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A1. PROOFS

WE START WITH A FEW AUXILIARY LEMMAS that help us prove Proposition 1. In what
follows, we let ξt

i denote transfers less transition costs, if any, obtained by player i in
period t.

LEMMA A1: Any protocol-free MPE σ is acyclic.

PROOF: Let φ =φσ be the equilibrium transition mapping generated by equilibrium σ .
Suppose that there is a cycle starting from x: φ(x) �= x, but φl(x) = x for some l > 1.
Without loss of generality, let l be the minimal such value, that is, the length of the cycle.
Let us first show that for every i ∈ V , [φj(x)]i = xi for all j. Suppose not. Then without
loss of generality we may assume to have chosen x such that xi ≥ [φj(x)]i for all j (so
i gets his maximum allocation along the cycle) and, moreover, that [φ(x)]i < xi. Then,
in the period that started with xt−1 = x and where, in equilibrium, transition to φσ(x)
is made, the continuation utility of player i satisfies (after taking the expectation over
possible realizations of the protocols)

Ut
i ≤ [

φσ(x)
]
i
+ ξ +β

([
φ2

σ(x)
]
i
+ ξ

) + · · · +βl−1
([
φl

σ(x)
]
i
+ ξ

) +βlUt
i �

where ξ ∈ [0� (b + 1)ε] is the maximum possible value of ξt
i over different periods. We

thus have

Ut
i ≤

[
φσ(x)

]
i
+ ξ +β

([
φ2

σ(x)
]
i
+ ξ

) + · · · +βl−1
([
φl

σ(x)
]
i
+ ξ

)
1 −βl

≤ (xi − 1)+ ξ +β(xi + ξ)+ · · · +βl−1(xi + ξ)

1 −βl

= xi + ξ

1 −β
− 1

1 −βl
<

xi + ξ

1 −β
− 1�

At the same time, if player i always vetoes all proposals in all subsequent periods, his
continuation utility would be Ũ t

i = xi
1−β

. Since ξ

1−β
< (b+1)ε

1−β
< 1, we have Ut

i < Ũt
i , which

implies that player i has a profitable deviation. Hence, it must be that [φj
σ(x)]i = xi for

all j ≥ 1 and for all i ∈ V .
Since each veto player gets xi in each period, the equilibrium payoff of each player must

equal Ut
i = xi−δ

1−β
. However, player i can always guarantee himself Ũ t

i = xi
1−β

by vetoing all
proposals. Therefore, he has a profitable deviation, which is impossible in equilibrium.
This contradiction completes the proof. Q.E.D.

LEMMA A2: Consider a one-step mapping φ, which is independent of protocols, and sup-
pose that the current period is t and the current allocation is x = xt−1. Suppose that some
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player i has [φ(y)]i > [φ(z)]i for some y� z ∈ A. Then player i prefers transition to y to tran-
sition to z; in other words (expectations are with respect to realization of protocols),

yi +Eξt
i +

∞∑
τ=1

βτ
([
φ(y)

]
i
+Eξt+τ

i

)
> zi +Eξ̃t

i +
∞∑
τ=1

βτ
([
φ(z)

]
i
+Eξ̃t+τ

i

)
� (A1)

where ξ and ξ̃ reflect the transfers on path that follow acceptance of y and z, respectively.
Furthermore, the same is true if [φ(y)]i = [φ(z)]i, but yi > zi.

PROOF: Suppose [φ(y)]i > [φ(z)]i, but the inequality (A1) does not hold. Since
ξt+τ
i � ξ̃t+τ

i ∈ [0� (b+ 1)ε] for any τ ≥ 0, this must imply

yi +
∞∑
τ=1

βτ
[
φ(y)

]
i
≤ zi +

∞∑
τ=1

βτ
[
φ(z)

]
i
+ (b+ 1)ε

1 −β
� (A2)

Since [φ(y)]i > [φ(z)]i implies [φ(y)]i − [φ(z)]i ≥ 1, this implies

yi + β

1 −β
≤ zi + (b+ 1)ε

1 −β
�

Given that zi − yi ≤ b, this implies β−(b+1)ε
1−β

≤ b, which, since we assumed (b+ 1)ε < 1 −β,
implies β

1−β
≤ b + 1, which is equivalent to β ≤ 1 − 1

b+2 , a contradiction. This proves the
first part of the lemma.

Now suppose that [φ(y)]i = [φ(z)]i, but yi > zi. As before, assume not, in which case
(A2) would hold. Now, given that yi − zi ≥ 1, (A2) would imply 1 ≤ (b+1)ε

1−β
, which contra-

dicts our assumption that (b+1)ε < 1−β. This contradiction completes the proof. Q.E.D.

LEMMA A3: Suppose that in protocol-free MPE σ , x ∈ A is such that x �= φσ(x) =φ2
σ(x).

Then φσ(x)� x.

PROOF: Denote y = φσ(x). Let us first prove that {i ∈ N : yi ≥ xi} ∈ W . Suppose, to
obtain a contradiction, that this is not the case. Take some veto player l and consider
protocol π where only player l proposes and does so only once (so π = (l)). Under this
protocol, alternative y must be proposed and subsequently supported at the voting stage
by a winning coalition of players. Now consider any agent i such that yi < xi, which implies
xi − yi ≥ 1. If yi is accepted, agent i gets continuation utility (assuming the current period
is t) that satisfies

Ut
i ≤ yi + (b+ 1)ε+β

(
yi + (b+ 1)ε

) + · · · = yi + (b+ 1)ε
1 −β

�

If, however, yi is rejected, then the continuation utility satisfies

Ũ t
i ≥ xi +βyi +β2yi + · · · = xi + β

1 −β
yi�
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Since bε < 1 −β, we have

Ut
i − Ũ t

i ≤ yi + (b+ 1)ε
1 −β

−
(
xi + β

1 −β
yi

)

= yi − xi + (b+ 1)ε
1 −β

≤ (b+ 1)ε
1 −β

− 1 < 0�

Therefore, such player i prefers the alternative y to fail at the voting stage. This implies
that Ut

i − Ũ t
i ≥ 0 is possible only if yi ≥ xi, and, by assertion, the set of such players does

not form a winning coalition, which means that y cannot be accepted at this voting stage.
This contradicts that σ is equilibrium, which proves that {i ∈N : yi ≥ xi} ∈W .

It remains to prove that for some i ∈ V , yi > xi and ‖φσ(x)‖ ≤ ‖x‖. Both results im-
mediately follow from the fact that transition to φσ(x) is feasible and is not blocked by
any veto player because of transition cost. Now, by definition of the binary relation �, we
have φσ(x)� x, which completes the proof. Q.E.D.

LEMMA A4: Every protocol-free equilibrium is simple, that is, for every x ∈ A, φj
σ(x) =

φσ(x) for all j ≥ 1.

PROOF: Suppose that there is a protocol-free equilibrium σ that is not simple, which
means that there is x ∈ A such that φ2

σ(x) �= φσ(x). By Lemma A1, σ is acyclic and,
therefore, the path starting from x, φσ(x)�φ

2
σ(x)� � � � , stabilizes after no more than |A|

iterations, and thus its limit φ∞
σ (x) = φ|A|

σ (x) is well defined. Denote the set of all such
x ∈ A by Y , so

Y = {
x ∈ A :φ2

σ(x) �=φσ(x)
} �= ∅�

Take allocation y ∈ Y such that φ∞
σ (y) = φ2

σ(y) (notice that such y exists: indeed, if we
take any x ∈ Y and the minimal number such that φ∞

σ (x) = φj
σ(x) is j > 2, then we can

take y = φj−2
σ (x)). Notice that we must have

∑
i∈V [φ2

σ(y)]i >
∑

i∈V [φσ(y)]i, for otherwise
the transition from φσ(y) to φ2

σ(y) would be blocked by some veto player due to the cost
of transition.

Consider veto player l for whom [φ2
σ(y)]l > [φσ(y)]l. Suppose that in period t where

the status quo is y , protocol π = (l) is realized. Since σ is protocol-free, this must imply
that player l proposes alternative allocation φσ(y) and some feasible transfers ξ, and
this proposal is subsequently accepted. Now suppose that protocol π ′ = (l� l) is realized
and suppose that the game reached the second stage of the protocol. This subgame is
isomorphic to one where protocol π has just been realized; consequently, in equilibrium,
it must be that φσ(y) is proposed, accompanied with transfer ξ, and is accepted.

Let us prove that if in the second stage, the society decides to move to φσ(y), then
in the first stage player l would be better off proposing φ2

σ(y) and some feasible vector
of transfers ξ̃, which would be accepted. Notice that in the following period, a transition
from φσ(y) to φ2

σ(y) would take place, which means that each player would receive a
certain expected vector of transfers ξ. On the other hand, if transition to φ2

σ(y) takes
place in the current period, then the next period would have no transition, and in expec-
tation, each veto player would get a transfer ε

v
(since each of them is equally likely to be

the last player, who would be able to get the entire budget ε with probability 1). Notice
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that

‖ξ‖ + ‖ξ̃‖ ≤
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Take some small value α > 0 and define vector χ by χi = ξi + ξ̃i − ε
v
I{i ∈ V } + αi, where

αi = −α for i �= l and αl = (n− 1)l. Then ‖χ‖ ≤ (
∑

i∈V [φ2
σ(y)]i −

∑
i∈V yi + 1)ε and χi ≥ 0

for all i (for i = l this is true because ξl > 0), so χ is a feasible vector if a transition
to φ2

σ(y) is proposed. If player l proposes such a transition to φ2
σ(y) and offers feasible

vector χ, then all players i ∈ N who have [φ2
σ(y)]i ≥ [φσ(y)]i must prefer such a transi-

tion to φ2
σ(y) to happen rather than not. But since the transition from φσ(y) to φ2

σ(y)
would happen in a period starting with φσ(y), Lemma A3 implies φ2

σ(y) � φσ(y), but
this implies that the set of players who are better off if φ2

σ(y) is accepted at the first stage
is a winning coalition. This means that φ2

σ(y) would be accepted if proposed, which im-
plies that player l has a profitable deviation. This is a contradiction that completes the
proof. Q.E.D.

LEMMA A5: If σ is a simple protocol-free MPE, then for all x ∈ A either φσ(x) = x or
φσ(x)� x.

PROOF: By Lemma A1, σ is acyclic, and by Lemma A4, it is simple. Then for any x ∈ A,
we must have φ2

σ(x) = φσ(x). Now if φσ(x) = x, the result is automatically true, and if
φσ(x) �= x, then it follows immediately from Lemma A3. Q.E.D.

LEMMA A6: Suppose that protocol-free MPE σ is played, and suppose that in period t,
xt−1 = x. Then if there exists y ∈ A such that φσ(y) = y and y � x, then x cannot be stable:
φσ(x) �= x.

PROOF: Suppose, to obtain a contradiction, that φσ(x) = x. Let l be a veto player
such that yl > xl (such l exists as y � x). Consider protocol π = (l) (or any protocol
ending with l). If a proposal made in this period is rejected, then each player i gets Ũ t

i =
xi

1−β
+ β

1−β
ε
v
I{i ∈ V }.

Suppose player l makes proposal (y�ξ), where ξi = (‖y‖−‖x‖+1)ε−δ

n
. Since ‖y‖ − ‖x‖ ≥ 1

and δ < ε, we have ξi ≥ 0 for all i ∈ N , so ξ is a feasible transfer. This means that each
player i for which yi ≥ xi would get yi

1−β
+ ξi + β

1−β
ε
v
I{i ∈ V } if the proposal is accepted,

which exceeds Ũ t
i that he would get if the proposal is rejected. Since y � x, such players

form a winning coalition, which implies that the proposal (y�ξ) would be accepted if
made. Then player l has a profitable deviation, which is impossible. This contradiction
completes the proof. Q.E.D.

PROOF OF PROPOSITION 2: Part 1. Take any simple protocol-free MPE σ and let Sσ =
{x ∈ A : φσ(x) = x}. By Lemma A1, it is nonempty. Let us prove that it satisfies internal
stability. Suppose that for some x� y ∈ Sσ , we have y � x. Then by Lemma A6, φσ(y) =



POLITICAL ECONOMY OF REDISTRIBUTION 5

y implies φσ(x) �= x, which contradicts that x ∈ Sσ . This contradiction proves that Sσ

satisfies internal stability.
Let us now show that Sσ satisfies external stability. Take x /∈ Sσ . Then by Lemma A5,

φσ(x) � x. Since σ is simple, φσ(x) ∈ Sσ , which shows that there exists y ∈ Sσ such that
y � x. This proves that Sσ satisfies external stability. This proves that Sσ is von Neumann–
Morgenstern-stable set. Q.E.D.

LEMMA A7: If σ is a protocol-free MPE, then ‖φσ(x)‖ = ‖x‖ for all x ∈ A.

PROOF: Suppose not. Then there exists x ∈ A for which ‖φσ(x)‖ < ‖x‖. Since σ is sim-
ple by Lemma A4, we have φσ(x) ∈ S. Take some veto player l and consider the protocol
π = (l); at this stage, player l must propose φσ(x) and it must be accepted. Notice, how-
ever, that player l may propose allocation y that has yl = [φσ(x)]l + 1 and yi = [φσ(x)]i
for all i �= l, and split the extra ε of available transfers equally among players. By Propo-
sition 3, such allocation y is stable as well. Consequently, all players would be strictly
better off from proposal y (with the corresponding transfers) than the equilibrium pro-
posal φσ(x). Thus, if a winning coalition was weakly better off from supporting φσ(x), it
is strictly better off supporting y . Thus, player l has a profitable deviation at the proposing
stage, which is a contradiction that completes the proof. Q.E.D.

PROOF OF PROPOSITION 1: Part (i). Consider the unique von Neumann–Morgenstern-
stable set for dominance relation �, S (its existence and uniqueness follow from Propo-
sition 3 proven in the main text). Take any mapping φ such that φ(x) = x for any x ∈ S
and for any x /∈ S, φ(x) ∈ S and φ(x) � x (the existence of such a mapping follows from
external stability of mapping S implying that for any S, we can pick such φ(x) ∈ S) and,
moreover, ‖φ(x)‖ = ‖x‖ (the existence of such φ follows from Proposition 3 as well,
as otherwise one can add ‖x‖ − ‖φ(x)‖ units to some veto player and get an allocation
in S with the required property). Let us prove the following (stronger) result: there is a
protocol-free MPE σ such that φσ =φ (notice that σ will in this case be simple, because
φ2 = φ.)

We construct equilibrium σ using the following steps. For each possible status quo
x ∈ A and each protocol π ∈ Π, we define transfers that each player is supposed to get in
that period. We use allocations and these transfer utilities to define continuation utilities.
After that, we use these continuation utilities to define strategies players would use for
each x ∈ A and each π ∈ Π. We then check that under these strategies, players indeed get
the transfers that we defined, and no player has a one-shot deviation. This would prove
that σ is MPE, which would be protocol-free by construction.

If x /∈ S, then let Vx = {i ∈ V : [φ(x)]i = xi} and let vx = |Vx|. Furthermore, let Z =∑
i∈V [φ(x)]i −∑

i∈V xi > 0. Let l = π|π| be the last proposer, and define transfers ξi(x�π)
as

ξi(x�π) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 if i /∈ Vx ∪ {l}�
β

Zε

(1 −β)v +βvx
if i ∈ Vx \ {l}�

(Z + 1)ε−
∑
j �=l

ξi(x�π) if i = l�

(A3)

If, however, x ∈ S, then the transfer is defined as ξl(x�π) = ε for l = π|π| and ξi(x�π) = 0
otherwise. Given these transfers, the continuation utilities (at the beginning of the period,
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before protocol is realized) are given by

Vi(x) = [
φ(x)

]
i
+

∑
π∈Π

ξi(x�π)+ β

1 −β

([
φ(x)

]
i
+ ε

v
I{i ∈ V }

)
� (A4)

Let us now define strategies as follows. Suppose that in period t, the current status quo
is x= xt−1 and protocol π was realized. To define strategies, consider the game with timing
from Section 2, but define payoffs in case transition to some y ∈ A and set of transfers ξ
is decided upon given by

Ui(y�ξ)= yi + ξi +βVi(y)

(in other words, consider the game truncated at the end of the period, that is, a finite
game, but with payoffs coinciding with continuation payoffs of the original game).

Define strategies by proceeding by backward induction, with a few exceptions. In the
last stage, the proposer π|π| proposes to transfer to φ(x) (or to stay, if φ(x) = x), and
offers transfers ξi(x�π). We require that all players who are at least indifferent vote for
this proposal to pass. If any other proposal is made, as well as in all previous stages, we
require that players play any strategies consistent with backward induction, except that
we require that players vote no when indifferent.

Let us show that the players have no incentive to deviate for any strategy that we de-
fined. The one-shot deviation principle applies, so we need to verify that no player has
a profitable deviation at any stage. Now consider the two cases φ(x) = x and φ(x) �= x
separately.

First, consider the case φ(x) �= x. Let us check that at the last stage, it is a best re-
sponse for any player i with [φ(x)]i ≥ xi to accept, which would imply that this proposal
is indeed accepted. Indeed, both accepting and rejecting results in getting the same allo-
cation [φ(x)]i in two periods; thus, if for some player i, [φ(x)]i > xi, then by Lemma A2
he is strictly better off if φ(x) is accepted. Consider a player i with [φ(x)]i = xi. If i /∈ V ,
then he gets transfer ξi(x�π) = 0 if φ(x) is accepted, but he gets the same in the follow-
ing period if the proposal is rejected, which implies that he is indifferent, so supporting
φ(x) is a best response. If i ∈ Vx \ {l}, then he gets the transfer ξi(x�π) if the alternative
is accepted, and it makes him exactly indifferent between accepting and rejecting. Finally,
if i /∈ Vx or i = l, the player is strictly willing to accept. Thus, for all veto players, it is a best
response to support the alternative. Since φ(x) � x, the set of players with [φ(x)]i ≥ xi

is a winning coalition. Finally, ‖φ(x)‖ = ‖x‖, so the transition is feasible. Consequently,
there are best responses that result in φ(x) being accepted.

Taking one step back, let us verify that it is a best response for player l = π|π| to propose
φ(x). First, since he prefers φ(x) to be accepted rather than rejected, he would only
propose an alternative y if this alternative would be accepted at the voting stage. Suppose
there is such an alternative; it suffices to prove that proposing it does not make the player l
better off. By Lemma A2, if [φ(y)]i < [φ(x)]i for some player i, then this player would be
better off if y is rejected. Consequently, for y to be accepted in equilibrium, it is necessary
that [φ(y)]i ≥ [φ(x)]i for a winning coalition of players, in particular, for all veto players
i ∈ V .

Let us prove that [φ(y)]i = [φ(x)]i for all i ∈ V . To do so, suppose it is not the case,
meaning that for some j ∈ V , the strict inequality [φ(y)]j > [φ(x)]j holds. In addi-
tion, notice that ‖y‖ ≤ ‖x‖ since transition to y is feasible, but ‖φ(y)‖ ≤ ‖y‖ (because
transition to φ(y) would be feasible) and ‖x‖ = ‖φ(x)‖ (by assumption that transi-
tion to φ(x) does not result in waste). This implies ‖φ(y)‖ ≤ ‖φ(x)‖, which, together
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with {i ∈ N : [φ(y)]i ≥ [φ(x)]i} ∈ W and [φ(y)]j > [φ(x)]j , implies φ(y) � φ(x). Since
φ(x)�φ(y) ∈ S, this contradicts internal stability of S, which proves that [φ(y)]i = [φ(x)]i
for all i ∈ V .

Notice that for the proposer, player l = π|π|, to prefer transition to y to transition to
φ(x), it must be that yl = [φ(y)]l = [φ(x)]l, for otherwise we would get a contradiction
with Lemma A2. Consider two possibilities. If φ(y)= y , then for player l to be better off,
he needs to get a larger transfer χl > ξl(x�π). However, since all other veto players in Vx

were indifferent between accepting their transfer ξi(x�π) and rejecting, they need to get
at least this transfer as well; since other players need to get χi ≥ 0 as well, such deviation
cannot be profitable. If, however, φ(y) �= y , then φ(y) will be reached in the following
period. Notice that for each i ∈ V it must be that yi ≥ xi, for otherwise this player would
block the transition. This means, in particular, that for players in Vx, xi = yi = φ(xi) =
φ(yi) holds, and they therefore need discounted transfer χt

i + βEχt+1
i ≥ ξi(x�π) + βε

v

so as to be willing to accept. However, since the transfers available over the two periods
are capped at (Z + 1)ε− δ, player l cannot be better off from such deviation. Therefore,
proposing φ(x) at the last stage is a best response.

We now prove that for any proposal z made at the previous stage by player π|π|−1, the
set of players who strictly prefer transition to z do not form a winning coalition. Indeed,
suppose that it is; then by Lemma A2 it must be that for all i ∈ V , [φ(z)]i = zi = yi,
for otherwise we would have φ(z) � y , which would contradict internal stability of S.
This implies that z = φ(z), for otherwise transition from z to φ(z) would be impossible;
furthermore, the set of transfers χ proposed at this stage must coincide with ξi(x�π). If
so, if some player i /∈ V strictly prefers transition to z, this implies that zi > yi for such
a player. However, this would contradict the characterization results from Proposition 3.
This shows that it is a best response for at least n− k+ 1 players to vote against proposal
z, which implies that there is an equilibrium in this subgame where it is not accepted.
Proceeding by backward induction, we can conclude that there is an equilibrium in this
finite game where no proposal is accepted until the last stage, where y is accepted.

Now consider the game with x ∈ S. We allow any strategies, but require that players
vote against the proposal when indifferent. Now, again by backward induction, we can
conclude that if a winning coalition strictly prefers to accept some proposal z, then either
φ(z) � x, which contradicts internal stability of S, or [φ(z)]i = zi = xi for all i ∈ V , in
which case the veto player π|π| that is the last to propose is actually worse off because
of transition cost. Thus, there is an equilibrium in the finite game where no proposal is
accepted, so x remains stable.

Last, it is straightforward to check that if these strategies are played, then in every
period, transfers are given by ξ(x�π) as defined above, and thus the continuation utilities
at the beginning of period with x as the status quo are given by V (x). This means that if
these strategies are played in the original game Γ , no player has a one-shot deviation.
Since by construction the strategies are Markovian and transitions do not depend on the
realization of the protocol, then σ is a protocol-free MPE. Moreover, it is simple and
efficient by construction, which completes the proof of existence of such equilibrium.

Part (ii). Follows from Lemma A1.
Part (iii). Follows from Lemma A4.
Part (iv). Follows from Lemma A7. Q.E.D.

PROOF OF PROPOSITION 4: Part (i). Lemma A5 implies that φ(y) � y; in particu-
lar, for each j ∈ V , [φ(y)]j ≥ yj and for at least one of them the inequality is strict.
Suppose, to obtain a contradiction, that |{j ∈ M \ {i} : [φ(y)]j < yj}| < d − 1. Then
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|{j ∈ M : [φ(y)]j < xj}| < d. But we also have that for each j ∈ V , [φ(y)]j ≥ xj , with at
least inequality strict. This means φ(y) � x, which is impossible, given that x�φ(y) ∈ S.
Now suppose, to obtain a contradiction, that |{j ∈ M \{i} : [φ(y)]j < yj}|> d−1. But then
for at least d agents [φ(y)]j < yj , which contradicts φ(y) � y . This contradiction proves
that |{j ∈ M \ {i} : [φ(y)]j < yj}| = d − 1. It remains to prove that yi ≤ [φ(y)]i < xi. Sup-
pose not, that is, either [φ(y)]i < yi or [φ(y)]i ≥ xi. In the first case, we would have that at
least d agents have [φ(y)]j < yj , contradicting φ(y)� y . In the second case, [φ(y)]i ≥ xi,
coupled with the already established |{j ∈ M \ {i} : [φ(y)]j < yj}| = d − 1, would mean
|{j ∈ M : [φ(y)]j < xj}| = d − 1, and therefore φ(y)� x. This is impossible, and this con-
tradiction completes the proof.

Part (ii). This proof is similar to the proof of internal stability in the proof of Proposi-
tion 3. Denote φ(y) = z. Then z � y and x�z ∈ S. We know that x and z have the group
structure by Proposition 3. Then let the r groups be G1� � � � �Gr for x and H1� � � � �Hr

for z, respectively. Without loss of generality, we can assume that each set of groups is
ordered so that xGj

and zHj
are nonincreasing in j for 1 ≤ j ≤ r. Suppose, to obtain a

contradiction, that for some agent i′ ∈ M with xi′ ≤ yi < xi, zi′ < yi′ . In that case, among
the set {j ∈ M : xj ≥ xi} there are at most d − 1 agents with zj < yj ; similarly, among the
set {j ∈M : xj < xi} there are at most d − 1 agents with zj < yj .

We can now proceed by induction, similarly to the proof of Proposition 3, and show that
xGj

≤ zHj
for all j. Base: suppose not. Then xG1 > zH1 , and then xG1 > zs for all s ∈ M .

But this means that for all agents l ∈ G1, we have xl > zl; since their total number is d,
we get a contradiction. Step: suppose xGl

≤ zHl
for 1 ≤ l < j, and suppose, to obtain a

contradiction, that xGj
> zHj

. Given the ordering of groups, this means that for any l, s
such that 1 ≤ l ≤ j and j ≤ s ≤ r, xGl

> zHs . Consequently, for an agent i′′ ∈ ⋃j

l=1 Gl to
have zi′′ ≥ xi′′ , he must belong to

⋃j−1
s=1 Hs. This implies that for at least jd − (j − 1)d = d

agents in
⋃j

l=1 Gl ⊂ M , zi′′ ≥ xi′′ does not hold (denote this set by D). If that is true, it
must be that

⋃j

l=1 Gl includes all the agents in D, including agents i and i′ found earlier,
and, in particular, xGj

≤ yi < xi. But on the other hand, these d agents are not in
⋃j−1

s=1 Hs.
In particular, this implies that for any i′′ ∈ D, zi′′ < xGj

, but xi′ ≥ xGj
, which means zi < xi′ .

But zi ≥ yi by part (i) of this proposition, so yi < xi′ . But this contradicts the way we chose
i′ to satisfy xi′ ≤ yi < xi. This proves that such i′ cannot exist, and thus the d − 1 agents
other than i who are made worse off satisfy xj ≥ xi. Q.E.D.

PROOF OF PROPOSITION 5: This result immediately follows from the formulas m =
n− v, d = n− k+ 1, and r = �m/d
, and from Proposition 3. Q.E.D.

PROOF OF PROPOSITION 6: Part (i). If k < n, then d > 1. An allocation x is stable only
if |{j ∈ M : xj > 0}| is divisible by d. If x is stable and some agent i with xi > 0 is made a
veto agent, then the set |{j ∈ M ′ : xj > 0}| = |{j ∈ M : xj > 0}| − 1 and is not divisible by
d; thus x becomes unstable. At the same time, if xi = 0, then the group structure for all
groups with a positive amount is preserved; thus x remains a stable allocation.

Part (ii). In this case, the size of each group in x is d > 2, and every positive amount is
possessed by either no players or d non-veto players. If k increases by 1, d decreases by 2.
Then allocation x becomes unstable, except for the case x|M = 0. Q.E.D.
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A2. EXAMPLES

In the examples below, we do not explicitly consider costs of transition and transfers
explicitly, as they would complicate the exposition. Unless specified otherwise, each of
the examples below may be modified to accommodate such factors.

EXAMPLE A1—If Costs of Transition Are Assumed To Be 0: Suppose n = 3, v = 1,
and k = 2, so there are three players, one of them a veto player, and the rule is simple
majority rule. Assume for simplicity that there is only 1 unit that initially belongs to a non-
veto player (say, player #1), so the initial allocation is (1�0;0). Then there would be an
equilibrium where the veto player (proposing last) would propose to move the unit from
player #1 to player #2 if it belongs to player #1, and then propose to move it the other
way around if it belongs to player #2. Such a proposal would then be supported by the
veto player and the other player who receives the unit.

To complete the description of strategies, we can also assume that any proposal made
at a protocol stage before the last one, except for the proposal to transfer the good to
the veto player, would be vetoed by the veto player (he is indifferent anyway). On the
other hand, if a proposal to transfer the unit to the veto player is ever made, the two non-
veto players vote against this proposal. They both have incentives to do so, because the
equilibrium play gives them the unit in possession every other period, which is better than
having the unit taken away.

Thus, without transaction costs, it is possible to have cyclic equilibria, which do not
seem particularly natural.

EXAMPLE A2—Example Where Non-Veto Player Proposes Last: Suppose n = 11, v =
1, and k = 9, so there are 11 players, one of them a veto player, and the rule requires
agreement of 9 players. The size of a minimal blocking coalition is then three. In this case,
in any protocol-free MPE (where the last proposal is done by the veto player), allocation
(3�3�3�2�2�2�1�1�1�10;0) is unstable, and, in any equilibrium, it results in a transfer to
an allocation where all players except for player #10 (the one possessing 10 units in the
beginning of the game) are better off. To simplify the following argument, let us focus
on the equilibrium where an immediate transition to (3�3�3�2�2�2�1�1�1�0;10) takes
place.

Consider, however, what would happen if a protocol has a non-veto player propose
last. Specifically, suppose the protocol has two players: first the veto player (player #11)
proposes and then the non-veto player #6 proposes. Consider the last stage and suppose
that player #6, instead of proposing to move to (3�3�3�2�2�2�1�1�1�0;10) or to stay
in the current allocation (3�3�3�2�2�2�1�1�1�10;0), proposes to transfer to allocation
(3�3�1�2�2�3�1�1�2�4;6); in other words, in addition to moving some units to the veto
player, he also proposes to take 2 units from player #3, and takes 1 unit himself and
gives the other one to player #9 in order to “buy” his vote. This proposal leads to a
stable allocation, and it makes only two players (player #3 and player #10) worse off. It
therefore would be accepted; the veto player would agree, because it gives him 6 of the
units right away, and he would be able to get the other 4 the following period. (Notice
that player #4 might prefer not to get more units for himself in the short run, out of fear
that having 4 or more units in the next period would make him a candidate for complete
expropriation.)

Taking one step back and consider the stage where the veto player makes the pro-
posal. He would use the opportunity to get the 10 units belonging to him immediately
(which hurts player #10). However, he would not be able to make the society move to
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(3�3�3�2�2�2�1�1�1�0;10), which they are supposed to do in equilibrium, because do-
ing so would make players #6 and #9, in addition to #10, worse off, and thus such a
proposal would not gather the 9 votes needed to pass. This means that by allowing non-
veto players to propose, in some examples we would lose the existence of protocol-free
MPE.

This example relies on the fact that non-veto players are not indifferent between dif-
ferent stable allocations, and would want to make the society reallocate the units in their
favor. As the results in this paper show, these moves cannot happen in protocol-free equi-
libria studied in the paper. Consequently, we do not view such a possibility to be natural
or robust, and we impose the assumption that non-veto players cannot be the last ones in
a protocol to avoid such issues and obtain the existence of protocol-free equilibria.

EXAMPLE A3—Example With Fixed Protocol: Suppose n = 3, v = 1, and k = 2, so
there are three players, one of them a veto player, and the rule is simple majority.
Consider the allocation (1�1;0), where the veto player possesses nothing initially. In a
protocol-free equilibrium, this allocation would be stable.

Consider a game where the protocol is fixed at π = (1�3) in each period (we can allow
the second player to propose in between the other two and get the same result). We claim
that the following transitions are possible in an equilibrium. Player #1 is recognized first,
and he proposes to move to (1�0;1), which is supported by him and the veto player, and
in the following period the veto player gets all the surplus, as usual. If the proposal by
player #1 is rejected, however, then player #3 is recognized and proposes to move to
(0�1;1), and this proposal is supported by himself and player #2. Thus, in equilibrium,
the society moves from (1�1;0) to (1�0;1), and then to (0�0;2).

The reason why this example works is the following. Player #1 knows that if he does
not promise the veto player a transfer of 1 unit, then he would lose his possession imme-
diately (later the same period), whereas delivering the unit to the veto player allows him
to postpone for another period. The veto player knows that he cannot take both units at
once (as players #1 and #2 would like to stick to them for another period); however, if he
allows player #2 to keep his unit, the latter would not mind participating in expropriation
of player #1, because in either case he keeps his unit for the current period and loses it in
the following one, along the equilibrium path. Furthermore, if these strategies are played,
preserving the status quo (1�1;0) is not an option. Thus, there is an equilibrium where
non-veto players participate in expropriation of each other.

Notice that this transition (from (1�1;0) to (1�0;1)) cannot arise in a protocol-free
equilibrium for the following reason. Suppose the protocol only involves the veto player.
In such an equilibrium, he needs to propose to transit to (1�0;1). But player #2 will
oppose it for obvious reasons, and player #1 would know that if he agrees, then he keeps
his unit for one extra period (the current one), but if he rejects, then in protocol-free MPE
he faces the same transition to (1�0;1) the following period, and thus he would be able
to keep the unit for two extra periods, which he obviously prefers. Consequently, such
transition would be impossible in this protocol, which contributes to the idea that such
transitions are not particularly robust.

EXAMPLE A4—Example of Equilibrium That Is Not Markov Perfect: Suppose n = 3,
v = 1, and k = 2, so there are three players, one of them a veto player, and the rule is
simple majority. Consider the allocation (1�1;0), where the veto player possesses nothing
initially.

Suppose that the veto player is always the proposer, so the protocol is π = (3). Then
the following transitions may be supported in equilibrium. As long as the allocation is
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(1�1;0), the veto player proposes to move to (1�0;1) if the period is odd and to move to
(0�1;1) if the period is even, and the proposal is supported by him and by the non-veto
player who keeps the unit (player #1 in odd periods and player #2 in even periods). Once
this transition has taken place, in the following period, the veto player gets everything,
thus moving to (0�0;2).

The rationale for non-veto players to support such proposals is that they get to keep
their unit for exactly one extra period, regardless of the outcome of the voting. Thus, they
are indifferent in such situations, in which case the veto player is able to allocate a small
transfer to break this indifference. As a result, there is a SPE where the society moves to
(1�0;1) and then to (0�0;2); it is supported by the threat of a move to (0�1;1) (and then
again to (0�0;2)) if this proposal is rejected.

Two comments are warranted. First, this SPE does not require knowledge of all his-
tory, in particular, players’ proposals and votes. It only requires that the veto player acts
differently in odd and even periods. In particular, this is a dynamic equilibrium (DE) in
the sense of Anesi and Seidmann (2015), as if the players are allowed to condition their
moves on the past history of alternatives, they of course can make use of the length of this
history. Second, such transitions are impossible in a protocol-free equilibrium. Indeed,
the proposal to move to (1�0;1) made by the veto player would not be accepted if player
1 knew that the veto player would make this very proposal again in the following period,
rather than proposing (0�1;1).

EXAMPLE A5—Example With Random Recognition of Players but Without Protocol-
Free Requirement: Suppose n= 5, v = 2, and k = 3, so there are five players, two of them
veto players, and the rule is simple majority. Consider the allocation (1�1�1;0�0), where
the veto players possess nothing initially. In a protocol-free equilibrium, this allocation
would be stable.

Consider a game, where in each period, one player is recognized as the proposer. Fur-
thermore, assume for simplicity that only veto players may be recognized, and each of
them is recognized with probability 0�5. Then the following strategies would form a MPE.
Suppose that player #4, if he is the agenda-setter, proposes to move to (2�0�0;1�0), and
this proposal is supported by the two veto players and player #1. Similarly, if player #5
gets a chance to propose, he proposes to move to (0�2�0;0�1), which is supported by the
two veto players and player #2. If either of the proposals is accepted, then in the following
period the society moves to (0�0�0;2�1), where the veto players possess everything.

To understand why player #1 supports the transition to (2�0�0;1�0), notice that in this
case, he gets payoff 2 in the current period and 0 thereafter. If he rejects, then he keeps
1 in the current period, but in the next period he faces a lottery between 2 and 0, and
gets 0 thereafter. His expected continuation payoff is therefore 1 + β 2+0

2 = 1 + β < 2.
Consequently, he prefers to agree on the transition to (2�0�0;1�0). For the same reason,
player #2 would support the transition to (0�2�0;0�1). Notice that neither of the veto
players can do better by choosing some other proposal, and therefore these transitions
are possible in equilibrium.

Notice that if we impose the requirement that equilibria be protocol-free, which in this
case would mean that the transition is the same regardless of the player who gets to make
the proposal, such an equilibrium will be ruled out. Thus, the requirement that equilibria
do not depend on the protocol is important for our results, but also these equilibria may
be considered more robust than the one in this example.
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A3. RELATION TO LARGEST CONSISTENT SET

We have proven (Proposition 2) that the set of stable allocations coincides with the
vNM-stable set, which is in our case unique. However, as emphasized, for example, in
Ray and Vohra (2015), the vNM has the drawback in that it focuses on “static” deviations,
that is, those in which a deviating coalition does not foresee the future path of the game.
On theoretical grounds, this is a serious objection. One notion to deal with this problem
was the largest consistent set, as defined in Chwe (1994). In what follows, we prove that
in our setting, the largest consistent set would coincide with a vNM-stable set and thus
with the set of stable allocations, that is, the objection concerning farsighted deviation
does not apply to our game. In our view, the intuitive reason for this is that in our game,
any coalition that can make some deviation (i.e., a winning coalition) can also make any
deviation. Coupled with farsightedness (discount factor being high enough), this means
that a coalition that would be better off initiating a long path of changing allocations
would also be better off transiting immediately to the final allocation in this sequence,
and it is also capable of doing so. Thus, allowing for farsighted deviations does not add
profitable deviations at states that did not have such deviations. Below we state this result
formally.

For any coalition X ∈ 2N\{∅}, define binary relation →X on A: for all x� y ∈ A, x →X y
if and only if ‖y‖ ≤ ‖x‖ and either x = y or X ∈ W . In other words, a winning coalition
can enforce transition from any x to any y , as long as y contains fewer units, whereas
a nonwinning coalition can only preserve the same allocation x. Also, for any coalition
X ∈ 2N\{∅}, define binary relation ≺X on A: for all x� y ∈ A, x ≺X y if and only if X ⊂ {i ∈
N : yi ≥ xi} and there is j ∈X ∩ V such that yj > xj .

We say that x is directly dominated by y , and write x < y if there is coalition X such that
x →X y and x ≺X y . We say that state x is indirectly dominated by y , and write x � y if
there exist x0�x1� � � � � xm ∈ A such that x0 = x and xm = y , and X0�X1� � � � �Xm−1 ∈ 2N\{∅}
such that xj →Sj xj+1 and xj ≺Sj y for j = 0�1� � � � �m − 1. We call a set Q ⊂ A consistent
if x ∈ Q if and only if for any y ∈ A and any coalition X ∈ 2N\{∅} such that x →X y there
exists z ∈ Q such that x ⊀X z and either y = z or y � z. From Chwe (1994), it follows
that there is a single largest consistent set, that is, a consistent set P such that for any
consistent set Q, Q ⊂ P . We now prove that P = S, that is, the set of stable allocations is
the largest consistent set.

PROPOSITION A1: The set of stable allocations described in Proposition 3 is a unique
largest consistent set.

PROOF: First, we need two preliminary observations. First, it is obvious that for any
x� y ∈ A, x < y implies x � y . In our setup, however, the opposite is also true, so x < y
if and only if x � y . To see this, suppose that x � y . Take a sequence of states and a
sequence of coalitions that establish indirect dominance x� y . We first notice that ‖x‖ =
‖x0‖ ≥ ‖x1‖ ≥ · · · ≥ ‖xm‖ = ‖y‖, so ‖x‖ ≥ ‖y‖. Furthermore, x0 ≺X0 y implies x �= y , for
otherwise j ∈ X0 ∩V such that yj > xj would be impossible. Let l ≥ 0 be the lowest number
such that xl+1 �= x; it is well defined and satisfies l < m. This means that x →Xl

xl+1,
and since xl+1 �= x, it must be that Xl ∈ W . This also means xl ≺Xl

y , and thus x ≺Xl
y;

however, since Xl ∈ W and ‖x‖ ≥ ‖y‖, we have x →Xl
y . Now x →Xl

y and x ≺Xl
y by

definition imply x < y , which proves the equivalence.
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Second, we prove that x < y if and only if y � x. Indeed, suppose x < y . Then for some
coalition X , x→X y and x ≺X y; the latter implies x �= y , in which case the former implies
X ∈W . Furthermore, x →X y implies ‖y‖ ≤ ‖x‖. We also have X ⊂ {i ∈ N : yi ≥ xi}, and
since X ∈ W , {i ∈ N : yi ≥ xi} ∈ W as well, in which case V ⊂ X , and then X ∩ V is
nonempty, so there is j ∈ V such that yj > xj . This all implies that y � x. Conversely,
suppose y � x. Let X = {i ∈ N : yi ≥ xi}. Then X ∈ W , and since yj > xj for some j ∈ V
and V ⊂ X , then this is true for some j ∈X∩V . This implies that x ≺X y . Now ‖y‖ ≤ ‖X‖
and X ∈W implies x →X y; this means that x < y .

Let us now show that S is consistent.
To show that set S is consistent, take any x ∈ S, and then take any y ∈ A and any X ∈

2N\{∅} such that x →X y . We need to prove that there exists z ∈ S such that x⊀X z and
either y = z or y � z. If y ∈ S, then we can take z = y to satisfy this property, because
x ⊀X z. Indeed, this holds trivially if x = z, and otherwise follows by contradiction: if
x →X y and x ≺X y , then x < y , which implies y � x, but for two allocations x� y ∈ S
this would contradict internal stability by Proposition 3. Thus, consider the case y /∈ S.
Since x ∈ S, we have x �= y and thus X ∈ W . Take any equilibrium σ and any transition
mapping φ = φσ , and let z = φ(y) ∈ S. Notice that it is impossible that this z satisfies
z = y , since y /∈ S. Furthermore, we must have x ⊀X z, for otherwise we would again
contradict Lemma A6 (because ‖z‖ ≤ ‖y‖ ≤ ‖x‖ and then x ≺X z coupled with X ∈ W
would imply z � x). It remains to prove that y � z, for which it suffices to prove that z � y ,
but this follows immediately from Lemma A5. Thus, z ∈ S with the required properties
exists.

Now take some x /∈ S. Let y = φ(x)(again, φ =φσ for some equilibrium σ) and let X =
{i ∈ N : yi ≥ xi}. Then y ∈ S ⊂ A, which implies y �= x; furthermore, y � x by Lemma A5
and thus X ∈ W . We need to prove that there does not exist z ∈ S such that x⊀X z and
either y = z or y � z. Suppose, to obtain a contradiction, that such z exists. Then z �= y ,
because x ≺X y , which is true since y � x. Then we must have x⊀X z and y � z, and the
latter is equivalent to z � y . However, this violates internal stability of set S, which holds
by Proposition 3. This proves that set S is consistent.

Let us now show that S is the largest consistent set. Suppose, to obtain a contradiction,
that set P �= S is the largest consistent set; since S is consistent, we have S ⊂ P . As before,
take some equilibrium transition mapping φ. Take x ∈ P \ S for which ‖x‖V = ∑

j∈V xj

is maximal. Let y = φ(x) and X = {i ∈ N : yi ≥ xi}. Then y ∈ S and x ≺X y . Since P is
consistent, there exists z ∈ P such that x ⊀X z and either y = z or y � z. Notice that
x ⊀X z implies that y �= z, because x ≺X y . Then y � z, which is equivalent to z � y ,
but given that y ∈ S, we must have z /∈ S, for otherwise we would get a contradiction
to Proposition 3. Thus, z ∈ P \ S, which implies, by the choice of x, that ‖z‖V ≤ ‖x‖.
However, we have y � x and z � y; thus each j ∈ V has zj ≥ yj ≥ xj , and for at least one
j, one of the inequalities is strict. This implies that ‖z‖V > ‖x‖V , a contradiction. This
completes the proof that S is the largest consistent set. Q.E.D.

A4. CHARACTERIZATION FOR n= 3�4�5

The following tables contain a summary of stable allocations if the number of players is
small (n = 3�4�5). The nontrivial cases, where non-veto players form groups and protect
each other, are highlighted.
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