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APPENDIX B: DERIVATION OF EXAMPLES FROM SECTION 3

B.1. Example 1: Partisan Bias

SIGNALS AND PREFERENCES ARE ALIGNED (Assumptions 1 and 2) since both types have
the same subjective signal distributions and preferences. The autarkic type θ2 plays both
actions with positive probability and the social type θ1 places positive probability on θ2,
which establishes that Assumption 3 holds. Assumption 4 is redundant in a binary action
decision problem, since Assumption 3 guarantees that the social type believes that the
autarkic type plays both actions with positive probability. For technical convenience, we
assume that the signal distributions are continuous and symmetric, FR(s) = 1−FL(1− s).

From the action probabilities derived in Section 3.1, at likelihood ratio λ1, type
θ1 believes action L occurs with probability ψ̂1(L|ω�λ1) = π(θ1)Fω(1/(1 + λ1)) +
π(θ2)Fω(0�5), whereas the true probability of action L is ψ(L|ω�λ1) = π(θ1)Fω((1/(1 +
λ1))1/ν) +π(θ2)Fω(0�51/ν). The construction of γ1(L�0) in Section 3.3 follows from eval-
uating these expressions at λ1 = 0. Similarly, the construction of γ1(L�∞) follows from
evaluating these expressions at λ1 = ∞,

π(θ2)FL
(
0�51/ν

)
log

FR(0�5)
FL(0�5)

+ (
π(θ1) +π(θ2)

(
1 − FL(0�51/ν

)))
log

π(θ1) +π(θ2)
(
1 − FR(0�5)

)
π(θ1) +π(θ2)

(
1 − FL(0�5)

) �
We next characterize how �(ω) depends on ν. We write γ1(ω�λ;ν) and �(ω;ν) to

make this dependence on ν explicit. To simplify notation, define αν ≡ FL(0�51/ν) as the
probability that type θ2 chooses an L action in state L and πA ≡ π(θ2) as the probability
of the autarkic type. By symmetry, FR(0�5) = 1 − FL(0�5) = 1 − α1, and by definition of a
probability measure, π(θ1) = 1 −πA. Also note that FL strictly increasing implies that αν
is strictly increasing in ν, symmetry implies that α1 > 1/2, and FL continuous implies αν is
continuous in ν.

First consider ω= L. To determine whether incorrect learning arises, that is, whether
∞ ∈�(L;ν), we need to determine the sign of

γ1(L�∞;ν) = πAαν log
1 − α1

α1
+ (1 −πAαν) log

1 −πA(1 − α1)
1 −πAα1

�
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Since α1 > 1/2, the update from an L action is negative, log 1−α1
α1
< 0, and the update from

an R action is positive, log 1−πA(1−α1)
1−πAα1

> 0. Note both terms are independent of ν. Since αν
is strictly increasing in ν, the probability of an L action, πAαν , is strictly increasing in ν and
the probability of an R action, 1−πAαν , is strictly decreasing in ν. Therefore, γ1(L�∞;ν)
is strictly decreasing in ν. At ν = 1, γ1(L�∞;1) < 0 by the concavity of the log opera-
tor. At ν = 0, α0 = 0 and therefore γ1(L�∞;0) = log 1−πA(1−α1)

1−πAα1
> 0. Given γ1(L�∞;ν) is

continuous in ν, there exists a cutoff ν1 ∈ (0�1) such that for ν < ν1, γ1(L�∞;ν) > 0 and
∞ ∈�(L;ν), and for ν > ν1, γ1(L�∞;ν) < 0 and ∞ /∈�(L;ν).

To determine whether correct learning arises, that is, whether 0 ∈ �(L;ν), we need to
determine the sign of

γ1(L�0;ν) = (
1 −πA(1 − αν)

)
log

1 −πAα1

1 −πA(1 − α1)
+πA(1 − αν) log

α1

1 − α1
�

As in the previous case, the update from an L action is negative and the probability of
an L action is strictly increasing in ν, while the update from an R action is positive and
the probability of an R action is strictly decreasing in ν. Therefore, γ1(L�0;ν) is strictly
decreasing in ν. At ν = 1, γ1(L�0;1) < 0 by the concavity of the log operator. At ν = 0,
α0 = 0 and therefore,

γ1(L�0;0) = (1 −πA) log
1 −πAα1

1 −πA(1 − α1)
+πA log

α1

1 − α1

≥ (1 −πAα1) log
1 −πAα1

1 −πA(1 − α1)
+πAα1 log

α1

1 − α1

= γ1(R�0;1) > 0�

Given γ1(L�0;ν) is continuous in ν, there exists a cutoff ν2 ∈ (0�1) such that for ν < ν2,
γ1(L�0;ν) > 0 and 0 /∈�(L;ν), and for ν > ν2, γ1(L�0;ν) < 0 and 0 ∈�(L;ν).

Finally we show that ν1 < ν2. Note

γ1(L�∞;ν) − γ1(L�∞;1) = πA(αν − α1)
(

log
1 − α1

α1
− log

1 −πA +πAα1

1 −πAα1

)
�

and by the symmetry of the signal distributions, γ1(L�0;ν) − γ1(L�0;1) = γ1(L�∞;ν) −
γ1(L�∞;1). Moreover, γ1(L�0;1) − γ1(L�∞;1) is zero at πA = 0 and πA = 1, and con-
cave in πA since the second derivative is

(1 − 2α1)πA(
πA(1 − α1) + (1 −πA)

)2
(πAα1 + 1 −πA)2

≤ 0�

Therefore, 0 /∈ �(ω;ν) before ∞ ∈ �(ω;ν). This implies that �(L;ν) = {∞} for ν ∈
(0� ν1), �(L;ν) = ∅ for ν ∈ (ν1� ν2), and �(L;ν) ={0} for ν ∈ (ν2�1].

Next consider ω=R. Then γ(R�∞;1) > 0 and γ(R�0;1) > 0, since only correct learn-
ing can occur at ν = 1. The only change in the above expressions is that now the true
probabilities of each action are taken with respect to state R rather than state L. There-
fore, the comparative statics are similar to the comparative statics in state L: γ1(R�0;ν)
and γ1(R�∞;ν) are decreasing in ν. Therefore, γ1(R�0;ν) > 0 implies 0 /∈ �(R;ν) for
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all ν ∈ (0�1]. Similarly, γ1(R�∞;ν) > 0 implies ∞ ∈�(R;ν) for all ν ∈ (0�1]. Therefore,
�(R;ν) ={∞} for all ν ∈ (0�1].

When there is a single social type, mixed learning and disagreement are trivially not
possible. By Theorem 4, the characterization of the locally stable set fully determines
asymptotic learning outcomes. This leads to the following proposition, the proof of which
follows from the construction of �(ω;ν) above.

PROPOSITION 5—Partisan Bias: When ω= L, there exist unique cutoffs 0< ν1 < ν2 < 1
such that (i) if ν ∈ (ν2�1], then almost surely learning is correct; (ii) if ν ∈ (ν1� ν2), then
almost surely learning is cyclical; (iii) if ν ∈ (0� ν1), then almost surely learning is incorrect.
When ω=R, almost surely learning is correct.

B.2. Example 2: Partisan Bias and Unawareness

We construct this variation by adding two types to the setting considered in Example 1.
Types θ1 and θ2 are partisan types with the same signal misspecification and preferences
as in Example 1. Types θ3 and θ4 are non-partisan types that correctly interpret signals,
F̂ω3 (s) = F̂ω4 (s) = Fω(s); θ3 is a social type while θ4 is an autarkic type.1 Both types have
the same preferences as θ1 and θ2, that is, ui(a�ω) = 1a=ω. Assume that an equal and
positive share of partisan and non-partisan types are autarkic, π(θ2)/(π(θ1) + π(θ2)) =
π(θ4)/(π(θ3) + π(θ4)) ∈ (0�1). Both social types have correct beliefs about the share of
autarkic types, but partisan θ1 believes all agents are partisan, π̂1(θ1) = π(θ1) + π(θ3)
and π̂1(θ2) = π(θ2) +π(θ4), and analogously, non-partisan θ3 believes that all agents are
non-partisan. Let q ≡ π(θ3) + π(θ4) denote the share of non-partisan types and πA ≡
π(θ2) + π(θ4) denote the share of autarkic types. To close the model, assume that the
signal distributions are continuous and symmetric, FR(s) = 1 − FL(1 − s) with support
S = [0�1], and p0 = 1/2. Signals are aligned since partisan types order signal realizations
in the same way as non-partisan types, that is, sν is increasing in s (Assumption 1).

The true action probabilities for partisan types θ1 and θ2 are identical to those derived
in Section 3.1 for Example 1, as are θ1’s subjective action probabilities for each type.
A non-partisan type θi ∈{θ3� θ4} who has likelihood ratio λ and observes signal realization
s updates to belief pi (λ�s)

1−pi(λ�s) = λ( s
1−s ). It chooses action L if this belief is less than 1, which

is equivalent to s < 1/(1 + λ) = si�1(λ). At likelihood ratio λ3, type θ3 chooses L with
probability Fω(1/(1 + λ3)). Type θ4 is autarkic. Therefore, its likelihood ratio is constant
at λ4 = 1 and it chooses action L with probability Fω(0�5). Type θ3 has correct beliefs
about the probability that θ3 and θ4 choose action L.

We use these subjective and true action probabilities for each type to construct ψ̂1,
ψ̂3, and ψ. Partisan type θ1 is now also misspecified about the type distribution, since
it does not account for the non-partisan types. It believes action L occurs with proba-
bility ψ̂1(L|ω�λ) = (1 − πA)Fω(1/(1 + λ1)) + πAF

ω(0�5). This misspecification about
the type distribution leads the partisan type to underestimate the range of signal realiza-
tions for which other agents choose action L, while its signal misspecification causes it to
overestimate the probability of these signal realizations. The latter effect dominates, and
θ1 overestimates the frequency of action L. Non-partisan type θ3 has a correctly spec-
ified model of the signal distribution and believes that other agents do as well, since

1In a slight abuse of our previous notation, we maintain θ2 as the partisan autarkic type for consistency with
Example 1, which violates our convention that the first k types are the social types.
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it does not account for the partisan types. It believes action L occurs with probability
ψ̂3(L|ω�λ) = (1 −πA)Fω(1/(1 + λ3)) +πAFω(0�5). This type misspecification leads the
non-partisan type to believe that other agents are choosing L for a larger range of signal
realizations than is actually the case, which leads it to overestimate the frequency of L
actions. The true probability of action L is

ψ(L|ω�λ) = (1 − q)
(
(1 −πA)Fω

((
1/(1 + λ1)

)1/ν) +πAFω
(
0�51/ν

))
+ q((1 −πA)Fω

(
1/(1 + λ3)

) +πAFω(0�5)
)
�

Although the partisan and non-partisan social types have different models of the world,
their models collapse to the same subjective probability of each action when they have the
same current belief: for any λ with λ1 = λ3, ψ̂1(L|ω�λ) = ψ̂3(L|ω�λ). Therefore, these
types update their likelihood ratios in the same way following each action. For different
reasons, their beliefs both move too much towards state R following R actions and too
little towards state L following L actions. This implies that when there is a common prior,
after any history ht , beliefs are equal, λ1�t = λ3�t .2

Given that the two likelihood ratios move in unison, we can consider the partisan and
non-partisan social types as a single type to characterize asymptotic learning outcomes.
Disagreement and mixed learning do not arise, since it is not possible to separate beliefs.
Global stability immediately follows from local stability for the two agreement outcomes.
Therefore, determining the set of parameters (ν�q) for which each agreement outcome is
locally stable fully characterizes asymptotic learning outcomes. This leads to the following
proposition.

PROPOSITION 6—Partisan Bias: When ω = L, there exist unique cutoffs q1 ∈ (0�1) and
q2 ∈ (q1�1) such that:

(i) For q < q1, there exist unique cutoffs 0 < ν1(q) < ν2(q) < 1 such that if ν > ν2(q),
then almost surely learning is correct; if ν ∈ (ν1(q)� ν2(q)), then almost surely learning
is cyclical; and if ν < ν1(q), then almost surely learning is incorrect.

(ii) For q ∈ (q1� q2), there exists a unique cutoff 0 < ν2(q) < 1 such that if ν > ν2(q),
then almost surely learning is correct, and if ν < ν2(q), then almost surely learning is
cyclical.

(iii) For q > q2, almost surely learning is correct.
When ω=R, almost surely learning is correct.

PROOF: The construction of the locally stable set is similar to Example 1. To sim-
plify notation, define αν ≡ FL(0�51/ν) as the probability that type θ2 chooses action L
in state L. Given this notation, type θ4 chooses action L in state L with probability
α1. As in Example 1, FR(0�5) = 1 − FL(0�5) = 1 − α1, αν is strictly increasing in ν,
and α1 > 1/2. We characterize how �(ω) depends on ν and q. We write γ1(ω�λ;ν�q),
γ3(ω�λ;ν�q), and �(ω;ν�q) to make this dependence explicit. Since beliefs move in
unison, γ3(ω�λ;ν�q) = γ1(ω�λ;ν�q), and therefore, we can focus on characterizing
γ1(ω�λ;ν�q) at (0�0) and (∞�∞).

2Partisan and non-partisan types with the same likelihood ratio may choose different actions following a
given signal realization s, as they have different signal cutoffs.
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To determine whether (∞�∞) ∈�(L;ν�q), we need to determine the sign of

γ1

(
L� (∞�∞);ν�q) =ψ(

L|L� (∞�∞);ν�q) log
1 − α1

α1

+ψ(
R|L� (∞�∞);ν�q) log

1 −πA(1 − α1)
1 −πAα1

�

where ψ(L|L� (∞�∞);ν�q) ≡ πA((1−q)αν+qα1) and ψ(R|L� (∞�∞);ν�q) ≡ πA((1−
q)(1 − αν) + q(1 − α1)) + 1 − πA. Since α1 > 1/2, the update from an L action is
negative, log 1−α1

α1
< 0, and the update from an R action is positive, log 1−πA(1−α1)

1−πAα1
>

0. Note both terms are independent of ν and q. Since αν is strictly increasing in
ν, the probability of an L action, ψ(L|L� (∞�∞);ν�q), is strictly increasing in ν
and q, and the probability of an R action, ψ(R|L� (∞�∞);ν�q), is strictly decreas-
ing in ν and q. Therefore, γ1(L� (∞�∞);ν�q) is strictly decreasing in ν and q. At
ν = 1, both partisan and non-partisan types are identical, so ψ(L|L� (∞�∞);1� q) =
πAα1 and ψ(R|L� (∞�∞);1� q) = πA(1 − α1) + 1 − πA. Therefore, for any q ∈ [0�1],
γ1(L� (∞�∞);1� q) < 0 by the concavity of the log operator. Similarly, at q = 1,
for any ν ∈ [0�1], γ1(L� (∞�∞);ν�1) < 0 by the concavity of the log operator. At
ν = 0, θ2 chooses action R for all signal realizations, that is, α0 = 0. Therefore, at
q = 0, ψ(L|L� (∞�∞);0�0) = 0 and γ1(L� (∞�∞);0�0) = log 1−πA(1−α1)

1−πAα1
> 0. This es-

tablishes that there exists a cutoff q1 ∈ (0�1) such that for q < q1, there exists a cutoff
ν1(q) ∈ (0�1) such that for ν < ν1(q), γ1(L� (∞�∞);ν�q) > 0 and (∞�∞) ∈ �(L;ν�q),
and for ν > ν1(q), γ1(L� (∞�∞);ν�q) < 0 and (∞�∞) /∈ �(L;ν�q). For q > q1,
γ1(L� (∞�∞);ν�q) < 0 and (∞�∞) /∈�(L;ν�q).

To determine whether (0�0) ∈�(L;ν�q), we need to determine the sign of

γ1

(
L� (0�0);ν�q) = ψ

(
L|L� (0�0);ν�q) log

1 −πAα1

πAα1 + 1 −πA
+ψ(

R|L� (0�0);ν�q) log
α1

1 − α1
�

where ψ(L|L� (0�0);ν�q) ≡ πA((1 − q)αν + qα1) + 1 − πA and ψ(R|L� (0�0);ν�q) ≡
πA((1 − q)(1 − αν) + q(1 − α1)). As in the previous case, the update from an L action is
negative and the probability of an L action is strictly increasing in ν and q, while the up-
date from an R action is positive and the probability of an R action is strictly decreasing in
ν and q. Therefore, γ1(L� (0�0);ν�q) is strictly decreasing in ν and q. By similar reason-
ing to the case of (∞�∞), at ν = 1, γ1(L� (0�0);1� q) < 0 for all q ∈ [0�1], and at q = 1,
γ1(L� (0�0);ν�1) < 0 for all ν ∈ [0�1] by the concavity of the log operator. At ν = 0 and
q= 0, ψ(L|L� (0�0);0�0) = 1 −πA since α0 = 0. As in Example 1, γ1(L� (0�0);0�0) > 0.
This establishes that there exists a cutoff q2 ∈ (0�1) such that for q < q2, there exists a
cutoff ν2(q) such that for ν < ν2(q), γ1(L� (0�0);ν�q) > 0 and (0�0) /∈�(L;ν�q), and for
ν > ν2(q), γ1(L� (0�0);ν�q) < 0 and (0�0) ∈�(L;ν�q). For q > q2, γ1(L� (0�0);ν�q) < 0
and (0�0) ∈�(L;ν�q).

To show that q1 < q2 and ν1(q) < ν2(q) for all q < q1, note γ1(L� (∞�∞);ν�q) −
γ1(L� (∞�∞);1� q) is equal to

πA(1 − q)(αν − α1)
(

log
1 −πAα1

πAα1 + 1 −πA − log
α1

1 − α1

)
�
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and by the symmetry of the signal distributions, γ1(L� (0�0);ν�q) − γ1(L� (0�0);1� q) =
γ1(L� (∞�∞);ν�q)−γ1(L� (∞�∞);1� q). Moreover, γ1(L� (0�0);1� q)−γ1(L� (∞�∞);
1� q) is 0 at πA = 0, 0 at πA = 1, and concave in πA since the second derivative is

πA
(
1 − 4q+ 4q2

)
(2 − 2α1 − 1)(

πA(1 − α1) + 1 −πA
)2

(πAα1 + 1 −πA)2
≤ 0�

Therefore, (0�0) /∈�(ω;ν�q) before (∞�∞) ∈�(ω;ν�q).
Next consider ω = R. Then γ(R� (∞�∞);1� q) > 0 and γ(R� (0�0);1� q) > 0 for all

q ∈ [0�1], since only correct learning can occur at ν = 1. The only change in the above
expressions is that now the true probabilities of each action are taken with respect to state
R, rather than state L. Therefore, the comparative statics are similar to the comparative
statics in state L: γ1(R� (0�0);ν�q) and γ1(R� (∞�∞);ν�q) are decreasing in ν and q.
Therefore, γ1(R� (0�0);ν�q) > 0 for all ν and q, which implies (0�0) /∈ �(R;ν�q) for
all ν and q. Similarly, γ1(R� (∞�∞);ν�q) > 0 for all ν and q, which implies (∞�∞) ∈
�(R;ν�q) for all ν and q. Therefore, �(R;ν�q) = {(∞�∞)} for all ν and q and learning
is almost surely correct. Q.E.D.

APPENDIX C: PROOFS FROM SECTION 4

C.1. Section 4.1 (Overreaction)

PROOF OF OBSERVATION 1: Suppose agents observe signals directly. Modify the defi-
nition of the expected change in the log likelihood ratio to allow for an uncountable signal
space (as opposed to a finite action space):

γ̃(ω�λ;ν) ≡
∫
s∈S

log
(

s

1 − s
)ν

dFω(s)�

Then γ̃(ω�λ;ν) = νγ̃(ω�λ;1) since
∫
s∈S log( s

1−s )
ν dFω(s) = ν

∫
s∈S log( s

1−s ) dF
ω(s) =

νγ̃(ω�λ;1), where γ̃(ω�λ;1) is the expected change in the log likelihood ratio in the
correctly specified model. Therefore, γ̃(ω�λ;ν) has the same sign as γ̃(ω�λ;1). Since
correct learning obtains almost surely when agents have a correctly specified model,
�(L;1) = {0} and �(R;1) = {∞}. This implies that �(L;ν) = {0} and �(R;ν) = {∞} for
all ν ∈ [1�∞). Berk (1966) showed that beliefs converges a.s. in state L to the unique ele-
ment in �(L). Therefore, correct learning occurs almost surely, independent of ν. Q.E.D.

PROOF OF PROPOSITION 1: Let x ≡ π(θ1)/π(θ2) denote the ratio of social to autar-
kic types. If an agent is an autarkic type with overreaction parameter ν, then p̂∗(ν) ≡

(p∗)1/ν

(1−p∗)1/ν+(p∗)1/ν is the signal cutoff to choose action a1. Note that this reduces to p∗ for a
correctly specified type, that is, p̂∗(1) = p∗.

We first construct the locally stable set. We write γi(ω�λ;x�ν) and �(ω;x�ν) to
make these expressions’ dependence on parameters x and ν explicit. Define 
0(x�ν) ≡
γ1(L�0;x�ν)(x+ 1) and 
∞(x�ν) ≡ γ1(L�∞;x�ν)(x+ 1). Then, from the construction
of γi(ω�λ;x�ν),


0(x�ν) ≡ (
FL

(
p̂∗(ν)

) + x) log
FR

(
p∗) + x

FL
(
p∗) + x − FR(p̂∗(ν)

)
log

FR
(
p∗)

FL
(
p∗)
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+ (
FL(1/2) − FR(1/2) + FR(p̂∗(ν)

) − FL(p̂∗(ν)
))

log
FR(1/2) − FR(p∗)
FL(1/2) − FL(p∗) �


∞(x�ν) ≡ − (
FR

(
p̂∗(ν)

) + x) log
FR

(
p∗) + x

FL
(
p∗) + x + FL(p̂∗(ν)

)
log

FR
(
p∗)

FL
(
p∗)

+ (
FL(1/2) − FR(1/2) + FR(p̂∗(ν)

) − FL(p̂∗(ν)
))

log
FR(1/2) − FR(p∗)
FL(1/2) − FL(p∗) �

These functions have the same sign as γ1(L�0;x�ν) or γ1(L�∞;x�ν), respectively.
Therefore, the signs of 
0(x�ν) and 
∞(x�ν) can be used to characterize the locally stable
set �(ω;x�ν). Since there is a single social type, long-run learning is fully determined by
�(ω;x�ν).

To show the desired cutoffs exist, we show (i) ν 	→ 
0(x�ν) crosses zero at most once
for a fixed x, (ii) if 0 /∈ �(L;x�ν) for some x′, then 0 /∈ �(L;x�ν) for all x > x′, (iii)
∞ /∈�(L;x�ν) for all (x�ν). To show (i), note that the derivative of 
0(x�ν) with respect
to ν is

∂
0

∂ν
= dp̂∗(ν)

dν
fL

(
p̂∗(ν)

)

×
(

log
FR

(
p∗) + x

FL
(
p∗) + x − p̂∗(ν)

1 − p̂∗(ν)
log

FR
(
p∗)

FL
(
p∗)

−
(

1 − p̂∗(ν)
1 − p̂∗(ν)

)
log

FR(1/2) − FR(p∗)
FL(1/2) − FL(p∗)

)
�

where we use the property that f R(p̂∗(ν))/f L(p̂∗(ν)) = p̂∗(ν)/(1 − p̂∗(ν)), which fol-
lows from the normalization that signal realizations are posterior beliefs. The sign of this
derivative is the same as the sign of

log
FR

(
p∗) + x

FL
(
p∗) + x + p̂∗(ν)

1 − p̂∗(ν)

(
log

FR(1/2) − FR(p∗)
FL(1/2) − FL(p∗) − log

FR
(
p∗)

FL
(
p∗)

)

− log
FR(1/2) − FR(p∗)
FL(1/2) − FL(p∗) �

This expression is increasing in ν, so ν 	→ 
0(x�ν) is either decreasing, U-shaped, or in-
creasing. Given 
0(x�1) ≤ 0, ν 	→ 
0(x�ν) changes signs at most once. Therefore, for a
fixed x, there exists a cutoff ν̄ > 1 such that 0 /∈�(L;x�ν) for all ν > ν̄ and 0 ∈�(L;x�ν)
for all ν < ν̄. For (ii), note that the derivative ∂
0/∂ν is strictly increasing in x. If we can
show that 
0(x�1) is increasing in x, then as x increases, λ = 0 becomes unstable at a
lower value of ν. The derivative of 
0(x�1) with respect to x is

∂
0

∂x
= log

FR
(
p∗) + x

FL
(
p∗) + x + FL

(
p∗) − FR(p∗)
FR

(
p∗) + x �
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Moreover, the second derivative is

∂2
0

∂x2 = −
(
FL

(
p∗) − FR(p∗))2

(
FL

(
p∗) + x)(FR(p∗) + x)2 < 0�

So x 	→ 
0(x�1) is concave in x and limx→∞
∂
0
∂x

(x�1) = 0. Therefore, ∂
0
∂x

(x�1) ≥ 0 for
all x. Finally, 
0(x�ν) ≥ 
0(x′� ν) for x > x′. Therefore, as x increases, γ1(L�0;x�ν)
crosses 0 at a lower ν, that is, if 0 /∈�(L;x′� ν), then 0 /∈�(L;x�ν). For (iii), the derivative
of 
∞(x�ν) with respect to ν is

∂
∞
∂ν

= dp̂∗(ν)
dν

fR
(
p̂∗(ν)

)

×
(

− log
FR

(
p∗) + x

FL
(
p∗) + x + 1 − p̂∗(ν)

p̂∗(ν)
log

FR
(
p∗)

FL
(
p∗)

−
(

1 − p̂∗(ν)
p̂∗(ν)

− 1
)

log
FR(1/2) − FR(p∗)
FL(1/2) − FL(p∗)

)
�

This derivative is maximized at x = 0 for a fixed ν since log FR(p∗)+x
FL(p∗)+x is monotone in x.

At x= 0, ∂
∞
∂ν

(0� ν) < 0. Therefore, ∂
∞
∂ν

(x�ν) < 0 for all (x�ν) and ∞ /∈ �(L;x�ν) for all
(x�ν).

The symmetric environment implies identical cutoffs in state R. Therefore, π̄ and ν̄
exist and satisfy the desired properties. Finally,

lim
x→∞

lim
ν→∞


0(x�ν) = FR(p∗) − FL(p∗) − FR(1/2) log
FR

(
p∗)

FL
(
p∗) > 0

by assumption. Therefore, cyclical learning occurs for some parameters. Q.E.D.

C.2. Section 4.2 (Naive Learning)

We first prove Proposition 3 and then Proposition 2, as the latter is based on the former.

PROOF OF PROPOSITION 3: Let αL ≡ FL(1/2) be the probability an autarkic type plays
action L in state L and αR ≡ FR(1/2) be the probability an autarkic type plays action L
in state R. Note that αL ∈ (0�1) and αR ∈ (0�1), since private signals are informative. In
a slight abuse of notation, let π̂i denote π̂i(θA) and π denote π(θA) to abbreviate the
following expressions.

We first construct the locally stable set. We write γi(ω�λ; π̂i) and �(ω; π̂1� π̂2) to make
these expressions’ dependence on π̂1 and π̂2 explicit. The local stability of correct learning
is determined by the sign of

γi
(
L� (0�0); π̂i

) = (παL + 1 −π) log
(
π̂iαR + 1 − π̂i
π̂iαL + 1 − π̂i

)
+π(1 − αL) log

(
1 − αR
1 − αL

)
�

If θi has a correctly specified model, γi(L� (0�0);π) < 0. This expression is decreasing in
π̂i. Therefore, γi(L� (0�0); π̂i) < 0 for all π̂i ≥ π. This implies that (0�0) ∈ �(L; π̂1� π̂2)
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for all π̂1, π̂2. Therefore, correct learning arises with positive probability at any level of
heterogeneity. The local stability of incorrect learning is determined by the sign of

γi
(
L� (∞�∞); π̂i

) = παL log
(
αR

αL

)
+ (
π(1 − αL) + 1 −π)

log
(
π̂i(1 − αR) + 1 − π̂i
π̂i(1 − αL) + 1 − π̂i

)
�

This expression is increasing in π̂i and is equivalent to the representative agent model
at π̂i = π̂. Therefore, if γi(L� (∞�∞); π̂) < 0, then γ1(L� (∞�∞); π̂1) < 0 since π̂1 ≤ π̂
by definition. This implies that if incorrect learning does not arise in the representative
agent model with bias π̂, that is, (∞�∞) /∈ �(L; π̂� π̂), then it does not arise in any cor-
responding heterogeneous model with average bias π̂, that is, (∞�∞) /∈�(L; π̂1� π̂2) for
all π̂1, π̂2 such that (π̂1 + π̂2)/2 = π̂. Further, we know from Bohren (2016) that there
exists a cutoff π ∈ (π�1] such that for π̂i > π, γi(L� (∞�∞); π̂i) > 0, with π < 1 for small
enough π. Therefore, (∞�∞) ∈ �(L; π̂� π̂) for π̂ > π and (∞�∞) ∈ �(L; π̂1� π̂2) for
π̂1 >π. The local stability of disagreement is determined by the sign of

γi
(
L� (0�∞); π̂i

) = (
παL + (1 −π)/2

)
log

( π̂iαR + 1
2

(1 − π̂i)

π̂iαL + 1
2

(1 − π̂i)

)

+ (
π(1 − αL) + (1 −π)/2

)
log

( π̂i(1 − αR) + 1
2

(1 − π̂i)

π̂i(1 − αL) + 1
2

(1 − π̂i)

)

= π(2αL − 1) log
( π̂i(1 − αL) + 1

2
(1 − π̂i)

π̂iαL + 1
2

(1 − π̂i)

)
�

where the second equality follows from symmetry, αR = 1 − αL. Given αL > 1/2, (π̂i(1 −
αL) + 1

2 (1− π̂i))/(π̂iαL+ 1
2 (1− π̂i)) < 1 and 2αL−1> 0. Therefore, γi(L� (0�∞); π̂i) < 0

for any π̂i. This implies that (0�∞) almost surely does not arise, that is, (0�∞) /∈
�(L; π̂1� π̂2). Given γi(L� (∞�0); π̂i) = γi(L� (0�∞); π̂i), (∞�0) almost surely does
not arise. Therefore, almost surely disagreement does not arise. The construction of
�(R; π̂1� π̂2) is analogous.

Next, we rule out mixed learning. Since correct learning is always locally stable, the only
candidate mixed outcomes are λ∗

1 = ∞ or λ∗
2 = ∞. As argued above, γ1(L� (0�∞); π̂1) < 0

for any π̂1 and γ2(L� (∞�0); π̂2) < 0 for any π̂2. This implies �M (L) = ∅. Therefore,
mixed learning almost surely does not arise. The construction of �M (R) is analogous.

Given �M (ω) = ∅ and �(ω; π̂1� π̂2) does not contain any disagreement outcomes—and
therefore, we do not need to consider maximal accessibility—by Theorem 4, �(ω; π̂1� π̂2)
fully characterizes the set of asymptotic learning outcomes. From the above characteriza-
tion, either �(ω; π̂1� π̂2) = {(0�0)} or �(ω; π̂1� π̂2) = {(0�0)� (∞�∞)}. Therefore, either
learning is almost surely correct, or learning is almost surely correct or incorrect with both
occurring with positive probability. Further, if �(ω; π̂� π̂) ={(0�0)}, then �(ω; π̂1� π̂2) =
{(0�0)} for all π̂1, π̂2 such that (π̂1 + π̂2)/2 = π̂, and if �(ω; π̂1� π̂2) = {(0�0)� (∞�∞)},
then �(ω; π̂� π̂) ={(0�0)� (∞�∞)} at π̂ = (π̂1 + π̂2)/2. Q.E.D.
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PROOF OF PROPOSITION 2: This result follows directly from the constructions of
γi(ω�λ; π̂i) in Proposition 3. Generically, γi(ω� (0�0); π̂i) �= 0 and γi(ω� (∞�∞); π̂i) �= 0
for i = 1�2. Given an average bias π̂, consider the case where γi(ω� (0�0); π̂) �= 0 and
γi(ω� (∞�∞); π̂) �= 0 for i= 1�2. For any δ > 0, there exists an ε such that for |π̂1 − π̂|<
ε/2 and |π̂2 − π̂|< ε/2, |γi(ω�λ; π̂i) − γi(ω�λ; π̂)|< δ for λ ∈ {(0�0)� (∞�∞)} and
i = 1�2. Choosing δ small enough ensures that γi(ω�λ; π̂i) and γi(ω�λ; π̂) have the
same sign. Therefore, �(ω; π̂1� π̂2) = �(ω; π̂� π̂) and the heterogeneous set-up has the
same set of learning outcomes as the corresponding representative agent set-up. Q.E.D.

C.3. Section 4.3 (Level-k)

PROOF OF PROPOSITION 4: Let λ = (λ2�λ3) denote the vector of likelihood ratios for
the social types θ2 and θ3. Note λ1�t = 1 for all t. When type θi ∈ {θ1� θ2� θ3} has current
belief λi, it chooses action R iff it observes a signal realization s ≥ 1/(λi + 1). Given
λ1 = 1, type θ1 chooses action L with probability Fω(0�5) and action R with probability
1 − Fω(0�5), independent of the history. Type θ2’s subjective probability of each L action
in the history is the probability that a level-1 type chooses action L, ψ̂2(L|ω�λ) = Fω(0�5)
and its subjective probability of each R action is ψ̂2(R|ω�λ) = 1 − Fω(0�5), independent
of the history. Given belief λ2, level-2 chooses an L action with probability Fω(1/(λ2 +1))
and an R action with probability 1 − Fω(1/(λ2 + 1)). Type θ3’s subjective probability of
each L action is the weighted average of the probability that a level-1 type and a level-2
type choose action L,

ψ̂3(L|ω�λ) = (1 − ε)Fω
(
1/(λ2 + 1)

) + εFω(0�5)�

which does depend on the history through λ2. The subjective probability of an R action is
analogous. Finally, the true probability of an L action depends on the correct distribution
over types,

ψ(L|ω�λ) = π(θ1)Fω(0�5) +π(θ2)Fω
(
1/(λ2 + 1)

) +π(θ3)Fω
(
1/(λ3 + 1)

)
�

To simplify the exposition, let αL ≡ FL(0�5) be the probability a level-1 type plays action
L in state L and αR ≡ FR(0�5) be the probability a level-1 type plays action L in state R.
Note that αL ∈ (0�1) and αR ∈ (0�1), since private signals are informative.

Supposeω=L. We first consider local stability for the level-3 type. At the correct learn-
ing outcome, (0�0), the level-2 type chooses action L for all signal realizations. There-
fore, the level-3 type believes that L actions are approximately uninformative for small ε,
ψ̂3(L|R�(0�0))
ψ̂3(L|L�(0�0))

= 1−ε+εαR
1−ε+εαL ≈ 1 and R actions are from the level-1 type, ψ̂3(R|R�(0�0))

ψ̂3(R|L�(0�0))
= 1−αR

1−αL . Since
only the level-1 type plays action R, the true probability of an R action is π(θ1)(1 − αL).
Therefore, for small ε, γ3(L� (0�0)) = (π(θ1)αL+π(θ2) +π(θ3)) log 1−ε+εαR

1−ε+εαL +π(θ1)(1−
αL) log 1−αR

1−αL ≈ π(θ1)(1 − αL) log 1−αR
1−αL > 0 and correct learning is not locally stable for the

level-3 type, (0�0) /∈ �3(L). Similarly, for small ε, γ3(L� (∞�∞)) ≈ π(θ1)αL log αR
αL
< 0

and incorrect learning is not locally stable for the level-3 type, (∞�∞) /∈ �3(L). This es-
tablishes that correct learning and incorrect learning almost surely do not occur for small
ε, as neither outcome is locally stable for level-3 types.

This leaves the disagreement outcomes as candidate learning outcomes. Consider
(0�∞). As in the case of (0�0), the level-3 type believes that L actions are approximately
uninformative and R actions are from the level-1 type. But now, this confirms the level-3
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type’s belief that the state is R, γ3(L� (0�∞)) ≈ (π(θ1)(1 −αL) +π(θ3)) log 1−αR
1−αL > 0 and

(0�∞) ∈ �3(L). Similarly, γ3(L� (∞�0)) ≈ (π(θ1)αL + π(θ3)) log αR
αL
< 0 and (∞�0) ∈

�3(L). Therefore, for small ε, both disagreement outcomes are locally stable for the level-
3 type, �3(L) ={(0�∞)� (∞�0)}.

Next, we determine whether the disagreement outcomes are locally stable for the level-
2 type. The level-2 type believes that all actions are from level-1 types. Therefore, it in-
terprets L and R actions in the same way at both disagreement outcomes. At (0�∞), the
true probability of an L action is π(θ1)αL +π(θ2), while at (∞�0), it is π(θ1)αL +π(θ3).
Therefore, γ2(L� (0�∞)) = (π(θ1)αL +π(θ2)) log αR

αL
+ (π(θ1)(1 − αL) +π(θ3)) log 1−αR

1−αL
and γ2(L� (∞�0)) = (π(θ1)αL + π(θ3)) log αR

αL
+ (π(θ1)(1 − αL) + π(θ2)) log 1−αR

1−αL . The
signs of these expressions vary with the true distribution of types. To characterize the re-
gion of the type distribution at which each disagreement outcome is locally stable, we
use the inequalities (a) αR

αL
< 1, (b) 1−αR

1−αL > 1, and (c) from the correctly specified model,
αL log αR

αL
+ (1 − αL) log 1−αR

1−αL < 0, as well as the property that π 	→ γ2(L� (0�∞)) and
π 	→ γ2(L� (∞�0)) are continuous.

Case (i): As π(θ3) → 0, γ2(L� (0�∞)) → (π(θ1)αL + 1 − π(θ1)) log αR
αL

+ π(θ1)(1 −
αL) log 1−αR

1−αL < 0 for all π(θ1), where the negative sign follows from inequalities (a) and
(c). Therefore, there exists a cutoff c1 > 0 such that for π(θ3) < c1, (0�∞) ∈�2(L) for all
π(θ1) and π(θ2).

Case (ii): As π(θ3) → 1, γ2(L� (0�∞)) → log 1−αR
1−αL > 0 and γ2(L� (∞�0)) → log αR

αL
< 0.

Therefore, there exists an interior cutoff c2 ∈ (0�1) such that for π(θ3) > c2, (0�∞) /∈
�2(L) and there exists a cutoff c3 < 1 such that for π(θ3) > c3, (∞�0) /∈ �2(L) for all
π(θ1) and π(θ2), where c2 > 0 follows from part (i). Therefore, there exists an interior
cutoff π̄3 = max{c2� c3} ∈ (0�1) such that if π(θ3) > π̄3, neither disagreement outcome is
locally stable for θ2. Combined with �3(L) ={(0�∞)� (∞�0)}, this implies that �(L) = ∅
for π(θ3) > π̄3 and small ε.

Case (iii): As π(θ2) → 0, γ2(L� (∞�0)) → (π(θ1)αL + 1 − π(θ1)) log αR
αL

+ π(θ1)(1 −
αL) log 1−αR

1−αL < 0 for all π(θ1), where the negative sign follows from inequalities (a) and
(c). Therefore, there exists a cutoff c4 > 0 such that for π(θ2) < c4, (∞�0) /∈�2(L) for all
π(θ1) and π(θ3).

Case (iv): As π(θ2) → 1, γ2(L� (0�∞)) → log αR
αL
< 0 and γ2(L� (∞�0)) → log 1−αR

1−αL >
0. Therefore, there exists a cutoff c5 < 1 such that for π(θ2) > c5, (0�∞) ∈ �2(L) and
there exists an interior cutoff c6 ∈ (0�1) such that for π(θ2) > c6, (∞�0) ∈ �2(L) for all
π(θ1) and π(θ3), where c6 > 0 follows from case (iii). Therefore, there exists an interior
cutoff π̄2 = max{c5� c6} ∈ (0�1) such that if π(θ2) > π̄2, both disagreement outcomes are
locally stable for θ2. Combined with �3(L) = {(0�∞)� (∞�0)}, this implies that �(L) =
{(0�∞)� (∞�0)} for π(θ2) > π̄2 and small ε.

Case (v): As π(θ1) → 1, γ2(L� (0�∞)) → αL log αR
αL

+ (1 − αL) log 1−αR
1−αL < 0 and

γ2(L� (∞�0)) → αL log αR
αL

+ (1 − αL) log 1−αR
1−αL < 0. Therefore, there exists an interior

cutoff c7 ∈ (0�1) such that for π(θ1) > c7, (0�∞) ∈ �2(L) and there exists an interior
cutoff c8 ∈ (0�1) such that for π(θ1) > c8, (∞�0) /∈�2(L) for all π(θ2) and π(θ3), where
c7 > 0 and c8 > 0 follow from cases (ii) and (iv). Therefore, there exists an interior cutoff
π̄1 = max{c7� c8}∈ (0�1) such that if π(θ1) > π̄1, (0�∞) is locally stable for θ2 and (∞�0)
is not. Combined with �3(L) = {(0�∞)� (∞�0)}, this implies that �(L) = {(0�∞)} for
π(θ1) > π̄1 and small ε.
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Fixing π(θ2), γ2(L� (0�∞)) is increasing in π(θ3). Given this, we next show that the
type distribution can be divided into two connected regions in the simplex such that
(0�∞) ∈�2(L) or (0�∞) /∈�2(L), and these regions are separated by the unique solution
to γ2(L� (0�∞)) = 0. As shown above, at π(θ2) = 0 and π(θ3) = 0, γ2(L� (0�∞)) < 0, and
at π(θ2) = 0 and π(θ3) = 1, γ2(L� (0�∞)) > 0. Therefore, there exists a cutoff c9 ∈ (0�1)
such that at π(θ2) = 0 and π(θ3) = c9, γ2(L� (0�∞)) = 0. Similarly, there exists a cutoff
c10 ≡ log αL

αR
/(log αL

αR
− log 1−αL

1−αR ) such that at π(θ1) = 0 and π(θ3) = c10, γ2(L� (0�∞)) = 0.
Given γ2(L� (0�∞)) is linear in π(θ2) and π(θ3), the solution to γ2(L� (0�∞)) = 0 is lin-
ear in the simplex and represented by the line connecting (1−c9�0� c9) and (0�1−c10� c10).
This establishes the above statement.

Fixing π(θ2), γ2(L� (∞�0)) is decreasing in π(θ3). Therefore, by similar reasoning,
the type distribution can be divided into two connected regions such that (∞�0) ∈
�2(L) or (∞�0) /∈ �2(L), and these regions are separated by the unique solution
to γ2(L� (∞�0)) = 0. Given γ2(L� (∞�0)) is linear in π(θ2) and π(θ3), the solution
to γ2(L� (∞�0)) = 0 is linear in the simplex and represented by the line connecting
(1 − c11� c11�0) and (0�1 − c12� c12), where c11 ∈ (0�1) is the value of π(θ2) such that
γ2(L� (∞�0)) = 0 when π(θ3) = 0, and c12 ≡ log 1−αL

1−αR /(log 1−αL
1−αR − log αL

αR
).

Given the linearity of both solutions, if c10 ≥ c12, then the solution to γ2(L� (0�∞)) = 0
lies above the solution to γ2(L� (∞�0)) = 0. Therefore, there are three distinct re-
gions such that for small ε, either (i) �(L) = ∅, (ii) �(L) = {(0�∞)}, or (iii) �(L) =
{(0�∞)� (∞�0)}. Otherwise, if c10 ≤ c12, the solutions cross exactly once. Therefore, there
are four distinct regions such that for small ε, either (i) �(L) = ∅, (ii) �(L) = {(0�∞)},
(iii) �(L) = {(∞�0)}, or (iv) �(L) = {(0�∞)� (∞�0)}. Note that when the signal distri-
butions are symmetric, c10 ≥ c12. The construction of �(R) is analogous.

We next show that both disagreement outcomes are maximally accessible at all type
distributions. Formally, we show that for any π ∈ �((θ1� θ2� θ3)) and ε ∈ (0�1], (0�∞)
and (∞�0) are maximally accessible. At λ = (0�0), type θ2 perceives L actions as stronger
evidence of state L than type θ3,

ψ̂2

(
L|R� (0�0)

)
ψ̂2

(
L|L� (0�0)

) = αR

αL
<
ε+ (1 − ε)αR
ε+ (1 − ε)αL

= ψ̂3

(
L|R� (0�0)

)
ψ̂3

(
L|L� (0�0)

) �
and both types perceive R actions in the same way,

ψ̂2

(
R|R� (0�0)

)
ψ̂2

(
R|L� (0�0)

) = ψ̂3

(
R|R� (0�0)

)
ψ̂3

(
R|L� (0�0)

) = 1 − αR
1 − αL �

Therefore, θ3 �(0�0) θ2. From Definition 7, this implies that (0�∞) is maximally accessible.
At λ = (∞�∞), type θ2 perceives R actions as stronger evidence of state R than type θ3,

ψ̂2

(
R|R� (∞�∞)

)
ψ̂2

(
R|L� (∞�∞)

) = 1 − αR
1 − αL >

ε+ (1 − ε)(1 − αR)
ε+ (1 − ε)(1 − αL)

= ψ̂3

(
R|R� (∞�∞)

)
ψ̂3

(
R|L� (∞�∞)

) �
and both types perceive L actions in the same way,

ψ̂2

(
L|R� (∞�∞)

)
ψ̂2

(
L|L� (∞�∞)

) = ψ̂3

(
L|R� (∞�∞)

)
ψ̂3

(
L|L� (∞�∞)

) = αR

αL
�
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Therefore, θ2 �(∞�∞) θ3. From Definition 7, this implies that (∞�0) is maximally accessi-
ble. Therefore, a disagreement outcome arises with positive probability if and only if it is
in �(ω).

Finally, we need to rule out mixed learning outcomes. Suppose ω = L and consider
the four possible mixed outcomes. Consider (0� θ3). By the concavity of the log opera-
tor, αL log αR

αL
+ (1 − αL) log 1−αR

1−αL < 0. Therefore, since αR
αL
< 0, γ2(L� (0�0)) = (π1αL +

π(θ2) + π(θ3)) log αR
αL

+ π1(1 − αL) log 1−αR
1−αL < 0 and (0�0) ∈ �2(L). By the definition

of �M (L), this implies that (0� θ3) /∈ �M (L) and this mixed learning outcome almost
surely does not arise. Consider (∞� θ3). This outcome is in �M (L) if (∞�∞) /∈ �2(L)
and (0�∞) /∈ �2(L), which is equivalent to γ2(L� (∞�∞)) < 0 and γ2(L� (0�∞)) > 0.
However, γ2(L� (λ2�∞)) is increasing in λ2, so this is not possible. Therefore, (∞� θ3) /∈
�M (L) and this mixed learning outcome almost surely does not arise. Consider (0� θ2).
This outcome is in �M (L) if (0�0) /∈ �3(L) and (0�∞) /∈ �3(L). From the characteriza-
tion of �(L) above, we know that (0�∞) ∈ �3(L). Therefore, (0� θ2) /∈ �M (L) and this
mixed learning outcome almost surely does not arise. Consider (∞� θ2). This outcome
is in �M (L) if (∞�0) /∈ �3(L) and (∞�∞) /∈ �3(L). From the characterization of �(L)
above, we know that (∞�0) ∈ �3(L). Therefore, (∞� θ2) /∈ �M (L) and this mixed learn-
ing outcome almost surely does not arise. Together, this establishes �M (L) = ∅. Similar
logic shows �M (R) = ∅.

Given �M (ω) = ∅ and both disagreement outcomes are maximally accessible, by The-
orem 4, �(ω) determines the set of asymptotic learning outcomes. As ε → 1, �(ω) ⊆
{(0�∞)� (∞�0)}. Either �(ω) = ∅, in which case learning is cyclical for both types,
or �(ω) �= ∅, in which case beliefs almost surely converge to a limit random variable
with support �(ω). The construction of �(ω) above establishes the cutoffs on the
type distribution such that �(ω) = ∅, �(ω) = {(0�∞)}, �(ω) = {(∞�0)}, or �(ω) =
{(0�∞)� (∞�0)}. Q.E.D.

APPENDIX D: LEARNING CHARACTERIZATION: MORE THAN TWO SOCIAL TYPES

This section proves analogues of the global stability of disagreement, mixed learning,
and belief convergence results in Section 3 and Appendix A for any finite number of social
types. Together, this establishes a direct analogue of Theorem 4; an analogue of Corollary
2 immediately follows. These results nest the case of k≤ 2.

D.1. Global Stability of Disagreement

We first prove an analogue of Theorem 7 to show that separability can also be used
to establish the global stability of a disagreement outcome when there are more than
two social types. We then extend the definition of maximal accessibility and prove that it
implies the separability condition, establishing an analogue of Theorem 3.

THEOREM 7′—Global Stability of Disagreement (k ≥ 2): Consider a learning environ-
ment that is identified at certainty and satisfies Assumptions 1 to 4. Suppose disagreement
outcome λ∗ ∈�(ω) and, starting from agreement outcome λ∗

1 ∈{0k�∞k}, there exists a finite
sequence of adjacent disagreement outcomes λ∗

2� � � � �λ
∗
L = λ∗ such that for l= 1� � � � �L− 1,

either (i) (λ∗
l )i = 0, (λ∗

l+1)i = ∞, and λ∗
l is separable at zero for θi, or (ii) (λ∗

l )i = ∞,
(λ∗

l+1)i = 0, and λ∗
l is separable at infinity for θi. Then λ∗ is globally stable in state ω.
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PROOF: Given κ ∈ {1� � � � �k − 1}, consider disagreement outcome λ∗ = (0κ�∞k−κ).
Suppose λ∗ ∈ �(ω) and for each l = 1� � � � k− κ, λ∗

l = (0k−l+1�∞l−1) is separable at zero
for type θk−l+1. Given λ∗

l = (0k−l+1�∞l−1) is separable at zero for type θk−l+1, by Lemma
5, λ∗

l+1 = (0k−l�∞l) is adjacently accessible from λ∗
l . Since this holds for each element of

the sequence starting at λ∗
1 = 0k and ending at λ∗

k−κ+1 = λ∗, by Lemma 6, λ∗ is accessi-
ble. Fix an initial belief λ1 ∈ (0�∞)k and choose an ε < e−E , where E is defined in Eq.
(11). By accessibility, there exists a finite sequence ξ ofN actions that occurs with positive
probability, such that following ξ, λN+1 ∈ Bε(λ∗). Given λ∗ is locally stable, this implies
Pr(λt → λ∗|h = ξ) > 0. Given Pr(h = ξ) > 0, from any λ1 ∈ (0�∞)k, Pr(λt → λ∗) > 0.
This establishes that λ∗ is globally stable. The case in which there is a sequence of station-
ary beliefs that are separable at infinity is analogous, as is the proof for other disagreement
outcomes. Q.E.D.

We next use the maximal R-order �λ to define a sufficient condition for separability,
which we refer to as maximally separable. We use this condition to extend the definition
of maximal accessibility to the case of more than two social types.

DEFINITION 11—Maximally Separable (k ≥ 2): Belief λ∗ ∈ {0�∞}k \ ∞k is maximally
separable at zero for type θi with λ∗

i = 0 if θj �λ∗ θi for all j with λ∗
j = ∞ and θi �λ∗ θj for

all j �= i with λ∗
j = 0. Belief λ∗ ∈ {0�∞}k \ 0k is maximally separable at infinity for type θi

with λ∗
i = ∞ if θj �λ∗ θi for all j �= i with λ∗

j = ∞ and θi �λ∗ θj for all j with λ∗
j = 0.

DEFINITION 7′—Maximal Accessibility (k≥ 2): Disagreement outcome λ∗ ∈{0�∞}k \
{0k�∞k} is maximally accessible if, starting from agreement outcome λ∗

1 ∈{0k�∞k}, there
exists a finite sequence of adjacent disagreement outcomes λ∗

2� � � � �λ
∗
L = λ∗ such that for

l = 1� � � � �L− 1, either (i) (λ∗
l )i = 0, (λ∗

l+1)i = ∞, and λ∗
l is maximally separable at zero

for θi, or (ii) (λ∗
l )i = ∞, (λ∗

l+1)i = 0, and λ∗
l is maximally separable at infinity for θi.

As in the case of k = 2, maximal accessibility guarantees that there exists a finite se-
quence of a1 and aM actions that separates beliefs and moves them to a neighborhood
of the disagreement outcome. It is straightforward to verify from the primitives of the
model and is equivalent to Definition 7 when k= 2. Using Definition 7′, the statement of
Theorem 3′ is identical to Theorem 3.

THEOREM 3′—Global Stability of Disagreement (k ≥ 2): Consider a learning environ-
ment that satisfies Assumptions 1 to 4. If disagreement outcome λ∗ is in �(ω) and maximally
accessible, then λ∗ is globally stable in state ω.

PROOF: We show that Definition 7′ implies the conditions for separability outlined
in Theorem 7′. Given κ ∈ {1� � � � �k − 1}, consider λ∗ = (0κ�∞k−κ). Suppose λ∗ ∈ �(ω)
and λ∗ is maximally accessible, with λ∗

l = (0k−l+1�∞l−1) maximally separable at zero for
θk−l+1 for l= 1� � � �k−κ. For each l= 1� � � �k−κ, θk−l+1 �λ∗

l
θk−l implies that the subma-

trix �[θk−l+1� θk−l;a1� aM](λ∗
l ) defined in Eq. (14) has a positive determinant. Therefore,

there exists a c ∈R
2
+ that solves

�[θk−l+1� θk−l;a1� aM]
(
λ∗
l

) · c =
(

1
0

)
�
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By continuity, there exists a perturbation of c to c̃ ∈R
2
+ such that

�[θk−l+1� θk−l;a1� aM]
(
λ∗
l

) · c̃ =
(
Gk−l+1

Gk−l

)
�

where Gk−l+1 > 0 and Gk−l < 0. Moreover, �[θj;a1� aM](λ∗
l ) · c̃ > 0 for any j > k− l+ 1

and �[θj;a1� aM](λ∗
l ) · c̃ < 0 for any j < k− l, where �[θj;a1� aM](λ) is the submatrix of

Eq. (13) for type θj and actions a1 and aM . Therefore, by Definition 8, λ∗
l is separable at

zero for θk−l+1, since the definition holds for vector c′ ∈ (0�∞)|A| with c′
1 = c1, c′

M = c2,
and c′

i = 0 otherwise. The case of maximal separability at infinity is analogous, as is the
proof for the other disagreement outcomes. Q.E.D.

D.2. Mixed Learning

Consider the mixed learning outcome (λ∗
C�C) in which beliefs converge to λ∗

C ∈
{0�∞}|C| for some subset of social types C ⊂ �S with |C|∈ {1� � � � �k− 1} and beliefs do
not converge for the remaining social types N ≡�S \C , where λC denotes the likelihood
ratio vector λ restricted to a set of types C . Without loss of generality, maintain the con-
vention that the first |C| types are the convergent types, that is, C = {θ1� � � � � θ|C|}, and
the remaining types are the non-convergent types, that is,N ={θ|C|+1� � � � � θk} (it is always
possible to relabel the type space so that this holds).

For example, when k = 3, ((0�0)�{θ1� θ2}) denotes the mixed outcome where θ1 and
θ2’s beliefs converge to zero and θ3’s beliefs do not converge. If (0�0�0) ∈ �3(ω) or
(0�0�∞) ∈ �3(ω), then when 〈λ1�t � λ2�t〉 → (0�0), with positive probability the beliefs of
θ3 also converge in state ω. This is a sufficient condition to establish that ((0�0)�{θ1� θ2})
almost surely does not occur in state ω. Sufficient conditions to rule out mixed out-
comes in which the beliefs of two or more social types do not converge are more in-
volved, as we also need to ensure that the neighborhood of a locally stable outcome
for the non-convergent types is reached with positive probability when the beliefs of
the convergent types converge. For example, to rule out the mixed outcome (0� θ1) in
which θ1’s beliefs converge to zero and θ2 and θ3 have cyclical learning, in addition to
(0�0�0) ∈ �2(ω) ∩ �3(ω), we also need to show that from a neighborhood of the other
stationary beliefs with λ1 = 0, that is, λ ∈ {(0�∞�0)� (0�0�∞)� (0�∞�∞)}, either (i) be-
liefs enter a neighborhood of (0�0�0) with positive probability or (ii) λ ∈�2(ω) ∩�3(ω).
The following paragraphs formalize this idea.

We first define the concept of mixed accessibility. The concept applies to pairs of sta-
tionary beliefs in which non-convergent types whose components differ between the two
belief vectors agree, which we refer to as agreement adjacent beliefs.

DEFINITION 12—Agreement Adjacent: Given a set of typesN ⊂�S , distinct stationary
beliefs λN ∈{0�∞}|N| and λ′

N ∈{0�∞}|N| are agreement adjacent if λi = λj for each θi� θj ∈
N such that λ′

i �= λi and λ′
j �= λj .

Trivially, two stationary belief vectors that differ in only one component are agreement
adjacent. Given a mixed outcome and a stationary belief for the non-convergent types,
the set of stationary beliefs that are mixed accessible from this belief depends on the local
stability of this belief for each non-convergent type.

DEFINITION 13—Mixed Accessible (k ≥ 2): Given mixed outcome (λ∗
C�C) with N ≡

�S \ C , stationary belief λ′
N ∈ {0�∞}|N| is mixed accessible from distinct stationary belief
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λN ∈ {0�∞}|N| in state ω if λ′
N and λ′

N are agreement adjacent and (λ∗
C�λN) /∈ �i(ω) for

some θi ∈N such that λ′
i �= λi.

As we will show in the proof of Lemma 4′, mixed accessibility is a sufficient condition
to establish that with positive probability, the likelihood ratio process either transitions
between the neighborhoods of two agreement adjacent stationary beliefs or exits a neigh-
borhood of the mixed outcome. We next define a graph to represent which stationary
beliefs are mixed accessible from other stationary beliefs.

DEFINITION 14—Mixed Accessible Graph (k ≥ 2): Given (λ∗
C�C) with N ≡ �S \ C,

define the mixed accessible graph G(λ∗
C�C;ω) with nodes λN ∈ {0�∞}|N| as follows: there

is a directed edge from λN to λ′
N if and only if λ′

N is mixed accessible from λN in state ω.

We say (λ∗
C�C) is reducible in state ω if G(λ∗

C�C;ω) has no cycles. We refer to a node
with no edges leaving it as a terminal node—in other words, a node from which no other
nodes are mixed accessible. It follows from the definition of mixed accessibility that λN is
a terminal node in state ω if and only if (λ∗

C�λN) ∈ ⋂
θi∈N �i(ω).

We use this graph to define �M (ω) as the set of mixed outcomes that are not reducible,

�M (ω) ≡ {(
λ∗
C�C

)
a mixed outcome |

(
λ∗
C�C

)
is not reducible in state ω

}
� (20)

where a mixed outcome corresponds to λ∗
C ∈ {0�∞}|C|, C ⊂�S , and |C|∈ {1� � � � �k− 1}.

This definition is equivalent to Eq. (5) when k = 2. Using Eq. (20), the statement of
Lemma 4′ is identical to Lemma 4.

LEMMA 4′—Unstable Mixed Outcomes (k≥ 2): Consider a learning environment that is
identified at certainty and satisfies Assumptions 1 to 4. If mixed outcome (λ∗

C�C) /∈ �M (ω),
then Pr(λC�t → λ∗

C and λN�t does not converge) = 0 in state ω, where N ≡�S \C.

As in the case of k = 2, if a mixed learning outcome arises with positive probability,
then it must be in �M (ω). Therefore, if (λ∗

C�C) is reducible, then almost surely it does
not arise. Intuitively, if (λ∗

C�C) is reducible, then when the beliefs of the convergent types
are in a neighborhood of λ∗

C , almost surely either the beliefs of the convergent types leave
this neighborhood or the beliefs of the non-convergent types also converge. Reducibil-
ity is relatively straightforward to verify and is always satisfied in some important cases.
For instance, it holds when γi(ω�λ) < 0 for all λ ∈ {0�∞}k and θi ∈ �S (this includes
environments that are close to a correctly specified environment).3

PROOF OF LEMMA 4′: Fix state ω and consider mixed outcome (λ∗
C�C) with corre-

sponding graph G(λ∗
C�C;ω) and non-convergent types N ≡ �S \ C. Suppose (λ∗

C�C) is
reducible, that is, (λ∗

C�C) /∈ �M (ω). Let ε ∈ (0� e−E), where E is defined in Eq. (11), and
suppose λ1 ∈ int(Bε(λ∗

C)) × (0�∞)|N|. Let τ ≡ min{t|λt /∈ Bε(λ∗
C) × (0�∞)|N|} be the first

time that 〈λt〉 leaves a neighborhood of the mixed outcome. We will establish the fol-
lowing claim: almost surely, either (i) τ <∞ or (ii) 〈λt〉 converges for all social types.

3To see this, consider the graph induced by any mixed outcome (λ∗
C�C) with N ≡�S \C . Each node where

κ non-convergent types have belief λi = ∞ has an edge to all agreement adjacent nodes in which κ′ < κ
non-convergent types have belief λi = ∞ and does not have an edge to any other nodes. Therefore, every path
terminates at node 0|N|. For any mixed outcome (0|C|�C), this is a convergent point. For other mixed outcomes,
this is a point at which some θi ∈ C ’s belief eventually exits a neighborhood of λ∗

C .
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By the linearity of the likelihood ratio process, this implies the same holds whenever
λt ∈ int(Bε(λ∗

C)) × (0�∞)|N|, and therefore, (λ∗
C�C) almost surely does not occur.

Step 1: Show that for any terminal node λN ∈ G(λ∗
C�C;ω), when 〈λt〉 is in int(Bε(λ∗

C�
λN)), then with probability uniformly bounded away from zero, either 〈λt〉 → (λ∗

C�λN)
or τ < ∞. Given a terminal node λN ∈ G(λ∗

C�C;ω), as stated above, (λ∗
C�λN) ∈⋂

θi∈N �i(ω). If (λ∗
C�λN) ∈ ⋂

θi∈C �i(ω), then (λ∗
C�λN) is locally stable, so by Theorem 1,

when beliefs are in Bε(λ∗
C�λN), then 〈λt〉 → (λ∗

C�λN) with probability uniformly bounded
away from zero. Otherwise, if (λ∗

C�λN) /∈ ⋂
θi∈C �i(ω), then there exists a θi ∈ C such that

when 〈λt〉 is in int(Bε(λ∗
C�λN)), 〈λi�t〉 is bounded below by a process that almost surely

exits Bε(λ∗
C) (this also follows from the proof of Theorem 1). Therefore, τ <∞ with prob-

ability uniformly bounded away from zero. Together this implies that, starting from the
ε-neighborhood of any terminal node λN , with probability uniformly bounded away from
zero either τ <∞ or 〈λt〉 converges to (λ∗

C�λN).
Step 2: Show that for any non-terminal node λN ∈ G(λ∗

C�C;ω), when 〈λt〉 is in
int(Bε(λ∗

C�λN)), then with probability uniformly bounded away from zero, either 〈λt〉
enters

⋃
λ′
N∈E(λN ) int(Bε(λ∗

C�λ
′
N)) or τ <∞, where E (λN) denotes the set of nodes that

λN has edges to. Given a non-terminal node λN ∈ G(λ∗
C�C;ω), let U (λN) ⊂ N denote

the set of types such that (λ∗
C�λN) /∈�i(ω) for each θi ∈U (λN) and (λ∗

C�λN) ∈�i(ω) for
each θi ∈N \U (λN). As stated above, (λ∗

C�λN) /∈ ⋂
θi∈N �i(ω) for non-terminal nodes, so

U (λN) �= ∅.
Step 2a: We first define a space I(λN) adjacent to Bε(λN) and show that when 〈λt〉

is in int(Bε(λ∗
C�λN)), then with probability uniformly bounded away from zero, either

〈λt〉 enters int(Bε(λ∗
C) × I(λN)) or τ <∞. Given a set of types u ∈ P (U (λN)), where

P (·) denotes the power set, let Iu�i(λN) ≡ [ε�1/ε] if θi ∈ u and Iu�i(λN) ≡ Bε((λN)i)
if θi ∈ N \ u. Define Iu(λN) ≡ ∏

θi∈N Iu�i(λN) for each u ∈ P (U (λN)) and I(λN) ≡⋃
u∈P(U (λN ))\∅ Iu(λN). In other words, I(λN) is the space in which the beliefs of sub-

sets of types in U (λN) are in [ε�1/ε] and the beliefs of the remaining non-convergent
types are in the ε-neighborhood of λN . By the proof of Theorem 1, when 〈λt〉 is in
int(Bε(λ∗

C�λN)), then with probability uniformly bounded away from zero, 〈λi�t〉 exits
Bε((λ∗

C�λN)i) for some θi ∈U (λN) ∪C. Combined with ε < e−E , which ensures that 〈λi�t〉
does not enter Bε({0�∞} \ (λN)i) in the same period it exits Bε((λN)i) for any θi ∈ N ,
this implies that with probability uniformly bounded away from zero, either 〈λt〉 enters
int(Bε(λ∗

C) × I(λN)) or τ <∞.
Step 2b: We next show that when 〈λt〉 is in int(Bε(λ∗

C) × I(λN)), then with probabil-
ity uniformly bounded away from zero, either 〈λt〉 enters

⋃
λ′
N∈E(λN ) int(Bε(λ∗

C�λ
′
N)) or

τ <∞. First consider u ∈ P (U (λN)) such that (λN)i = 0 for some θi ∈ u. Suppose 〈λt〉
is in int(Bε(λ∗

C) × Iu(λN)). Note Iu�i(λN) = [ε�1/ε] for θi ∈ u and Iu�i(λN) ≡ Bε((λN)i)
for θi ∈ N \ u. Let V∞(λN�u) ⊂ {0�∞}|N| denote the set of stationary beliefs for non-
convergent types in which θi ∈ u has belief ∞, θi ∈N \ u such that (λN)i = ∞ has belief
∞, and θi ∈N \ u such that (λN)i = 0 has belief zero or infinity. Then there exists a finite
sequence of actions aM such that, starting from any belief in int(Bε(λ∗

C) × Iu(λN)), 〈λN�t〉
enters

⋃
λ′
N∈V∞(λN�u) int(Bε(λ′

N)).4 If 〈λC�t〉 exits Bε(λ∗
C) during this sequence, then τ <∞;

4To see this, note that when 〈λt〉 is in int(Bε(λ∗
C) × Iu(λN)), then 〈λi�t〉 is in [ε�1/ε] for θi ∈ u. Therefore,

we can construct a finite sequence of aM actions such that following this sequence, 〈λi�t〉 is in int(Bε(∞)) for
each θi ∈ u. For θi ∈N \u such that (λN)i = ∞, Iu�i(λN) ≡ Bε(∞), and therefore, 〈λi�t〉 remains in int(Bε(∞))
following this sequence. For θi ∈ N \ u such that (λN)i = 0, Iu�i(λN) ≡ Bε(0). If 〈λi�t〉 remains in int(Bε(0))
or enters int(Bε(∞)) following this sequence for each such θi ∈N \ u, then we are done. Otherwise, continue
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otherwise, 〈λt〉 is in
⋃

λ′
N∈V∞(λN�u) int(Bε(λ∗

C�λ
′
N)). Each belief λ′

N ∈ V∞(λN�u) is agree-
ment adjacent to λN , as a subset of types in N have belief 0 at λN and ∞ at λ′

N , and all
other types in N have the same belief at λN and λ′

N . By definition of V∞(λN�u), for each
λ′
N ∈ V∞(λN�u), (λN)i �= (λ′

N)i for θi ∈ u such that (λN)i = 0. Further, (λ∗
C�λN) /∈ �i(ω)

for each θi ∈ u. Therefore, each λ′
N ∈ V∞(λN�u) is mixed accessible from λN , which im-

plies V∞(λN�u) ⊂ E (λN). This establishes that, given u ∈ P (U (λN)) such that (λN)i = 0
for some θi ∈ u, when 〈λt〉 is in int(Bε(λ∗

C) × Iu(λN)), then with probability uniformly
bounded away from zero, either 〈λt〉 enters

⋃
λ′
N∈E(λN ) int(Bε(λ∗

C�λ
′
N)) or τ < ∞. Next

consider u ∈ P (U (λN)) such that (λN)i = ∞ for some θi ∈ u. Let V0(λN�u) denote the
set of stationary beliefs for non-convergent types in which θi ∈ u has belief zero, θi ∈N \u
such that (λN)i = 0 has belief zero, and θi ∈ N \ u such that (λN)i = ∞ has belief zero
or infinity. Then substituting a1 for aM and V0(λN�u) for V∞(λN�u), by similar reasoning,
when 〈λt〉 is in int(Bε(λ∗

C) × Iu(λN)), then with probability uniformly bounded away from
zero, either 〈λt〉 enters

⋃
λ′
N∈E(λN ) int(Bε(λ∗

C�λ
′
N)) or τ <∞. Given that one of these two

cases applies to each u ∈ P (U (λN)) and I(λN) ≡ ⋃
u∈P(U (λN ))\∅ Iu(λN), this establishes

that when 〈λt〉 is in int(Bε(λ∗
C) × I(λN)), then with probability uniformly bounded away

from zero, either 〈λt〉 enters
⋃

λ′
N∈E(λN ) int(Bε(λ∗

C�λ
′
N)) or τ <∞.

Step 3: Show that for any non-terminal node λN ∈ G(λ∗
C�C;ω), when 〈λt〉 is in

int(Bε(λ∗
C�λN)), then with probability uniformly bounded away from zero, either 〈λt〉 en-

ters
⋃

λ′
N∈T int(Bε(λ∗

C�λ
′
N)) or τ <∞, where T denotes the set of terminal nodes. Given

�M (ω) is empty, (λ∗
C�C) is reducible and therefore, G(λ∗

C�C;ω) has no cycles. Therefore,
starting from any non-terminal node λN ∈ G(λ∗

C�C;ω) and iterating Step 2 a finite num-
ber of times ensures that when 〈λt〉 is in int(Bε(λ∗

C�λN)), then with probability uniformly
bounded away from zero, either 〈λt〉 enters

⋃
λ′
N∈T int(Bε(λ∗

C�λ
′
N)) or τ <∞.

Step 4: Finally, we show that when 〈λt〉 is in int(Bε(λ∗
C) × I), where I ≡ (0�∞)|N| \⋃

λN∈{0�∞}|N|Bε(λN), then almost surely, either 〈λt〉 enters int(Bε(λ∗
C)×⋃

λN∈{0�∞}|N|Bε(λN))
or τ <∞. Consider u ⊂N . Similarly to above, let Iu�i ≡ [ε�1/ε] if θi ∈ u, Iu�i ≡ Bε(0) ∪
Bε(∞) if θi ∈N \ u, and Iu ≡ ∏

θi∈N Iu�i. Then by similar reasoning to Footnote 4, there
exists a finite sequence of a1 actions such that, starting from any belief in int(Bε(λ∗

C) ×Iu),
〈λN�t〉 enters

⋃
λN∈{0�∞}|N| int(Bε(λN)) following this sequence. If 〈λC�t〉 exits Bε(λ∗

C) dur-
ing this sequence, then τ < ∞; otherwise, 〈λt〉 is in int(Bε(λ∗

C) × ⋃
λN∈{0�∞}|N|Bε(λN)).

Given that this sequence is finite and occurs with probability uniformly bounded away
from zero across Bε(λ∗

C) × Iu, and such a sequence exists for each u⊂N , when 〈λt〉 is in
int(Bε(λ∗

C) × I), then almost surely 〈λt〉 enters int(Bε(λ∗
C)) × ⋃

λN∈{0�∞}|N| int(Bε(λN)) or
τ <∞.

Taken together, Steps 2–4 establish that when 〈λt〉 is in int(Bε(λ∗
C)) × (0�∞)|N|, then

with probability uniformly bounded away from zero, either 〈λt〉 enters
⋃

λN∈T int(Bε(λ∗
C�

λN)) or τ < ∞. It follows from Theorem 1 that when 〈λt〉 enters int(Bε(λ∗
C�λN)) for

any λN /∈ T , it almost surely exits Bε(λ∗
C�λN), and from Step 4 that when 〈λt〉 enters

int(Bε(λ∗
C) × I), it almost surely exits Bε(λ∗

C) × I. Therefore, when λ1 ∈ int(Bε(λ∗
C)) ×

repeating aM until all θi ∈N \u with (λN)i = 0 have beliefs in int(Bε(0) ∪Bε(∞)). Given that there are a finite
number of such types and, for any such type, a finite number of aM actions will move its beliefs from [ε�1/ε]
to int(Bε(∞)), this will hold following a finite number of additional aM actions. Following these additional aM
actions, 〈λi�t〉 remains in int(Bε(∞)) for θi ∈ u, as does 〈λi�t〉 for θi ∈N \ u such that (λN)i = ∞. Therefore,
following this sequence, 〈λN�t〉 is in int(Bε(λ′

N)) for some λ′
N ∈ V∞(λN�u).
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(0�∞)|N|,

Pr
(
τ <∞ or λt ∈

⋃
λN∈T

Bε
(
λ∗
C�λN

)
i.o.

)
= 1�

If 〈λt〉 is in
⋃

λN∈T Bε(λ
∗
C�λN) infinitely often, then almost surely either 〈λt〉 converges to

(λ∗
C�λN) for some λN ∈ T or τ <∞. This establishes the claim. Q.E.D.

D.3. Learning Characterization

To establish almost sure convergence, we define an analogous graph to Definition 14
for the case in which all social types are non-convergent types.

DEFINITION 15—Accessible Graph (k ≥ 2): Define the accessible graph G(ω) with
nodes λ ∈ {0�∞}k as follows: there is a directed edge from λ to λ′ if and only if λ′ is
mixed accessible from λ in state ω.

It follows from the definition of mixed accessibility that λ is a terminal node if and
only if λ ∈�(ω). Given the definitions of �M (ω) and maximal accessibility for k> 2, the
statement of Lemma 7′ mirrors Lemma 7.

LEMMA 7′—Belief Convergence (k > 2): Consider a learning environment that is iden-
tified at certainty and satisfies Assumptions 1 to 4. If �(ω) contains an agreement outcome
or maximally accessible disagreement outcome, �M (ω) = ∅, and G(ω) has no cycles, then
for any initial belief λ1 ∈ (0�∞)k, there exists a random variable λ∞ with supp(λ∞) =�(ω)
such that λt → λ∞ almost surely in state ω.5

PROOF: Fix state ω. Suppose �M (ω) = ∅ and G(ω) has no cycles. Let ε ∈ (0� e−E),
where E is defined in Eq. (11). It follows from the definition of mixed accessibility that
λ ∈ G(ω) is a terminal node if and only if λ ∈ �(ω). Given a terminal node λ ∈ �(ω),
by Theorem 1, when 〈λt〉 is in Bε(λ), then 〈λt〉 → λ with probability uniformly bounded
away from zero. By analogous reasoning to Step 2 in the proof of Lemma 4′, for any
non-terminal node λ ∈ G(ω), when 〈λt〉 is in int(Bε(λ)), then with probability uniformly
bounded away from zero, 〈λt〉 enters

⋃
λ′∈E(λ) int(Bε(λ′)), where E (λ) denotes the set

of nodes that λ has edges to. Given G(ω) has no cycles, starting from any non-terminal
node λ ∈ G(ω), when 〈λt〉 is in int(Bε(λ)), then with probability uniformly bounded away
from zero, 〈λt〉 enters

⋃
λ′∈�(ω) int(Bε(λ′)). When 〈λt〉 is in I ≡ (0�∞)k \ ⋃

λ∈{0�∞}k Bε(λ),
then by similar reasoning to Step 4 in the proof of Lemma 4′, almost surely 〈λt〉 enters⋃

λ∈{0�∞}k int(Bε(λ)). Taken together, this establishes that when 〈λt〉 is in (0�∞)k, then
with probability uniformly bounded away from zero, 〈λt〉 enters

⋃
λ∈�(ω) int(Bε(λ)). Fur-

ther, it follows from Theorem 1 that when 〈λt〉 enters int(Bε(λ)) for any λ ∈ {0�∞}k \
�(ω), it almost surely exits Bε(λ). Given that 〈λt〉 also almost surely exits I, it follows
that starting from any λ1 ∈ (0�∞)k, Pr(λt ∈ ⋃

λ∈�(ω) Bε(λ) i.o.) = 1. Therefore, almost
surely 〈λt〉 converges to some λ ∈�(ω). Q.E.D.

5An alternative condition to G(ω) has no cycles is there exists a θi ∈ �S such that supλ−i∈[0�∞]k−1 γi(λi =
0�λ−i) < 0 or infλ−i∈[0�∞]k−1 γi(λi = ∞�λ−i) > 0. This follows from the observation in Lemma 4′ that either
beliefs converge or visit each mixed outcome with |C| = 1 infinitely often. If the latter occurs with positive
probability, then almost surely 〈λi�t〉 → λ∞ ⊂{0�∞}, which contradicts �M (ω) = ∅.
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The statement of the learning characterization for k > 2 is analogous to Theorem 4,
using the generalized definitions of maximal accessibility (Definition 7′) and �M (ω) (Eq.
(20)).

THEOREM 4′—Learning Characterization (k> 2): Consider a learning environment that
is identified at certainty and satisfies Assumptions 1 to 4. When the state is L:

(i) Correct learning occurs with positive probability if and only if 0k ∈�(L).
(ii) Incorrect learning occurs with positive probability if and only if ∞k ∈�(L).
(iii) Entrenched Disagreement occurs with positive probability if �(L) contains a maxi-

mally accessible disagreement outcome and almost surely does not occur if �(L) con-
tains no disagreement outcome. Each maximally accessible disagreement outcome in
�(L) occurs with positive probability.

(iv) Cyclical Learning occurs almost surely for all social types if �(L) = ∅ and �M (L) =
∅, occurs almost surely for at least one social type if �(L) = ∅, and almost surely does
not occur if �(L) contains an agreement outcome or maximally accessible disagree-
ment outcome, �M (L) = ∅, and G(L) has no cycles.

An analogous result holds in state R.

The proof mirrors the case of two social types: it directly follows from Lemma 3, The-
orems 1 and 2, Theorem 3′, and Lemmas 4′ and 7′.

APPENDIX E: BELIEF-DEPENDENT MODELS OF INFERENCE

In this section, we extend our framework to allow a type’s model of inference to vary
with its belief about the state. We show that with this extension, our framework nests
Rabin and Schrag (1999) and Epstein, Noor, and Sandroni (2010).

E.1. Framework

Modify a type’s model of inference as follows. Given likelihood ratio λ ∈ [0�∞]k, type
θi has subjective private signal distribution F̂ωi (s;λ) in state ω and subjective type distri-
bution π̂i(θ;λ). An agent uses likelihood ratio λt to interpret signal s̃t or action ãt at time
t. Maintain the assumption from Section 2 that F̂Li (·�λ) and F̂Ri (·�λ) are mutually abso-
lutely continuous with full support on S for each λ ∈ [0�∞]k. Further, social and autarkic
types believe that the signal is uniformly informative. When signals are aligned, this can
be written as follows: for all s ∈ [0�1], either F̂Li (s;λ) = F̂Ri (s;λ) = 0 for all λ ∈ [0�∞]k,
F̂Li (s;λ) = F̂Ri (s;λ) = 1 for all λ ∈ [0�∞]k, or infλ∈[0�∞]k F̂

L
i (s;λ) − F̂Ri (s;λ) > 0, with the

final case holding for some s ∈ [0�1].
As in Section 2, we focus on settings in which social types believe that actions are infor-

mative. We need to modify Assumption 3 so that this holds uniformly across [0�∞]k.

ASSUMPTION 3′—Informative Actions: For actions a ∈ {a1� aM}, there exists an autarkic
type θj ∈�A with π(θj) > 0 that plays a with probability uniformly bounded away from zero
across [0�∞]k, and each social type θi ∈ �S believes that such an autarkic type exists with
probability uniformly bounded away from zero, infλ∈[0�∞]k π̂i(θj;λ) > 0.

For technical reasons, we also make the following continuity assumption.
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ASSUMPTION 5—Continuity: For each θi ∈�, the mapping λ 	→ (F̂Li � F̂
R
i � π̂i) is contin-

uous under the total variation norm except at at most a finite number of interior likelihood
ratios λ ∈ (0�∞)k, and λ → 1/(1 + dF̂Li /dF̂Ri (s;λ)) is continuous at λ ∈{0�∞}k.

Substituting Assumption 3′ for Assumption 3 and adding Assumption 5, the modified
version of Eq. (1) is

ψ̂i(am|ω�λ) ≡
n∑
j=1

π̂i(θj;λ)
(
F̂ωi

(
sj�m(λj;λ);λ) − F̂ωi

(
sj�m−1(λj;λ);λ))

� (21)

where sj�m(λj;λ) denotes the signal cutoff for θj when it has belief λj and social types
have belief λ. Note sj�m depends on (F̂Lj � F̂

R
j ), and hence, when these distributions depend

on λ, so does sj�m. The proof of Lemma 2 continues to hold for Eq. (21) with minor
modifications.6 Theorems 1 to 6 follow.

E.2. Nesting Under- and Overreaction in Epstein, Noor, and Sandroni (2010)

Epstein, Noor, and Sandroni (2010) considered an individual learning model where an
agent under- or overreacts to signals. They parameterized this bias with the following
updating rule: an agent with prior p ∈ [0�1] who observes signal realization s ∈ S updates
her posterior to

Pr(ω=R|s�p) = (1 − α)
(

ps

ps+ (1 −p)(1 − s)
)

︸ ︷︷ ︸
correct posterior

+αp (22)

for some α≤ 1. Underreaction corresponds to α > 0, overreaction corresponds to α < 0,
and the correctly specified model corresponds to α = 0. This parametric form of under-
and overreaction can be represented in the individual learning version of our extended
framework as follows. Equation (22) uniquely maps to a type in our framework that forms

6Aside from minor changes to notation and a straightforward application of the continuity assumed in
Assumption 5, there are two main changes. To establish the uniform bound for a ∈ {a1� aM} and bounded
informativeness for a ∈ A, it is necessary to account for the subjective type and signal distributions’ depen-
dence on λ. Let θj ∈ �A be an autarkic type that θi ∈ �S believes satisfies Assumption 3′ for action a1 and
s∗j�1 ≡ infλ∈[0�∞]k sj�1( p0

1−p0
;λ). Then the analogue of Eq. (6) is

ψ̂i(a1|R�λ)

ψ̂i(a1|L�λ)
≤ π̂i(θj;λ)F̂Ri

(
s∗j�1;λ

) + π̂i
(
�S ∪�A \{θj};λ

)
π̂i(θj;λ)F̂Li

(
s∗j�1;λ

) + π̂i
(
�S ∪�A \{θj};λ

)

≤ sup
λ∈[0�∞]k

(
inf

λ′∈[0�∞]k
π̂i

(
θj;λ′))F̂Ri (

s∗j�1;λ
) + 1 − inf

λ′∈[0�∞]k
π̂i

(
θj;λ′)

(
inf

λ′∈[0�∞]k
π̂i

(
θj;λ′))F̂Li (

s∗j�1;λ
) + 1 − inf

λ′∈[0�∞]k
π̂i

(
θj;λ′) < 1�

where the last line follows from Assumption 3′, which ensures that infλ∈[0�∞]k π̂i(θj;λ) > 0, and the uniform
informativeness of the subjective signal distributions, which ensures that infλ∈[0�∞]k (F̂Li (s∗j�1;λ) − F̂Ri (s∗j�1;λ)) >
0. Similar logic establishes that ψ̂i(a|ω�λ) is uniformly bounded away from 0 for all λ ∈ [0�∞]k, a ∈ A, and
ω ∈{L�R}, and therefore, a is boundedly informative.
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subjective posterior

ŝ(s�λ) =
(1 − α)

(
s

sλ+ (1 − s)
)

+ α
(

1
1 + λ

)

1 + (1 − α)
(

(1 − λ)s
sλ+ (1 − s)

)
+ α

(
1 − λ
1 + λ

) (23)

following signal realization s ∈ S when it has belief λ ∈ (0�∞). Equation (22) does not
map into a unique ŝ(s�λ) at λ ∈ {0�∞}, since the prior and the posterior are the same
regardless of the signal realization. Since our learning characterization utilizes the limit
of ŝ(s�λ) as λ → {0�∞}, we need to specify how the signal is interpreted at certainty
to close the model. At λ = 0, we use Eq. (23) evaluated at λ = 0. Equation (23) is not
well-defined at λ= ∞, so we define

ŝ(s�∞) ≡ lim
λ→∞

ŝ(s�λ) = s

(1 − α)(1 − s) + (1 + α)s
�

This is the unique subjective posterior that satisfies the continuity property required by
Lemma 2.7 This set-up satisfies the properties in Lemma 2, so our learning characteriza-
tion applies.

E.3. Nesting Confirmation Bias in Rabin and Schrag (1999)

Rabin and Schrag (1999) considered an individual learning model where an agent
exhibits confirmation bias. The agent observes a signal that takes one of two possible
values, sL or sR, where sω is more likely in state ω than state ω′. Confirmation bias
takes the following form: if the agent observes sω when she believes ω′ is more likely,
then with probability q ∈ (0�1) she misinterprets the signal realization as sω′ . To rep-
resent this model in the individual learning version of our extended framework, we
make one additional change to allow multiple signal realizations to induce the same
posterior belief. This allows ŝ to map two signal realizations that induce the same
true posterior to different subjective posteriors. Given this minor extension, this form
of confirmation bias can be represented as follows. Suppose S = {l1� l2� r1� r2}. Assume
Pr(l1 or l2|ω = L) = Pr(r1 or r2|ω = R) = s > 1/2, conditional on observing l1 or l2, l2 is
realized with probability q, and similarly for r2. Signal realizations l1 and l2 induce the
same true posterior, as do r1 and r2. When λ > 1, the agent interprets the signal as if
ψ̂(l1|L�λ) = s, ψ̂(l1|R�λ) = 1 − s, ψ̂(l2|L�λ) = ψ̂(r1|L�λ) = ψ̂(r2|L�λ) = (1 − s)/3, and
ψ̂(l2|R�λ) = ψ̂(r1|R�λ) = ψ̂(r2|R�λ) = s/3. Similarly, if λ ≤ 1, the agent interprets the
signal as if ψ̂(r1|R�λ) = s, ψ̂(r1|L�λ) = 1 − s, ψ̂(l1|L�λ) = ψ̂(l2|L�λ) = ψ̂(r2|L�λ) = s/3,
and ψ̂(l1|R�λ) = ψ̂(l2|R�λ) = ψ̂(r2|R�λ) = (1 − s)/3. This set-up satisfies the properties
in Lemma 2, so our learning characterization applies.

7In an individual learning setting, any pair of subjective signal distributions that induce the same ŝ must

satisfy ψ̂(s|R�λ)
ψ̂(s|L�λ)

= ŝ(s�λ)
1−ŝ(s�λ) , so ŝ determines the properties required by Lemma 2. A consequence of this is that

any misspecified distribution that rationalizes ŝ will lead to the same behavior. In Bohren and Hauser (2021)
we showed that there exist subjective distributions F̂L and F̂R that rationalize this ŝ and satisfy Assumption 1,
Assumption 3′, and Assumption 5.
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