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THIS SUPPLEMENTARY APPENDIX contains the proofs for Section 6, as well as other mate-
rial omitted from the main manuscript.

APPENDIX D: PROOFS FOR SECTION 6
D.1. Proof of Proposition 1

We omit the proof of the first part, as it follows the same steps as in Appendix A (for
details, see Appendix A of the previous working paper version, Frick, Iijima, and Ishii

(2019)). To prove the second part, define for each F, F € F and w € (2 the set of steady
states

SS(F, F, »)
= {@ € Q: @ € argmin KL(aF (0°(do)) + (1 — @) F(6*(w)), F(6°(8))). (7)

el

The following lemma shows that whenever SS(F, F , ) is finite, incorrect agents’ long-run
beliefs correspond to steady states.

LEMMA D.1: Fix any F, F such that SS(F, ﬁ, w) is finite for each w. Then in all states

w, there exists some state ®..(w) € SS(F, F , ) such that almost all incorrect agents’ beliefs
converge to a point mass on @ (w).

PROOF: Since Lemma B.2 continues to characterize incorrect agents’ inferences from
observed actions, the proof proceeds in an analogous manner to that of Proposition B.1.
Let ¢“(w), q¢'(w) € [0, 1] denote the actual fraction of action 0 among correct and in-
correct agents in period ¢ and state w, and let ﬁtc(w) = %Zizl q¢(w) and ﬁf(w) =
1 > _, ¢! (w) denote the corresponding time averages.

Note that since by the first part of Proposition 1 almost all correct agents learn the
true state as t — oo, it follows that lim,_, ., ﬁlc(w) =lim,. ¢ (w) = F(6*(w)) for all w.
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Moreover, since SS(F, F , w, @) is finite, we can follow the same argument as in the proof
of Lemma B.3 to show (using Lemma B.2) that the limit R’ (w) :=lim,_, ., . () exists for
all w. For each w, let

doo(w) 1= argmin KL(aR' (0) + (1 — ) F(6* (), F(67(&))).
wel)
Then by the same argument as in the proof of Proposition B.1, we obtain that, conditional
on each state w, almost all incorrect agents’ beliefs converge to a point mass on @ ().

But then R/ (w) = F(6* (& (®))), whence &.(w) € SS(F, F, w). O.E.D.

Combined with Lemma D.1, the following lemma completes the proof of the proposi-
tion.

LEMMA D.2: Fix any analytic F € F and 6 > 0. There exists ¢ > 0 such that for any
analytic F # F with ||F — ﬁll < g and every w € ():

1. SS(F, F, w) is finite.

2. |o — &| < 8 forevery & € SS(F, F, »).

PROOF: Fix any analytic F € F and & > 0, where we can assume that § < =5=. Choose
& > 0 sufficiently small such that ;= < [F(6"(w)) — F(6*(0"))| for any pair of states o,
o' with | — 0’| > 6.

Consider any analytic F # F with |F — ﬁ|| < ¢ and any w. By (7), each & € SS(F, ﬁ, w)
satisfies one of the following three cases:

1. & € (0, ®) and aF(0°(®)) + (1 — Q)F(8*(w)) = F(6*(d)),

2. &= and aF (6 (@) + (1 — a)F(6"(w)) < F(6*(®)),

3. &=wand aF (6" (0)) + (1 — @)F (8" (0)) = F(6*(w)).
We first show that |w — @| < & for all ® € SS(F, F , w). We consider only the first case, as
the remaining cases are analogous. Note that

aF (0°(#)) + (1 — )F(6*(w)) = F(6*(&))
(B (6"(@) = F(6"(@)),

& F(0°(0) - F(6°(&)) = —

so that [F(6*(0)) — F(6°(@))| < 1% e. Thus,
|F(6"(w)) — F(6"(&))] < |[F(6"(0)) = F(6°(@)| + | F(6°(&)) — F(6°(&))]

&
e+ e=

<
T 1l-«a l—«a

By choice of &, this implies |@ — &| < &.

To show that SS(F, F , ) is finite, it suffices to show that the equality aF(0*(®)) +
(1 — a)F(0*(w)) = F(6*(»)) admits at most finitely many solutions @ € [w, w]. Since F
and F are analytic and [w, w] is compact, if this equality admits infinitely many solutions,
then aF(6*(@)) + (1 — a)F(60*(w)) = ﬁ(é)*(&))) holds for all @ € [w, @]. But the latter is
impossible since we have shown that |0 — ®| < 8§ < “5* holds for any solution @.  Q.E.D.
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D.2. Proof of Proposition 2

Fixany F € F, & € Q, &, a > 0 with & # a and & > 0. If & < a, take F € F such that

F — F crosses zero only once at 0*(®) from below. If & > «, take F e Fsuchthat F — F
crosses zero only once at 8*(®) from above. In either case, we can additionally require

that |F — F | < &, as in the proof of Theorem 1. In addition, we can take F sufficiently
close to F such that the inverse function F o F~! has a Lipschitz constant less than 1.

Let ¢'(w) and ¢€(w) denote incorrect and quasi-correct agents’ perceived population
fractions of action 0 in period ¢ and state w. The proof of Lemma 1 applied to incor-
rect agents’ perceptions implies that §!(w) is strictly decreasing in w with ¢’ (w) :=
lim,. . ¢/ (w) = F(6*(w)). Likewise the proof of Proposition 1 applied to quasi-correct
agents’ perceptions implies that ¢< (o) :=lim,_. ., ¢°(w) exists, is strictly decreasing, and
satisfies

45 (0) =aF(0"(d,)) + (1 — &)F (6" (w))
where &, = argminKL(§,(w), F(60°(2)))). (8)

LEMMA D.3: Ifa <« (resp & > a), then F(H*(a))) — g€ (w) crosses zero only once from
below (resp. above) at v = &.

PROOF: Note that since by construction of F the Lipschitz constant of the RHS of (8)is
less than 1, there is a unique solution g< (w) to (8). Given this, we have ¢< (®) = F (6" (@))
as F(0*(w)) = F (6*(@)). For the remaining claim, we focus on the case & < «, as the case
a > «a follows a symmetric argument.

Take any w < @. Then ¢ (w) > qoo(w) = F(O*(a))), so that @, = argmin,, KL(qoo(w),
F(O*( "))) must satisfy ®, < » and F(O*(ww)) < ¢¢ (w). But since F(0) < F(0) for
all 0 > 0*(w), this 1mphes F(0*(w,)) € (F(O*(w)) qoo(a))) Since by (8), ¢S (w) =
aF(6*(@,))+(1—&)F(6*(w)), thisimplies F(6*(®,)) < §5 () < F(6*(w)) < F(6*(w)),
as required. Likewise if @ > @, then an analogous argument shows ¢< (w) > F (60*(w)).

O.E.D.

Let g,(w) denote the actual population fraction of action 0 in period ¢ at state w, and let
gi(w):=1 >, g.(w) be its time average. The following lemma uses a similar argument
as in Lemma B.3 to show that g, converges to F(6*(®)).

LEMMA D.4: Forevery w, lim,_ ., g,(w) = F(0*(®)).

PROOF: Fix any w. Let R(w) :=lim sup,_. .. 4:(w) and R(w) :=liminf, , g,(w). Sup-
pose for a contradiction that either R(w) > F(6*(®)) or R(w) < F(0*(®)). We consider
only the first case, as the second case is analogous.

Consider any R € (F(6*(®), R(w)]. We first claim that, in state w and any period ¢,
if (i) almost all incorrect agents’ beliefs assign probability 1 to @’ := argmin,, KL(R,
F(6%('))) and (ii) almost all quasi-correct agents’ beliefs assign probability 1 to @ :=
argmin,, KL(R, ¢ (&")), then g,(w) < R.

To show this claim, we consider only the case & < «, as the case & > « is analogous. By
Lemma D.3, 5 (w) > F(0°(®)) iff ® < &. Hence, we have &€ < & since R > F(6*(»)) =
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F(6*(®)). Likewise, @' < &. Thus, since F(6*(w)) > §5 (o) for all w < @, it follows that
o> o' > oF.

By definition of @€, this leaves two cases to consider:

1. R=35(6),

2. R> g (&% and &€ = w.
In either case, ¢,(w) = aF (0*(®")) + (1 — @) F(6*(®°)). Moreover, in case 1, (8) implies
R = &F(0*(&")) + (1 — &)F(0* (%)), so that R > ¢g,(w) because & < @ and &' > @F.
For case 2, we can extend the domain of function ¢ from (2 to R by first extending
the domain of function 6* from {2 to R (in such a way that 6* is still continuous, strictly
decreasing, and has full range) and then defining g< by (8) on the whole of R. It is easy
to show (using the same argument as above) that the extended ¢< continues to satisfy
Lemma D.3. Choosing @ < @ such that R = §$ (®°) yields

R=a&F(6*(@")) + (1 — &)F (6" (@°)) > aF (6 (&")) + (1 — &) F(6*(&°)),

where the equality holds by (8) and the inequality holds since ®“ = w. Thus, we again
have R > g,(w) because & < @ and &' > »°.

As a result, by continuity of u and F, there exist signals s < 5, intervals of states E/ 5 &,
E€ 5 &€ with non-empty interior, and y > 0 such that, in state w and any period ¢, if (") at
least fraction 1 — vy of incorrect agents with private signals s € [s, 5] hold beliefs such that
H,(E'|a""',s) > 1— vy and (i") at least fraction 1 — y of quasi-correct agents with private
signals s € [s, 5] hold beliefs such that H,(E€|a’~!,s) > 1 — v, then ¢,(w) < R — .

To complete the proof, we consider separately the case where R(w) > R(w) and the
case where R(w) = R(w). In the former case, we can choose R € (F(6*(®), R(w)) that
additionally satisfies R > R(w). Then following a similar argument as in the proof of
Lemma B.3 leads to a contradiction. Specifically, for any sufficiently small > 0, by def-
inition of R(w), R(w) and since |g:.(w) — g,_1(w)| < n for all large enough ¢, we can
find an infinite sequence of times #; such that R — 7 < g, 1(®) <R+ 3 < g, (»). More-
over, by choosing 1 small enough, the law of large numbers together with Lemma B.2
implies that, for all large enough #;, hypotheses (i)’ and (ii)’ are satisfied. But then
q,(w) <R—vy <R+ 7,sothat g, (w) = %q,ﬂ(w) + i%(w) < R+ 7, acontradiction.

Finally, if R(w) = R(w), then we choose R = R(w) = R(w) > F(0*(®)). In this case,
by the law of large numbers and Lemma B.2, almost all incorrect agents’ beliefs converge
to a point mass on ®’ := argmin,, KL(R, F (6*(®"))), and almost all quasi-correct agents’
beliefs converge to a point mass on & := argmin,, KL(R, ¢ (®")). Thus, hypotheses (i’)
and (ii’) are satisfied for all large enough ¢, whence lim,_., ¢,(w) < R —y. This contradicts
lim, . g:(w) =R. Q.E.D.

To complete the proof of Proposition 2, let &' := argmin,, KL(F(6*(®)), ¢’ (&')) and
¢ := argmin,, KL(F(6*(®)), ¢ (®")). Then Lemmas B.2 and D.4 imply that almost all
incorrect agents’ beliefs converge to a point mass on @’ and almost all quasi-correct
agents’ beliefs converge to a point mass on @“. Moreover, since ¢’ (-) = F (6*(+)) and
F (60*(®)) = F(6*(@)) by construction, we must have ®’ = @. Likewise, by Lemma D.3,
GE.(0°(@)) = F(6"(d)) = F(6*(&)), so that &€ = &.
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APPENDIX E: OMITTED DETAILS
E.1. Robustness of Single-Agent Active Learning

Consider the active learning model discussed in Section 4.3, whose limit model belief
process (see footnote 28) satisfies

&, =argminKL(q(x}, ®), §(x7, ®)), xf=x"(dr1). 9)
wel
We measure the amount of misperception by a “bias” parameter b € R. Specifically, we
write §(x, w) =r(x, w, b) for some C! function r that is strictly decreasing in (x, ) and
satisfies g(x, ) =r(x, o, 0). We also assume that x*(w) is C'.

PROPOSITION E.1: Fix any & > 0. There exists b > 0 such that if |b] < b, then at each
w € £, process (9) admits a unique steady state & .,(w); moreover, ®.,(w) € [w — &, ® + ¢]
and is globally stable.

PROOF: We first show that there exists b > 0 such that at each w € (2, process (9) satis-
fies @, € [w — &, w + ¢] for all ¢ > 2 whenever |b| < b. To see this, consider identity

r(x, ,0)=r(x, ®,b) (10)

as a function of &. If b =0, then for any x and w, (10) admits & = w as the unique solu-
0 _%r(xa 6)7 b)

—=7h1 = A:
7h ﬁr(x,é),b) oldsatb=0and @

tion. Thus, by the implicit function theorem,

. . . _ﬁihr(xa w, 0)
w.Butsince ris C' and X x 2 = [0, 1] x [w, @] is compact, Max,u)cxx0 | ———-—| <
_ o %r(x7 w, 0)
oo. Hence, there exists b > 0 such that for every b € [—b, b], x, and w, (10) admits a
unique solution @ € [w — &, w + &]; that is, process (9) satisfies @, € [w — &, w + ¢] for all
t > 2 from any initial point @;.

Finally, applying the implicit function theorem to r(x*(®,), w, 0) = r(x*(®,), &1, b),
we obtain

x/ s A é)r(X*((I)t)aw,O) &F(X*(a)t)7 (I)hb)
dé X ((1)[) * - *
Wit _ x da
dé\)t ar(X*(é)t)y é)t-f—l’b)
AW 41

By uniform continuity of the derivatives (which holds by compactness of the domain X x
), we can choose b sufficiently small such that for all |b| < b and w, the right-hand side
is strictly less than 1 in absolute value at all # > 2. This guarantees that process (9) is
a contraction on [w — &, w + ¢]. Hence, it admits a unique steady state @, (w) € [ —
&, w + ¢], to which it converges from any initial point. Q.E.D.

E.2. Misperceptions About Matching Technology

Consider the assortative random matching model from Section 7.1. As in Section 4.2,
we set up a limit model where each agent observes the actions of infinitely many matches
at the end of each period. To simplify the exposition, we consider the unbounded state
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space {2 = R and assume that 6*(-) is unbounded on (2. Fix any true state w. If P= P,
then agents learn the true state at the end of the first period; in period 2 and all subsequent
periods, agents play a threshold strategy with cutoff type 6*(w), and each type’s observed
fraction of action 0, P(6*(w)|6), matches his expectation.

If P + P, then for simplicity, we continue to assume that in period 2, agents play
a threshold strategy according to some cutoff type 60;.! Inductively, this induces the
following sequence of cutoff types (67) and type-dependent point-mass beliefs (&?).
At any ¢ > 2, if agents play according to cutoff 6F ,, then each type 6 observes frac-
tion P(6: ,|0) of action 0, and based on this, assigns a point mass to the state @’ =
argmin, _, KL(P(67_,10), 13(0*((2))|0)) that best explains this observation. Since 6*(-) is
unbounded and P(-|0) is a continuous distribution with full support, @! is uniquely given
by

P(6;_,10) = P(6"(&7)16). (11)

Given this, we claim that in period ¢ + 1, agents follow a threshold strategy with cutoff
type 6 given by

P(6;_,16;) = P(0716;). (12)

Note that (12) uniquely pins down 6%, because by assumptions (i) and (ii) in Section 7.1,
the left-hand side is weakly decreasing in 67 but the right-hand side is strictly increasing in
6:. To see that agents behave according to cutoff 67 in period ¢ + 1, consider any 6 > 6;.
Then P(60; ,|0) < P(6;_,107) = 13(9;"|0’;) < 13(0|0). Thus, (11) implies that 6*(?) <,
whence type 60 plays action 1 in period ¢ + 1. Analogously, we can verify that any type
6 < 67 chooses action 0 in period ¢ + 1.

Note that by (12), 6% is strictly increasing in 67 ,. Indeed, for any n > 0, we have P(6; |+

1n16%) > f’(@ﬂej‘), and the left-hand side is decreasing in 67 and the right-hand side is
strictly increasing in 67. Given this, recursion (12) either converges to a steady state 6*,
with

P(03,10%,) = P(07.16%) (13)

or diverges, and in the former case, each type 60’s steady-state belief ®’, satisfies
P(6:.10) = P(6*(°.)16). (14)

The following example illustrates a natural misperception, assortativity neglect, under
which the steady-state beliefs @’ are state-independent and increasing in types.

EXAMPLE 4—Assortativity Neglect in a Gaussian Setting: Suppose that P and P are
symmetric bivariate Gaussian distributions whose mean, variance, and correlation coef-
ficient are given by (u, o, p) and (@, 62, p), respectively, with p, p > 0 (reflecting as-
sortativity). To model assortativity neglect, we suppose that p < p, o = p, and & = o;
that is, agents underestimate the correlation in the matching technology, but are correct
about the marginal type distribution. Letting G denote the cdf of the standard Gaussian

'This simplifying assumption is satisfied whenever 1P — P| is sufficiently small. Indeed, while different

types 6 might believe in different states (I)f at the end of period 1, when ||13 — PJ| is sufficiently small, all (I)l" are
sufficiently close to w that u(1, 6, @?) — u(0, 6, @?) is increasing in 6. Thus, agents follow a threshold strategy.
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distribution, equation (13) yields G| /;—Z "%T’“] =G]J ;—Z 03@;“ ], which admits the unique

solution 6*, = u. Thus, by (14), each type 6’s steady-state belief is a state-independent

point mass ®’ such that 6*(@f) = \/_ijﬁ(;u —pb— (1 —p)p)+ p6+ (1 — p)u. Since
-p

the right-hand side of the latter equation is decreasing in 6, beliefs @’  are increasing in
types. QE.D.

E.3. Continuous Actions

This section considers a continuous action space version of our model. We perform
steady-state analysis (under the limit model) to illustrate why our main insights do not
rely on a finite action space. Throughout, we assume that the action space is an interval
A=[a,a] CR,with —oo <a <a < oo. Let u(a, 0, w) denote type 6’s utility to choosing
action a in state w. We assume that for every type 6 € R and state w € (2 := [w, w], there
exists a unique optimal action a*(0, w) := argmax,_, u(a, 6, w) which is continuous and
strictly increasing in (6, ) and such that a*(-, w) has full range for all w.

Given any true and perceived type distributions F, FeF, we briefly analyze the set
of steady states SS(F, ﬁ) of this model. For each state w, let G(-, w) € A(A) denote
the true cdf over actions in the population when (almost all) agents assign probability
1 to state w and let g(-, w) denote the corresponding density. Likewise, let G(-, w) and
8(-, w) denote the corresponding perceived action distribution and density when agents
assign probability 1 to w. Note that G(a, w) = F(6*(a, w)) and G(a, w) = ﬁ(ﬁ*(a, w)),

where 0*(a, w) satisfies a = a*(0*(a, w), w). Let KL(H, ﬁ) = flog[';lE—Z;]h(a)da denote

the KL-divergence between continuous distributions H and H with densities / and h. As
in the binary action space setting, we define a steady state @* to be a solution to

o e argminKL(G(-, ), G, @)).

Thus, as before, in a steady state, agents assign probability 1 to a state that minimizes
the KL-divergence between the corresponding observed action distribution and agents’
perceived action distribution. At interior steady states ®*, the first-order condition yields

) 98 A %
f?’(a"f) I (15)
g(a, ") o

Thus, the set of steady states SS(F, F ) is finite whenever there are at most finitely many
o* that satisfy (15). A sufficient condition for this is that the left-hand side of (15) is
analytic in ®* and not constantly equal to 0; similar to the logic behind Theorem 2, this

is ensured if F # F are analytic and 6*(a, -) is analytic. Moreover, similarly to the logic

behind Theorem 1, it is easy to construct examples where Fis arbitrarily close to F but
there is only a single (state-independent) steady state, as the following illustrates:

EXAMPLE 5: Consider the quadratic-loss utility u(a, 6, ) = —(a — 6 — w)?, which im-
plies that the optimal action takes the form a*(6, w) = 6 + w. Suppose that F and F
are cdfs of the Gaussian distributions N (u, 0?) and N(f, 6%). Then the left-hand side

~ (97#)2 ~
of (15) is given by [ £ J

[~ . . .
AL =Ry 17 QY Thus, there is no interior steady state, and

N 27 &
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whenever p > g (respectively, u < ), the unique steady state is given by w (respectively,
w), paralleling Example 1 in the binary action setting.
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