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APPENDIX B
B.1. Omitted Proofs From Appendix A

PROOF OF PROPOSITION 1: We first prove that if # is uniform and 6 > max{p —
E[{], Az — { + p}, then for i’ < i we have

}P’|:aeLmJTj aeLmJTj,q,Qzl:|>IP|:aeLmJY}

j=i =i j=i

anTj,q,Q=0}. (B-1)

j=

We can rewrite (B-1) as
Pl0+{+1—p=>A,0+qg+E[{]— p=0]
P[0+ ¢+1—p>Ai, 0+q+E[{]— p=>0]

_ PlO0+{—p=A,0+q+E[{]— p=0]
PO+~ p=A,0+q+E[{]—p=0]

which we prove next. We have that

PO+ {+1—p=A,0+q+E[{]— p=0]
P[0+{+1—p>Ar,0+q+E[{]—p=0]
1
PAi=0++1—p=Ar,0+q+E[{]—p=0]
P[0+ (+1—p=A, 0+q+E[{]— p=0]
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(a) 1
P[Ai=0+(+1—p>Ay,0+qg+E[{]— p=>0]
Pl0+{—p>A,0+q+E[{]— p=0]

(b) 1
PA>60+(—p>A,0+q+E[{]—p>0]
Pl0+{—p=A, 0+q+E[{]— p=0]

1+

where (a) follows from
P[0+ ¢+1—p= A, 04+q+E[{]-p=0]=P[0+(—p= A, 0+q+E[{] - p=0]
and we next prove (b) by establishing

PMi=60+¢—p>Xi,0+q+E[{]— p=0]
>P[A>0+(+1—p>X,0+q+E[{]— p=>0]. (B-2)
We can write

PAi=0+¢—p=Xi,0+q+E[{]—p=0]
Z
=/g fg(x)]P’[He [max{p—q—E[(], Ay +p—x},/\,- —x+p]]dx

¢
@/ fe(x)P[6 € [max{p —qg—E[{],\v + p—1—x}, i —x+ p—1]]dx
e

=P[A=0+(+1—p>=A,0+qg+E[{]— p=0], (B-3)
where (a) holds because for all x € [{, ] we have

]P’[GE[max{p—q—E[g’],)\,-/—{-p—x},/\,-—x+p]]
(é)/\i—x+p—max{p—q—IE[§],/\,»/+p—x}

6—6
B min{A; — x + g+ E[{], A — Ar}
6—6
(;)min{)\i—1—x:kq+E[§],/\i—/\w}
> iy
_/\,~—1—x+p—max{p—q—E[§],/\,~/—l-l-p—x}
0—6

Op[6e[max{p—q—E[¢],\v — 14+ p—x}, ki —1—x+p]],

where (a) and (b) follow from § > p—E[{] > p—E[{]—gand 6 > \g—{+p > \;— {+p.
Finally, note that inequality (a) in (B-3) is strict because the above inequality (c) holds
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strictly for x > Ay + g+ E[{]. Before proceeding with the rest of the proof, let us show that
complete learning happens under 6 > max{p — E[{], Ax — { + p}. For complete learning

to happen, similar to Assumptions 2 and 1, we must have a 6 < 6 such that
O+E[{]-p>0 and 6+ (+1—p<ig.

Such a 0 exists if
~E[f] < M- £ 1. (B-4)

Therefore if the support of ¢ and @ are wide enough such that (B-4) and 6 > max{p —
E[{], Ax — { + p} hold, then learning happens (i.e., the analogue of Assumptions 2 and 1
hold) and also the assumption of Proposition 2 holds.

We next prove part (a) by showing that if ; f f,({)() is increasing, then for i’ < i the proba-

bility that Pla € U, T; | a € U, T}, q, Q] is decreasing in g (for both Q =0 and Q = 1).
Using Lemma A-2, there exist thresholds A; > A; such that we can write this probability
as

P[0+{—p+Q> A, 0+E[{]+q— p=>0]
Pl0+{+q—p+0Q=> A, 0+E[{]— p=>0]

[ 0= F—xt p-0)dx
_ Jp-q-El] . (B—S)
[ R F—x+ p=0)ds

After taking the derivative of (B-5) with respect to g, we see that its derivative is positive
if and only if

1-F(A—x+p—0)
fp—q—m] folx) 1—F;(Ar+q+E[{]-0)
- 1-F(AM—x+p—0)
B /p_q_m] folx) 1—-F;(Ai+q+E[{]-0Q)

Inequality (B-6) holds if

(B-6)

1-F(A-x+p-0)
/p—q—Em fe(x)l —F,(A+q+E[{]-0)

(B-7)

is decreasing in A. The derivative of (B-7) with respect to A is
1
/p-q-m o) (1-F(A+q+E[{]- Q)
x (ff(A+q+E[{]-Q)(1-F(A—x+p—0))
—fiA=x+p-Q)(1 - F(A+q+E[{] - Q)))dx, (B-8)

fe©)
1-F;()

which is nonpositive if is decreasing, that is, { has decreasing hazard rate.
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- f f,i )(_) is increas-
ing (i.e., { has increasing hazard rate), then (B-8) becomes nonnegative and, therefore,
the expression in (B-7) becomes increasing in A, which in turn implies that (B-6) becomes
increasing in q. Q.E.D.

The proof of part (b) follows from a similar argument by noting that if

PROOF OF LEMMA 1: We prove that when the distribution of 6 has an increasing haz-
ard rate, the support of m(K; Fy ., Q=1,q,T) and w(K; Fy;, O =0, g, T) are separated.
In particular, we prove that

min 77(?; Fo;,0=1,q,T) > max W(E; Fo;,0=0,q,7),
q€(0,1] q€[0,1]

establishing that the strict separation condition holds for S = {K}. We present the proof
in two steps.

Step 1: We have
maxw(f, F9,§7 Q:Oa CI: T) = 77-(E7 Fﬂ,{a Q=07 CI:O, T):
q
and

min7(K; Fy;,0=1,¢,T)=7(K;Fy;,0=1,q=1,T).
q

PROOF OF STEP 1: Both inequalities follow from the fact that #(K; Fy;, Q, q, T) for
QO €0, 1} is decreasing in g, which we show next. We can write

W(E, FH,{7 Q1 q, T)
=P[0+E[{]-p+q=0,0+{—p+Q= g | 0+E[{]—p+q=0]

_PO+E[]-p+g>0,0+(—p+0=>X]
B P[0 +E[{]— p+q=>0]

/_ . fo(x)(1 = F;(Ax = Q+ p—x))dx
/ fo(x)dx
p—q-E[{]

whose derivative with respect to g becomes

fe(P —q _E[g])

([ aos)

« ((1 _F(g Q+q+E[§]))(/p

b

fo(x) dx)

—q-E[{]

_ (/MM fox)(1 = F:(Ag — Q+ p — x))dx)).
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This derivative is nonpositive because 1 — F;(Ag — O+ gq+E[{]) <1-F;(Ax— QO+ p—x)
for x > p — g — E[{]. This completes the proof of Step 1.

Step 2: When 6 has increasing hazard rate, we have
W(E;F{%{,Qzlaqzl) > W(E;Fe,g,Q:()aq=0)-

Pg[6=A+x]

PROOF OF STEP 2: We first show that for any A > 0, Boloox]

ing in x. Taking the derivative with respect to x yields

is monotonically decreas-

—fo(x + M) (1 = Fy(x)) + fo(x)(1 — Fo(x + X))
(1—Fy(x))’

b

which is negative (from the increasing hazard rate condition, the numerator is negative).
Using this property, we have

7(K;Fp;, Q=1,q=1,T)
=P [0—p+14+{= A, 0+E[{]—p+1>0|60+E[{]—p+1>0]

=/f{(}’)P9[0—P+1Z/\f—y70+E[§]_P+1ZO|9+E[§]—P+120]dy
y

Py[6 > max{p + Mg — y, —E[{] + p} — 1]
_/yfg(y) P[0 > —E[{]+ p— 1] v
@ Py[6 = max{p + Ax — y, —E[{] + p}] 4

yfg(y) Ps[6 > —E[{] + p] g

= | f((WP[6— p>Ag -y, 0 +E[{] - p=0|0+E[{] - p=>0]dy

y
=Po [0 —p+{z A, 0+ E[{]—p=0[0+E[{]— p=0]
:W(E;F9,§9Q=07q=03 T),

Py[6=>x+A]

where (a) follows from the fact that B loor]

and the strict inequality follows from

is monotonically decreasing in x for A >0

P—L+ 2 p—(k—1+p—0)+Ac & p— Ay +1—E[¢]+Ag > —E[{] + p,

where (i) and (ii) follow from Assumptions 1 and 2, respectively. This completes the proof
of Step 2. The proof of the lemma follows from combining Steps 1 and 2. Q.E.D.

PROOF OF PROPOSITION 2: Part 1: We present the proof of part 1 for Q = 0 (the proof
for O =1 follows from the same argument). Subtracting the speed of learning for full
history (Theorem 2) from the speed of learning for summary statistics (Theorem 4), leads
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m

ZP[aeTﬂaeT,q:O,Q:O]log(

i=1

PlaeT;|aeT,q=0,0=0]
PlaeT|acT,q=1,0=1]

m

—ZIF’[aeTiMeT,q:O,Q:O]IOg(

i=1

PlaeT;|aeT,q=0,0=0]
PlaeT;|acT,q=0,0=1]

IP’[aeT,-|aeT,q=0,Q=1]>

=S PlaeT,|aeT, q=0,0=0]
;[“e jaela=0.0 ]°g<IP[aen|aeT,q=1,Q=1]

Using inequality logx < x — 1 for x > 0, this difference is upper bounded by

m

Zp[aemaeT,q:o,QZO](

i=1

P[aeT,-laeT,q:O,Q:l]_l)

B-9
PlaeT; |laeT,q=1,0=1] (B-9)

We next show that (B-9) is negative by induction on m.
For m =2, we let

x,=PlaeT,|acT,q=0,0=0], w=PlaeT,|acT,q=0,0=1],
z=PlaeT|laeT,q=1,0=1].

First, note that part 2 of Theorem 3 proves that the strict separation condition holds. For
m = 2, we only have two review options and, therefore,

ngrrl[%P[aeszeT,q,Q:O]@ n%(i)rll]IP’[aeTzlaeT,q,Qzl]gzz, (B-10)
qelY, q€lY,

where (a) and (c) follow from negative selection and (b) follows from the fact that proba-
bility of more favorable reviews (which is a € T, with m = 2) is higher for Q = 1 compared
to Q = 0. Then (B-9) becomes

»2 1-y (32— 22) (X2 — 22) (@
2 _1)+a- ~1) =
x2<22 )+( xz)<1—zz ) 2(1 - z3) =0

where (a) follows from negative selection, which implies z, < y, and (B-10), which states
X, < z,. This completes the proof for m = 2.

We next prove that if (B-9) is negative for m — 1, then it must be negative for m as
well. In particular, we establish that by merging the last two terms of the summation,
(B-9) increases and we still have a rating system with m — 1 review options that satisfies
negative selection. In particular, we have

ZIP’[aeTimeT,q:O,Q:O](

i=1

m—2
@ PlacT|acT,q=0,0=1]
P T; T,g=0,0=0 1
<<§ l[aeTilaeT,q o ]<p[aeT,-IaeT,q=1,Q=1]

PlaeT;|acT,q=0,0=1] 1
PlaeT;|laeT,q=1,0=1]
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P Tm7UTm T, =0, :1
+IP’[aeTm_luTm|aeT,q=0,Q=0]< [aeT, laeT,q 0=1] 1)

P[aETm_lLJTm|aeT,q:1’Q=1] —
(b)
<

We next prove that inequalities (a) and (b) hold.

To establish inequality (a), we define

Xn=PlaeT,|lacT,q=0,0=0], Xm1=PlaeT, 1|acT,gq=0,0=0],
ymZP[aeTmlaET’q:OanlL ym*1=P[aeTm*1 |LZGT,q=0,Q=1],
Zyn=PlaeT,|lacT,qg=1,0=1], Zy1=PlaeT, |lacT,qg=1,0=1].

With this notation, inequality (a) becomes
(y_ _ 1) Hm_l(yml _ 1) <(r +)<w _ 1),
Zm Zm-1 Zm + Zm-1
The difference between left-hand and right-hand sides of the above inequality can be
written as
X (ymzml - ymlzm> + X (ymlzm - ymZml)
" Zm(zm + Zm—l) e ZM—I(Zm + Zm—l)

_ ymszl - ymflzm
Zm—lzm(zm + Zm—l)

_ Zm—1Zm <y_m _ ym—1><ﬁ _ xm—l) < 0
Zm + Zm—1 \Zm Zm-1 Zm Zm-1 ’
where the inequality follows from: (i) the term (2 — ﬁ”’—j) is positive. This is because using
negative selection we have

(xmzm—l - xm—lzm)

Ym

—=PlaeT,|acT,UT,_1,9g=0,0=1
Yot Yt [ 1,9 ]

>IF’[aeTm|aeTmUTm_1,q=1,Q=1]=Z—”’,
Zm+Zm—1

and (ii) the term (2 — ;‘"‘—‘i) is negative. This is because we have
m m—

Xm (@)
———=maxPlaeT,|acT,UT,,q,0=0
xM7]+xM 7€l0.1] [ mI m—1 m CI Q ]

i (iii) Zm
<minPlaeT,|acT,UT,,q,0=1= ————,
Join Pla € I | mt U T, g, @ =1] Zyot + Zim

where (i) and (iii) again follow from negative selection and (ii) follows from negative
selection and a similar argument to the proof of part 2 of Theorem 3.

Inequality (b) follows from induction hypothesis by noticing that the rating system with
review options 7/ =T1,..., T, ,=T,,, T, , =T, UT, features negative selection.
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This is because for ¢' < g and i’ < i we have

m—1 m—1 m
P|:anT]f anT]f,q,Qj|:IF’|:anTj
j=i j=i' j=i

m—1
ae| T q, Q}
j=i

m m m—1 m—1
§]P>|:anTj anTj,q’,Q]z}P’|:anT/f anTj,q’,Q:|.
j=i j=i' J=i

=i
This completes the proof of part 1.

Part 2: We present the proof of part 2 of proposition for Q = 0 (the proof for Q =1
follows from a similar argument). Subtracting the speed of learning for summary statistics
(Theorem 4) from the speed of learning for full history (Theorem 2), leads to

m P[a€Ti|a€T:q=0’Q:0]
Z]P’[aGTi|ﬂ€T>q:O’Q:0]lOg<}P>[aeT-IaeT g=0,0=1]

i=1

m PGG’T[|aequ=O’Q:0
_ZP[GGTL'|a€T’q:O’Q:0]log(PIFaeT-IaET g=1 Q:d

i=1

IP’[aeT,-|aeT,q=1,Q=1]>

=N PlaeTi|aeT, q=0,0=0]l
;[“e jaela=0.0 ]°g<IP[aen|aeT,q=o,Q=1]

Using the fact that for x > 0, logx < x — 1, this difference is upper bounded by

" P[aeTilaeT,qzlanl]_l) (B-11)

ZP[GGTi|a€T’q:O’Q=0]<P[aeTIaeT q=0,0=1]

i=1

We next prove that (B-11) is negative by induction on m.
For m =2, we let

x,=PlaeT,|aeT,q=0,0=0], w=PlaeT|lacT,gq=0,0=1],
z=PlaeT,|lacT,q=1,0=1].

Then (B-11) becomes

(e m(i5) -

where the inequality follows from negative selection which implies z, < y, and the fact
that higher Q leads to higher probability of likes, that is, x, < y,. This completes the
proof for m = 2.

We next prove that if (B-11) is negative for m — 1, then it must be negative for m as
well. In particular, we prove that by merging the last two terms of the summation, (B-11)
increases and we still have a rating system with m — 1 review options that satisfies positive
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selection. In particular, we have

m P[aeT,—|a€T,q=1,Q:1]
ZP[QGTi|a€T,q=O’Q:0]<P[aeT»IaeT q=0 Q=1]_1

i=1
“ [aeT |aecT,q=1,0=1]
<;PaeT|a€Tq 0,0= 0]( PlaeTlaeT,q=0,0=1

P T,.,UT, T,q=1,0=1
+IP’[aeT,,,_1UT,,,|aeT,q:O,Q=0]< [a € T laeT,q 0 ]_1>

PlaeT,1UT,|lacT,q=0,0=1]

b
Do,

We next show that inequalities (a) and (b) hold. To establish inequality (a), we let
Xn=PlaeT,|acT,q=0,0=0], Xp1=PlaeT, 1|acT,q=0,0=0],
Ym=PlaeT,|lacT,q=0,0=1], Yma=PlaeT,1|acT,q=0,0=1],
Zn=PlaeT,|acT,q=1,0=1], Zm1=PlaeT, |laeT,q=1,0=1].

With this notation, inequality (a) becomes

xm<z_m B 1) +xm1<zm1 B 1> < (% +xm1)(M _ 1)_
Ym Ym—1 Ym +ym—1

The difference between left-hand side and the right-hand side of the above inequality can

be written as
Xm (Zmym—l - Zm—lym) + xm,1 (Zm—lym - Zmym—1>
YV + Yim—1) Yn1(Ym + Ym-1)
— Zmym—l - Zm—lym
ym71ym(ym + ym—l)

ymfl))m (Zm Zm—1 > (xm Xm—1 )
=l (Tm - <0,
ym + ym—l ym ym—l ym ym—l

. . . . o . I
where the inequality follows from positive selection that implies — > and

ym Jf’y" -~ > - — which follows from the fact that the probability of having more fa-
vorable review is greater for higher Q. Inequality (b) follows from induction hypothesis
by noticing that the rating system with review options 7, =T, ..., T}, 2= =TT, =

T,,.1 U T, features positive selection. This is because for ¢’ < g and I’ < i we have
m—1 m—1
]P’|:anTj/ anT’,q, :| [anT an }
j=i j=i'
m m m—1 m—1
flP[anTj anTj,q’,Q} [anTJ’ an }
j=i j=i j=i

This completes the proof of part 2. Q.E.D.

(xmqu - xmflym)
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PROOF OF PROPOSITION 3: Suppose the review optionsin Q are {—K, ..., K, K+1}.1t
suffices to consider ()’ to have one less review option, for example, combining K and K +
1, and with a slight abuse of notation, we denote the review options of ' by {—K, ..., K},
where K stands for either K and K + 1 under Q. By hypothesis, the combination of these
two review options in ()’ does not affect customer thresholds.

Let 7(a; Fo, O, q) and 7'(a; Fy, O, q) denote the probability of leaving review a in
rating systems ) and (), respectively. Then, for any review option a € {—K, ..., K — 1}
the probability of leaving this review with any belief g and any Q € {0, 1} in these two
rating systems are the same, that is,

W(a;FB,Za Q: C]) :W/(QQFe,ga Q’ q)a ae{_K, >E_ 1}3 Vq’QE{Oa 1} (B_lz)

The only difference between the probability distributions in these two rating systems are
for review options K and K + 1. In particular, we have

77-/(E; Fﬁ,{’ Q? Q)ZW(E; FB,{’Q’ CI)+7T(E+1;F9,{7 Q’ CI)7 Vq’Q€{07 1} (B'13)

We will next proceed with the proof of the full history case and summary statistics case
separately.

Full history: We present the proof for Q = 0 as the proof of Q =1 is similar. Using
Theorem 2, for the less refined rating system ()’ the speed of learning is

K
W,(a;Fgg,QZO,q=0)>
7 (a; For,Q=0,g=0)lo - ’ . B-14
3 7@ 0 =0.4=0 e (B-14)
For the more refined rating system (), the speed of learning is
K+1
W(a;Fgg,QZO,qzo))
m(a; Foe, O=0,9=0 10( : . B-15
Q_X_:E (a; Fo q=0)log m(a: Fop, O=1,q=0) ( )

Using (B-12) and (B-13), the difference between the speed of learning of €} given in
(B-15) and the speed of learning of )’ given in (B-14) becomes

w(K; Fyp, Q=0, q:O))
7T(K, Fg,g, Q= 1, q:O)

7(K+1,Fp;, Q=1,4=0)

—(W(E,F&Z,Qz(),qz())+7T(E+1,F9,§,Q=O,q=0))

0g<w(E; Fo;,0=0,g=0)+7(K+1;Fy;, 0=0,q=0)
7(K; Fpr, Q=1,g=0)+7(K+1;Fy;,0=1,qg=0)

7(K; Fo;, Q=0,g=0) 1og<

+7(K+1;F,;,0=0,9=0) 10g<

>, (B-16)

which is nonnegative by using the following inequality:

x y x+y .
xlog— +ylog= > (x +y)log—=, Vx,x,y,y €(0,1). B-17
gty gy,_( y) gx,+y, v,y €(0,1) (B-17)
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We next find the sufficient and necessary condition under which (B-16) is strictly posi-
tive. In particular, we show that the refinement strictly increases the speed of learning if
and only if

Pla=K+1|qg=0,0=0,ae{K,K+1}]#Pla=K+1|q=0,0=1,a{K,K+1}].

Intuitively, this condition states that the probability that the review is the top one, con-
ditional on it being one of the top two reviews, is different when the product has high
and low quality. This implies that the additional information that the review is K + 1 is
informative about the underlying quality. To see this formally, note that inequality (B-17)

is equivalent to
(5575 ()=
xX+y x+y X+y x+y

which holds with equality if and only if the two distributions are identical. This implies

Pla=K+1|q=0,0=0,ae{K,K+1}]

/

x+y x/+y/

=Pla=K+1|9=0,0=1,a€{K,K + 1}].

This completes the proof for full history.

Summary statistics: The proof follows from Theorem 4 with minor modifications analo-
gous to those for full history. Q.E.D.

PROOF OF LEMMA A-2: The proof is by induction. Let Ax be the smallest utility u for
which review decision K is preferable to all other review options. Formally,

Mg =inf{lu e RU{—o00}: V(u,K) =V (u,r)Vre{-K,...,K — 1}}. (B-18)

First, note that if the set of utilities u for which review decision K is preferable is empty,
then no user leaves this review and we can repeat the same argument starting from review
K — 1. Therefore, without loss of generality, we assume the set of such utilities is not
empty. We claim that all users with utility u larger Az leave review K. This is because for

allr e {—K,...,K —1}and u' > A\x we have

V(,R) =V (.r) 2 VA, B) — V(Ag,r) =0,

where (a) follows from increasing differences in Assumption A-2. Applying this argument
inductively, we can determine the remaining thresholds Ax_;, ..., A_g. For example, let

the second-highest threshold be the smallest utility for which review decision K — 1 is
preferable to the review options below it. That is,

Az :inf{ueRU{—oo}:V(u,E— H>V(u,r) Vre{—&,...,E—Z}}.

Then it follows that for all u € [Ax_;, Ax) we have argmax, ., V(1 r) = K—1.
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Applying the same argument to the other thresholds establishes the existence of thresh-
olds in R U {—o0, oco}. We next prove that these thresholds are finite. Using part 2 of As-
sumption A-2, we have

lim (V(u, —-K)— max V(u, r)) > 0.

U—>—00 re{—K+1,...,.K}

Therefore, there exists u € R such that for u < u we have V(u, —K) > V (u, K). Using
the definition of Az in (B-18), we have Ax > u. This completes the proof. QO.E.D.

PROOF OF THEOREM A-1: We first characterize the Bayes—Nash equilibrium with con-
sequentialist utility and in particular show that there exists a Bayes—Nash equilibrium
where review decisions again follow a threshold rule.

LEMMA B-1: Suppose Assumptions A-1 and A-3 hold. Then there exists a sequence of
functions {()\ft) 11 € R)}2, such that the functions ()\f[) : i € R) are mappings from the his-
tory at time t to real numbers where

(@) < - < 25(Q) < A(Q) <+ A2 (),
and the following review decisions:

—K foru< /\Y)K(Q,),
i foru e [A2(Q), A" Q) and —K <i <0,
R(Qu)=10  foru c[A)(Q), 1)),

i foru e [M(Q), A Q) and 0 < i <K,

i+1

K  foru> /\% ()

and purchase decisions B ={B,}%°, given by (A-31) with beliefs formed by Bayes’ rule consti-
tute a Bayes—Nash equilibrium.

PROOF OF LEMMA B-1: We first define the sequence of functions {()\ft) :ieR)¥2, and
then show that review decisions based on these functions together with purchase decisions
based on beliefs that are updated using Bayes’ rule form a Bayes—Nash equilibrium.

First, note that the purchase probability of customer ¢+ 1, denoted by pur,_,, is equal to
Po[0:11 +E;[ (1] — P+ qi1 > 0], which is increasing in g,,;. Therefore, instead of V' (-, -)
we can equivalently work with a utility function 17(-, -) that is a function of u, and ¢,,, and
has increasing differences property.

CLAIM 1: In this claim, we define the aforementioned threshold functions for customer

t > 1. For a given t and history (),, we show that there exist thresholds )\(_:3_{ <...< )\%) such
that the review decision R, : R — R defined as

)
—K foru< )\_tﬁ,
[ foru; e [)\l(.i)l, Agt)) and —K <i<0,
R/(u)=130 foru, e [/\(_[)1, )\Y)), B
foru, e [A?,A)))and 0 <i <K,
foru> /\%),

A
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satisfies

R./(u) € argr7r21ax V (i, gie1(Ri 1)), Vu,. (B-19)
re

Here, q,,1(R,, r) denotes the belief of customer t +1 knowing that customer t is using function
R, (") to leave a review and her review decision is r. (B-19) means that given customer t + 1
believes that customer t is using function R,(-) to leave a review, it is optimal for customer t to
follow the review decision based on the function R,(-). Note that given any review decision of
customer t, which is a mapping denoted by R,(u,) € R, the updated belief of customer t + 1
is a function of this mapping as well as the review decision of customer t denoted by r.

PROOF OF CLAIM 1: We show that a mapping that satisfies (B-19) exists for a rating
system with two review options K, —K as the proof of the case with multiple review op-
tions is similar. In particular, we show that a threshold rule A" exists such that above the
threshold the review decision is K and below it the review decision is —K. For a given A,
suppose R,(u;) = K if and only u, > A. We let R, be a mapping that maps u, > A to K and
u, < A to —K. We define the function

f)= 17()\’ qis1 (R, E)) - 17(/\, qi1(Ry, —K)) (B-20)

Note that the function f(A) is continuous in A. This is because under Assumption A-3,
is continuous and ¢, is a continuous function of the probabilities of different reviews,
which is continuous in the threshold A (because under part 1 of Assumption A-3 the
CDF of F, is continuous). We next show that there exists a threshold A € [0 + ¢ — p +
1,0 + ¢ — p] for which f(A) =0. For A =60+ ¢ — p + 1, we have q,,1(R,,K) > q, >
q:+1(R,, —K), which implies that with threshold rule R 1, the purchase probability given
review decision K is strictly larger than the purchase probability given review decision
—K. Therefore, using Part 3 of Assumption A-3 implies that f(A) < 0. Similarly, Part 3 of
Assumption A-3 implies that f(1) > 0 for A = 6+ — p. The intermediate value theorem
for continuous functions then establishes the existence of A®) such that f(A®") = 0. Since
g1 (R0, E) > q, > q,+1(R,0, —K), the increasing differences property of I (Part 2 of
Assumption A-3) implies that for any u > A, we have R,(«) = K and for any u < A,
we have R,(u) = —K. Finally, note that since A€ [0+ — p+ 1,0+ — p], both K and
—K reviews have a nonzero probability. This completes the proof of Claim 1.

CLAIM 2: The review decisions based on the thresholds characterized in Claim 1, together
with the optimal purchase decisions, constitute a Bayes—Nash equilibrium.

PROOF OF CLAIM 2: This claim follows from the one-stage deviation principle. Con-
sider customer ¢ with material utility #, who makes a review decision at time ¢. Using
(B-19), and noting that customer ¢ 4+ 1 will update her belief assuming that customer ¢’s
review is based on function R;, we have

I7(Mt, qi+1 (Rt’ Rt(”t))) = 17(”[, qi+1 (Rt, r,)),

for all ' € R. This completes the proof of claim 2 and the proposition.
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We now proceed with the proof of theorem, which follows those of Theorems 1-4 in the
text, but now taking the strategic interaction between adjacent customers and the time-
varying thresholds into account. In particular, the thresholds that determine the reviews
at time ¢ depend on the information available to customer ¢, that is, },. We therefore
provide a sketch of how the proof proceeds but do not repeat parts of the proof that are
identical to those of Theorems 1-4. In the full history case, the public belief is still a mar-
tingale and converges to a limiting random variable. Moreover, as shown in Lemma B-1,
under Assumptions A-3 both positive and negative reviews are left with positive probabil-
ity. Therefore, a similar argument to that of Theorem 1 establishes that the public belief
converges to the true quality almost surely. A similar argument to the proof of Theorem 2
establishes that the convergence is exponentially fast and characterizes its speed. Specifi-
cally, for any ¢ and any belief of customer ¢ denoted by ¢,, the mapping ¢,,(, -) used in
the proof of Lemma B-1 is a function that only depends on g, the review decision strategy
of customer ¢, and the review decision of customer ¢:

g Plu=A|0=1]
1—q,Plu=A|Q=0]
i g Plu=r|Q=1]"

1—qPlu=r|Q=0]

qi+1 (R)u E) =
1

Because this mapping depends on ¢ only through the belief of customer ¢, g,, as t — oo,
the belief of customers and, therefore, the thresholds converge. An identical argument to
the proof of Proposition B-8 establishes that, even though the thresholds are time varying,
learning is exponentially fast with the same speed of learning as Theorem 2 where the
reviews are left based on the limiting thresholds.

For a rating system with summary statistics, when the strict separation condition holds,
the same argument as in Theorem 3 applies and establishes that there is complete learn-
ing. The speed of learning follows with a similar argument to Theorem 4. In particular, for
any ¢ and any summary statistics S,, the mapping ¢, (-, -) used in the proof of Lemma B-1
is a function that depends on time ¢ + 1, the fraction of different reviews S,,;, the review
decision strategy of customer ¢, and the review decision of customer ¢. We denote this
function by g(S,1, ¢+ 1, R, F). First, note that for a given fraction of reviews S,,; =S,
as t — oo, the belief of customer ¢ + 1 and the fractions of different reviews converge
to a limit point. Consequently, the thresholds converge as well, and a similar argument
to the proof of Proposition B-8 establishes that, even though the thresholds are time
varying, learning is exponentially fast where the reviews are left based on the limiting
thresholds. O.E.D.

B.2. Examples and Discussion
B.2.1. Fast and Slow Learning From Reviews

The first example shows that a refinement of the review options in the rating system can
significantly increase the speed of learning.
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EXAMPLE B-1: Suppose that 6 has a uniform distribution over [—2,2], p =0, and ¢
has the following symmetric bimodal distribution:

1 1
24 e=b-g
1 1 1
— 44z 4b+- —b—=-<z<—b,

] 2a 4 4

fg(z)—
L b bez<_bil
24 z 4 =Z= 4
1 1
ﬁ —b+Z<ZSO,

over the support [—6, 6]. This distribution implies that the likelihood of a realization of
¢ is very high around b and —b. We next compute the speed of learning of rating system
with full history and the following review options:

Case 1: “dislike.” “no review,” and “like” and the thresholds are 1 and —1.
Case 2: “dislike,” “no review,” “like,” and “love” and the thresholds are 1, —1, and 5.

The joint distribution of (6, ) and the probabilities of observing the “like” and “love”
reviews under Q = 0 and Q = 1 are depicted in Figure B-1. The speed of learning for these
two cases as a function of parameter b are, in turn, plotted in Figure B-2. In Figure B-2,
when b = 5, the speed of learning without the “love” option is approximately 0.001, which
means that the half-time for learning the truth would be 1000 periods. In contrast, with
the “love” option present, the speed of learning changes to 0.2, which means that the
half-time for learning the truth would be 5. The speed of learning of the first case is slow
because for each review, the ratio of the probability of observing that review when O =0
to the probability of observing it when Q = 1 is close to 1. In fact, as b increases, this ratio
becomes closer to 1 and the speed of learning declines further (towards zero). The speed
of learning in the presence of the “love” option is shown in Figure B-2, and is significantly
higher. This is because the probability of observing the “love” review is very close to zero
when Q =0, and is positive when Q = 1. This leads to a large value of KL divergence, and
thus to relatively fast learning.

2 2 ——
—
1 1 Z
0 o 00___-____? B
e —— -1
-L-B -4 -‘—6 -4 =2 0 2 4 6
¢
Q=1 Q=0

FIGURE B-1.—The joint distribution of (6, {) and the probabilities of the review options “like” and “love”
for two cases under Q =0 and Q =1 for b = 3 for Example B-1. The double shaded areas correspond to the
“love” option, and the shaded areas correspond to the “like” option.
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f —aA—Rating system with “love” review
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?3 0.1 —v—Rating system without “love” review| 1
[}
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3 3.5 4 4.5 5

Parameter: b

FIGURE B-2.—The speed of learning as a function of parameter b for Example B-1. As b increases, the
speed of learning of the rating system without the “love” option becomes very small, while the speed of learning
of the rating system with the “love” option remains large.

In the next example, we show that increasing the support of ex post preference param-
eter, {, can significantly decrease the speed of learning.

EXAMPLE B-2: Suppose 6 and { have symmetric uniform distributions with diffuse
supports such that p € (=6 + 1, ) and { > max{Ag + 1, —A_x — p + 6 + 1}. From Theo-
rem 2, the speed of learning with full history can be computed as shown in Figure B-3. We
can see that the speed of learning for both QO =0 and Q = 1 significantly decrease as the
support of ¢ widens (i.e., as { increases). The characterization of the speed of learning
in Theorem 2 provides the intuition for this result. When the true quality is 0 (and simi-
larly, when it is 1) and ¢ has a diffuse support, the likelihood of each review under both
(g=0,0=0)or (¢=0,0=1) is similar, and thus the likelihood ratio of each review is
close to 1, leading to a low KL divergence. The differences in the speed of learning can be
quite substantial. For example, Figure B-3 shows that when { =5, the speed of learning
for Q =1 is 0.02, which means that the “half-life” of convergence to the true state of na-
ture is 50 periods (meaning that starting from any belief half of the distance to ¢ =1 will
be close in 50 periods). In contrast, when ¢ is 20, the speed of learning changes to 0.001,
and the half-life of learning the underlying state is 1000.

0.0 T T T T

Speed of Learning for Q=1

=——Speed of Learning for @ =0

Speed of learning

25 30

_ FIGURE B-3.—The speed of learning as a function of the support of ¢ for Example B-2 with p =0,
0=—0=2,and \g=—A_g=1.
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Learning speed

FIGURE B-4.—Speed of learning for the setting in Example B-3 as a function of var(¢{) and E[6)].

EXAMPLE B-3: We consider a rating system with full history of reviews and review op-
tions “like” and “dislike” that shows history of reviews among all purchases. To focus on
the effects of distributions, we suppose p = 0 and the review is “like” if and only if the
material utility is positive. We consider normal independent distribution for 6 and ¢, with
E[{] =0 and var(#) = 1. Figure B-4 shows the speed of learning as a function of the
variance of { for different values of E[6]. As we can see, increasing var({) decreases the
the speed of learning. This is because the impact of the product’s quality on the mate-
rial utility becomes smaller. Another observation is that as E[60] increases the speed of
learning decreases. This is because for larger values of E[6], the selection effect is more
pronounced, and hence learning becomes more difficult. More specifically, for large val-
ues of E[6], customers who purchase the product are positively biased toward liking the
product. Therefore, the impact of the product’s quality on their review is smaller.

EXAMPLE B-4: We consider a rating system with review options “like” and “dislike”
that displays the history of reviews among all purchases. Similar to Example B-3, we sup-
pose that p = 0 and all users who purchase the product leave a review and this review
is “like” if and only if the material utility is positive. We consider uniform independent
distribution for 6 and ¢, with { ~ Unif[—5, 5] and 6 ~ Unif[—1, 6]. Figure B-5 shows the
speed of learning as a function of 6. As we can see, a higher 0 increases the speed of

0.12
0.1r _--- -

@0 ==
ES 0.08¢ — -Full history
ks
g 0.067 — Summary statistics
Q
2
n

0.04

0.02 .

1 1.5 25 3

0

FIGURE B-5.—Speed of learning for the setting in Example B-4 as a function of  for full history and
summary statistics.
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learning for both full history and summary statistics. This is because the selection effect
becomes less pronounced as 6 increases: the preference of user ¢+ who has purchased the

product is a truncated uniform distribution on [—g,, 6] where ¢, is the belief of user ¢. As
6 increases, whether the users know ¢, € [0, 1] or not becomes less important.

B.2.2. Details of Example 2

The first two claims directly follow from Proposition 1. To see the last claim, note that
the rating system with two review options that reports the fraction of “likes” among all
customers features positive selection because 7(K; Fy;, Q,q,T) =P[0+{+ Q0 — p >

ple 2.

p > 0] is increasing in both Q and g, establishing the claims in Exam-

B.2.3. Details of Example 3
Let the support of 6 be [—1, 1] with the following probability density function:

fo(x) =

1 _-7 1

20° SR IET) &

1 18/20 7 1 7
R (78— 1/10)), — - — <x<
20 " 10 T (F7/8-1/10), g -qg=xs g

1 1820 —7 7
O (—7/841/10)), —L =
20~ 110 T CTEHI0), S sx st
1 7, 1 41
20° 8 "10-""8 100
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1 18/20 4 41
O (4/8—1/10 — ST
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and let { have a symmetric distribution around 0 whose support is [—2, 2] with the follow-
ing probability density function:

fe(x) =

1 71

20° 2T

1 8/20 7 1 7

— M (—74-1/10)), Lo~

20+1/10(x (7/4=1/10)), -7 —{g=x=—

1 8/20 _7 7 1

— Y (=744 1/10)), =L =

20 " 1o T CTAHIN0), Esxs
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1 8/20 11 1
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— Y (/4411 i o
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First, consider a rating system that reports the fraction for “likes” among reviews. As
depicted in panel (a) of Figure 1, this rating system features negative selection. We next
show that it does not satisfy (weak) separation. To see this, note that the minimum of
7(K; For, O=1, q) (achieved at g = 1) is close to 5/8 that is smaller than the maximum
of m(K; Fyp, O =0, q) (achieved at g = 0), which is close to 6/8.

Now consider a rating system that reports the fraction of “likes” among all customers.
As we have shown in Example 2 and depicted in panel (a) of Figure 2, this rating system
features positive selection. We next show that it does not satisty (weak) separation. To see
this, note that the minimum of = (K; Fy ;, O =1, q) (achieved at g = 0) is close to 3/8 that
is smaller than the maximum of 7(K; F, ;, O =0, q) (achieved at g = 1), which is close to
4/8.

Finally, we note that for uniform distribution of valuations with wide enough support,
a rating system that reports the fraction of “likes” among reviews features negative se-
lection, a rating system that reports the fraction of “likes” among all customers features
positive selection, and we have complete learning for both rating systems (i.e., Assump-
tions 1 and 2 and the strict separation condition hold).

B.3. Additional Results

This section of Appendix B includes the additional results and extensions discussed in
the main text.

B.3.1. Extension of Part 2 of Theorem 1

Here, we show that if § + E[{] — p < 0 and Q = 0, then almost surely learning is incom-
plete. In particular, we prove that

Pl fim ar=0] =0

To reach a contradiction, suppose P[lim,_ g, = 0] > 0. Under the event lim,_ . g, =0,
there exists s such that for r > s we have

1 _
gs < E(p — 6 —E[{]).
We let £, be the smallest s with such property. Therefore, for ¢ > ¢, we obtain
- 1 .- (@)
9+ 0+E[{] - p=q+0+E[(] - p=5(0+E[¢] - p) <0, (B-21)

where (a) follows from 6 + E[{] — p < 0. The inequality given in (B-21) means that the
purchase does not happen for ¢ > #, and the belief remains at g,,. Finally, note that g, is
always greater than 0 because, under Assumption 1, if purchase occurs, then the proba-
bility of any review is nonzero. Hence, the likelihood ratio at each time is multiplied by
a number bounded away from zero and cannot become 0 in finite time. This contradicts
lim,_, « g, = 0, proving the claim.

B.3.2. Speed of Learning With Observable Valuations

Suppose that customer ¢ (in addition to /,) observes the ex ante valuation of previous
customers, that is, 6, fors =1, ..., ¢t — 1. For any 6 € [6, 6], we define

7T9(a; FO,{) Q, C]) = ]P)Z\O[a | qa Qa 0]? an Q € {05 1}7 Va e Aa
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as the the probability of different actions when conditioning on the ex ante valuation.
In this setting, the selection effect completely disappears because current customers can
condition on past customers’ 6’s. The next proposition shows that in this case the speed
of learning is always greater than in Theorem 2.

PROPOSITION B-1: Suppose Assumptions 1 and 2 hold, and that in addition to the full
history of reviews, customer t observes 6, for s =1, ...,t — 1. Complete learning occurs, that
is, g, — Q almost surely and is exponentially fast. Moreover, for Q = 0, we almost surely have

o1
lim ; logq, = —EQ[D(ﬂ'e(Fg’g, Q = 0, q= 0) || Wg(Fg,g, Q = 1, q= O))]

=

and for Q = 1, we almost surely have

!
tlilg ; 10g(1 - q:) = —EG[D(T"e(Fe,g, 0=1,q= 1) I ”O(Fe,ga 0=0,9= 1))]
In both cases, the speed of learning is greater than in Theorem 2.

In the full history setting of Theorem 2, customers only know the public belief, and
hence the distribution of ex ante valuations of previous customers who have purchased the
product. Proposition B-1 shows that if customers additionally observe ex ante valuations,
then the speed of learning would be always greater.!’

PROOF OF PROPOSITION B-1: We prove the proposition for Q = 0 as the proof for Q =
1 is similar. The learning dynamic in this setting is

Pyolai 1 g=q, Q=1,0=106,]
Puola: | g=¢q,,0=0,0=6,]

a,=aw.p.Pgola; 1 q=¢q:,,0=0,0=86,].

lt+1 = lt

{l,}?2, forms a martingale. Thus almost sure convergence and the speed of learning
follow from a similar argument to that of Theorems 1 and 2. In particular, letting
m(a; Fype, O, q,0) =Py la] g, 0, 0], the speed of learning becomes Ey[D (7 (F0, O =
0,g=0,0) || w(Fz0, 0 =1,9g =0, 0))]. We next show that its speed is higher than the
one presented in Theorem 2. We have

Eo[D(m(Fy9,0=0,9=0,0) | 7(Fs0,0=1,4=0,0))]

(%) D(]E(,[’ZT(Fgw, 0=0, q= 0, 0)] I EH[F(FZIO’ 0=1, q=0’ 6)])
:D(H(FB,Z? QZO,C]:O) ” ﬂ(FO,b 0= 17q:0))7

where (a) follows from the convexity of KL divergence. Q.E.D.

We next formally define extra information and then show that providing extra in-
formation weakly increases the speed of learning. Consider a rating system I and let

"To see this, note that KL divergence is a convex function, and thus the average of the KL divergence for
different 6’s is greater than the speed of learning in Theorem 2, given by the KL divergence for average 6.
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h,={a, ..., a,_1} denote the history available to customer ¢. We say that rating system II
has extra information compared to rating system I if we have

'(a; q,0) =E.,[7"(a;;q,0)] forallt>1,a,€ A

for some additional information z, that customers observe in rating system II—the history
available to customer ¢ in rating system II is &, ={(a,, z1), ..., (a,_1, z;_1)}. Below, we
include some examples of extra information:

e z, = 6,: this is the setting we described above in which each customer observes the ex
ante type of previous customers.

e z, = {,: this corresponds to a setting in which each customer observes the ex post
idiosyncratic preference term of previous customers.

e z, is any extra information and the customers know the joint distribution Fy ;.. In
rating system II, each customer observes the extra information of previous customers
while in rating system I each customer does not observe this extra information. An
example of such extra information is when there are multiple groups of customers
each with a different distribution of preferences (0, {), and z is the group that each
customer belongs to. In rating system II, customers know the group of each of pre-
vious customers who have left a review. In rating system I, however, customers only
observe the previous reviews and not the group of previous customers.

A similar argument to the proof of Proposition B-1 establishes that extra information

(weakly) increases the speed of learning, as formally stated in the next proposition.

PROPOSITION B-2: Suppose rating system Il has extra information compared to rating
system I, and learning happens for both of them under full history. The speed of learning in
rating system 11 is (weakly) higher than the speed of learning in rating system 1.

B.3.3. When Customers Observe a Subset of Past Actions

We show that the characterization presented for the speed of learning under full history
directly generalizes to the case in which the history available to customers only includes a
subset of actions. For instance, the history available to customers may only include reviews
(and no information about those who have not purchased the product or have not left a
review). Similar to the setting in Section 4, we consider a subset of all possible actions
A denoted by T. A rating system is represented by a partition of 7T, {71, ..., T,,} (i.e.,
T=",T,and T;NT; =@, i # j € [m]) such that for any i > j, the reviews in the set T;
are all more positive than the reviews in the set 7;. We also use the notation 7 to denote
the times ¢ at which users observe an action in 7" (e.g., if customers observe past reviews,
7 corresponds to the number of reviews so far). In other words, the history observed by
the customer acting after r — 1 is {a,, ..., a,_1}, where a, = i if the sth action in T belongs
to 7;. Customers do not observe any other event and have improper uniform prior over
their index in the sequence of all customers. This implies that customers have uniform
improper prior over the times at which there have been unobservable actions.

The next proposition generalizes Theorem 2 to this setting.

PROPOSITION B-3: Suppose that Assumptions 1 and 2 hold, and that customers only ob-
serve actions in T and have uniform improper prior over the times at which actions that are
not in T have taken place. Then there is again complete learning. Moreover, for Q = 0, we
almost surely have

o1
lim —logg, = _D(ﬂ(Fg’{, 0=0,9=0,T) | 7(Fo;, O=1,q=0, T)),

T—00 T
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and for Q = 1, we almost surely have

1
}Lnolo - log(1—¢,)=—-D(w(Fs;,Q=1,q=1,T) | w(Fy;, 0=0,9=1,T)).

To understand this result, consider a customer at time ¢ who has observed a history with
7 actions in 7. This customer does not know the number of past users who have joined the
platform between the most recent action in 7" and time ¢. However, she knows exactly the
belief of any user who has taken an action in 7" because she observes the same history as
this user. She can then filter out the selection effect and aggregate information of all past
customers who have taken an action in 7', and this is sufficient to ensure (exponentially
fast) complete learning. The speed of learning is modified in view of the fact that the
information of a customer who has not taken an action in 7 is not being transmitted, but
is still given by a similar KL divergence term.

Proposition B-3 provides the speed of learning when only actions in 7" are observed. In
Appendix B.3.6, we provide the speed of learning in terms of calendar time for both full
history and summary statistics.

PROOF OF PROPOSITION B-3: We present the proof for Q = 0 (the proof for Q0 =1
follows from the same argument). Recall that = denotes the times at which there was an

action in T and fz, ={a, ..., a,_} denotes the available history after = — 1 actions in 7.

Similar to the proof of Theorem 1, we define random variable Z(- | ;) = %.
We first establish that /., = 1.7 (- 11,), and then we prove /. forms a martingale. Note
that between 7 — 1-th action in 7 and rth action in 7T, each customer has observed the
same history and, therefore, has the same belief g,. Therefore, each one of them has
taken an action a that does not belong to 7, independently with probability P[a ¢ T |
q., Q]. Also, a new customer does not know the number of customers who joined the
platform before her, and by assumption, has a uniform prior over this number. We let
h...,1 denote the history of actions in between 7 — 1-th and 7th actions in 7. We next
present a recursive characterization of the likelihood ratio corresponding to belief {g,}>,,,
exploiting the uniform (improper) prior assumption. We have

> Pl by, @1 Q= 1]

Plh.,d, |Q=1] i
lT+1 = ~ _ = = ~
[hT’aT | Q:O] Z P[hn h7:7+17a7 | QZO]
h7:r+l
Y Plh | Q=11Plheis | by, Q= 1]Pla, | hry rrir, Q= 1]
hr:7+l
Z IP>[il7' | Q = O]P[h717+1 | ilﬂ Q = O]P[Zl,. | ilr; hTZT+17 Q = 0]
hT:T+]
Z P[hTiT+] | ilT’ Q = ]‘]]P)[&T | /:lfa hT:T+17 Q = 1]
— lT hr:~r+l _ - _ ) (B_22)
Z P[h7:7+1 | hn Q = O]P[a’r | hr, hTiT+17 Q = 0]
h7:7+1

We next consider P[/,.,,1 | /:lT, Q]. The randomness in /..., comes from two sources: (i)
the number of customers who joined the platform between 7 — 1-th and rth actions in
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T and (ii) the actions they took which depends on their 6 and {. We let C denote the
first random variable. By assumption, this random variable is uniformly distributed over
the integers. We also note that all customers in this time interval have observed the same

history (i.e., &,), formed the same belief (i.e., ¢,), and took an action independently with
probability Pla ¢ T | q,, Q]. Therefore, we have

Plhrirss | ey Q1 =D Plhrri | C=c¢,h,, Q)= Plag T |h,, Q. (B-23)
c=0 c=0

Combining (B-22) and (B-23) yields

S Pla¢T g Q=1]Fla | ¢-, Q=1] Pld, | 4., Q = 1]
L =15 _ 1-Plag¢T|q,0=1]
T+l TP o ] i =1 ]P)[&T|q”Q:0]
2 Plag T4 Q=01Flarla- Q=01 {ZplugT|q,0=0]
P[&T | q:> Q = 1]

_ P[aeT|q7,Q=1](;) Pla,|a, €T, q,, Q=1]
! P[&T|qT>Q:O] T]P)[&T|ZITET3qT7Q:O]
PlacT|q,,0=0]

= ZTZ(ZIT | lT)’

where (a) follows from the definition of conditional probability. Also note that, given Q =
0,7 (- 1 Z;) has mean 1, which implies that {/.}*°, is a martingale. Therefore, using /. > 0
along with the martingale convergence theorem, we conclude that [, — [/, almost surely.
The rest of the proof is identical to that of Theorem 1 and Theorem 2. This completes the
proof. Q.E.D.

B.3.4. Extension to Nonuniform Priors and Formal Definition of Uniform Improper Prior

In this subsection, we show that our characterization of learning and its speed for full
history extend to a setting with nonuniform prior over the number of customers and then
formalize the uniform improper priors.

We use the same notation as Appendix B.3.3. Following the description of purchase
decision in Section 2, the equilibrium purchase decision of a user in a Bayes—Nash equi-
librium depends on g, : ), x R — [0, 1] which is a mapping from the information provided
by the rating system to rth customer and the review decision strategy profile of all cus-
tomers to a belief about the true quality. Customers do not observe any other event and
have some belief over the times at which there have been unobservable actions. Their
prior, however, is that the index of each customer (with respect to the calendar time) in
the sequence of customers is geometric with some rate parameter A > 0. The memoryless
property of geometric distribution implies that for any customer the number of customers
between her and the previous action in T is geometric with rate parameter A > 0. The fol-
lowing is an extension of Proposition B-3 when the belief of customers about their index
in the sequence is geometric. We use the following notation:

(i For, 0,9, T) =Py [acT|q, Q]Ec~gco(/\)[P6,§[a ¢T|q, Q]C],
for all Q0 €{0, 1}, g € [0, 1]. (B-24)
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PROPOSITION B-4: Suppose that Assumptions 1 and 2 hold, and that customers only ob-
serve actions in T and have a geometric prior over their index in the sequence of customers.
Then there is again complete learning. Moreover, for Q = 0, we almost surely have

.1 - -
hm —10gq7 = —D(ﬂ(Fg’g, Q: 0, q= 0, T) ” ’n'(Fg’{, Q = 1, q :0, T)),

T—>00 T

and for Q = 1, we almost surely have
.1 - -
Tlgrolo - log(1—¢q,)=—-D(@(Fs;,Q=1,q=1,T) | @(Fo;, 0=0,9=1,T)).

PROOF: We present the proof for Q = 0 (the proof for Q =1 follows from the same
argument). We let A > 0 denote the geometric prior of each customer over her index in
the sequence. Recall that 7 is the subsequence of time at which there was an action in 7'
and i, ={a,, ..., a._i} denotes the available history after 7 — 1 actions in 7. Similar to the

proof of Theorem 1, we define random variable Z(- | I,) = % [’;1

We first establish that [, =1, V4 (-11,), and then we show [, forms a martingale. Note that
between 7 — 1-th action in 7" and 7th action in 7, each customer has observed the same
history and, therefore, has the same belief ¢g,. Therefore, each one of them has taken an
action a that does not belong to 7', independently with probability P[a ¢ T | g,, O]. Also,
a new customer does not know the number of customers who joined the platform before
her. Since geometric distribution is memoryless, conditioning on any number of customers
that could have joined the platform before 7, the number of customers between = — 1-th
and tth actions in 7" has a geometric distribution with rate parameter A. We let 4.,
denote the history of actions in between 7 — 1-th and 7th actions in 7. We next present a
recursive characterization of the likelihood ratio corresponding to belief {g,}°° ;. We have

where g, =

ZPhT9hTT+l’ |Q=1]

Lo - [f} a,|Q=1] _ b
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%(&T’ FH,{v Q = O’ q-, T) ’
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where the last two equalities follow from similar arguments to those of Proposition B-3
and the definition of conditional probability. Also note that, the probability of action a,
is the probability of having an exponential number of actions outside of 7 followed by
action a, which, given Q =0, is 7 (a,; Fy;, Q =0, q., T). Therefore, Z( | ;) has mean
1, showing that {/.}>°, forms a martingale. Thus, using /. > 0 along with the martingale
convergence theorem, we conclude that /. — [/, almost surely. The rest of the proof is
identical to that of Theorem 1. The speed of learning follows from a similar argument to
Theorem 2. O.E.D.

The uniform improper prior corresponds to the limit as A — 0. We next formally show
this claim by establishing that the learning speed given in Proposition B-3 is in fact the
limit of the learning speed given in Proposition B-4 as A — 0. For any g € [0, 1] and a,
using P[C=c]=(1—-A)Aforc=0,1,...,we have

i ’l'~T({1, F9,§, Q = 1’ q’ T) — hm P[a | Q7 Q = 1]Ec~geo(A)[P9,§[a ¢ T | Cl, Q = 1]L:|
r=0dr(a; For, 0=0,q,T) +-0P[a]q, Q=0]Ecgeoy[Pocla¢ T |q, Q=0]]

A
wFlalg,0=1], T— (- NPy lagT1q.0=1]
= Blalg, 0=0] 1% ]

1—=(A=M)PslagT|q,Q=0]
1
=]P)[a|q7Q:1] Pﬁ,{[aET|Q1Q:1]

PylacT|q,Q=0]
_PlalacT,q,0=1] m(a;Fs;,0=1,q,T)
_P[a|aeT,q,Q=0]_ﬂ'(a;Fe,g,Q=0,q,T),

where (a) follows by using the Moment Generating Function (MGF) of a geometric dis-
tribution. We note that in the limit as A — 0, even though the calendar time of a user’s
arrival does not have a proper distribution, the likelihood ratio (and, therefore, the belief)
is well-defined as we proved in the previous equation.

Finally, we note that by applying the same argument of Proposition B-4 for summary
statistics, Lemma A-1 continues to hold when customers have a geometric prior over
their index in the sequence of customers. In particular, the characterization of Lemma A-
1 and those of Theorems 3 and 4 continue to hold by replacing 7 (i; Fy ., O, q,T) by
7 (i; Foz, O, q, T) as defined in (B-24).

B.3.5. General Summary Statistics

Here, we consider a general summary statistics and show how our results on complete
learning and the speed of learning generalizes. A (general) summary statistics is a function
that maps the fraction of each of the reviews to a vector in R™. That is, f : A¥ — R™, where

k
Ak: (xl,...,xk)e[O,l]k:inzl},

i=1

andk=K+K +1.
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DEFINITION 5—Separation: A general rating system with summary statistics f : A¥ —
R™ satisfies the strict separation condition if there exists i € [k] and j € [m] such
that the range of the jth dimension of f(x_;, x; = w(i; F,,, Q0 =0,q)) and f(x_;, x; =
7(i; For, O =1, q)) (as functions of q) are separate. Formally, we have either

min [f(x_;, x;=7(i; Fo;,0=0,9))] > max [f(x,,-,x,-=7T(i;F9,g,Q=1,q))]j

q€[0,1],x—; I qel0,1]x;
or
qefg}fﬁfi[f(x—i’ xi=m(i:For, 0=1,9)], > qeg}ﬁﬁ_i[f(x_i’ xi=m(i Fop, 0=0,9))];

THEOREM B-1: Suppose Assumptions 1 and 2 hold. Consider a summary statistics f :
A¥ — R™ and suppose f is continuous and satisfies the strict separation condition. Then
complete learning occurs. Moreover, for Q = 0 we almost surely have

1
lim ~logg, = —minD(p || q),
t peé&y

=00
where
5()2 {(Xl,...,xk)EAk:

(e, ..o, xi) =f(77(1; For,qg=0,0=0),...,m(k;Fy;,q=0,0= 0))},
and q = (m(L; For,q=1,0=1),...,7(k; For,q=1,0=1)). For Q =1 we almost
surely have

.1 .
lim ~ log(1 - ¢,) = —min D(p || @),
t—oo pe&r
where
&= {(xl,...,xk)eAk:

f(x,,...,xk):f(w(l;Fg’g,qzl,Qzl), ,W(k,Fg}g,qzl,Qzl))},
and q=(m(1; Fy;,q=0,0=0),...,7(k; Fps, q=0,0=0)).

PROOF: The complete learning follows from a similar argument to Theorem 3. In par-
ticular, with strict separation, there exists j € {1, ..., m} such that the jth dimension of the
summary statistics for Q = 0 is separated from Q = 1 and, therefore, complete learning
happens. We next derive the speed of learning for Q = 0, noting that a similar argument
provides the speed of learning for Q = 1. We use Sanov’s theorem (Cover and Thomas
(2012, Chapter 11)) stated below.

Let O be a probability distribution on finite set X ={1, ..., k}. Also, let £ be a (closed)
set of probability distributions on &', then we have

1 T o .
Zf’il ;1i=’ -

n n
A kyee
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Similar to the proof of Theorem 4, letting H, indicate the set of all histories for which
the summary statistics (71,...,n;) is such that f(=,..., %) = f(7(1; Fy,0,0),...,

w(k; Fy,0,0)). We also define the set of summary statistics &, as
&= {(xl, X)) €A f(xy, LX) = f(7T(1; Fy;,0,0),...,m(k; Fy., 0, 0))}

The continuity of f implies that & is closed and, therefore, we can use Sanov’s theorem
for it. For the speed of learning, we can write

Z ]P’[h, | Q= 1]
. 1 q: . 1 hieHy
lim — log< ) = lim - log
100 t 1—q,) >t ZPV”'Q:O]
hieH;
; k
2 (o) (TTm00)
ny,.., Nk j=1
Zj?:l I’lj:t
o1 (1)1, /D)€€
= lim n log .
—00
T .
Z (nl,_,_,nk) <l_[770(]70) /)
Alyeeny nj ]:1
Zszl nj:t

(ny/t,...ng[t)€€y

= — min D((al,...,ak) ” (7T1(1,1),...,7T1(k,1))),

(ag,....ax)e&y

where we used Sanov’s theorem for the set & to obtain the limit. Q.E.D.

A special case of a general summary statistics is average summary statistics.

Recall, as discussed in the text, that several online platforms report an average score
of past reviews rather than depicting detailed fractions of reviews that fall in different
categories. In this subsection, we show that this type of average summary statistics leads to
slower learning than their detailed counterpart. More formally, consider a rating system
with review options {1, ..., k}, leading to review decisions:

17 9t+E[§t]+qf_pzoa0t+gt+Q_p<A17
a, = i7 0t+E[§t]+qt_pZO:/\lfl§9t+§l+Q_p</\n2§l§k_1a
k, 6,+E[{]+q—p=0,00+{+0—p= Ak

A rating system is said to have an average summary statistics if it reports the number
S, = % > ._, a,, where ¢ is the number of reviews. In the language of a general summary
statistics, the function f is defined as f(xy, ..., x;) = Zj;l jx;.

To distinguish the rating systems, we have analyzed so far (which report fractions of
users that have left various different reviews) from those with average statistics, we refer
to them as “rating systems with vector summary statistics.”
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COROLLARY B-1: Suppose Assumptions 1 and 2 hold, and for all i = 2,...,k,
Z;‘:i 7(j; Foyr, 1, q) and Zj;i 7(j; Fo ., 0, q) are separated, that is,

k k
min i Fpry 1, max i For,0,q), i=2,...,k. B-25
i ]Z_;Tf(l o 1) > me ]X_;W(J 000,9), i (B-25)
Then complete learning occurs under average summary statistics, that is, q. — Q almost

surely, but the speed of learning is slower under average statistics than with vector summary
statistics.

Corollary B-1 establishes that the speed of learning for rating systems with average
summary statistics is always slower than the comparable rating system with vector sum-
mary statistics.

PROOF OF COROLLARY B-1: The proof of the complete learning is similar to Theo-
rem 3. Similar to Theorem B-1, for Q = 0, we can write the speed of learning as

mink D((a,...,ax) || (m(1,1),...,m(k,1))),

A yeeey a
k —
Z/:l aj=1
Ko
Zj:l ]aj:EO

where E, = fozl im(i; Fo,0,0). This speed of learning is (weakly) smaller than

D((ﬂ'o(l, 0), ..., m(k, 0)) I (771(1, n,...,m(k, 1))),

which is the speed of learning for vector summary statistics. Q.E.D.
We next provide a comparative statics for summary statistics analogue to Proposition 3.

PROPOSITION B-5: Consider a rating system with summary statistics f : A* — R™ and
noninjective function g : R"™ — R and let h = g o f be a coarser summary statistics. Sup-
pose that complete learning happens with both summary statistics. The speed of learning with
summary statistics h is smaller than summary statistics f.

PROOF OF PROPOSITION B-5: We give the proof for Q = 0 (the proof for Q =1 is iden-
tical). The speed of learning with summary statistics / is

min ~ D((ay,...,ax) || (m(1,1), ..., m(k, 1)),

h
(aq ,...,ak)eé‘n

where & = {(x1,...,xx) € A : g(f(x1,...,x1)) = g(f(w(1; Fy,0,0),...,7(k; Fy,
0, 0)))}. The speed of learning with summary statistics f is

min  D((ar, ...,a) Il (m(1,1),..., m(k, 1)),

(a1,...,ar)€&

where Sof ={(x1,...,x0) € AR f(xy, ..., x0) = f(m(1;Fy,0,0), ..., m(k; Fo, 0,0)))
The proposition follows from the fact that £ C 8({ . Q.E.D.
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B.3.6. The Speed of Learning in Terms of the Total Number of Customers

The speed of learning in Theorem 4 and in Proposition B-3 when we considered full
history without the no-purchase and no-review decisions is with respect to index 7, the
number of customers who left a review. The next corollary shows that once we have the
speed of learning with respect to 7, it is straightforward to derive the speed of learning
with respect to calendar time.

COROLLARY B-2: Consider a rating system in which customers only observe actions in T.
Suppose that they have uniform priors over the times at which actions that are not in T have
taken place, and that the conditions in Theorems 1 or 3 are satisfied and there is complete
learning. Then for Q = 0 (and similarly for Q = 1) and full history we almost surely have

o1
lim ” logg, = —(Z m(a; For, 0=0,q9= 0))

acT

XD(W(FG,{7Q=0$q=0, T) ” W(Fe,g,Q=1,q=07 T))’

and with summary statistics we almost surely have

1
tll)rg;logq,: _<Z7T(a;F6,§7Q:O’q:0)>

aeT

XD("T(FO,{:QZOJIZO, T) ” ﬂ(F6,£7Q=17q=17T))~

Unsurprisingly, Corollary B-2 establishes that the speed of learning with respect to the
total number of customers has to be scaled down with the probability of taking an action in
the set T given g = Q, thatis, ), m(a; Fy, Q, g = Q), and is thus slower. In the special
case where all customers purchase and leave a review, we have ) _, 7(a; Fy;, Q,q =
Q) =1 and the expressions in Corollary B-2 are identical to those in Theorems 2 or 4.

PROOF OF COROLLARY B-2: We present the proof for the full history and Q =0 and
the proof for summary statistics follows similarly. For the full history case using Theo-
rem 4, the speed of learning is

lim 1 logq, = —D(m(Fyp, 0=0,q=0,T) [ #(Fy;, 0=1,4=0,T)),  (B-26)
where 7 indicates the number of actions in the set 7. Now consider the original sequence
of customers indexed by ¢. At time ¢, we let 7(¢) be the number of reviews in the set
T, which is given by 7(¢) = Zf.:] X;, where for all i =1, ..., ¢ we have X, € {0, 1} with
P[X;=1]=Pla; € T | g.;y, Q = 0]. Since belief g, converges almost surely to the true
quality Q = 0, for any € there exists #, such that for all i > #, we have g, < € (note
that 7(i) goes to infinity almost surely). Therefore, at any ¢ > ¢, the random sequence
to+Y;_, Y: where Y; € {0, 1} with P[Y; = 1] = maxye.q Pla € T | g, Q = 0] first-order
stochastically dominates 7(¢). Moreover, using strong law of large numbers we have

q€[0,€]

1 t
lim n (to + Z K) =maxPlaeT|q,0=0], almostsurely,
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establishing that

1
limsup —7(#) < m[glx] PlaeT|q,Q=0], almostsurely. (B-27)
q€[0,€

=00 t

Similarly, at any ¢ > #, the random sequence ¢, + Zﬁ;m Z; where Z; € {0, 1} with P[Z; =
1] = mingeo.Pla € T | g, Q = 0] is first-order stochastically dominated by 7(¢). There-
fore, using strong law of large numbers we obtain

1
liminf ?T(t) > n%gn]]P’[a €T|q,0=0], almostsurely. (B-28)
t—00 qel0,e
Since (B-27) and (B-28) hold for any €, we obtain

1
lim ?’r(t) =PlaeT|q=0,0=0], almostsurely. (B-29)
=00
Finally, from combining (B-26) and (B-29), and noting that every subsequence of a con-
vergent sequence converges to the same limit as the original sequence, we obtain

1
lim ;logqtz—}P’[ae T|g=0,0=0]
=00
X D(ﬂ(FB,{a QZO,q:Oa T) “ “(FG,{? Q: 1’ q:0> T))’
completing the proof. Q.E.D.

B.3.7. Effects of Targeted Information

In addition to the overall ratings of a product, platforms such as Amazon offer informa-
tion about the reviews of groups of customers with certain characteristics. For instance,
in reviews of a book at the intersection of climate science and economics, Amazon sepa-
rately shows reviews among customers who are interested in economics as well as reviews
among customers who are interested in climate science. We refer to this type of additional
information as “targeted information.”

To study the effects of targeted information, we consider M types of customers where

the valuations of customers of type i € [M] are drawn i.i.d. from distributions f(,(i) and

{(’) for 6 and ¢, respectively. We also let p; denote the probability that a new customer
belongs to group i for 1 <i < M. The platform knows which group of users have left a
particular review and can potentially provide this extra information to users.

Our next result shows that additional targeted information always increases the speed
of learning.

PROPOSITION B-6: Consider a rating system with either full history or summary statistics
and suppose that there is complete learning. Then the speed of learning is always faster with
targeted information.

The intuition for faster learning with targeted information is related to the selection
effect. Recall that the selection effect makes it more difficult for customers to learn from
observed reviews. Targeted information increases customers’ ability to distinguish the true
quality from its opposite, because with additional information they can more successfully
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filter out the selection effect. Note, however, that for this result targeted information has
to be provided in addition to the baseline ratings. If the platform reports only informa-
tion about the reviews of the subgroup of customers (and suppresses information about
reviews from other subgroups), this can slow down learning relative to the baseline with-
out targeted information.

PROOF OF PROPOSITION B-6: For any i € [m], we let 7(a; Féf){, 0, q), denote the prob-
ability of action a when the cumulative distribution of 6 and ¢ is F ;’)g We now present the
proof for O = 0 (the proof for Q = 1 follows from a similar argument).

Full history: We have m x (E + K + 1) total possible actions, that is, {1, ..., m} x
{-K, ..., K} U{N}). Therefore, Theorem 2 shows that the speed of learning is

m . i ;F(l), :0, =0
> ooy pl-qT(a;F(gf)pQ:O,q:O)log<p m(a 00 2=09 ))

. @ _ —
i=l ge{—K,..., K}U{N} piﬂ-(a’ FO,{’ Q - 1’ q= 0)

—Zp: (w(Fyy Q=0,q=0) | w(F}}, 0 =1,4=0)).

We next show that the speed of learning is higher than the case without types. Using
convexity of KL divergence and Jensen’s inequality, we obtain

D(w(F{},0=0,q=0) | =(F{}, 0=1,4=0))

<Zp, (7(Fy,,Q=0,9=0) | m(F}},0=1,4=0)),

which completes the proof of this part.

Summary statistics: Using Theorem 4, for each type i € [m] the speed of learning is given
by

lim > Liog l,=—-D(=(F}),,0=0,q=0) | w(F),0=1,q=1)), (B-30)

where #; denotes the sequence of customers that belong to type i. Each customer that joins
the platforms observes the summary statistics of all of m rating systems and forms a belief,
which using Bayes’ rule can be written as /, =[]", /. Using (B-30) together with £ — p;

almost surely (using SLLN), we obtain lim,_ ., 1logl, = —>""", p,D(w(Féf)g, 0=0,g=
0) || = (F, él){, =1, g=1)). Again, using Jensen’s inequality completes the proof. Q.E.D.

B.3.8. Platform Decisions: Maximizing Participation

We now outline a simple extension of where the platform chooses the rating system and
assume that its objective is to maximize participation.

Let us first describe the joining decision of customers. Suppose that one customer ar-
rives at each time and is denoted by the time of her arrival, ¢ € N. Customer ¢ faces an
entry cost drawn independently from a continuous distribution F, (representing the cost
of time spent on the platform and/or the opportunity cost of using this platform instead of
another medium). After observing this cost, the customer decides j, € {0, 1}, designating
whether she has joined the platform.
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The material utility of customer ¢ given in (1) is her “gross” utility (before subtracting
the cost of joining the platform c,, which is already sunk at this point). The “gross” utility
from not purchasing the good is normalized to zero.

Before joining the platform, a customer only knows the price p, the cost ¢,, and the
rating system € (not the realization of (},). In particular, she does not know the number of
people who have joined the platform before her and has an (improper) uniform prior on
this number. Therefore, in a Bayes—Nash equilibrium customer #’s entry decision is j, = 1
if and only if E, o, 0.9,,4,[6:(0: + {i + Q — p)] — ¢ = 0, where E, g, 0.4, ¢, is the expectation
over all random variables in our model.

We assume that the platform does not know the true quality of the product either and
for now its price is set by an outside vendor. Therefore, the only decision of the platform
is the rating system, €. Suppose in this subsection that the platform’s revenues come
from fixed sales commissions, advertisements, or other benefits that it derives from the
participation of customers. This implies that the platform’s objective is to maximize the
number of customers joining. Since customers do not know the number of reviews in the
system before they join and have uniform priors about the number of past users, they
will all join with the same probability, and thus the platform’s objective can be written as
maximizing this probability:

m()aX]PQ7Q’97§,C[j =1].
The next proposition shows that in this case the platform maximizes the speed of learning.

PROPOSITION B-7: Given two rating systems I and 11, the platform chooses the one with
the greater speed of learning.

With a rating system that guarantees faster learning, customers know that once they join
the platform, they are less likely to make either type I or type 1I errors in their purchase
decisions. This raises their expected utility from joining, and thus increases the joining
probability. To see why the probabilities of both types of errors are decreasing in the
speed of learning, consider first Q = 0. Then the problem for customers is to incorrectly
buy the product thinking that it is high quality. If 6+ { — p € (—1, 0), then with probability
P.alg: = p— 60— ¢ | Q=0] they purchase the product and suffer a loss of 8 + { — p.
This probability of incorrectly purchasing the product becomes smaller when g; is closer
to Q = 0. Conversely, suppose that Q = 1. Then the problem for customers is to fail to
purchase the product when they should be doing so. If 6 + { — p € (-1, 0), then with
probability P, o,[g: < p — 6 — { | O = 1] customers do not purchase the product and forgo
a potential utility gain of 1+ 6+ { — p. The probability of such a mistake becomes smaller
when g, is closer to Q = 1. Thus in both cases faster learning ensures smaller probability
of mistakes, and this encourages customers to join the platform.

PROOF OF PROPOSITION B-7: We break the proof into two steps. In the first step, we
reformulate the joining probability and characterize its dependence on the speed of learn-
ing as a key component. In the second step we show that increasing speed of learning,
increases the joining probability, and hence platform’s revenue.

Step 1: Maximizing joining probability is equivalent to maximizing

IEM|:<%—p+0+§>1{6+{—sz}-i—%(l—p+0+§)1{6+§—pe(—1,0)}:|

+ %Eg,;[(—(p —0-OPalg,=p—0-C10=0))1{0+¢— pe(-1,0)}]
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+ %Ee,é[(_(l —(p—0— g))IPt,Qt[qt <p—-0-(|0= 1])
x1{6+ ¢ —pe(-1,0)}]. (B-31)

The platform’s problem is to maximize P[j, = 1]. This probability can be written as

Plji=1]= HD[EQ,H,{,Q,Z[bz =1(0+¢+0— p)] —c> 0]
= FC(EQ,O,{,Q,t[(e +{+0— p)bt]).

Since F,(-) is nondecreasing, the platform’s problem is to maximize Ep 4 0, [(60+{+ QO —
p)b,]. We can further write

Eg.o.c0.[(0+¢+Q— p)b,]

:Ee,g[e—p+0+{>1{0+§—p20}%(1—p+0+{)1{0+§—p6(—1,0)}]

4 3B (P~ 0 OFalaz p—0— 1 Q=0)1{0+ ¢~ pe (~1,0)]]

+ %Ee,g[(—(l —(p—0-0)Pualg.<p—0-010=1])1{6+{—pe(-1,0)}].

This completes the proof of the first step.
Step 2: If system I has a higher speed than system II, then the platform’s objective from

using system I is higher.
For the second step, note that the terms that depend on the rating system are
1
EPB,{[p —-0-(¢€]0, 1]]
X Eoe[~(p= 0= Pualg; = p-0-¢10=0]| p—0-¢e0,1]]
1
+5Pu[p— 0 [0,1]]
XEg[~(1=(p=0-0)Palg<p-0-¢10=1]I p—6-€[0,1]].

Also, note that if )/ has a higher speed of learning than Q!/, then since customers have
an improper uniform prior on the number of previous customers (before joining the plat-
form), we obtain P, g1 gr[q! < ¢ | Q=0]=1, and P, o1 ou[q' > g/ | O =1] = 1. This
leads to

Polg =p—0-010=0]<P.an[qg'=p—0-10=0],
Polgi<p—0-010=1]<Poulq <p-0-(10=1].

Since p— 60— €0, 1],we have —(p—6—¢) <0and —(1—(p—0—¢)) <0, which estab-
lishes the joining probability of the rating system () is higher than the joining probability
of the rating system with Q//. This completes the proof. Q.E.D.
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B.3.9. Platform Decisions: Pricing

We now analyze the platform’s pricing decisions, chosen to maximize revenue. We will
analyze this setup with both myopic pricing and dynamic pricing and then establish con-
ditions under which learning happens and characterize the speed of learning.

Myopic Pricing. In this case, at time ¢ the firm chooses a price p, to maximize her
current revenue. Hence, the optimal (revenue-maximizing) price at time ¢ can be written
as

pr=argmax p(1 - Fy(p — q. — E[{])),
p=0
where g, is the belief at time 7. We next show that even though the evolution of beliefs

changes because of the changes in price, there is still complete learning and its speed is
the same as before.

PROPOSITION B-8: Suppose Assumptions 1 and 2 hold for all p in the set {p : there exists
q €[0,1]s.t. p e argmax, x(1—Fy(x —q—E[{]))}. Then under full history and myopic pric-
ing, there is complete learning, that is, g, — Q almost surely. Moreover, the speed of learning
is the same as in Theorem 2.

Under summary statistics and myopic learning, if the strict separation condition holds for
all p in the set {p : there exists q € [0, 1] s.t. p € argmax, x(1 — Fo(x — g — E[{]))}, then
there is complete learning and the speed of learning is the same as in Theorem 4.

For a rating system with full history, the public belief is again a martingale, and an
identical argument to that of Theorem 1 establishes complete learning. We also prove
that price dynamics do not affect the speed of learning (because once the price sequence
is close to its limit, it has a small impact on the distribution of reviews), and hence the
speed of learning in Theorem 2 applies. We can also observe that the limiting price in
the speed of learning expression is p* = argmax, p(1 — Fy(p — O — E[{])), where O is
the true quality. Similar results apply with summary statistics, enabling us to generalize
Theorems 3 and 4 to this setting.

The next corollary enables us to characterize whether the convergence of the price
sequence to its limit is from above or below depending on the underlying quality.

COROLLARY B-3: Suppose that ; f‘?@‘;;) is nondecreasing in p. Then for Q =0, we

have p, > p* > p, — q, and for Q =1, we have p, < p* < p, + (1 — q,), where p* =
argmax, p(1 — Fy(p — Q — E[{])).

Therefore, when Q = 0 equilibrium price p, converges to p* from above, meaning that
the firm starts with a higher price in the short run, reducing it as more information about
low quality is revealed. Conversely, when Q = 1, the equilibrium price p, converges to p*
from below—as more information about the product being high quality is accumulated,
the price increases.

Dynamic Pricing. Suppose now that the platform chooses the price sequence {p,}?2,
to maximize its expected discounted revenue defined as

J(q1) = max Eo, e, |:(1 -8y St_lptbt} ;
=1

t=1
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where 8 € (0, 1) is the platform’s discount factor and g, = 3 is the belief of customers at
the time ¢ = 1. Note also that p, can only depend on the history at time ¢.

The key observation is that in a rating system with full history, the platform and the
customers have access to the same information about the history of actions and, there-
fore, the price p, chosen by the platform does not convey any additional information to
customers. This is not necessarily true under summary statistics, however, because the
platform has access to the full history of reviews, and thus knows more than customers
about the underlying quality of the product. In this case, p, may be a signal for qual-
ity. For this reason, our results for the case of summary statistics with dynamic pricing
strategies will be somewhat weaker.

In a rating system with full history, the public belief g, is a sufficient statistic for the
pricing decision of the platform. Therefore, we can write the Bellman equation for the
platform’s value (discounted revenue) conditioning just on this public belief:

J(q) = mpaxp(l - Fe(P —q— E[f])) + 5E9,5[J(q’) | Q],

where the first term is the current revenue of the platform given current public belief
g, and the second term is the expectation of the discounted revenue from next period
onwards given next period’s public belief ¢’ (conditional on current belief g).

PROPOSITION B-9: Consider a rating system with full history. Suppose Assumption 1 holds
forall p e[0,0+ 1+ E[{]] (where 0 is the upper support of the distribution of 0), and
Assumption 2 holds for p = 0. Then the equilibrium price sequence {p,}?*, is such that in
each time period there is a positive probability of purchase, and the price sequence converges
to p* =argmax, p(1 — Fy(p — Q — E[{])). Consequently, there is complete learning and the
speed of learning is the same as in Theorem 2.

Complete learning follows because the likelihood ratio forms a martingale and pur-
chase probability is always nonzero. Zero purchase probability would generate neither
any current revenue for the platform nor information for future users. Consequently, af-
ter a period in which there is zero probability of purchase, the continuation value of the
platform would be the same as at the start of this period, and because of discounting, the
objective of the platform would be strictly lower. Given positive purchase probabilities, a
similar argument to the one in Theorem 1 establishes complete learning and its speed is
determined as before.'®

Our next result shows that even though under summary statistics, the platform may wish
to adopt a more complex pricing strategy in order to transmit information to customers,
it can approximately achieve the discounted revenue in Proposition B-9.

PROPOSITION B-10: Consider a rating system with summary statistics. Suppose Assump-
tion 1 holds for all p € [0, 0+ 1+ E[{]], Assumption 2 holds for p =0, and F,(-) is Lipschitz
continuous. Then for any € > 0, there exists a pricing strategy such that the beliefs of customers
are identical to their beliefs in Proposition B-9 and the platform’s discounted revenue (after
any time t) is at most € below the platform’s discounted revenue in the rating system with full
history (and the same review options).

81n this proposition, in contrast to Proposition B-8, we need to impose Assumption 1 for all prices p €
[0, 6 + 1 4+ E[{]], because the price set by the platform at any point in time need not be one that maximizes
current revenue. Assumption 2, on the other hand, is only needed for p = 0, because the platform will never
charge a price that will lead to zero probability of purchase after some history.
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Proposition B-10 follows by considering the following strategy: at any time ¢, the
platform chooses a suboptimal price by zeroing out the decimal numbers in the profit-
maximizing price with full history. This strategy decreases the current revenue of the plat-
form, but by providing access to the full history to all future customers it enables the
platform to replicate the allocation in Proposition B-9. This ensures that the evolution
of customer beliefs is the same as in Proposition B-9. While Proposition B-10 shows that
a platform with a rating system reporting summary statistics can achieve the same level
of discounted revenue as under full history, it leaves open the question of whether it can
actually achieve even higher revenues. A full analysis of this issue is beyond the scope
of the current paper, in part because the answer depends on how much commitment the
platform has to a pricing strategy.

PROOF OF PROPOSITION B-8: We present the proof with full history and summary
statistics separately. In the proof of the results of this subsection, without loss of gen-
erality, we assume E[{] = 0.

Full History: The proof is similar to the proof of Theorem 1. In particular, since cus-
tomers observe the full history and the optimal price at any time ¢, the likelihood ratio
sequence {/,}°, still forms a martingale. Therefore, from the martingale convergence the-
orem, it converges to some /.. This in turn implies the optimal price {p,}?°, also converges
to some p., in the set {p: p € argmax, x(1 — Fyp(x — q)) : q € [0, 1]}. We next show that
given Q = 0, we have [, = 0 with probability 1. Suppose P[/,, = ] > 0 for some / > 0.
The corresponding limiting price is the one that maximizes purchase probability given be-
lief 1+L17 that is, p € argmax, x(1 — Fp(x — HLl)). With a similar argument to the proof of
Theorem 1, when Q = 0, we must have / = 0, and thus /,, = 0 with probability one.

The proof of the speed of learning is also similar to the proof of Theorem 2. In par-
ticular, for any € > 0, since g, converges to Q almost surely, there exists f, such that
for t > 1), we have |p, — p*| < e with probability one, where p* is the limiting price,
p* e argmax, x(1 — Fp(x — Q)). Using a similar argument to the proof of Theorem 2,
we have that almost surely

1
lim —logg, < max —D(w"(F(,,g, 0=0,9=0) | 7" (Fp;, 0O=1,9= 0)), (B-32)

t—oo f pilp—p*l<e

where @”(Fy ., Q =1, g =0) is the probability of different actions when the price is p.
Similarly, we have that almost surely

1
lim —logg, > min —D(w’(Fy;, 0=0,9=0) | 7" (Fy;, Q=1,4=0)). (B-33)

t—o0 pilp—p*|<e

Since (B-32) and (B-33) hold for any € > 0, we conclude that almost surely
.1 . .
lim —logg, = —D(7" (Fo;, 0=0,¢=0) | 7" (Fy;, 0 =1,4=0)).

Summary statistics: The proof is similar to the proof of Theorem 3. In particular, under
strict separation, we have g, — Q. The proof of the speed of learning follows from a
similar argument to the full history case presented above. Q.E.D.

PROOF OF COROLLARY B-3: We first establish the following claim.
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CLAIM: For any q, let p, be the solution to p, = %qu;)"). Then we have p > p, if and

only if (1 =Fo(p —q)) = pfo(p — ) = (1 = Fy(py — @) = Pafo(py — q) = 0. This in turn
establishes p, = argmax, p(1 — Fy(p — q)).

PROOF OF THE CLAIM: For p > p,, we have (1 — Fy(p — q)) — pfo(p — q) < fo(p —

q)(=Lurad) f:(f’;: "q)‘” — p,) =0, where we used p, < p and 1;;";: j;)'” > 1}2";5 ;)q),which holds since

! f:&f)p ) is nonincreasing. Similarly, we can show that if pg > p, then (1 — Fo(p — q)) —

pfe(p — q) = 0. Since for any p we have either p, > p or p, < p, the claim follows.

We next proceed with the proof of the corollary. Suppose Q = 0. We first prove that

p: > p*. Using the claim, since p, maximizes p(1 — F,(p —q,)), we have p, = % >
1=Fy(p1)

R which in turn implies (1 — Fy(p;)) — p.fo(p:) < 0. Again, using the claim, we
conclude p, > p*. We next prove p* > p, — q,. We have (p* +¢q,) > (p*+q,) — q, =
%, which in turn proves that (1 — Fy((p*+q.) — q.)) — (p*+q) fo((p* + q:) —
g:) < 0. Again, using the claim, we can conclude p* > p, — q,.

Now suppose Q = 1. We first prove p, < p*. We have p, = - f(i”lf[’”qgt) <! fi"lf"’ 1)1), which

in turn establishes (1 — Fy(p; —1)) — p.fo(p: —1) > 0. Again, using the claim, we conclude
that p, < p*. Analogously, we next prove p* < p, + (1 — q,). We have (p* — 1+ ¢q,) <
(pr—14q)+A—-q)= %, which in turn implies (1 — Fo((p* — 1+ ¢q,) —
q) — (p* =14+ q)fs((p* — 1+ q,) — q,) > 0. Again, using the claim, we conclude that
p*— 14 ¢q, < p,, completing the proof of the corollary. Q.E.D.

PROOF OF PROPOSITION B-9: We first show that at each point in time the optimal pric-
ing is such that purchase happens with positive probability. Suppose the contrary, that
is, at time ¢ the price is such that no purchase happens with probability one. The be-
lief in time period ¢ + 1 is then the same as the belief as time ¢. Therefore, we have
J(q:) = 8J(q.+1) = 6J(q,), which is a contradiction. The rest of the proof follows by using
the fact that the likelihood ratio {/,}?2, is still a martingale. Using Assumption 2, at any
time the purchase probability is nonzero with a nonnegative price. Also, using Assump-
tion 1, probability of “like” with both O =0 and Q =1 is nonzero. Therefore, a similar
argument to that of Theorem 1 is sufficient to establish complete learning and then its
speed can be characterized using the same steps as in Theorem 2. Q.E.D.

PROOF OF PROPOSITION B-10: We first prove that assuming p(1 — Fy(p — q)) is Lip-
schitz continuous with parameter L, for a given e > 0 there exists € R such that for all
nonnegative p, p’ < M with |p — p'| < n, we have |p(1 — Fy(p — q)) — p'(1 — Fo(p' —
9))| <€, VYq €[0,1]. For n < 577, we can write

|p(1=Fy(p—q)) — P'(1-Fo(p' - q))|
=|p(1=Fo(p—q) =P (1=Fo(p—q) + P (1= Fo(p—q) — p'(1 = Fo(p' — 9))|

< |\p(1=Fo(p—q)) — p'(1=Fo(p—q)|+|pP(1—Fo(p—q)) — p'(1-Fo(p' — q))|

<|p-r|(1-F(p—q)+p|F(p—q) —Fi(p —q)|<n+MLn<e
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where (a) follows from triangle inequality; and (b) follows because Fy(-) is Lipschitz and
p' <M. Let M = max,p,;;max, p(1 — Fo(p — q)) and let k be large enough such that
107% < n.

For any ¢, let B, be a sequence of numbers encoding the full history at time ¢. In particu-
lar, if there are K review options, then we use the first log,, K decimal points of B, to rep-
resent a,, the second log,, K decimal points of B, to represent a, and so on. For any ¢, and

the c&rr.esponding optimal price with full history p¥(g,) with p’' = W +107*B,,
we obtain
|sz(Qt)(1 - Fe(pf(‘b) - Qt)) - p/(l - F(,(p’ - Qt))| Se

Therefore, at any time ¢ with this choice of price the current revenue of the platform is at
most € below the revenue of the platform with full history. Moreover, with the proposed
rating system, at any time ¢ the customers know the full history and also recognize that
previous customers knew the full history as well. Therefore, all customers will have access
to the public belief at all past dates, and hence purchase and review decisions will be as in
the case with full history. Q.E.D.
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