SUPPLEMENT TO "MISINTERPRETING OTHERS AND THE FRAGILITY OF SOCIAL LEARNING"

(Econometrica, Vol. 88, No. 6, November 2020, 2281–2328)

MIRA FRICK

Department of Economics, Yale University

RYOTA IIJIMA Department of Economics, Yale University

YUHTA ISHII

Department of Economics, Pennsylvania State University

THIS SUPPLEMENTARY APPENDIX contains the proofs for Section 6, as well as other material omitted from the main manuscript.

APPENDIX D: PROOFS FOR SECTION 6

D.1. Proof of Proposition 1

We omit the proof of the first part, as it follows the same steps as in Appendix A (for details, see Appendix A of the previous working paper version, Frick, Iijima, and Ishii (2019)). To prove the second part, define for each $F, \hat{F} \in \mathcal{F}$ and $\omega \in \Omega$ the set of steady states

$$SS(F, \hat{F}, \omega)$$

$$:= \{\hat{\omega}_{\infty} \in \Omega : \hat{\omega}_{\infty} \in \underset{\hat{\omega} \in \Omega}{\operatorname{argmin}} \operatorname{KL}(\alpha F(\theta^{*}(\hat{\omega}_{\infty})) + (1 - \alpha)F(\theta^{*}(\omega)), \hat{F}(\theta^{*}(\hat{\omega}))). \quad (7)$$

The following lemma shows that whenever $SS(F, \hat{F}, \omega)$ is finite, incorrect agents' long-run beliefs correspond to steady states.

LEMMA D.1: Fix any F, \hat{F} such that $SS(F, \hat{F}, \omega)$ is finite for each ω . Then in all states ω , there exists some state $\hat{\omega}_{\infty}(\omega) \in SS(F, \hat{F}, \omega)$ such that almost all incorrect agents' beliefs converge to a point mass on $\hat{\omega}_{\infty}(\omega)$.

PROOF: Since Lemma B.2 continues to characterize incorrect agents' inferences from observed actions, the proof proceeds in an analogous manner to that of Proposition B.1. Let $q_t^C(\omega)$, $q_t^I(\omega) \in [0,1]$ denote the actual fraction of action 0 among correct and incorrect agents in period t and state ω , and let $\overline{q}_t^C(\omega) := \frac{1}{t} \sum_{\tau=1}^t q_\tau^C(\omega)$ and $\overline{q}_t^I(\omega) := \frac{1}{t} \sum_{\tau=1}^t q_\tau^I(\omega)$ denote the corresponding time averages.

Note that since by the first part of Proposition 1 almost all correct agents learn the true state as $t \to \infty$, it follows that $\lim_{t \to \infty} \overline{q}_t^C(\omega) = \lim_{t \to \infty} q_t^C(\omega) = F(\theta^*(\omega))$ for all ω .

Mira Frick: mira.frick@yale.edu Ryota Iijima: ryota.iijima@yale.edu Yuhta Ishii: yxi5014@psu.edu Moreover, since $SS(F, \hat{F}, \omega, \alpha)$ is finite, we can follow the same argument as in the proof of Lemma B.3 to show (using Lemma B.2) that the limit $R^I(\omega) := \lim_{t \to \infty} \overline{q}_t^I(\omega)$ exists for all ω . For each ω , let

$$\hat{\omega}_{\infty}(\omega) := \operatorname*{argmin}_{\hat{\omega} \in \Omega} \mathrm{KL} \big(\alpha R^I(\omega) + (1-\alpha) F\big(\theta^*(\omega)\big), \hat{F}\big(\theta^*(\hat{\omega})\big) \big).$$

Then by the same argument as in the proof of Proposition B.1, we obtain that, conditional on each state ω , almost all incorrect agents' beliefs converge to a point mass on $\hat{\omega}_{\infty}(\omega)$. But then $R^{I}(\omega) = F(\theta^{*}(\hat{\omega}_{\infty}(\omega)))$, whence $\hat{\omega}_{\infty}(\omega) \in SS(F, \hat{F}, \omega)$. Q.E.D.

Combined with Lemma D.1, the following lemma completes the proof of the proposition.

LEMMA D.2: Fix any analytic $F \in \mathcal{F}$ and $\delta > 0$. There exists $\varepsilon > 0$ such that for any analytic $\hat{F} \neq F$ with $||F - \hat{F}|| < \varepsilon$ and every $\omega \in \Omega$:

- 1. $SS(F, \hat{F}, \omega)$ is finite.
- 2. $|\omega \hat{\omega}| < \delta$ for every $\hat{\omega} \in SS(F, \hat{F}, \omega)$.

PROOF: Fix any analytic $F \in \mathcal{F}$ and $\delta > 0$, where we can assume that $\delta < \frac{\overline{\omega} - \underline{\omega}}{2}$. Choose $\varepsilon > 0$ sufficiently small such that $\frac{\varepsilon}{1-\alpha} < |F(\theta^*(\omega)) - F(\theta^*(\omega'))|$ for any pair of states ω , ω' with $|\omega - \omega'| \ge \delta$.

Consider any analytic $\hat{F} \neq F$ with $||F - \hat{F}|| < \varepsilon$ and any ω . By (7), each $\hat{\omega} \in SS(F, \hat{F}, \omega)$ satisfies one of the following three cases:

- 1. $\hat{\omega} \in (\underline{\omega}, \overline{\omega})$ and $\alpha F(\theta^*(\hat{\omega})) + (1 \alpha)F(\theta^*(\omega)) = \hat{F}(\theta^*(\hat{\omega})),$
- 2. $\hat{\omega} = \overline{\omega}$ and $\alpha F(\theta^*(\overline{\omega})) + (1 \alpha)F(\theta^*(\omega)) \le \hat{F}(\theta^*(\overline{\omega})),$
- 3. $\hat{\omega} = \underline{\omega} \text{ and } \alpha F(\theta^*(\underline{\omega})) + (1 \alpha)F(\theta^*(\omega)) \ge \hat{F}(\theta^*(\underline{\omega})).$

We first show that $|\omega - \hat{\omega}| < \delta$ for all $\hat{\omega} \in SS(F, \hat{F}, \omega)$. We consider only the first case, as the remaining cases are analogous. Note that

$$\begin{split} &\alpha F\!\left(\theta^*(\hat{\omega})\right) + (1-\alpha) F\!\left(\theta^*(\omega)\right) = \! \hat{F}\!\left(\theta^*(\hat{\omega})\right) \\ &\Leftrightarrow \quad F\!\left(\theta^*(\omega)\right) - \! \hat{F}\!\left(\theta^*(\hat{\omega})\right) = \! \frac{\alpha}{1-\alpha} \! \left(\! \hat{F}\!\left(\theta^*(\hat{\omega})\right) - \! F\!\left(\theta^*(\hat{\omega})\right)\!\right), \end{split}$$

so that $|F(\theta^*(\omega)) - \hat{F}(\theta^*(\hat{\omega}))| \leq \frac{\alpha}{1-\alpha} \varepsilon$. Thus,

$$\begin{split} \left| F \Big(\theta^*(\omega) \Big) - F \Big(\theta^*(\hat{\omega}) \Big) \right| &\leq \left| F \Big(\theta^*(\omega) \Big) - \hat{F} \Big(\theta^*(\hat{\omega}) \Big) \right| + \left| \hat{F} \Big(\theta^*(\hat{\omega}) \Big) - F \Big(\theta^*(\hat{\omega}) \Big) \right| \\ &\leq \frac{\alpha}{1 - \alpha} \varepsilon + \varepsilon = \frac{\varepsilon}{1 - \alpha}. \end{split}$$

By choice of ε , this implies $|\omega - \hat{\omega}| < \delta$.

To show that $SS(F, \hat{F}, \omega)$ is finite, it suffices to show that the equality $\alpha F(\theta^*(\hat{\omega})) + (1-\alpha)F(\theta^*(\omega)) = \hat{F}(\theta^*(\hat{\omega}))$ admits at most finitely many solutions $\hat{\omega} \in [\underline{\omega}, \overline{\omega}]$. Since F and \hat{F} are analytic and $[\underline{\omega}, \overline{\omega}]$ is compact, if this equality admits infinitely many solutions, then $\alpha F(\theta^*(\hat{\omega})) + (1-\alpha)F(\theta^*(\omega)) = \hat{F}(\theta^*(\hat{\omega}))$ holds for all $\hat{\omega} \in [\underline{\omega}, \overline{\omega}]$. But the latter is impossible since we have shown that $|\omega - \hat{\omega}| < \delta < \frac{\overline{\omega} - \underline{\omega}}{2}$ holds for any solution $\hat{\omega}$. Q.E.D.

D.2. Proof of Proposition 2

Fix any $F \in \mathcal{F}$, $\hat{\omega} \in \Omega$, $\hat{\alpha}$, $\alpha > 0$ with $\hat{\alpha} \neq \alpha$ and $\varepsilon > 0$. If $\hat{\alpha} < \alpha$, take $\hat{F} \in \mathcal{F}$ such that $\hat{F} - F$ crosses zero only once at $\theta^*(\hat{\omega})$ from below. If $\hat{\alpha} > \alpha$, take $\hat{F} \in \mathcal{F}$ such that $\hat{F} - F$ crosses zero only once at $\theta^*(\hat{\omega})$ from above. In either case, we can additionally require that $\|F - \hat{F}\| < \varepsilon$, as in the proof of Theorem 1. In addition, we can take \hat{F} sufficiently close to F such that the inverse function $F \circ \hat{F}^{-1}$ has a Lipschitz constant less than $\frac{1}{\hat{\alpha}}$.

Let $\hat{q}_t^I(\omega)$ and $\hat{q}_t^C(\omega)$ denote incorrect and quasi-correct agents' perceived population fractions of action 0 in period t and state ω . The proof of Lemma 1 applied to incorrect agents' perceptions implies that $\hat{q}_t^I(\omega)$ is strictly decreasing in ω with $\hat{q}_{\infty}^I(\omega) := \lim_{t \to \infty} \hat{q}_t^I(\omega) = \hat{F}(\theta^*(\omega))$. Likewise, the proof of Proposition 1 applied to quasi-correct agents' perceptions implies that $\hat{q}_{\infty}^C(\omega) := \lim_{t \to \infty} \hat{q}_t^C(\omega)$ exists, is strictly decreasing, and satisfies

$$\hat{q}_{\infty}^{C}(\omega) = \hat{\alpha}F(\theta^{*}(\hat{\omega}_{\omega})) + (1 - \hat{\alpha})F(\theta^{*}(\omega))$$
where $\hat{\omega}_{\omega} = \underset{\hat{\alpha}'}{\operatorname{argmin}} \operatorname{KL}(\hat{q}_{\infty}^{C}(\omega), \hat{F}(\theta^{*}(\hat{\omega}'))).$
(8)

LEMMA D.3: If $\hat{\alpha} < \alpha$ (resp. $\hat{\alpha} > \alpha$), then $\hat{F}(\theta^*(\omega)) - q_{\infty}^{C}(\omega)$ crosses zero only once from below (resp. above) at $\omega = \hat{\omega}$.

PROOF: Note that since by construction of \hat{F} the Lipschitz constant of the RHS of (8) is less than 1, there is a unique solution $\hat{q}_{\infty}^{C}(\omega)$ to (8). Given this, we have $\hat{q}_{\infty}^{C}(\hat{\omega}) = \hat{F}(\theta^{*}(\hat{\omega}))$ as $F(\theta^{*}(\hat{\omega})) = \hat{F}(\theta^{*}(\hat{\omega}))$. For the remaining claim, we focus on the case $\hat{\alpha} < \alpha$, as the case $\hat{\alpha} > \alpha$ follows a symmetric argument.

Take any $\omega < \hat{\omega}$. Then $\hat{q}_{\infty}^{C}(\omega) > \hat{q}_{\infty}^{C}(\hat{\omega}) = \hat{F}(\theta^{*}(\hat{\omega}))$, so that $\hat{\omega}_{\omega} = \operatorname{argmin}_{\hat{\omega}'} \operatorname{KL}(\hat{q}_{\infty}^{C}(\omega), \hat{F}(\theta^{*}(\hat{\omega}')))$ must satisfy $\hat{\omega}_{\omega} < \omega$ and $\hat{F}(\theta^{*}(\hat{\omega}_{\omega})) \leq \hat{q}_{\infty}^{C}(\omega)$. But since $F(\theta) < \hat{F}(\theta)$ for all $\theta > \theta^{*}(\hat{\omega})$, this implies $F(\theta^{*}(\hat{\omega}_{\omega})) \in (F(\theta^{*}(\hat{\omega})), \hat{q}_{\infty}^{C}(\omega))$. Since by $(8), \hat{q}_{\infty}^{C}(\omega) = \hat{\alpha}F(\theta^{*}(\hat{\omega}_{\omega})) + (1-\hat{\alpha})F(\theta^{*}(\omega))$, this implies $F(\theta^{*}(\hat{\omega}_{\omega})) < \hat{q}_{\infty}^{C}(\omega) < F(\theta^{*}(\omega)) < \hat{F}(\theta^{*}(\omega))$, as required. Likewise if $\omega > \hat{\omega}$, then an analogous argument shows $\hat{q}_{\infty}^{C}(\omega) > \hat{F}(\theta^{*}(\omega))$. Q.E.D.

Let $q_t(\omega)$ denote the actual population fraction of action 0 in period t at state ω , and let $\bar{q}_t(\omega) := \frac{1}{t} \sum_{\tau=1}^t q_\tau(\omega)$ be its time average. The following lemma uses a similar argument as in Lemma B.3 to show that \bar{q}_t converges to $F(\theta^*(\hat{\omega}))$.

LEMMA D.4: For every ω , $\lim_{t\to\infty} \bar{q}_t(\omega) = F(\theta^*(\hat{\omega}))$.

PROOF: Fix any ω . Let $\overline{R}(\omega) := \limsup_{t \to \infty} \overline{q}_t(\omega)$ and $\underline{R}(\omega) := \liminf_{t \to \infty} \overline{q}_t(\omega)$. Suppose for a contradiction that either $\overline{R}(\omega) > F(\theta^*(\hat{\omega}))$ or $\underline{R}(\omega) < F(\theta^*(\hat{\omega}))$. We consider only the first case, as the second case is analogous.

Consider any $R \in (F(\theta^*(\hat{\omega}), \overline{R}(\omega)]$. We first claim that, in state ω and any period t, if (i) almost all incorrect agents' beliefs assign probability 1 to $\hat{\omega}^I := \operatorname{argmin}_{\hat{\omega}'} \operatorname{KL}(R, \hat{F}(\theta^*(\hat{\omega}')))$ and (ii) almost all quasi-correct agents' beliefs assign probability 1 to $\hat{\omega}^C := \operatorname{argmin}_{\hat{\omega}'} \operatorname{KL}(R, \hat{q}_{\infty}^C(\hat{\omega}'))$, then $q_t(\omega) < R$.

argmin_{$\hat{\omega}'$} KL $(R, \hat{q}_{\infty}^{\mathcal{C}}(\hat{\omega}'))$, then $q_t(\omega) < R$. To show this claim, we consider only the case $\hat{\alpha} < \alpha$, as the case $\hat{\alpha} > \alpha$ is analogous. By Lemma D.3, $\hat{q}_{\infty}^{\mathcal{C}}(\omega) > \hat{F}(\theta^*(\hat{\omega}))$ iff $\omega < \hat{\omega}$. Hence, we have $\hat{\omega}^{\mathcal{C}} < \hat{\omega}$ since $R > F(\theta^*(\hat{\omega})) =$ $\hat{F}(\theta^*(\hat{\omega}))$. Likewise, $\hat{\omega}^I < \hat{\omega}$. Thus, since $\hat{F}(\theta^*(\omega)) > \hat{q}_{\infty}^C(\omega)$ for all $\omega < \hat{\omega}$, it follows that $\hat{\omega} > \hat{\omega}^I > \hat{\omega}^C$.

By definition of $\hat{\omega}^C$, this leaves two cases to consider:

- 1. $R = \hat{q}_{\infty}^{C}(\hat{\omega}^{C}),$
- 2. $R > \hat{q}_{\infty}^{C}(\hat{\omega}^{C})$ and $\hat{\omega}^{C} = \underline{\omega}$.

In either case, $q_t(\omega) = \alpha F(\theta^*(\hat{\omega}^I)) + (1 - \alpha) F(\theta^*(\hat{\omega}^C))$. Moreover, in case 1, (8) implies $R = \hat{\alpha} F(\theta^*(\hat{\omega}^I)) + (1 - \hat{\alpha}) F(\theta^*(\hat{\omega}^C))$, so that $R > q_t(\omega)$ because $\hat{\alpha} < \alpha$ and $\hat{\omega}^I > \hat{\omega}^C$. For case 2, we can extend the domain of function \hat{q}_{∞}^C from Ω to \mathbb{R} by first extending the domain of function θ^* from Ω to \mathbb{R} (in such a way that θ^* is still continuous, strictly decreasing, and has full range) and then defining \hat{q}_{∞}^C by (8) on the whole of \mathbb{R} . It is easy to show (using the same argument as above) that the extended \hat{q}_{∞}^C continues to satisfy Lemma D.3. Choosing $\tilde{\omega}^C < \overline{\omega}$ such that $R = \hat{q}_{\infty}^C(\tilde{\omega}^C)$ yields

$$R = \hat{\alpha} F\left(\theta^*\left(\hat{\omega}^I\right)\right) + (1 - \hat{\alpha}) F\left(\theta^*\left(\tilde{\omega}^C\right)\right) > \hat{\alpha} F\left(\theta^*\left(\hat{\omega}^I\right)\right) + (1 - \hat{\alpha}) F\left(\theta^*\left(\hat{\omega}^C\right)\right),$$

where the equality holds by (8) and the inequality holds since $\hat{\omega}^C = \underline{\omega}$. Thus, we again have $R > q_t(\omega)$ because $\hat{\alpha} < \alpha$ and $\hat{\omega}^I > \hat{\omega}^C$.

As a result, by continuity of u and F, there exist signals $\underline{s} < \overline{s}$, intervals of states $E^I \ni \hat{\omega}^I$, $E^C \ni \hat{\omega}^C$ with non-empty interior, and $\gamma > 0$ such that, in state ω and any period t, if (i') at least fraction $1 - \gamma$ of incorrect agents with private signals $s \in [\underline{s}, \overline{s}]$ hold beliefs such that $H_t(E^I|a^{t-1}, s) \ge 1 - \gamma$ and (ii') at least fraction $1 - \gamma$ of quasi-correct agents with private signals $s \in [\underline{s}, \overline{s}]$ hold beliefs such that $H_t(E^C|a^{t-1}, s) \ge 1 - \gamma$, then $q_t(\omega) < R - \gamma$.

To complete the proof, we consider separately the case where $\overline{R}(\omega) > \underline{R}(\omega)$ and the case where $\overline{R}(\omega) = \underline{R}(\omega)$. In the former case, we can choose $R \in (F(\theta^*(\hat{\omega}), \overline{R}(\omega)))$ that additionally satisfies $R > \underline{R}(\omega)$. Then following a similar argument as in the proof of Lemma B.3 leads to a contradiction. Specifically, for any sufficiently small $\eta > 0$, by definition of $\overline{R}(\omega)$, $\underline{R}(\omega)$ and since $|\bar{q}_t(\omega) - \bar{q}_{t-1}(\omega)| < \eta$ for all large enough t, we can find an infinite sequence of times t_k such that $R - \frac{\eta}{2} \leq \bar{q}_{t_k-1}(\omega) \leq R + \frac{\eta}{2} < \bar{q}_{t_k}(\omega)$. Moreover, by choosing η small enough, the law of large numbers together with Lemma B.2 implies that, for all large enough t_k , hypotheses (i)' and (ii)' are satisfied. But then $q_{t_k}(\omega) < R - \gamma < R + \frac{\eta}{2}$, so that $\bar{q}_{t_k}(\omega) = \frac{t_k-1}{t_k}\bar{q}_{t_k-1}(\omega) + \frac{1}{t_k}q_{t_k}(\omega) < R + \frac{\eta}{2}$, a contradiction.

Finally, if $\overline{R}(\omega) = \underline{R}(\omega)$, then we choose $R = \overline{R}(\omega) = \underline{R}(\omega) > F(\theta^*(\hat{\omega}))$. In this case, by the law of large numbers and Lemma B.2, almost all incorrect agents' beliefs converge to a point mass on $\hat{\omega}^I := \operatorname{argmin}_{\hat{\omega}'} \operatorname{KL}(R, \hat{F}(\theta^*(\hat{\omega}')))$, and almost all quasi-correct agents' beliefs converge to a point mass on $\hat{\omega}^C := \operatorname{argmin}_{\hat{\omega}'} \operatorname{KL}(R, \hat{q}_{\infty}^C(\hat{\omega}'))$. Thus, hypotheses (i') and (ii') are satisfied for all large enough t, whence $\lim_{t\to\infty} q_t(\omega) \le R - \gamma$. This contradicts $\lim_{t\to\infty} \bar{q}_t(\omega) = R$.

To complete the proof of Proposition 2, let $\hat{\omega}^I := \operatorname{argmin}_{\hat{\omega}'} \operatorname{KL}(F(\theta^*(\hat{\omega})), \hat{q}^I_{\infty}(\hat{\omega}'))$ and $\hat{\omega}^C := \operatorname{argmin}_{\hat{\omega}'} \operatorname{KL}(F(\theta^*(\hat{\omega})), \hat{q}^C_{\infty}(\hat{\omega}'))$. Then Lemmas B.2 and D.4 imply that almost all incorrect agents' beliefs converge to a point mass on $\hat{\omega}^I$ and almost all quasi-correct agents' beliefs converge to a point mass on $\hat{\omega}^C$. Moreover, since $\hat{q}^I_{\infty}(\cdot) = \hat{F}(\theta^*(\cdot))$ and $\hat{F}(\theta^*(\hat{\omega})) = F(\theta^*(\hat{\omega}))$ by construction, we must have $\hat{\omega}^I = \hat{\omega}$. Likewise, by Lemma D.3, $\hat{q}^C_{\infty}(\theta^*(\hat{\omega})) = \hat{F}(\theta^*(\hat{\omega})) = F(\theta^*(\hat{\omega}))$, so that $\hat{\omega}^C = \hat{\omega}$.

APPENDIX E: OMITTED DETAILS

E.1. Robustness of Single-Agent Active Learning

Consider the active learning model discussed in Section 4.3, whose limit model belief process (see footnote 28) satisfies

$$\hat{\omega}_t = \underset{\hat{\omega} \in \Omega}{\operatorname{argmin}} \operatorname{KL}(q(x_t^*, \omega), \hat{q}(x_t^*, \hat{\omega})), \quad x_t^* = x^*(\hat{\omega}_{t-1}). \tag{9}$$

We measure the amount of misperception by a "bias" parameter $b \in \mathbb{R}$. Specifically, we write $\hat{q}(x, \omega) = r(x, \omega, b)$ for some C^1 function r that is strictly decreasing in (x, ω) and satisfies $q(x, \omega) = r(x, \omega, 0)$. We also assume that $x^*(\omega)$ is C^1 .

PROPOSITION E.1: Fix any $\varepsilon > 0$. There exists $\bar{b} > 0$ such that if $|b| < \bar{b}$, then at each $\omega \in \Omega$, process (9) admits a unique steady state $\hat{\omega}_{\infty}(\omega)$; moreover, $\hat{\omega}_{\infty}(\omega) \in [\omega - \varepsilon, \omega + \varepsilon]$ and is globally stable.

PROOF: We first show that there exists $\bar{b} > 0$ such that at each $\omega \in \Omega$, process (9) satisfies $\hat{\omega}_t \in [\omega - \varepsilon, \omega + \varepsilon]$ for all $t \ge 2$ whenever $|b| \le \bar{b}$. To see this, consider identity

$$r(x, \omega, 0) = r(x, \hat{\omega}, b) \tag{10}$$

as a function of $\hat{\omega}$. If b=0, then for any x and ω , (10) admits $\hat{\omega}=\omega$ as the unique solution. Thus, by the implicit function theorem, $\frac{d\hat{\omega}}{db} = \frac{-\frac{\partial}{\partial b}r(x,\hat{\omega},b)}{\frac{\partial}{\partial \hat{\omega}}r(x,\hat{\omega},b)}$ holds at b=0 and $\hat{\omega}=0$

$$\omega$$
. But since r is C^1 and $X \times \Omega = [0, 1] \times [\underline{\omega}, \overline{\omega}]$ is compact, $\max_{(x,\omega) \in X \times \Omega} |\frac{-\frac{\partial}{\partial b} r(x, \omega, 0)}{\frac{\partial}{\partial \omega} r(x, \omega, 0)}| < 0$

 ∞ . Hence, there exists $\bar{b} > 0$ such that for every $b \in [-\bar{b}, \bar{b}]$, x, and ω , (10) admits a unique solution $\hat{\omega} \in [\omega - \varepsilon, \omega + \varepsilon]$; that is, process (9) satisfies $\hat{\omega}_t \in [\omega - \varepsilon, \omega + \varepsilon]$ for all $t \ge 2$ from any initial point $\hat{\omega}_1$.

Finally, applying the implicit function theorem to $r(x^*(\hat{\omega}_t), \omega, 0) = r(x^*(\hat{\omega}_t), \hat{\omega}_{t+1}, b)$, we obtain

$$\frac{d\hat{\omega}_{t+1}}{d\hat{\omega}_{t}} = -\frac{x^{*'}(\hat{\omega}_{t})\left(\frac{\partial r(x^{*}(\hat{\omega}_{t}), \omega, 0)}{\partial x^{*}} - \frac{\partial r(x^{*}(\hat{\omega}_{t}), \hat{\omega}_{t}, b)}{\partial a^{*}}\right)}{\frac{\partial r(x^{*}(\hat{\omega}_{t}), \hat{\omega}_{t+1}, b)}{\partial \hat{\omega}_{t+1}}}.$$

By uniform continuity of the derivatives (which holds by compactness of the domain $X \times \Omega$), we can choose \bar{b} sufficiently small such that for all $|b| \le \bar{b}$ and ω , the right-hand side is strictly less than 1 in absolute value at all $t \ge 2$. This guarantees that process (9) is a contraction on $[\omega - \varepsilon, \omega + \varepsilon]$. Hence, it admits a unique steady state $\hat{\omega}_{\infty}(\omega) \in [\omega - \varepsilon, \omega + \varepsilon]$, to which it converges from any initial point.

Q.E.D.

E.2. Misperceptions About Matching Technology

Consider the assortative random matching model from Section 7.1. As in Section 4.2, we set up a limit model where each agent observes the actions of infinitely many matches at the end of each period. To simplify the exposition, we consider the unbounded state

space $\Omega = \mathbb{R}$ and assume that $\theta^*(\cdot)$ is unbounded on Ω . Fix any true state ω . If $\hat{P} = P$, then agents learn the true state at the end of the first period; in period 2 and all subsequent periods, agents play a threshold strategy with cutoff type $\theta^*(\omega)$, and each type's observed fraction of action 0, $P(\theta^*(\omega)|\theta)$, matches his expectation.

If $\hat{P} \neq P$, then for simplicity, we continue to assume that in period 2, agents play a threshold strategy according to some cutoff type $\theta_1^{*,1}$ Inductively, this induces the following sequence of cutoff types (θ_t^{*}) and type-dependent point-mass beliefs $(\hat{\omega}_t^{\theta})$. At any $t \geq 2$, if agents play according to cutoff θ_{t-1}^{*} , then each type θ observes fraction $P(\theta_{t-1}^{*}|\theta)$ of action 0, and based on this, assigns a point mass to the state $\hat{\omega}_t^{\theta} = \operatorname{argmin}_{\hat{\omega} \in \mathbb{R}} \operatorname{KL}(P(\theta_{t-1}^{*}|\theta), \hat{P}(\theta^{*}(\hat{\omega})|\theta))$ that best explains this observation. Since $\theta^{*}(\cdot)$ is unbounded and $P(\cdot|\theta)$ is a continuous distribution with full support, $\hat{\omega}_t^{\theta}$ is uniquely given by

$$P(\theta_{t-1}^*|\theta) = \hat{P}(\theta^*(\hat{\omega}_t^{\theta})|\theta). \tag{11}$$

Given this, we claim that in period t + 1, agents follow a threshold strategy with cutoff type θ_t^* given by

$$P(\theta_{t-1}^*|\theta_t^*) = \hat{P}(\theta_t^*|\theta_t^*). \tag{12}$$

Note that (12) uniquely pins down θ_t^* , because by assumptions (i) and (ii) in Section 7.1, the left-hand side is weakly decreasing in θ_t^* but the right-hand side is strictly increasing in θ_t^* . To see that agents behave according to cutoff θ_t^* in period t+1, consider any $\theta>\theta_t^*$. Then $P(\theta_{t-1}^*|\theta) \leq P(\theta_{t-1}^*|\theta_t^*) = \hat{P}(\theta_t^*|\theta_t^*) < \hat{P}(\theta|\theta)$. Thus, (11) implies that $\theta^*(\hat{\omega}_t^{\theta}) < \theta$, whence type θ plays action 1 in period t+1. Analogously, we can verify that any type $\theta<\theta_t^*$ chooses action 0 in period t+1.

Note that by (12), θ_t^* is strictly increasing in θ_{t-1}^* . Indeed, for any $\eta > 0$, we have $P(\theta_{t-1}^* + \eta | \theta_t^*) > \hat{P}(\theta_t^* | \theta_t^*)$, and the left-hand side is decreasing in θ_t^* and the right-hand side is strictly increasing in θ_t^* . Given this, recursion (12) either converges to a steady state θ_∞^* with

$$P(\theta_{\infty}^*|\theta_{\infty}^*) = \hat{P}(\theta_{\infty}^*|\theta_{\infty}^*) \tag{13}$$

or diverges, and in the former case, each type θ 's steady-state belief $\hat{\omega}_{\infty}^{\theta}$ satisfies

$$P(\theta_{\infty}^*|\theta) = \hat{P}(\theta^*(\hat{\omega}_{\infty}^{\theta})|\theta). \tag{14}$$

The following example illustrates a natural misperception, assortativity neglect, under which the steady-state beliefs $\hat{\omega}_{\infty}^{\theta}$ are state-independent and increasing in types.

EXAMPLE 4—Assortativity Neglect in a Gaussian Setting: Suppose that P and \hat{P} are symmetric bivariate Gaussian distributions whose mean, variance, and correlation coefficient are given by (μ, σ^2, ρ) and $(\hat{\mu}, \hat{\sigma}^2, \hat{\rho})$, respectively, with $\rho, \hat{\rho} \geq 0$ (reflecting assortativity). To model assortativity neglect, we suppose that $\hat{\rho} < \rho$, $\hat{\mu} = \mu$, and $\hat{\sigma} = \sigma$; that is, agents underestimate the correlation in the matching technology, but are correct about the marginal type distribution. Letting G denote the cdf of the standard Gaussian

¹This simplifying assumption is satisfied whenever $\|\hat{P} - P\|$ is sufficiently small. Indeed, while different types θ might believe in different states $\hat{\omega}_1^{\theta}$ at the end of period 1, when $\|\hat{P} - P\|$ is sufficiently small, all $\hat{\omega}_1^{\theta}$ are sufficiently close to ω that $u(1, \theta, \hat{\omega}_1^{\theta}) - u(0, \theta, \hat{\omega}_1^{\theta})$ is increasing in θ . Thus, agents follow a threshold strategy.

distribution, equation (13) yields $G[\sqrt{\frac{1-\rho}{1+\rho}}\frac{\theta_\infty^*-\mu}{\sigma}]=G[\sqrt{\frac{1-\hat{\rho}}{1+\hat{\rho}}}\frac{\theta_\infty^*-\mu}{\sigma}]$, which admits the unique solution $\theta_\infty^*=\mu$. Thus, by (14), each type θ 's steady-state belief is a state-independent point mass $\hat{\omega}_\infty^\theta$ such that $\theta^*(\hat{\omega}_\infty^\theta)=\frac{\sqrt{1-\hat{\rho}}}{\sqrt{1-\hat{\rho}}}(\mu-\rho\theta-(1-\rho)\mu)+\hat{\rho}\theta+(1-\hat{\rho})\mu$. Since the right-hand side of the latter equation is decreasing in θ , beliefs $\hat{\omega}_\infty^\theta$ are increasing in types. Q.E.D.

E.3. Continuous Actions

This section considers a continuous action space version of our model. We perform steady-state analysis (under the limit model) to illustrate why our main insights do not rely on a finite action space. Throughout, we assume that the action space is an interval $A = [\underline{a}, \overline{a}] \subseteq \mathbb{R}$, with $-\infty \le \underline{a} < \overline{a} \le \infty$. Let $u(a, \theta, \omega)$ denote type θ 's utility to choosing action a in state ω . We assume that for every type $\theta \in \mathbb{R}$ and state $\omega \in \Omega := [\underline{\omega}, \overline{\omega}]$, there exists a unique optimal action $a^*(\theta, \omega) := \operatorname{argmax}_{a \in A} u(a, \theta, \omega)$ which is continuous and strictly increasing in (θ, ω) and such that $a^*(\cdot, \omega)$ has full range for all ω .

Given any true and perceived type distributions $F, \hat{F} \in \mathcal{F}$, we briefly analyze the set of steady states $SS(F, \hat{F})$ of this model. For each state ω , let $G(\cdot, \omega) \in \Delta(A)$ denote the true cdf over actions in the population when (almost all) agents assign probability 1 to state ω and let $g(\cdot, \omega)$ denote the corresponding density. Likewise, let $\hat{G}(\cdot, \omega)$ and $\hat{g}(\cdot, \omega)$ denote the corresponding perceived action distribution and density when agents assign probability 1 to ω . Note that $G(a, \omega) = F(\theta^*(a, \omega))$ and $\hat{G}(a, \omega) = \hat{F}(\theta^*(a, \omega))$, where $\theta^*(a, \omega)$ satisfies $a = a^*(\theta^*(a, \omega), \omega)$. Let $KL(H, \hat{H}) := \int \log[\frac{h(a)}{\hat{h}(a)}]h(a) \, da$ denote the KL-divergence between continuous distributions H and \hat{H} with densities h and h. As in the binary action space setting, we define a steady state $\hat{\omega}^*$ to be a solution to

$$\hat{\omega}^* \in \underset{\hat{\omega}}{\operatorname{argmin}} \operatorname{KL}(G(\cdot, \hat{\omega}^*), \hat{G}(\cdot, \hat{\omega})).$$

Thus, as before, in a steady state, agents assign probability 1 to a state that minimizes the KL-divergence between the corresponding observed action distribution and agents' perceived action distribution. At interior steady states $\hat{\omega}^*$, the first-order condition yields

$$\int \frac{g(a,\hat{\omega}^*)}{\hat{g}(a,\hat{\omega}^*)} \frac{\partial \hat{g}(a,\hat{\omega}^*)}{\partial \hat{\omega}} da = 0.$$
 (15)

Thus, the set of steady states $SS(F, \hat{F})$ is finite whenever there are at most finitely many $\hat{\omega}^*$ that satisfy (15). A sufficient condition for this is that the left-hand side of (15) is analytic in $\hat{\omega}^*$ and not constantly equal to 0; similar to the logic behind Theorem 2, this is ensured if $F \neq \hat{F}$ are analytic and $\theta^*(a,\cdot)$ is analytic. Moreover, similarly to the logic behind Theorem 1, it is easy to construct examples where \hat{F} is arbitrarily close to F but there is only a single (state-independent) steady state, as the following illustrates:

EXAMPLE 5: Consider the quadratic-loss utility $u(a, \theta, \omega) = -(a - \theta - \omega)^2$, which implies that the optimal action takes the form $a^*(\theta, \omega) = \theta + \omega$. Suppose that F and \hat{F} are cdfs of the Gaussian distributions $N(\mu, \sigma^2)$ and $N(\hat{\mu}, \hat{\sigma}^2)$. Then the left-hand side of (15) is given by $\int \frac{\hat{\mu} - \theta}{\hat{\sigma}^2} \frac{\exp[-\frac{(\theta - \mu)^2}{2a^2}]}{\sqrt{2\pi\sigma^2}} d\theta = \frac{\hat{\mu} - \mu}{\hat{\sigma}^2}$. Thus, there is no interior steady state, and

whenever $\mu > \hat{\mu}$ (respectively, $\mu < \hat{\mu}$), the unique steady state is given by $\overline{\omega}$ (respectively, $\underline{\omega}$), paralleling Example 1 in the binary action setting.

REFERENCES

FRICK, M., R. IIJIMA, AND Y. ISHII (2019): "Misinterpreting Others and the Fragility of Social Learning," Cowles Foundation Discussion Paper #2160. [1]

Co-editor Alessandro Lizzeri handled this manuscript.

Manuscript received 15 January, 2019; final version accepted 27 May, 2020; available online 2 June, 2020.