Ray (2009), where aspirations are adjusted to take account of the future
distribution of income.

With aspirations normalized in this way to account for trends in technical progress,
Proposition 5 in the main text survives unscathed, and equality is impossible in steady state.

On the other hand, if aspirations are entirely unnormalized—that is, if they fail to take
account of the fact that the next generation will be, on average, richer, then perfect equal-
ity is possible, just as it is in Proposition 7. By the assumption that Ψ is range-bound, it
must be that, under perfect equality, At = Yt , so that at = Yt/Lt+1 = yt/η for every t. In
this case, it can be shown that if η is sufficiently large, it is possible to find y∗ > 0 such
that, faced with the maximization problem

max
z

(
y∗

η
− f−1(z)

)1−σ
+ δ

[
z1−σ +π

(
z− y∗

η
�0

)1−σ]
�

the individual at income y∗ will choose the continuation z = y∗. But then y∗ must be a
steady state with perfect equality.

APPENDIX S.C: COMPARATIVE STATICS IN THE CONSTANT ELASTICITY
GROWTH MODEL

In addition to the effect of a more equal initial distribution discussed in the main text,
we may be interested in other factors that “affect the chances” of convergence to equality.
One way to formalize this is to say that some parametric change makes convergence to
equality more likely if, for any initial distribution F0 with convergence to perfect equal-
ity before the change, that convergence is unaffected, and for some distributions F0 with
bipolar divergence before the change, convergence to perfect equality occurs after the
change. One such parameter is the extent of social monotonicity, and to vary it, we con-
sider aspirations to be a weighted average of one’s own income y and a common term
ψ(F) that lies in the range of the distribution F :

Ψ(y�F)= γy + (1 − γ)ψ(F) for γ ∈ [0�1]� (S.19)

so that a higher γ means we have aspirations that are less sensitive to social changes.

PROPOSITION S.4: Consider the constant elasticity growth model. Assume that aspirations
are range-bound, scale-invariant, and socially monotone. Everything else remaining the same,
the set of initial distributions on a compact support for which convergence to perfect equality
ensues expands with (i) a higher rate of return (ρ), (ii) a larger weight on aspirational utility
(π), (iii) lower aspirations (i.e., a decrease in Ψ(y�F) for all (y�F)), and (iv) aspirations
that are less sensitive to social outcomes (higher γ in (S.19)).

PROOF: Proposition 3 showed that whether an individual with income y is frustrated
or satisfied at time 0 depends on whether that individual’s aspirations ratio r0(y) is above
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or below the threshold r∗ > 1 (identified in the statement of that proposition). It is ob-
vious from the maximization problem in (10) that a higher rate of return ρ or a higher
π increases the threshold r∗ that induces frustration, thereby increasing the set of initial
distributions that will result in perfect equality. (Indeed, for any given distribution on a
compact support, there is a ρ high enough such that convergence to equality will ensue.)
That establishes parts (i) and (ii).

To establish parts (iii) and (iv), notice that the threshold r∗ is unaffected by the aspira-
tions formation process. Because lower aspirations (in the sense of a decrease in Ψ(y�F)
for every (y�F)) decrease r0(y) for all y , convergence to perfect equality becomes more
likely, which proves part (iii). To prove part (iv), we note the following:

LEMMA S.3: rt(y) is strictly increasing (decreasing) in γ if rt(y) < (>) 1, and is bounded
above (below) by 1.

PROOF: Using (S.19), aspirations ratios at time t are

rt(y)≡ 1
γ+ (1 − γ)ψ(Ft)/y for every y ∈ SuppFt�

The effect of γ is given by drt(y)/dγ = −rt(y)2(1 − ψ(Ft)/y). Hence, an increase in
γ raises (lowers) rt(y) if ψ(Ft) > (<) y . Since the latter inequality depends on how rt
compares to 1,

drt(y)

dγ
> (=�<) 0 for rt(y) < (=�>) 1�

while rt(y) is correspondingly bounded above (below) by 1. Q.E.D.

It follows from this lemma that all aspirations ratios converge to 1 as γ increases (i.e.,
as aspirations become less socially sensitive). Because r∗ > 1, lowering the social sensi-
tivity of aspirations therefore bunches more individual aspirations ratios in an interval
below r∗. That reduces the proportion of frustrated individuals, increasing the likelihood
of convergence to perfect equality. (Observe that without condition (4) in the main text,
r∗ < 1 and g < 1 would be possible. In this case, more—and not less—social sensitivity
would reduce the proportion of frustrated individuals.) Q.E.D.

APPENDIX S.D: PROOFS OF OBSERVATIONS 2 AND 3 OF SECTION 5.4.1

OBSERVATION 2: Assume upper mean aspirations. Then balanced growth with growth
factor g > g is possible if (and only if) the distribution of normalized incomes y/(1 + g)t
is Pareto:

F

(
y

[1 + g]t
)

≡ F(w)= 1 − (A/w)r/(r−1)

for all w≥A and (A� r) such that r ∈ (1� r∗].

PROOF: Balanced growth at rate g among the satisfied requires the aspirations ratio to
be constant in y , say at value r. Define normalized income w at time t by w= y/(1 + g)t ,
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and let F(w) be the distribution of w; it will be time-invariant. Aspirations ratios (ex-
pressed as a function of w in the support of F) are easily seen to be

r = r(w)

= E
(
w′|w′ ≥w)
w

= 1
w

∫ ∞

0

[
1 − max

{
F(x)− F(w)

1 − F(w) �0
}]
dx

= 1 + 1
w

[
1 − F(w)]

∫ ∞

w

[
1 − F(x)]dx�

where the penultimate inequality is a standard rewriting of the expectation formula for
a nonnegative random variable.7 Defining H(w) ≡ ∫ ∞

w
[1 − F(x)]dx for all w ≥ 0, this

means that
H(w)

wH ′(w)
= −(r − 1)�

for all w in the support of F , from which it follows that, for all such w,

hw−1/(r−1) =H(w)=
∫ ∞

w

[
1 − F(x)]dx� (S.20)

for some nonzero constant h, to be suitably chosen soon. Differentiating both sides of
(S.20) and transposing terms, we have

F(w)= 1 −Aw−r/(r−1)�

for all w in its support, where A= h/(r − 1) is a suitably chosen constant so that F is a
bona fide c.d.f. This is a Pareto distribution, and all such distributions with r ∈ (1� r∗] are
compatible with perennially satisfied individuals growing at the rate of g(r). Q.E.D.

OBSERVATION 3: Consider the local income neighborhood model. The balanced
growth is possible from a distribution with compact support, and no individual remains
frustrated forever.

PROOF: It is easy to construct a distribution with balanced growth, even under initial
distributions with bounded support. Create a set of clusters of individuals, all with the
same income within the cluster but with incomes that differ enough across clusters that
they are not in each other’s aspirations windows. Each cluster then grows at a rate g(1).

Now we prove that in no equilibrium can an individual be frustrated forever.
Recall that Ψ(y�F) is completely insensitive to the distribution outside the lo-

cal range [y(1 − β)� y(1 + β)], for every y . We first show that this implies that
min{y�minFy�β} ≤ Ψ(y�F) ≤ max{y�maxFy�β}, where Fy�β is the restriction of the dis-
tribution over [y(1 −β)� y(1 +β)].

7For any nonnegative random variable with c.d.f.G, its expectation is given by
∫ ∞

0 [1 −G(x)]dx. In the case
of a distribution conditional on values no less than w, G(x)= max{ F(x)−F(w)1−F(w) �0} for all x≥ 0.
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To do so, take a person with income y . Let y1 = min{y�minFy�β} and y2 = max{y�
maxFy�β}. Create a new distribution F1 by taking all the mass of the distribution F that is
not in [y(1 − β)� y(1 + β)] and place it at y(1 − β)− ε, just below our individual’s win-
dow. By insensitivity outside the window,Ψ(y�F)=Ψ(y�F1), and by range-boundedness,
Ψ(y�F1) ∈ [y(1 −β)− ε� y2]. Combining these two observations and taking an appropri-
ate sequence with ε→ 0, we must conclude that Ψ(y�F) ∈ [y(1 − β)� y2]. By the same
token, we can create a new distribution F2 by taking all the mass of the distribution F that
is not in [y(1 −β)� y(1 +β)] and place it at y(1 +β)+ ε, just above our individual’s win-
dow. By insensitivity outside the window,Ψ(y�F)=Ψ(y�F2), and by range-boundedness,
Ψ(y�F2) ∈ [y1� y(1+β)+ε], so that passing to the limit as ε→ 0,Ψ(y�F) ∈ [y1� y(1+β)].
Intersecting these two findings, we must conclude that y1 ≤Ψ(y�F)≤ y2.

Now suppose, on the contrary, that there is some largest income level y at some time t
that remains frustrated forever. Since r∗ > 1, it must be that Ψ(y�Ft) > y and therefore—
by the above claim—that maxFt�y�β > y . Take any y ′ ∈ (y�maxFt�y�β]. Because those indi-
viduals initially at y ′ are not forever frustrated, their income must grow at a rate strictly
exceeding gn (at least along a subsequence of dates) and in time leave the aspirations
window of individuals who started at y . In time, there cannot be any higher income in
that person’s aspirations window. But that contradicts the assumption that that person
remains frustrated forever. Hence no individual remains frustrated forever. Q.E.D.

APPENDIX S.E: MINIMAL MONOTONICITY

Recall the definition of minimal monotonicity. Take a distribution F . Let ȳ be the supre-
mum income in it. For any y , let F−(y) denote the left-hand limit of the distribution at y .
Now take another distribution F ′ that weakly dominates F . Aspirations are minimally
monotone if

1. Ψ(ȳ�F ′)≥Ψ(ȳ�F);
2. Ψ(y�F ′)≥Ψ(y�F) for y < ȳ if F ′

−(y)= F−(y); and
3. Ψ(y�F ′) > Ψ(y�F) for y < ȳ if F ′

−(y)= F−(y) and F ′(x) < F(x) for all x > y with
F ′(x) < 1.

Let us pause to understand minimal monotonicity. F ′ weakly dominates F . Minimal
monotonicity requires that the aspirations at the highest income level under F do not
decrease. For other levels of income y < ȳ , matters can go either way, as we showed by
example in the main text. That is, aspirations can increase or decrease if F ′

−(y) 	= F−(y)
(there are more or fewer people who are poorer than y). Minimal monotonicity asks
that if F ′

−(y)= F−(y), then aspirations for y < ȳ cannot decrease, and indeed, they must
strictly increase if there is strict dominance above y .

For any distribution function F and any income y , define Fy to be the conditional distri-
bution function of F on the domain [y�∞). Consider any aspirations formation function
Ψ that respects the following conditions:

[Upward Looking] Ψ(y�F)=Ψ(F ′) whenever Fy = F ′
y .

[Upper Monotone] Ψ(y�F ′)≥Ψ(F) whenever F ′
y dominates F ′

y , with strict inequality
when the domination is strict.

Recall that “upper mean aspirations,” in which aspirations are given by the conditional
mean of income above one’s own income:

Ψ(y�F)= EF(x|x≥ y)�
are “upward looking” and “upper monotone.” But one can think of other examples as
well, including those that truncate the cognitive window at some upper bound. For in-
stance, suppose that an individual were to look at some average of conditional incomes
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belonging only to the nearest p percentiles above her. Then, too, the conditions above
are satisfied.

PROPOSITION S.5: Suppose that aspirations are upward looking and upper monotone.
Then they are minimally monotone.

PROOF: Consider two distributions F and F ′, with supremum incomes ȳ and ȳ ′, respec-
tively, such that F ′ weakly dominates F . Clearly, ȳ ′ ≥ ȳ , so that it is trivially the case that
F ′
ȳ dominates Fȳ . It is also easy to check the same relationship for any other income y pro-

vided that F ′
−(y)= F−(y). Similarly, it readily follows that F ′

y strictly dominates Fy under
these circumstances when F ′ strictly dominates F . Therefore, we have

Ψ
(
y�F ′) ≥Ψ(y�F)�

with strict inequality whenever F ′ strictly dominates F .
It follows that aspirations that are upward looking and upper monotone are minimally

monotone. Q.E.D.
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