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THIS APPENDIX IS ORGANIZED AS FOLLOWS. Section A provides intuition for how our
assumptions (A) yield a tractable Bellman equation for joint value. Section B provides
a characterization of the surplus function. Section C derives an alternative limit of the
Bellman equation for the joint value as decreasing returns vanish. Section D derives the
limiting behavior of our economy when frictions vanish. Section E illustrates identification
of the model.

APPENDIX A: STATIC EXAMPLE

Set up. Consider a firm with decreasing returns to scale technology y(z�n) such that
y(z�0) = 0. Suppose the firm starts with productivity z and n = 1 worker. The current
contract between the firm and the incumbent specifies a wage w1 ∈ (b� y(z�1)), where
b=U is the value of unemployment. At this point, the incumbent worker does not have
a credible threat to quit into unemployment nor the firm has a credible threat to fire the
worker. Then,the labor market opens. For now, we also assume that the firm has sunk the
cost of a vacancy c. Later we explicitly consider the decision to post a vacancy.

A.1. UE Hire

We describe how to obtain the “UE hire” term in (1). Assume the firm’s vacancy meets
an unemployed worker. Four different cases can arise from the combination of hiring/not
hiring and renegotiating/not renegotiating the wage with the incumbent. Our assumption
on external negotiation (A-EN) requires that in all cases the take–leave wage offer of the
firm to the outside worker is w2 = b. Our internal negotiation assumption (A-IN) requires
that the joint value with and without renegotiation is the same and simply equals output
y(z�n). Let w∗

1 be the incumbent wage after the internal negotiation.
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If the firm hires the new worker, its profits are as follows:

y(z�2) −w1 − b︸ ︷︷ ︸
Without renegotiation

� y(z�2) −w∗
1 − b︸ ︷︷ ︸

With renegotiation

�

If the firm does not hire the new worker, its profits are

y(z�1) −w1︸ ︷︷ ︸
Without renegotiation

� y(z�1) −w∗
1︸ ︷︷ ︸

With renegotiation

�

We now describe which case occurs. This requires understanding when our mutual con-
sent assumption (A-MC) coupled with limited commitment on layoffs (A-LC) bind. In
particular, the firm may obtain a credible threat to trigger renegotiation of w1. We focus
first on when a hire occurs.

Hire. A hire without renegotiation occurs when the following two conditions hold:

y(z�2) −w1 − b≥ y(z�1) − b︸ ︷︷ ︸
No credible threat

� y(z�2) −w1 − b≥ y(z�1) −w1︸ ︷︷ ︸
Optimal to hire w/o renegotiation

� (12)

The first condition illustrates that the threat to fire the incumbent worker is not credible,
which under (A-MC) implies no renegotiation. Keeping the incumbent worker at w1 and
employing the outside worker at b delivers a higher value to the firm than the threat of
“swapping”: firing worker one and hiring the unemployed worker in his place. Given no
renegotiation, the second condition ensures hiring is privately optimal for the firm.

A hire with renegotiation occurs when the following two conditions hold:

y(z�2) −w1 − b < y(z�1) − b︸ ︷︷ ︸
Credible threat

� y(z�2) −w∗
1 − b > y(z�1) −w∗

1︸ ︷︷ ︸
Optimal to hire w/ renegotiation

� (13)

The firm has now a credible threat to fire the incumbent worker according to (A-LC).
This is possible only under decreasing returns to scale: even though w1 < y(z�1), the first
inequality in (13) implies w1 > y(z�2) − y(z�1), that is, the incumbent wage is above its
own marginal product. Employing the outside worker at b and keeping the incumbent
worker at w1 delivers a lower value than “firing and swapping.” The second condition
is necessary for hiring to be optimal under the renegotiated wage w∗

1 to the incumbent
worker.

Under the zero sum game assumption (A-IN), the renegotiated wage w∗
1 only redis-

tributes value between the incumbent worker and the firm, but does not affect total
value.43 In addition, it must be individually rational, and so w∗

1 ∈ [b� y(z�2) − y(z�1)].
Without further assumptions, we cannot say where exactly the new wage lies within this
interval, but we can nonetheless pin down allocations.

Rearranging the optimal hiring conditions, we observe that both are satisfied as long as

y(z�2) − y(z�1) > b� (14)

43Two relevant cases that would violate this condition are (i) if worker’s effort depends on the wage and
enters the production function, and (ii) concave utility.
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Note that without internal renegotiation (A-IN), the hiring condition would differ in
the two cases. If wages could not be cut and the firm had a credible threat, the in-
cumbent worker would be fired and the firm would always hire the unemployed worker
(y(z�1)> b). As a result, to determine firm size next period, one would need to know the
incumbent’s wage to distinguish between the two cases (thus, in the general model with
n workers, the whole wage distribution). Similarly, if a fraction of output were to be lost
because of the internal negotiation, a violation of (A-IN), the hiring conditions in (12)
and (13) would differ, and again one would need to know wages to determine whether a
hire occurs.

We can write inequality (14) in terms of joint value. Workers’ values are simply equal
to their wage wi for i ∈ {1�2}. The firm’s value is simply equal to its profits. The fact that
wages are valued linearly by both worker and firm implies that the joint value �(z�n) is
independent of wages:

�(z�n) = y(z�n) −
n∑
i=1

wi︸ ︷︷ ︸
Firm value

+
n∑
i=1

wi︸ ︷︷ ︸
Sum of workers’ values

� for any (wi)ni=1�

Using the definition of joint value, equation (14) characterizes when the UE hire occurs:

�(z�2) −�(z�1) >U� (15)

Thus, the decision of hiring from unemployment does not depend on wages, but only on
productivity, size, and the value of unemployment U = b.

No Hire. Consider now the cases where no hiring occurs. Recall that, once an unem-
ployed worker is met, the firm has always a credible threat against the incumbent since
w1 > b. No hire with renegotiation therefore occurs when the following two conditions
hold:

y(z�1) − b > y(z�1) −w1︸ ︷︷ ︸
Credible threat

� y(z�1) −w∗
1 ≥ y(z�2) −w∗

1 − b︸ ︷︷ ︸
Optimal to not hire

� (16)

After renegotiation, the incumbent wage is driven down to w∗
1. Since this outcome repre-

sents a redistribution of value between firm and worker then, consistent with (A-IN), the
joint value remains �(z�1).44 Finally, the no-hiring condition in (16) can be rewritten as
in (14) with the opposite inequality, �(z�2) −�(z�1) ≤U .

Combined. The firm hires from unemployment when the marginal value of the job-
seeker exceeds the value of unemployment:

�(z�2) −�(z�1)
2 − 1

>U� (17)

In addition, the joint value of the firm and its workers rises by �(z�2)−�(z�1)
2−1 −U when the

hire occurs. This is exactly the UE hire term in the HJB equation (1). In the case of a
hire, incumbent wages may or may not be renegotiated but this has no impact on whether

44The value before renegotiation was �(z�1) = z − w1 + w1 = z. The joint value after renegotiation is
�(z�1) = z−w∗

1 +w∗
1 = z.
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hiring occurs, or how the joint value changes. When this condition fails, the firm does not
hire, wages are renegotiated, but the joint value remains constant. All decisions require
knowledge of (z�n) only, but not of incumbents’ wages.

We now generalize the UE hire case analyzed in the main text to a firm with multiple
incumbents.

A.2. UE Hire When the Internal Renegotiation Involves Multiple Workers

It is sufficient to consider the case of two incumbent workers, n = 2. Without loss of
generality, assume that the second worker is paid more than the first, w2 >w1. As in the
approach taken earlier, suppose the firm has posted a vacancy that has met an unem-
ployed worker. We have three cases to consider, which illustrate how the firm may use a
worker outside the firm to sequentially renegotiate wages of workers inside the firm.

First, the firm hires without renegotiation if:

y(z�3) −w1 −w2 − b > y(z�2) −w1 − b︸ ︷︷ ︸
No credible threat to w2

�

y(z�3) −w1 −w2 − b > y(z�2) −w1 −w2︸ ︷︷ ︸
Optimal to hire under (w1�w2)

�

Hiring with current wages is preferred to replacing the most expensive incumbent—there
is no credible threat—and given no renegotiation, hiring is optimal. Since w2 > w1, no
credible threat to worker 2 implies no credible threat to worker 1.

Second, the firm hires with renegotiation with worker 2 if:

y(z�2) −w1 − b > y(z�3) −w1 −w2 − b > y(z�2) −w2 − b︸ ︷︷ ︸
Credible threat for worker 2 only

�

y(z�3) −w1 −w∗
2 − b > y(z�2) −w1 −w∗

2︸ ︷︷ ︸
Optimal to hire under (w1�w

∗
2)

�

The threat is credible for worker 2, but is not for worker 1, and, conditional on renegoti-
ating to (w1�w

∗
2), hiring is optimal.

Third, the firm hires with renegotiation with both workers if:

y(z�2) −w1 − b > y(z�2) −w2 − b > y(z�3) −w1 −w2 − b︸ ︷︷ ︸
Credible threat for both workers

�

y(z�3) −w∗
1 −w∗

2 − b > y(z�2) −w∗
1 −w∗

2︸ ︷︷ ︸
Optimal to hire under (w∗

1�w
∗
2)

�

In all three cases, the optimal hiring condition can be written in terms of joint value as

�(z�3) −�(z�2)
3 − 2

>U� (18)

This last inequality does not depend on the order of the internal negotiation between firm
and workers. In conclusion, the distribution of wages among incumbents again determines
the patterns of wage renegotiation, but is immaterial for the sufficient condition for hiring.
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Hiring occurs whenever the marginal value of adding a worker to the coalition exceeds
the value of unemployment.

Assumption (A-LC-c) that was not present in the one worker example plays a role here.
Suppose that the renegotiated wage for worker 2 is pushed all the way down to b, making
her indifferent between staying and quitting. Worker 1 could transfer a negligible amount
to worker 2 in exchange of her quitting, which would raise the firm’s marginal product
and, possibly, remove its own threat. This is problematic for the representation because
in this latter case the hiring condition becomes y(z�2) − w1 − b > y(z�1) − w1, distinct
from (18). Thus, to know whether a firm hires or not, one would need to know the wage
distribution inside the firm. (A-LC-c) is sufficient to rule out transfers among workers and
to prevent this scenario from happening.

Note that this transfer scheme between workers occurring during the internal negotia-
tion changes the joint value, and hence one can think of (A-LC-c) as being subsumed into
(A-IN) already.

In what follows, we return to the case where the firm has only one worker.

A.3. EE Hire

Now suppose that the worker matched with the firm’s vacancy is currently employed
at another firm with productivity z′ and a single worker n′ = 1. The situation is not that
different from UE hire, except that the potential hire may have a better outside option in
the form of the retention offer made to her by her current employer under (A-EN). To
see the similarity for now, we fix this wage offer at w. The same four cases described in
Section A.1 can arise, except with w playing the role of b.45 We can therefore reason as
before and jump to the result that hiring will occur if and only if the following counterpart
to (15) holds:

�(z�2) −�(z�1) >w�

We now determine the poached worker’s outside option w. The poached firm’s will-
ingness to pay is a wage w̃ that makes it indifferent between retaining and releasing the
worker: y(z′�1) − w̃ = 0. Hence the contacted worker switches to the new employer as
long as the poaching firm offers w≥ w̃= y(z′�1). Bertrand competition between the two
firms implies that the poaching firm offersw= y(z′�1), which is exactly the marginal value
of the worker at the poached firm. As in the case of UE hire, whether EE hire occurs can
be summarized by joint values:

�(z�2) −�(z�1)
2 − 1

>
�

(
z′�1

) −�(
z′�0

)
1 − 0

� (19)

The EE hire decision is entirely characterized by knowledge of the pair (z�n) for the two
firms.46 The value gain to the firm and its workers is the difference between the left-hand
side and right-hand side of equation (19). This comparison of marginal values is precisely
the EE hire term in the HJB equation (1).

45Renegotiation will happen for different values of w1 in the no hire case. Indeed, to establish the presence
of a credible threat w1 must be compared to w instead of b, but this has no allocative implications for the hiring
decisions.

46The case when the firm meets a worker at a firm with (z′�2�w1�w2) is similar. Suppose the firm meets
worker 1. The poached firm has the additional option of cuttingw2, but this is inconsequential for the argument
because it only redistributes value within the poached-from firm.
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Finally, this exercise explains the absence of a EE quit term in (1). The payment re-
ceived by its poached worker is equal to the poached coalition’s willingness to pay, which
is in turn exactly equal to the worker’s marginal value to the coalition. The joint value of
the poached coalition therefore does not change as it loses its worker. EE quit events play
an important role in the dynamics of employment at the firm, but no role in the dynamics
of �(z�n).

A.4. Vacancy Posting

Up to this point, we assumed that a meeting between a hiring firm and a job-seeker had
already occurred. We now turn to the vacancy posting decision and explain why (A-VP) is
crucial for tractability.

Recall that in the hiring scenarios just analyzed, two cases arise when the firm can
credibly force a wage cut: (i) when it hires and the incumbent wage is above the post-hire
new marginal product; (ii) when hiring is not profitable, but the firm can credibly “fire
and swap,” that is, as long as the reservation wage of the external worker met through
search is below the incumbent wage. The firm has therefore incentives to spend resources
on vacancy posting for the sole purpose of transferring value between agents, a privately
inefficient outcome. The amount spent would depend on the incumbent’s wage, breaking
the tractability of our representation. Private efficiency reinstates tractability.

We start with the firm’s preferred vacancy policy. Without loss of generality, suppose
firms only meet unemployed workers (hence, upon a meeting, the “fire and swap” threat is
always credible). The generalization to the case where the worker contacted can be either
unemployed or employed is straightforward. Let v be the number of vacancies posted,
c(v) the associated cost, and qv the probability a single vacancy meets a single worker. If
no meeting occurs, then as per (A-MC), w1 does not change so the value of the firm does
not change. The firm maximizing the expected return from vacancy posting net of costs is

max
v

−c(v) + qv[max
{
y(z�2) −w′

1 − b︸ ︷︷ ︸
Hire (cases 1&2)

� y(z�1) − b︸ ︷︷ ︸
No hire (case 3)

} − (
y(z�1) −w1

)]
�

Following a meeting, three cases may occur. In Case 1, the firm hires and there is no rene-
gotiation,w′

1 =w1. This case arises when the wage of the incumbent worker is low enough.
Then, adding a second worker does not reduce the marginal product of labor down to the
point where the firm has a credible layoff threat. In Case 2, the firm hires but the wage of
the incumbent is renegotiated down to w′

1 =w∗
1. In this case, diminishing marginal returns

drive the marginal product of labor with two workers below the incumbent’s initial wage.
In Case 3, the firm is better off not hiring, but under the threat of swapping out the in-
cumbent, renegotiates w1 down to b. The firm’s preferred vacancy policy vf then equates
marginal cost to marginal expected return:

cv
(
vf

) = q[max
{
y(z�2) −w′

1 − b� y(z�1) − b} − (
y(z�1) −w1

)]
� (20)

The first-order condition (20) highlights that the firm’s preferred vacancy policy depends
on the incumbent’s wage w1 because this wage determines the gains from forcing a rene-
gotiation through vacancy posting. This dependence is a source of intractability because,
in the general model with n workers, (20) would depend on the entire wage distribution
inside the firm.

Our assumption (A-VP) ensures that firms do not post vf , but instead post the privately
efficient amount of vacancies, which does not depend on worker wages. We now show
how our micro-foundation (A-VPI) implements (A-VP).
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Case 1—Hire Without Renegotiation. In this case, the outcome is already privately effi-
cient. The worker’s value does not decrease (w′

1 =w1), and by the fact that a hire occurs,
the firm’s value must increase. We can also write the expected return as qv[�(z�2) −
�(z�1) −U]. Since the return is independent of w1, then the efficient vacancy policy is in-
dependent of w1. The firm is choosing vacancies as if it were maximizing the joint surplus
without having to appeal to additional assumptions.

In cases 2 and 3, the outcome is privately inefficient because the firm may profit from
vacancies that, if met by a job-seeker, deliver a credible threat to cut the incumbent’s
wage to w′

1 <w1.
Our assumption (A-VPI) allows the worker to correct for this overposting by conceding

a single pay cut in exchange for an alternative level of vacancies.47 The firm will accept
this wage cut and choose the worker’s preferred vacancies if it delivers at least the value
obtained under the firm’s preferred vacancies vf . We show that the worker’s preferred
package satisfying incentive compatibility restores efficiency in vacancy posting.

Case 2—Hire With Renegotiation. In this case, the incumbent’s wage w1 is high enough
that the firm finds it profitable to raise the contact probability with an unemployed worker
beyond what would be efficient. Although the hiring outcome is efficient ex post, too many
resources are spent on vacancies ex ante. Letw∗

1 be the renegotiated wage after a meeting.
The worker chooses a package of vacancies and a wage cut in all states (vw�x) that solves

max
vw�x

qvw
(
w∗

1 −w1

) − x (21)

subject to

qvw
[(
y(z�2) − (w1 − x) − b) − (

y(z�1) −w1

)] − c(vw)
≥ qvf [(y(z�2) −w∗

1 − b) − (
y(z�1) −w1

)] − c(vf )� (IC)

The worker anticipates that after a meeting their wage will be renegotiated to w∗
1 < w1.

Given this wage cut, the worker seeks to limit the probability of this event by cutting back
on vacancies. Incentive compatibility (IC) requires that as the worker cuts vacancies it
also cuts its wage so that the firm accepts the proposed policy vw over vf .

The Pareto problem (21) yields the result that vacancy posting is independent of w1.
First, given the linear objective function, (IC) holds with equality. Thus, we can substitute
out x. Second, the zero-sum game assumption (A-IN) implies that w∗

1 is a renegotiated
wage that only redistributes value, and hence drops out. Third, all terms that do not de-
pend on (x�vw) are irrelevant to the worker’s decision. Adopting the value notation, this
leaves the following objective function:

max
vw
qvw

[(
�(z�2) −U) −�(z�1)

] − c(vw)�
The decision can therefore be characterized by the privately efficient return, which is the
change in joint value net of the cost of the new hire, �(z�2) −�(z�1) −U .

47A pay cut regardless of the outcome of the search for a new worker maps exactly into a transfer from
worker to firm, which is how we approach the proof. Promising state-contingent wage cuts that depend on who
the firm meets or whether a meeting occurs is not possible given our assumption of what is verifiable and
contractible. Even if these states were verifiable, the result would only be for the worker to offer a menu of
wage cuts across states. This would increase worker value but not change allocations; hence for consistency
with the rest of our assumptions, we assume a single wage cut.
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Case 3—No Hire With Renegotiation. In this case, the “fire and swap” threat is credi-
ble. The incumbent’s wage w1 is high enough and the marginal product of an additional
worker is below b. Replacing the return to hiring by the wage cut for the incumbent
worker, the previous logic delivers

max
vw
qvw

[
�(z�1) −�(z�1)

] − c(vw) =⇒ vw = 0�

Absent the transfer from worker to firm, the firm would post positive vacancies vf even
if the return from hiring is negative, that is, �(z�2) −�(z�1) <U to induce a wage cut,
and vf would depend on w1. Under (A-VPI), the worker takes a preemptive wage cut, and
vacancies are zero, the efficient amount in this case.

Combined. Combining all three cases, privately efficient vacancies solve

max
v
qv

[
max

{
�(z�2) −�(z�1)

2 − 1
−U�0

}]
− c(v)�

Note three properties of this solution. First, the firm always hires when it meets an
unemployed worker. Second, optimal vacancy posting equates the marginal gain in joint
value to the marginal cost of a vacancy, and it only depends on (z�n). Third, this condition
is the flip-side of the separation frontier. Expression (1) states that if �n(z�n) >U , then
the firm will not separate with workers. The terms inside the max expression say that if
this is true, then the firm will post vacancies.48

We conclude that under (A-VPI), the joint value is sufficient to characterize the vacancy
decision. The distribution of wages in the firm is immaterial.

Multiple Incumbents. When the firm employs more than one worker, the efficient
transfer scheme can be implemented by randomly selecting a worker under threat to offer
a package of wage cuts and vacancies. In exchange, the firm posts the efficient number of
vacancies. Under such a scheme, the initiating worker is strictly better off while the firm
and the other workers are indifferent. We establish this case in detail in Appendix II.

A.5. Layoffs, Quits, Exit, Entry

Having described most of the terms in the HJB (1), we conclude with the boundary
conditions for exit, layoffs, and the free-entry condition.

Layoffs. Consider now a firm with n= 2 workers paid (w1�w2), and assume that w1 <
y(z�1) such that worker 1 is never under threat of layoff. The firm has a credible threat
to fire worker 2 if

y(z�1) −w1 > y(z�2) −w1 −w2�

Such a situation may occur if, for example, productivity has just declined. The firm has a
credible threat to negotiate down to a wage levelw∗

2 such that y(z�1)−w1 = y(z�2)−w1 −
w∗

2 and keep worker 2 employed. From the worker’s perspective, it is individually rational

48It is possible to determine the optimal wage cut x that delivers the efficient policy, but throughout the
paper we focus on allocations only.
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to accept any wage w∗
2 above b. Worker 2 is laid off if y(z�1) −w1 > y(z�2) −w1 − b. In

terms of joint value, this can be written in exactly the form of the layoff frontier (2):

�(z�2) −�(z�1)
2 − 1

<U�

The firm lays off workers until the marginal joint value of the worker is equal to the value
of unemployment.49 As noted earlier, this is the complement to the condition for posting
vacancies. The special case with n= 1 of this scenario also arises in the one worker–one
firm model with productivity shocks of Postel-Vinay and Turon (2010).

Quits to Unemployment. Since in this static model workers will accept a renegotiated
wage down to w∗

i = b, they will only quit at the point where the firm has a credible threat
to lower wages below b. This is exactly the point at which the marginal value is equal to
the value of unemployment. In this sense, layoffs as described above are indistinguishable
from quits to unemployment, as in any model with privately efficient separations. For ease
of language, all endogenous UE transitions are referred to as layoffs, and we use quits to
refer only to EE transitions.

Finally, recall that in the dynamic model unemployed job-seekers are promised a wage
that implements a value U to them. If events occur in the firm that reduce the continua-
tion value to that worker belowU (e.g., a negative productivity shock), the incumbent may
have a credible threat to quit and renegotiate her wage to restore its value at U , or above
it, depending on the details of the internal negotiation. However, such renegotiation is,
again, only a transfer of value within the firm. Separations remain privately efficient even
in the dynamic model.

Exit. Now consider the exit decision of a firm with one worker. The private value of
exit to the firm is the scrap value ϑ > 0. The firm therefore exits if and only if y(z�1) −
w∗

1 < ϑ, where w∗
1 is a possibly renegotiated wage contingent on the firm remaining in

operation. If the profit from operating at the lowest possible renegotiated wage w∗
1 = b is

greater thanϑ, then the firm will continue to operate. Hence the firm exits if y(z�1) −b <
ϑ, and the renegotiated wage only affects the distribution of value.50 The exit condition
can be written as �(z�1) − U < ϑ, and in the general case of n workers is exactly the
boundary condition in (1): �(z�n) − nU <ϑ.

Entry. Upon entry, the firm has n0 workers hired from unemployment. The private
entry cost of the firm is c0, so entry requires

∫
y(z�n0) d�0(z) −n0b > c0. Using �(n�z) =

y(z�n) and U = b, this requires
∫
�(z�n0) d�0(z) > c0 + n0U .

A.6. From Static to Dynamic

This static example showcases how to obtain every component of (1) from our set of
assumptions. Appendix II generalizes this proof to the dynamic case. Two insights assist

49Note that, when both workers are under threat, the particular order in which values of workers are reduced
is immaterial to the condition �(z�2) −�(z�1) <U . One could, for example, lower the wages of both workers
proportionally, increasing the value of the firm, but a worker must be fired if y(z�2) −w∗

1 − b < y(z�1) −w∗
1

for any w∗
1 ≥ b.

50The firm has no credible threat to reduce w1 if y(z�1) − w1 > ϑ. The firm can credibly threaten exit if
ϑ ∈ (y(z�1) − w1)� y(z�1) − b), but in this case w1 can be reduced to a point where this threat is no longer
credible.
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us. First, the proof begins with a discrete workforce. Here, we are helped by continuous
time, which removes complicated binomial probabilities of one, two, three, etc. incum-
bent workers meeting a competitor’s vacancy. Second, we take the continuous workforce
limit of the discrete workforce HJB equation. This limit delivers the joint value represen-
tation (1) in terms of the derivative of the joint value function rather than differences of
values which, when moving up or down by one worker, are symmetric due to continuous
differentiability.

APPENDIX B: CHARACTERIZATION OF SURPLUS FUNCTION

Here, we prove the comparative statics on the surplus function S(n�z) discussed in the
main text.

B.1. Hamilton–Jacobi–Bellman Variational Inequality for Total Value

Before characterizing these conditions, we note that the joint value representation (1)
and smooth-pasting boundary conditions that define the exit and layoff boundaries (2)
are derived from solving the following Hamilton–Jacobi–Bellman variational inequality
(see Pham (2009)), which we present here for completeness. Its general formulation in
terms of optimal switching between three regimes (operation, layoffs, exit) on the entire
positive quadrant, can be written as the following system:

max
{
−ρ�(z�n) + max

v≥0
−δn[�n(z�n) −U] + qvφ[

�n(z�n) −U]
+ qv(1 −φ)

∫
max

[
�n(z�n) −�n

(
z′� n′)�0

]
dH̃n

(
z′� n′)

+μ(z)�z(z�n) + σ (z)2

2
�zz(z�n);

ϑ+ nU −�(z�n)︸ ︷︷ ︸
Exit

; max
k∈[0�n]

�(z�k) + (n− k)U −�(z�n)︸ ︷︷ ︸
Layoff

}

= 0� ∀(z�n) ∈R
2
+� (22)

The HJBVI implies necessary “value-matching” and “smooth-pasting” boundary condi-
tions; see Brekke and Oksendal (1990), Peskir and Shiryaev (2006) and Stokey (2009).

Value matching conditions are standard, and simply state that the value function must
be continuous at the exit and separation boundaries. Smooth pasting conditions obtain
only when coalitions are actually crossing the exit or layoff boundaries. Intuitively, coali-
tions can then take an interior first-order optimality condition when they choose the stop-
ping boundary. Thus, smooth pasting obtains either when there is volatility, or when the
drift pushes coalitions outside of the continuation region.

Combining these observations, for exit, we have a value matching condition that holds
for the entire boundary n∗

E(z), and a smooth pasting condition in the n direction that
holds only where the drift is negative and firms actually exit. We have a smooth pasting
condition in the z direction that holds for the entire boundary n∗

E(z) because there is
volatility in the z direction. We collect these conditions in Conditions (iii) in Section 4.1.
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B.2. S Is Increasing in n

The no-endogenous-separations condition Sn ≥ 0 implies that the surplus is increasing
in n.

B.3. S Is Increasing in z

Rewrite the problem in terms of x = logz. Denote with a slight abuse of notation
y(x�n) = y(ex�n).

ρS(x�n) = max
v≥0

y(x�n) − nb− c(v)

+ [qφv− δn]Sn(x�n) + q(1 −φ)vH
(
Sn(x�n)

)
+μSx(x�n) + σ2

2
Sxx(x�n)�

where we integrated by parts, and denoted H(s) = ∫ s

0 Hn(r) dr. Denote ζ(x�n) =
Sx(x�n). Differentiate the Bellman equation w.r.t. x and use the envelope theorem to
obtain

ρζ(x�n) = yx(x�n)

+ {[
qφ+ q(1 −φ)Hn

(
Sn(x�n)

)]
v∗(x�n) − δn}ζn(x�n)

+μζx(x�n) + σ2

2
ζxx(x�n)�

Now consider the stochastic process defined by

dxt = μdt + σ dWt�

dnt =
{[
q(1 −φ)Hn

(
Sn(xt�nt)

) + qφ]
v∗(xt�nt) − δnt

}
dt� (23)

This corresponds to the true stochastic process for productivity, but a hypothetical pro-
cess for employment, that in general differs from the realized one. We can now use the
Feynman–Kac formula (Pham (2009)) to go back to the sequential formulation:

ζ(x�n) = E

[∫ T

0
e−ρtyx(xt�nt) + e−ρT ζ(xT �nT )|x0 = x�n0 = n�{xt�nt} follows (23)

]

and where T is the hitting time of either the separation of exit region. By assumption,
yx > 0, so the contribution of the first part is always positive. On the exit region, smooth-
pasting requires that ζ = 0. In the interior of the separation region, ζ = 0. Under our
regularity assumption, we thus get ζ = 0 on the layoff boundary. Thus,

ζ(x�n) = E

[∫ T

0
e−ρtyx(xt�nt) dt|x0 = x�n0 = n�{xt�nt} follows (23)

]
> 0�

which concludes the proof.
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B.4. S Is Concave in n

Denote s(z�n) = Sn(z�n). Differentiate the Bellman equation w.r.t. n on the interior
of the domain, use the envelope theorem and integrate by parts to obtain

(ρ+ δ)s(z�n) = yn(z�n) − b
+ {[

qφ+ q(1 −φ)Hn

(
s(z�n)

)]
v∗(z�n) − δn}sn(z�n)

+μ(z)sz(z�n) + σ2(z)
2

szz(z�n)�

Recall that

(1 + γ)c̄
[
v∗(z�n)

]γ = qφs(z�n) + q(1 −φ)H
(
s(z�n)

)
� (24)

In particular, differentiating w.r.t. n,

γ(1 + γ)c̄
[
v∗(z�n)

]γ−1
v∗
n(z�n) = [

qφ+ q(1 −φ)Hn

(
s(z�n)

)]
sn(z�n)

and so

γ
v∗
n(z�n)
v∗(z�n)

= φ+ (1 −φ)Hn

(
s(z�n)

)
φ+ (1 −φ)H

(
s(z�n)

) sn(z�n)
s(z�n)

�

where H(s) = H(s)
s

≤ 1. Now denote ζ(z�n) = sn(z�n) = Snn(z�n). Differentiate the re-
cursion for s w.r.t. n to obtain

(ρ+ 2δ− q(1 −φ)H ′
n

(
s(z�n)

)
v∗(z�n)sn(z�n)

− q[φ+ (1 −φ)Hn

(
s(z�n)

)
v∗
n(z�n)

)
ζ(z�n)

= ynn(z�n)

+ {[
λφ+ λ(1 −φ)Hn

(
s(z�n)

)]
v∗(z�n) − δn}ζn(z�n)

+μ(z)ζz(z�n) + σ2(z)
2

ζzz(z�n)�

Now define the “effective discount rate”

R
(
z�n� sn(z�n)

)
= ρ+ 2δ− q(1 −φ)H ′

n

(
s(z�n)

)
v∗(z�n)sn(z�n) − q[φ+ (1 −φ)Hn

(
s(z�n)

)]
v∗
n(z�n)

= ρ+ 2δ− qv∗(z�n)sn(z�n)

×
{

(1 −φ)H ′
n

(
s(z�n)

) + φ+ (1 −φ)Hn

(
s(z�n)

)
γs(z�n)

φ+ (1 −φ)Hn

(
s(z�n)

)
φ+ (1 −φ)H

(
s(z�n)

) }
︸ ︷︷ ︸

≡P(z�n)>0

�

where the second equality uses the expression for v∗
n derived above. Define the stochastic

process

dzt = μ(zt) dt + σ (zt) dWt�

dnt =
{[
q(1 −φ)Hn

(
Sn(zt� nt)

) + qφ]
v∗(zt� nt) − δnt

}
dt�

(25)



FIRM AND WORKER DYNAMICS 13

As before, we can use the Feynman–Kac formula to obtain

ζ(z�n) = E

[∫ T

0
e− ∫ t

0 R(zτ�nτ�ζ(zτ�nτ)) dτynn(zt� nt) dt + e− ∫ T
0 R(zτ�nτ�ζ(zτ�nτ)) dτT ζ(zT �nT )

∣∣∣z0 = z�n0 = n�{zt� nt} follows (25)
]

for T the first hitting time of the exit/separation region. The contribution of the first term
is always negative. Note that ζ enters in the effective discount rate. Inside the separation
region and in the exit regions, ζ = 0. We restrict attention to twice continuously differen-
tiable functions, so ζ = 0 on the exit and separation frontiers. Then

ζ(z�n) = E

[∫ T

0
e− ∫ t

0 R(zτ�nτ�ζ(zτ�nτ)) dτynn(zt� nt) dt
∣∣∣z0 = z�n0 = n�{zt� nt} follows (25)

]
< 0�

which concludes the proof.

B.5. S Is Supermodular in (logz�n)

Denote again s(x�n) = Sn(x�n), where x= logz. Recall that

(ρ+ δ)s(x�n) = yn(x�n) − b
+ {[

qφ+ q(1 −φ)Hn

(
s(x�n)

)]
v∗(x�n) − δn}sn(x�n)

+μsx(x�n) + σ2

2
sxx(x�n)

and that

(1 + γ)c̄
[
v∗(x�n)

]γ = qφs(x�n) + q(1 −φ)H
(
s(x�n)

)
�

In particular, differentiating w.r.t. x,

γ
v∗
x(x�n)
v∗(x�n)

= φ+ (1 −φ)Hn

(
s(x�n)

)
φ+ (1 −φ)H

(
s(x�n)

) sx(x�n)
s(x�n)

�

Now denote ζ(x�n) = sx(x�n) = Sxn(x�n). Differentiate the recursion for s(x�n) w.r.t. x
to obtain

(ρ+ δ− q(1 −φ)H ′
n

(
s(x�n)

)
v∗(x�n)sx(x�n)

− q[φ+ (1 −φ)Hn

(
s(x�n)

)
v∗
x(x�n)

)
ζ(x�n)

= ynx(x�n)

+ {[
λφ+ λ(1 −φ)Hn

(
s(x�n)

)]
v∗(x�n) − δn}ζn(x�n)

+μζx(x�n) + σ2

2
ζxx(x�n)�
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As before, define the “effective discount rate”

R
(
x�n� sx(x�n)

)
= ρ+ δ− q(1 −φ)H ′

n

(
s(x�n)

)
v∗(x�n)sx(x�n) − q[φ+ (1 −φ)Hn

(
s(x�n)

)]
v∗
x(x�n)

= ρ+ δ− qv∗(x�n)sx(x�n)

×
{

(1 −φ)H ′
n

(
s(x�n)

) + φ+ (1 −φ)Hn

(
s(x�n)

)
γs(x�n)

φ+ (1 −φ)Hn

(
s(x�n)

)
φ+ (1 −φ)H

(
s(x�n)

) }
︸ ︷︷ ︸

≡P(x�n)>0

�

where the second equality uses the expression for v∗
n derived above. As before, define the

stochastic process

dxt = μdt + σ dWt�

dnt =
{[
q(1 −φ)Hn

(
Sn

(
ext � nt

)) + qφ]
v∗(xt�nt) − δnt

}
dt�

(26)

As before, we can use the Feynman–Kac formula to obtain

ζ(x�n) = E

[∫ T

0
e− ∫ t

0 R(xτ�nτ�ζ(xτ�nτ)) dτynx(xt�nt) dt + e− ∫ T
0 R(xτ�nτ�ζ(xτ�nτ)) dτT ζ(xT �nT )

∣∣∣x0 = z�n0 = n�{xt�nt} follows (26)
]

for T the first hitting time of the exit/separation region. The contribution of the first
term is always positive. Inside the separation region and in the exit regions, ζ = 0. We
restrict attention to twice continuously differentiable functions, so ζ = 0 on the exit and
separation frontiers. Then

ζ(x�n) = E

[∫ T

0
e− ∫ t

0 R(xτ�nτ�ζ(xτ�nτ)) dτynx(xt�nt) dt

∣∣∣x0 = z�n0 = n�{xt�nt} follows (26)
]
> 0�

which concludes the proof.

B.6. Net Employment Growth

Denote again s(z�n) = Sn(z�n). Net employment growth in the continuation region is

dnt

dt
= q[φ+ (1 −φ)Hn

(
s(z�n)

)]
v∗(z�n) − λE(1 −Hv

(
s(z�n)

))
n− δn≡ g(z�n)�

Using the expression the optimal vacancy condition v∗(z�n) in (24),

g(z�n) = q1+1/γ[
(1 + γ)c̄

]1/γ

(
φ+ (1 −φ)Hn

(
s(z�n)

))(
φs(z�n) + (1 −φ)H

(
s(z�n)

))1/γ

− λE(1 −Hv

(
s(z�n)

))
n− δn�
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From the previous comparative statics on S(z�n), it is straightforward to see that g(z�n)
is increasing in logz and decreasing in n.

APPENDIX C: ALTERNATIVE CRS LIMIT

Consider the surplus equation (4). Assume α = 1, ϑ = 0 and vacancy costs homoge-
neous of degree one in (v�n). Let ν = v/n. In this case, the joint surplus is linear in n,
S(z�n) = Ŝ(z)n, where

(ρ+ δ)Ŝ(z) = max
ν≥0

y(z) − b+ q(θ)ν
[
φS̄(z) + (1 −φ)

∫ Ŝ(z)

0

(
Ŝ(z) − S′)dHn

(
S′)] − c(ν)

+μ(z)Ŝz(z) + σ2(z)
2

Ŝzz(z)� (27)

where, once again, Hn(S′) =H(z) and the marginal surplus still depends only on exoge-
nous productivity z. The model continues to behave like a one-worker–one-firm model
for all firm decisions, up to rescaling vacancies by size. This economy, however, produces
different worker dynamics from the limiting one described in Section 4.3.1 since gross
hires now depend on firm size.

APPENDIX D: FRICTIONLESS LIMITS

D.1. Setup

Frictional Problem. Start by recalling the Bellman equation for the joint surplus in the
frictional case:

ρS(z�n) = max
v
y(z�n) − nb− c(v) − δnSn(z�n)

+ q(θ)v
{
φSn + (1 −φ)

∫ Sn

0
Hn(s) ds

}
+ (LS)(z�n)

s.t. S(z�n) ≥ϑ� Sn(z�n) ≥ 0� (28)

where Hn is the employment-weighted cumulative distribution function of marginal sur-
pluses. L is the differential operator that encodes the continuation value from produc-
tivity shocks, (LS)(z�n) = μ(z)Sz(z�n) + σ (z)2

2 Szz(z�n). Recall that φ = u
u+ξ(1−u) is the

probability that a vacancy meets an unemployed worker, and q is the vacancy meeting
rate.

Inside the continuation region, the density function h(z�n) of the distribution of firms
by productivity and size is determined by the stationary KFE,

0 = − ∂

∂n

(
h(z�n)g(z�n)

) + (
L

∗h
)
(z�n)�

where L
∗ is the formal adjoint of the operator L, and g(z�n) is the growth rate of em-

ployment

g(z�n) = q(θ)v∗(z�n)
[
φ+ (1 −φ)Hn

(
Sn(z�n)

)] − ξλUn[1 −Hv

(
Sn(z�n)

)]
� (29)
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where λU is the meeting rate from unemployment, and ξ the relative search efficiency of
the employed.

The mass of entrant firms m0 is determined by the free-entry condition

c0 = E0

[
S(z�n0)

]
� (30)

where n0 is initial employment, which is a parameter, and E0 is the expectation operator
under the productivity distribution for entrants �0(z). Note that the surplus is a function
of m0 through the vacancy meeting rate q(θ), since θ is increasing in m0.

For ease of exposition, and without loss of generality, we make three additional as-
sumptions. First, we consider isoelastic vacancy cost functions

c(v) = c̄

1 + γv
1+γ�

and normalize c̄ = 1, but the result does not depend on the particular functional form
nor on the normalization. Also, we specialize to a Cobb–Douglas matching function
m(s� v) =Asβv1−β, where A is match efficiency, a proxy for labor market frictions. Third,
we set to zero exogenous separations to unemployment δ = 0, but endogenous separa-
tions when S(n�z) < 0 still occur, and we denote by � the aggregate endogenous separa-
tion rate.

To ease notation, we write B ≈ C for a first-order Taylor expansion. We also denote
‖Sn‖ = E

SS[S1/γ
n ]γ , where E

SS denotes the expectation under the steady-state distribution
of marginal surpluses. This is also the Lebesgue (1/γ)-norm of Sn under the steady-state
probability measure.

Finally, we note that in characterizing the limits we make use of the fact that both m0

and v must remain finite: infinite entry and vacancy costs would violate the economy’s
resource constraint.

Comparative Statics. We describe behavior of the economy in the limit when match
efficiency A→ ∞. We do so for two different configurations of the economy:

1. No on-the-job search: ξ= 0
2. On-the-job search: ξ > 0

D.2. No on-the-Job Search

Since ξ= 0, φ= 1. From (28), the first order condition for vacancies gives

v∗(z�n) = (qSn)1/γ� (31)

Using this optimality condition in the value function of hiring firms,

ρS(z�n) = y(z�n) − nb+ γ

1 + γ · q(θ)
1

1+γ S
1

1+γ
n + (LS)(z�n)

s.t. S(z�n) ≥ϑ� Sn(z�n) ≥ 0�

which now only depends on q(θ) as the sole aggregate. Hence, free-entry (30) uniquely
pins down q(θ) to the same number no matter what value A takes. Therefore, the value
function always satisfies the same Bellman equation, irrespective ofA. Hence, throughout
the state space, at any given (n�z), marginal surpluses Sn(z�n) remain the same as A
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varies. Moreover, since the value S(z�n) is independent from A, so are all the decisions
by firms. As a result, the endogenous separation rate � always remains the same, and in
particular, finite.

Aggregates in the Limit. We now study how aggregates v�u, θ evolve along this limiting
path. Given the matching function, these determine all other equilibrium objects: q, λU ,
λE .

Integrating both sides of the FOC for vacancies under the firm distribution, and using
the matching function which implies that q=Aθ−β, aggregate vacancies are

v= m0q
1
γ ‖Sn‖ 1

γ = m0A
1
γ θ− β

γ ‖Sn‖ 1
γ �

Since q remains constant, and v and m0 are finite in the limit, then the first equality implies
that ‖Sn‖ remains finite in the limit.

In the limit, the unemployment rate is u ≈ �
λU

. The matching function implies λU =
Aθ1−β. Combined, the unemployment rate is u≈ �A−1θ−(1−β) . Combining these expres-
sions with the expression for aggregate vacancies v, tightness satisifies

θ= v

u
≈ m0A

1
γ θ− β

γ ‖Sn‖ 1
γ

�Aθ1−β

so that

θβ
1+γ
γ ≈

(
m0

�

)
‖Sn‖ 1

γ A
1+γ
γ �

Since m0, �, and ‖Sn‖ are finite, θ diverges with A. Therefore, λU diverges as well. On the
worker side, since λU , diverges to infinity, u goes to zero. On the firm side, m0 remains
finite, but changes such that q remains constant and vacancies remain finite.

Invariant Distribution of Marginal Surpluses. We now turn to the invariant distribution
h(z�n). After substituting optimal vacancies into (29) evaluated at ξ = 1 − φ = 0, one
obtains that the growth of employment in the hiring region is

g(z�n) = q(qSn(z�n)
) 1
γ �

Since Sn(z�n) remains constant throughout the state space, then employment growth in
the hiring region remains constant throughout the state space. The firm loses no workers
to employment because there is no on-the-job search. Since Sn(z�n) and U = b/ρ both
stay unchanged, then the employment outflows to unemployment are still unchanged.
Since S(z�n) is unchanged, then the exit decision is also unchanged.

Hence the law of motion of employment is independent of A and the steady-state dis-
tribution h(z�n) is also independent from A. Therefore, the values of firms S(z�n) are
the same across the state space and the relative mass of firms at each (z�n) is unchanged,
despite higher but finite mass of entrants m0.

D.3. On-the-Job Search

We now turn to the case in which on-the-job search remains positive at some fixed value
ξ > 0. We follow the same logic as before, with some additional steps due to on-the-job
search.
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Consider (28) written in terms of the return on a vacancy R(Sn):

ρS(z�n) = max
v
y(z�n) − nb− c(v) + q(θ)vR(Sn) + (LS)(z�n)

s.t. S(z�n) ≥ϑ� Sn(z�n) ≥ 0�

where

R(Sn) =φSn + (1 −φ)
∫ Sn

0
Hn(s) ds� (32)

The growth of employment is

g(z�n) = qv[φ+ (1 −φ)Hn

(
Sn(z�n)

)] − ξλUn[1 −Hv

(
Sn(z�n)

)]
� (33)

Aggregates in the Limit. We restrict attention to the economically meaningful case in
which (1) output and aggregate vacancies remains finite and strictly positive in the limit,
and (2) the rate at which workers separate into unemployment remains finite in the limit.
These restrictions are equivalent to a guess and verify strategy, in which we guess that
(1–2) hold and then verify those conditions.

Consider first meeting rates. Because some measure n of employed job-seekers are
always present regardless of A, effective search effort s= u+ ξn remains finite and pos-
itive even if u goes to zero. By (1), vacancies also remain finite. Combined, these imply
that market tightness θ= v/s remains finite. Since q=Aθ−β and λU =Aθ1−β, then both
meeting rates diverge to infinity at the same rate as A.51

Consider unemployment and aggregate vacancies. (2) requires that the rate at which
workers separate into unemployment is a positive constant � in the limit. Since u ≈ �

λU
,

and λU diverges, then the unemployment rate converges to zero. Since the unemployment
rate converges to zero, then φ also converges to zero, and thus s = ξ. Firm level and
aggregate vacancies are given by

v= q 1
γ R(Sn)

1
γ � v= m0q

1
γ
∥∥R(Sn)

∥∥ 1
γ � (34)

(1) implies that both aggregate vacancies v and the mass of entering firms m0 remain
finite. Since v is finite and m0 is finite, while q diverges at the same rate as A, then γ > 0
requires ‖R(Sn)‖ must go to zero at the same rate as A goes to infinity.

Invariant Distribution of Marginal Surpluses. We now show that the distribution of
marginal surpluses degenerates to a single value on the support of the invariant distri-
bution.

First, we use (34) to express firm level vacancies as a share of aggregate vacancies,
where that share is determined by the firms’ return on a vacancy relative to the average
return:

v= 1
m0

(
R(Sn)∥∥R(Sn)

∥∥
) 1

γ

v= 1
m0

(
R(Sn)∥∥R(Sn)

∥∥
) 1

γ
(
λUξ

q

)
� (35)

51Strictly speaking, free-entry then ensures that θ is pinned down to a strictly positive value. This proof is
more lengthy but does not require any additional assumptions and is available upon request.
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where the second equality uses q = A(v/ξ)−β, and λU = A(v/ξ)1−β, which jointly im-
ply that v = λUξ/q. Now consider the expression for growth of employment inside the
continuation region (33), under the limiting case of φ= 0:

g(z�n) ≈ qvHn

(
Sn(z�n)

) − ξλUn[1 −Hv

(
Sn(z�n)

)]
�

Substituting in the expression for firm vacancies (35) and collecting λUξ terms,

g(z�n) ≈ λUξ
{

1
m0

(
R(Sn)∥∥R(Sn)

∥∥
) 1

γ

Hn(Sn) − n[1 −Hv(Sn)
]}
�

Since λU diverges but growth must remain finite on the support of the invariant distribu-
tion, the term in braces must be equal to zero in the limit:

1
m0

(
R(Sn)∥∥R(Sn)

∥∥
) 1

γ

Hn(Sn) = n[1 −Hv(Sn)
]
� (36)

Using this relation, we can show that the distribution of marginal surplus converges point-
wise to a degenerate limiting distribution H∞

n , that is, for every z there is a unique n∗(z).
We proceed by contradiction. Suppose that Hn converges to a limiting distribution H∞

n

that is non-degenerate.52 Consider a firm at the top of the distribution, such that 1 −
Hv(Sn) = 0. The probability that the firm loses a worker is zero, so the right-hand side is
zero. However, by the supposition thatHn is nondegenerate, thenR(Sn) in (32) converges
to a nonzero value, since the firm can increase its value by poaching from workers below
it on the ladder. Since there is some R(Sn) that is nonzero, then ‖R(Sn)‖ also converges
to a nonzero value. Therefore, the right-hand side of (36) is zero, but the left-hand side is
positive, which violates the above equality, a contradiction. Hence, in the limit H∞

n must
be degenerate, and marginal surpluses of firms converge to a common limit, which we
denote S∗

n.
Since the limiting distribution H∞

n is degenerate at every z, the invariant joint distribu-
tion of employment and productivity lines up along a strip {z�n∗(z)} implicitly defined by
Sn(n∗(z)� z) = S∗

n. Since Snn < 0 and Szn > 0, n∗(z) is strictly increasing.

Unique Value for S∗
n on the Limiting Strip. We now show that the unique equilibrium

value of the marginal surplus, S∗
n, is zero. The first step of the proof is to express the

marginal surplus as the present discounted value of flow marginal products yn−b. Second,
we show that these marginal products would be equal to −b should the marginal surplus
S∗
n be any strictly positive value. We then conclude that S∗

n = 0.
For the first step, we start by maximizing out vacancies in the HJB in (28) to obtain

ρS(z�n) = y(z�n) − bn+ γ

1 + γ
(
qφSn(z�n) + q(1 −φ)

∫ Sn(z�n)

0
Hn(s) ds

) 1+γ
γ

+ (LS)(z�n)� (37)

52So the probability measure of Sn in the cross-section would converge in distribution to a nondegenerate
limit.
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Differentiate (37) with respect to n to obtain a HJB for the marginal surplus,

ρSn(z�n) = yn(z�n) − b+
(
qφSn(z�n) + q(1 −φ)

∫ Sn(z�n)

0
Hn(s) ds

) 1
γ

× (
qφ+ q(1 −φ)Hn

(
Sn(z�n)

))
Snn(z�n)

+ (LSn)(z�n)� (38)

where the size process associated with marginal surplus dynamics is

ĝ(z�n) =
(
qφSn(z�n) + q(1 −φ)

∫ Sn(z�n)

0
Hn(s) ds

) 1
γ

× (
qφ+ q(1 −φ)Hn

(
Sn(z�n)

))
� (39)

Note that ĝ(z�n) ≥ 0, with equality if and only if Sn(z�n) = 0.
The HJB (38) therefore rewrites as

ρSn(z�n) = yn(z�n) − b+ ĝ(z�n)Snn(z�n) + (LSn)(z�n)� (40)

Using the Feyman–Kac formula, we obtain a sequential representation of (40):

Sn(z�n) = E0

[∫ ∞

0
e−ρt(yn(zt� n̂t) − b)dt∣∣∣z0 = z� n̂0 = n

]
� (41)

where zt follows the actual productivity process, and n̂t follows (39).
We are now ready for the second step of the proof. Suppose for a contradiction that

S∗
n > 0. Then ĝ(z�n∗(z)) = +∞ because the first parenthesis in (39) is strictly positive

(qφ→ �
θξ

∈ (0�+∞)), and the second parenthesis in (39) is infinite since Hn(S∗
n) = 1 and

q → +∞. Similarly, for any n ≥ n∗(z) such that Sn(z�n) > 0, ĝ(z�n) = +∞. Together,
these observations imply that n̂t = +∞ for any t > 0, starting from n∗(z) at t = 0. Intu-
itively, if the marginal surplus from hiring were to remain always strictly positive, given
the infinite meeting rate firms would keep growing without bound, a contradiction.

Under our Inada condition, we obtain, yn(zt� n̂t) −b= −b < 0 for any t > 0. Using (41),
we obtain Sn(z�n∗(z)) < 0 a contradiction. Thus, it must be that S∗

n = 0.

Optimal Size. Our goal is now to characterize the optimal size n∗(z). Our strategy is to
leverage that the marginal surplus is zero S∗

n = 0. We connect the marginal surplus to the
static net marginal product of labor yn − b using the sequential representation (41). This
expression relates the marginal surplus to the present discounted value of all future net
marginal products. To operationalize this idea, we split the time integral in (41) in several
components: a component that captures the immediate future, and a continuation value.
We define our candidate optimal size, n̄(z), to be such that yn(z� n̄(z)) = b. To show that
n∗(z) = n̄(z), we proceed by contradiction.

Suppose first that n∗(z) < n̄(z), and so yn(z�n∗(z)) − b > 0. Let ε > 0, and rewrite (41)
as

Sn
(
z�n∗(z)

) = E0

[∫ ε

0
e−ρt(yn(zt� n̂t) − b)dt|z0 = z� n̂0 = n∗(z)

]
+E0

[
e−ρεSn(zε� n̂ε)|z0 = z� n̂0 = n∗(z)

]
� (42)
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The first component is just the integral of the marginal product in a small time interval
[0� ε]. Recall that the marginal product is positive at t = 0 by assumption. Thus, by conti-
nuity, it must be that the marginal product yn(zt� n̂t) − b is positive for all t ≤ ε when ε is
small enough. Therefore, the first component of (42) is strictly positive. The second com-
ponent is also always positive because Sn ≥ 0. Thus, (42) implies S∗

n = Sn(z�n∗(z)) > 0, a
contradiction with S∗

n = 0. Therefore, we obtain that n∗(z) ≥ n̄(z).
Suppose next for a contradiction that n∗(z) > n̄(z), and so yn(z�n∗(z)) − b < 0. Our

strategy for this inequality mirrors our previous one. We must however split the integral
into three components rather than two to deal with continuation values.

Set n̂0 = n∗(z), and let ε > 0 be small enough. We define the stopping time

T = inf
{
t ≥ ε : n̂t = n∗(zt)

}
�

Recall that ĝ ≥ 0. Therefore, n̂t ≥ n∗(z) > n̄(z) for any t > 0. In addition, by definition of
the stopping time T , we also have that n̂t > n∗(zt) > n̄(zt) for all ε≤ t ≤ T .

Then return to (41) evaluated at (z�n∗(z)). Write

Sn
(
z�n∗(z)

) = E0

[∫ ε

0
e−ρt(yn(zt� n̂t) − b)dt∣∣∣z0 = z� n̂0 = n∗(z)

]

+E0

[∫ T

ε

e−ρt(yn(zt� n̂t) − b)dt∣∣∣z0 = z� n̂0 = n∗(z)
]

+E0

[
e−ρTSn(zT �n∗(zT )|z0 = z� n̂0 = n∗(z)

]
�

Similar to our previous argument, the first component is strictly negative when ε is
small enough, by continuity. The second component is strictly negative because, by def-
inition of T , n̂t > n∗(zt) > n̄(zt) for all ε ≤ t ≤ T . The third component is zero since
Sn(zT �n∗(zT )) = S∗

n = 0. Therefore, we obtain that 0 = S∗
n < 0, a contradiction.

We conclude that n∗(z) = n̄(z) = arg maxn y(z�n) − bn.

Limiting Value Function. Return to the surplus equation (37). Evaluating at (z�n∗(z)),
the vacancy return component is equal to zero because S∗

n = 0. Therefore,

ρS
(
z�n∗(z)

) = y
(
z�n∗(z)

) − n∗(z)b+μ(z)Sz
(
z�n∗(z)

) + σ (z)2

2
Szz

(
z�n∗(z)

)
s.t. S

(
z�n∗(z)

) ≥ϑ�
To arrive at our representation in the main text, we must show that the partial derivatives,
for example, ∂S

∂z
(z�n∗(z)), are equal to the total derivatives dS(z�n∗(z))

dz
. To that end, note

that, in the limit

dS
(
z�n∗(z)

)
dz

= ∂S

∂z

(
z�n∗(z)

) + ∂S

∂n

(
z�n∗(z)

)dn∗(z)
dz

= ∂S

∂z

(
z�n∗(z)

) + S∗
n

dn∗(z)
dz

�

Because S∗
n = 0, we obtain

dS
(
z�n∗(z)

)
dz

= ∂S

∂z

(
z�n∗(z)

)
�
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Therefore, in the limit, with a slight abuse of notation, the surplus can be described by the
value function evaluated on the strip, S(z) := S(z�n∗(z)) which evolves according to

ρS(z) = y(z�n∗(z)
) − n∗(z)b+μ(z)Sz(z) + σ (z)2

2
Szz(z)

and an exit cut-off determined by S(z) =ϑ. This proves equation (10) in the main text.
Finally, the free-entry condition

∫
S(z�n0)�0(z) dz = c0 pins down the mass of firms

m0, and thus market tightness θ along the limit.

APPENDIX E: IDENTIFICATION

To illustrate the identification of the model’s parameters more formally, we conduct two
exercises. First, we show how the minimum distance of the objective function changes as
we move each parameter ψi in steps in a wide range around ψ∗

i , letting the other param-
eters ψψψ∗

−i adjust to minimize the distance criterion function. We argue that the model is
identified if G(ψi�ψψψ∗

−i) plotted as a function of ψi, traces a steep “U” with a minimum at
ψ∗
i . Figure E.1 plots this exercise and gives us confidence that our parameter vector is well

identified.
Second, in the main text we discussed how each parameter is especially informed by a

particular moment, despite the model being jointly identified. To support this argument,
Figure E.2 plots each of the eight moments as a function of the corresponding parameter
in panel C of Table 1, keeping all other parameters at their estimated values. All pan-
els in the figure show significant variation in the moment of interest as a function of its
respective parameter.

FIGURE E.1.—Minimum distance as function of each parameter. Notes: For each parameter ψi ∈{μ� � � � � b},
the line plots the minimum distance function ψi �→ G(ψi�ψ∗

−i), where ψψψ∗
−i adjusts to minimize the distance

criterion. The vertical line marks the estimated value ψ∗
i listed in Table 1.
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FIGURE E.2.—Each targeted moment against each parameter. Notes: This figure plots the relationship be-
tween each parameter ψi ∈{μ� � � � � b} and the moment aligned with the parameter in Table 1. For each panel,
the x-axis plots alternative values of the parameter. The y-axis plots the change in the corresponding moment
in the steady state of the model obtained when all other parameters are as in Table 1.
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