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This document collects alternative regression specifications for Section 7 of the pa-
per, and detailed proofs that were omitted from the main text.

1. PHILLIPS CURVE REGRESSIONS

1.1. Divine Coincidence versus Other Price Indices

FIGURE 5 COMPARES THE WEIGHTING scheme in the divine coincidence index versus the
PCE, which is the most common indicator for Phillips curve regressions and monetary
policy, at an aggregated 21-sector level.

Consumer prices do not include wage inflation, which in the divine coincidence index
has the highest weight of 18%. The PCE assigns the highest weight to health care, real
estate, and nondurable goods. This sectors have large consumption shares, but relatively
small total sale shares. By contrast, the divine coincidence index assigns a high weight to
large intermediate good sectors with sticky prices, such as professional services, financial
intermediation, and durable goods.

Figure 6 plots a time series of the divine coincidence index against CPI, PCE, their core
versions, and the PPI.

FIGURE 5.—DC and PCE weights (the bars with red borders correspond to the PCE).
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FIGURE 6.—Comparison of DC against consumer and producer prices (1984–2018).

Section 3.1 of this supplement provides additional detail about the sectoral price series
used to construct the divine coincidence index.

1.2. Regressions With Alternative Measures of the Output Gap

Tables VI and VII replicate Table V in the main paper, replacing the unemployment
gap with the CBO output gap and the unemployment rate as independent variables.

IX and X replicate Table VIII in the main paper, replacing the unemployment gap with
the CBO output gap and the unemployment rate as independent variables.

Section 3.2 of this Supplemental Material reports estimates for all coefficients in the
regression equation (37).

TABLE VI

REGRESSIONS OF YEARLY INFLATION ON THE CBO’S OUTPUT GAP, 1984–2018.

– Mich SPF CPI GMM

Gap R2 Gap R2 Gap R2 Gap

DC 0�17 0.27 0�19 0�33 0�16 0�33 −0�13
(0�02) (0�02) (0�02) (0�03)

CPI 0�26 0.11 0�29 0�13 0�25 0�13 0�07
(0�06) (0�07) (0�06) (0�03)

coreCPI 0�06 0.01 0�13 0�2 0�04 0�15 −0�03
(0�06) (0�05) (0�06) (0�01)

PCE 0�18 0.07 0�2 0�09 0�17 0�09 0�1
(0�06) (0�06) (0�06) (0�02)

corePCE 0�05 0.01 0�1 0�13 0�04 0�1 0�03
(0�05) (0�05) (0�05) (0�01)

PPI 0�79 0.08 0�61 0�16 0�82 0�12 0�9
(0�23) (0�22) (0�22) (0�27)
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TABLE VII

REGRESSIONS OF YEARLY INFLATION ON THE UNEMPLOYMENT RATE, 1984–2018.

– Mich SPF CPI GMM

Rate R2 Rate R2 Rate R2 Rate

DC −0�13 0�13 −0�15 0.18 −0�13 0�21 −0�11
(0�03) (0�03) (0�03) (0�04)

CPI −0�13 0�02 −0�17 0.04 −0�13 0�06 −0�08
(0�07) (0�08) (0�07) (0�03)

coreCPI 0�01 0 −0�08 0.17 0�01 0�14 −0�04
(0�07) (0�06) (0�06) (0�04)

PCE −0�05 0 −0�07 0.02 −0�05 0�04 −0�04
(0�06) (0�07) (0�06) (0�01)

corePCE 0�04 0 −0�02 0.11 0�04 0�1 −0�01
(0�06) (0�06) (0�05) (0�01)

PPI −0�38 0�02 −0�12 0.11 −0�38 0�04 −0�24
(0�26) (0�25) (0�25) (0�16)

TABLE VIII

REGRESSION RESULTS FOR THE CBO UNEMPLOYMENT GAP, WITH CP SHOCK.

DC CPI core CPI PCE core PCE

Cost-push 0�5627 2�5545 0�4886 2�3948 1�1224
(0�2345) (0�565) (0�4768) (0�4745) (0�4102)

Gap −0�1921 −0�1906 −0�2175 −0�0783 −0�0886
(0�0374) (0�0758) (0�064) (0�0637) (0�0551)

Intercept 2�0842 3�2239 2�8559 2�6509 2�397
(0�058) (0�1398) (0�118) (0�1174) (0�1015)

R-squared 0�3317 0�2782 0�142 0�2558 0�1275

TABLE IX

REGRESSION RESULTS FOR THE CBO OUTPUT GAP, WITH CP SHOCK.

DC CPI core CPI PCE core PCE

Cost-push 0�6059 2�5472 0�6387 2�4715 1�2896
(0�2604) (0�5964) (0�5145) (0�4983) (0�4333)

Gap 0�1241 0�1363 0�1176 0�0369 0�0225
(0�0332) (0�0682) (0�0588) (0�057) (0�0495)

Intercept 2�0936 3�2425 2�8535 2�6467 2�3802
(0�0633) (0�145) (0�1251) (0�1212) (0�1054)

R-squared 0�2458 0�2635 0�0852 0�2484 0�1086
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TABLE X

REGRESSION RESULTS FOR THE UNEMPLOYMENT RATE, WITH CP SHOCK.

DC CPI core CPI PCE core PCE

Cost-push 0�6321 2�8683 0�8598 2�6413 1�3999
(0�2357) (0�5706) (0�4905) (0�4722) (0�4102)

Gap −0�1880 −0�0954 −0�1038 0�006 0�0063
(0�0374) (0�0811) (0�0697) (0�0671) (0�0583)

Intercept 2�0911 3�1954 2�8214 2�6213 2�3637
(0�0594) (0�1439) (0�1237) (0�1191) (0�1034)

R-squared 0�309 0�2462 0�0706 0�2456 0�1071

2. PROOFS

2.1. Basic Results From Section 3

PROOF OF LEMMA 1: The flex-price equilibrium is efficient. Therefore, the equilibrium
allocation can be derived as the solution of the following planning problem:

max
L�{Li�Qi�{Xij}}

C
(
{Qi}Ni=1

)1−γ

1 − γ
− L1+ϕ

1 +ϕ

s.t. Qi +
∑
j

Xij = AiFi

(
{Xij}�Li

) ∀i� (38)

∑
i

Li =L�

We defined aggregate real output as the consumption aggregate of the representative
agent; therefore, the change in natural output is given by

ynat =
∑
i

∂ logC∗

∂ logAi

logAi�

where

C∗ ≡ C
({
Q∗

i

}N

i=1

)
is aggregate output under the optimal allocation.

The optimization problem in (38) can be solved in two steps: first, we choose {Li�Qi�
{Xij}} for given L; then we choose the optimal L. Formally, solving problem (38) is equiv-
alent to solving

C∗(L;A)1−γ

1 − γ
= max

{Li�Qi�{Xij}}

C
(
{Qi}

)1−γ

1 − γ

s.t. Qi +
∑
j

Xij = AiFi

(
{Xij}�Li

) ∀i� (39)

∑
i

Li =L�
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and

max
L

C∗(L;A)1−γ

1 − γ
− L1+ϕ

1 +ϕ
� (40)

The solution of (40) must satisfy

C∗(L;A)γLϕ = ∂C∗

∂L
� (41)

Applying the envelope theorem to problem (39), we have

∂C∗

∂L
= C∗γνL� (42)

where νL is the Lagrange multiplier associated to the constraint
∑

i Li = L. Hence, the
first-order condition (41) becomes

Lϕ = νL

and so we have

∂ logL
∂ logAi

= 1
ϕ

∂ logνL
∂ logAi

� (43)

Applying again the envelope theorem to problem (39) then yields

∂ logC∗

∂ logAi

= C∗γ
(
νLL

ϕC∗
∂ logνL
∂ logAi

+ νiFi

(
{Xij}�Li

)
C∗

)
� (44)

We now rewrite the two terms on the right-hand side of equation (44). First, we show that

C∗γ νiFi

(
{Xij}�Li

)
C∗ = λi� (45)

where λi is i’s sales share in total GDP; second, we show that

C∗γ νLL
ϕC∗

∂ logνL
∂ logAi

= 1
ϕ
λi − γ

ϕ

∂ logC∗

∂ logAi

� (46)

Putting equations (45) and (46) together in turn implies

∂ logC∗

∂ logAi

= 1 +ϕ

γ +ϕ
λi�

which is the result that we set out to demonstrate.
Let us first prove (45). To do this, we show that, in the competitive equilibrium, C∗γνi is

equal to the price of good i relative to the CPI. It then follows from the definition of the
sales share λi that

C∗γ νiFi

(
{Xij}�Li

)
C∗ = PiFi

(
{Xij}�Li

)
PC∗ = λi�
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Denote by Ci the partial derivative of the consumption aggregator C with respect to Qi.
From the FOCs of problem (39), we have that Ci = Cγνi, and from consumer optimization
in the competitive equilibrium, we have Cj

Ci
= Pj

Pi
. Thus,

Cj

Ci

= νj

νi
= Pj

Pi

�

Using the fact that C is homogeneous of degree 1, and normalizing the CPI to 1 (
∑

j

PjQj

C
=

1), we have

1 =

∑
j

CjQj

C
=

∑
j

Cj

Ci

Qj

Ci

C
=

∑
j

PjQj

C

Ci

Pi

= Ci

Pi

�

Hence, Pi = Ci, and the FOCs for (39) further imply Pi = Cγνi.
Let us now derive equation (46). From the FOCs of (39), it holds that CγνL =

CγνiAiFiL = PiAiFiL = W ∀i, where the last equality follows from firm optimization in
the competitive equilibrium. Moreover, from the consumers’ budget constraint we have
that C∗γ νLL

C∗ = WL
C∗ = 1. Thus,

C∗γ νLL
ϕC∗

∂ logνL
∂ logAi

= 1
ϕ

(
∂ logW
∂ logAi

− γ
∂ logC∗

∂ logAi

)
�

To conclude the proof, we need to show that

∂ logW
∂ logAi

= λi�

Using again the consumers’ budget constraint, we have

∂ logW
∂ logAi

= ∂ logC∗

∂ logAi

+
(
∂ logC∗

∂ logL
− 1

)
∂ logL
∂ logAi

= λi�

where the second equality follows from equations (42), (43), and (44). Q.E.D.

PROOF OF LEMMA 3: Let us start by relating the output gap with the real wage gap
(w̃ − βT p̃t), by log-linearizing the consumption-leisure tradeoff (3), and subtracting the
natural variables:

w̃ −βT p̃t = γỹ +ϕl̃�

Moreover, following Remark 5, the output and employment gaps on the right-hand side
coincide. Therefore, we have

w̃ −βT p̃t = (γ +ϕ)ỹ� (47)

Next, let us express the real wage gap on the left-hand side of (47) as a function of
markups. To do so, move from the firms’ cost minimization problem (5), to write the
marginal cost gap as

m̃ct =αw̃t +
p̃t �
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and relate sectoral log-markups μ with price gaps and marginal cost gaps using the defi-
nition

p̃t = m̃ct +μt �

Together, the last two equations yield

m̃ct = 1w̃t + (I −
)−1
μt

and

βT p̃t =wt +λTμt �

Rearranging the last equation allows us to express the real wage gap in terms of markups:

w̃t −βT p̃t = −λTμt � (48)

Plugging equation (48) into (47) yields the result. Q.E.D.

Derivation of the Labor Supply Curve

Log-linearizing equation (3) yields

wt −βTpt = ϕlt + γyt� (49)

Remark 5 and Lemma 1 allow us to write (49) in gaps:

πwt −πC
t = (γ +ϕ)ỹt + γyt�nat +ϕlt�nat

= (γ +ϕ)ỹt +λTd log At �

Law of Motion for Sectoral Inflation Rates

Log-linearizing equation (7) yields the following expression for the optimal reset price:

p∗
it =

(
1 − ρ(1 − δi)

)
logmcit + ρ(1 − δi)Ep∗

it+1�

To express inflation in terms of the initial price and the optimal reset price, we log-
linearize the evolution of sectoral price indexes:

πit = δi

[
p∗

it −pit−1

]
�

The firms’ desired price change relative to the previous period can then be written as

p∗
it −pit−1 = (

1 − ρ(1 − δi)
)
(logmcit − logmcit−1 −μit−1) + ρ(1 − δi)

[
1
δi

Eπit+1 +πit

]
�

Combining these three equations yields the result.

2.2. Phillips Curves

PROOF OF PROPOSITION 1: It remains to establish that the divine coincidence Phillips
curve is the only one without endogenous cost-push shocks. To prove this, it is enough to
show that the vector of weights which characterizes the divine coincidence index, λT (I −
�)�−1, is the only element in the left ker of the matrix V .
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Consider then all vectors x such that xTV = 0. Note that

xTV = 0

⇐⇒ x̃T
[
α

[
λT −βT�(I −
�)−1

] − (
1 −βT�(I −
�)−1α

)
I
] = 0� (50)

where x̃T ≡ xT�(I −
�)−1.
To prove uniqueness, we need to show that all vectors x̃ satisfying (50) are proportional

to λT (I −�)(I −
�)−1.
From (50), we have the relation(

1 −βT�(I −
�)−1α
)
x̃j = x̃Tα

[
λT −βT�(I −
�)−1

]
j

∀j� (51)

The product x̃Tα is a scalar, and we must have x̃Tα �= 0 (otherwise we would get x̃T = 0).
Therefore, (51) implies the condition1

x̃i

x̃j

=
[
λT −βT�(I −
�)−1

]
i[

λT −βT�(I −
�)−1
]
j

�

To complete the proof, it is easy to verify that

λT −βT�(I −
�)−1 = λT (I −�)(I −
�)−1� Q.E.D.

PROOF OF PROPOSITION 2: It remains to establish that V1 = 0, I − V is invertible, and
(I −V)ij ∈ [0�1]. Note that the first statement is equivalent to V (I −
)−1α = 0. We have

V (I −
)−1 = �(I −
�)−1

[
α
λT −βT�(I −
�)−1

1 −βT�(I −
�)−1α
− I

]
�

Remark 3 implies

V (I −
)−1α= �(I −
�)−1

[
α

1 −βT�(I −
�)−1α

1 −βT�(I −
�)−1α
−α

]
= 0�

We then prove that α is the only element of ker(V (I − 
)−1). Since the term �(I −

�)−1 is invertible, for every vector x �= 0 such that V (I −
)−1x = 0 it must hold that

α

[
λT −βT�(I −
�)−1

]
x

1 −βT�(I −
�)−1α
= x

⇐⇒ αi

[
λT −βT�(I −
�)−1

]
x

1 −βT�(I −
�)−1α
= xi ∀i (52)

with [
λT −βT�(I −
�)−1

]
x

1 −βT�(I −
�)−1α
∈ R �= 0

1The ratio on the right-hand side is well defined. In fact, Remark 7 implies[
λT −βT�(I −
�)−1]

j
>

[
λT −βT (I −
)−1]

j
= 0 ∀j�
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(otherwise we would have x = 0). Equation (52) then implies

αi

αj

= xi

xj

∀i� j�

Therefore, x is proportional to the vector of labor shares α.
We now show that, as long as no sector has fully flexible prices (δi < 1 ∀i), the matrix

I − V is invertible. Let us rewrite

I − V = (
I +BβT

)
(I −�
)−1(I −�)� (53)

The matrix (I +BβT ) has eigenvalues 1 (and all vectors orthogonal to β are correspond-
ing eigenvectors) and 1

1−βT �(I−
�)−1α
, with corresponding eigenvector B. Therefore, it is

invertible. The matrix (I −�
)−1(I −�) is invertible because we assumed that no sector
has fully rigid or fully flexible prices. Thus, I −V is invertible. Also note that I −V has all
positive elements, because all factors in (53) have positive elements. Q.E.D.

2.3. Welfare and Optimal Policy

PROOF OF PROPOSITION 3: The proof relies on a second-order approximation of the
scaled difference between the realized value of any variable Z and its efficient value Z∗:

Z −Z∗

Z
	 log

(
Z

Z∗

)
+ 1

2
log

(
Z

Z∗

)2

�

The unapproximated log difference is denoted by

ẑ ≡ log
(
Z

Z∗

)
�

Lemma 2 proves that d log y = d logL to a first order. Therefore, we must have

ŷ = l̂︸︷︷︸
first order

− d︸︷︷︸
second order

+ higher order terms�

where l̂ is the log change in labor supply relative to the efficient equilibrium, and d is a
second-order TFP loss. The main part of the proof consists in deriving d. Once we have
an expression for d, we can approximate the utility function around the efficient outcome
as

U −U∗

UcC
	 ŷ + 1

2
ŷ2 + 1

2
UccC

Uc

ŷ2 + UlL

UcC

(
l̂ + 1

2
UllN

Ul

l̂2

)

= ŷ + 1 − γ

2
ŷ2 −

(
l̂ + 1 +ϕ

2
l̂2

)

= ŷ + 1 − γ

2
ŷ2 −

(
ŷ + d + 1 +ϕ

2
ŷ2

)

= −γ +ϕ

2
ỹ2 − d�

The last equality holds because, to the second order, ŷ2 = ỹ2 and d2 = ŷd = 0.
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Let us then derive the second-order TFP loss d. Equation (54) relates aggregate output
per unit labor with real wages and the labor share � ≡ wL

PCY
:

Y

L
= 1

�

W

PC
� (54)

In log-deviations from steady state, equation (54) becomes

ŷ = ŵ− p̂C − �̂+ l̂� (55)

Following the same steps as in the proof of Lemma 3, a first-order approximation for
the change in real wages ŵ − p̂C is given by

ŵ − p̂C ≈ λ̃
T

(ξ−μ)� (56)

where we used the following notation:
• ξ denotes sectoral TFP losses coming from misallocation of inputs across the firms

within sector i. Its components are defined as

ξi ≡ Yi

AiF
(
{Xij}�Li

) �
where

Li =
∫

Li(f ) df

and

Xij =
∫

Xij(f ) df

are the aggregate labor and intermediate inputs hired by sector i, f indexes producers
within sector i, and Ai is its exogenous productivity shifter. In the presence of price
dispersion across producers within i, the input quantities Li(f ) and Xij(f ) are not
constant across firms f ,2 which implies Yi <AiF ({Xij}�Li) and ξi < 1.

• λ̃ ≡ βT (I − 
̃)−1 is the vector of cost-based Domar weights, and 
̃ij ≡ PjXij

MCiYi
is the

cost-based input-output matrix. At the efficient equilibrium, the cost-based input-
output matrix coincides with the sales-based one, 
ij ≡ PjXij

PiYi
, defined in the main

text.
Combining (56) with (55), we obtain

ŷ − l̂ ≈ λ̃
T

(ξ− μ̂) − �̂� (57)

In equation (57), ξ captures sector-level TFP losses due to misallocation within sectors,
while the term −λ̃

T
μ̂ − �̂ captures an aggregate TFP loss coming from misallocation

across sectors. We know from Lemma 2 that both are zero to a first order. We then com-
pute a second-order approximation of −λ̃

T
μ̂− �̂ as function of sectoral markups, and a

2Note that the ratios Li

Xij
and Xij

Xik
instead are constant across firms f .
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second-order approximation of ξ as a function of inflation rates. Note that the second-
order terms in μd logξ vanish around the efficient steady state.

Let us first derive � from the consumers’ budget constraint. Recall that the budget
constraint is given by

PC =wL+�− T�

where � are aggregate profits and T is the lump-sum tax used to finance input subsidies.
Dividing both sides by PY , we find

1 = �+ �− T

PY
=�+

∑
i

λi

(
1 − 1

mi

)
� (58)

where mi is the markup of sector i (in levels):

mi ≡ Pi

MCi

�

A first-order approximation of equation (58) yields

d log� = − 1
�

(∑
i

dλi

(
1 − 1

mi

)
+

∑
i

λi

μi

mi

)
�

Therefore,

−λT μ̂− �̂ ≈
∑
i

(
1

�mi

− 1
)
λiμi +

∑
i

dλi

�

(
1 − 1

mi

)
� (59)

which is zero around the efficient steady state (mi = 1∀i, � = 1). Deriving equation (59)
a second time around the efficient steady state yields

−λT μ̂− �̂ ≈
∑
i

dλiμi −
∑
i

λiμ
2
i −

(∑
i

λiμi

)2

+
∑
i

(dλi − dλ̃i)μi� (60)

We now derive the change in sales shares dλ. From the definition of λ, we have

dλ = [
dβT +λT d


]
(I −
)−1�

Solving for changes in consumption and input shares yields

∑
i

dλiμi =
∑
i

∑
t�l

βtβl(1 − σtl)(d logpl − d logpt)(I −
)−1
ti μi

+
∑
i

∑
t

λt

∑
k�l

ωtkωtl

(
1 − θt

kl

)
(d logpl − d logpk)(I −
)−1

ki μi

+
∑
i��j

λi

[

(I −
)−1

]
ij
μiμj� (61)
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Solving for changes in relative prices in (61), we obtain
∑
i

dλiμi = −
∑
t�l

βtβl(1 − σtl)(I −
)−1
ti

∑
j

(
(I −
)−1

lj − (I −
)−1
tj

)
(μj − logAj)μi

−
∑
i

∑
t

λt

∑
j�k

∑
l

ωtlωtk

(
1 − θt

kl

)
(I −
)−1

ki

×
∑
j

(
(I −
)−1

lj − (I −
)−1
kj

)
(μj − logAj)μi

+
∑
i�j

λi

[

(I −
)−1

]
ij
μiμj� (62)

To this we also need to add the cross-partial from the interaction between productivity
and markups, which comes from the Hulten term in ŷ − l̂.3 This is given by

∑
i�j

dλ̃i

d logmj

logAiμj�

As we can see from equation (62), around an efficient equilibrium it holds that

∑
i�j

dλ̃i

d logmj

logAiμj = −
∑
i�j

dλi

d logaj

logAjμi�

Moreover, we have

dλi − dλ̃i

d logAj

= 0�

Therefore, all terms in logAiμj cancel out, and we are left with second derivatives with
respect to markups only.

The terms in μiμj that are independent of substitution elasticities in the first two lines
of (62) sum up to (∑

i

λiμi

)2

+
∑
i

λiμ
2
i �

Moreover, using the relation

dωij = dω̃ij −ωijμi�

it is easy to verify that∑
i

(dλi − dλ̃i)μi = −
∑
i��j

λi

[

(I −
)−1

]
ij
μiμj�

3The Hulten term is

y − l = λ̃T a�

This term cancels out to a first order when looking at deviations from the efficient equilibrium. However, the
second-order cross-partial does not cancel out.
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which cancels out with the last term in (62). Therefore, all terms in μiμj that are indepen-
dent of substitution elasticities cancel out.

Plugging (62) into (60), the remaining terms yield

−λT μ̂− �̂ ≈ 1
2

∑
i�j

∑
t�l

βtβlσtl

(
(I −
)−1

ti − (I −
)−1
li

)(
(I −
)−1

tj − (I −
)−1
lj

)
μiμj

+ 1
2

∑
i�j

∑
t

λt

∑
k�l

[∑
l

ωtlωtkθ
t
kl

(
(I −
)−1

ki − (I −
)−1
li

)

× (
(I −
)−1

kj − (I −
)−1
lj

)]
μiμj� (63)

Equation (63) can further be written in terms of the substitution operators � intro-
duced in Definition 4, which yields the quadratic function

−λT μ̂− �̂ ≈ 1
2

∑
i�j

[
�C

(
(I −
)−1

(i) � (I −
)−1
(j)

)

−
∑
t

λt�
μ
t

(
(I −
)−1

(i) � (I −
)−1
(j)

)]
μiμj

= 1
2

∑
i�j

Lacross
ij μiμj� (64)

To obtain the expression in the paper, just replace

μ= (I −
)p −αw

and note that Lacross
ij α = 0. This concludes the derivation of the aggregate TFP loss from

across-sector misallocation.
The derivation of within-sector TFP losses ξ is the same as in the traditional one-sector

model (Gali (2015),Woodford (2003)), just replicated sector by sector. Index by f the
different varieties of product i and note that, given the CES assumption, sectoral output
can be written as

Yi =AiF
(
{xij}�Li

) p
−εi
i∫

p
−εi
if df

� (65)

where xij and Li are defined above. The productivity wedges ξ therefore are given by

ξi = log

⎛
⎜⎜⎝ p

−εi
i∫

p
−εi
it dt

⎞
⎟⎟⎠ �
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To a first order, ξi can be approximated as

dξi = εi

⎡
⎢⎢⎣

∫
p

−εi
if d logpif df∫

p
−εi
if df

−

∫
p

1−εi
if d logpif df∫

p
1−εi
if df

⎤
⎥⎥⎦ � (66)

Given the Calvo assumption, around the efficient steady state we have that
∫

p
−εi
if d logpif df∫

p
−εi
if df

=

∫
p

1−εi
if d logpif df∫

p
1−εi
if df

= δd logmci�

so that dξi = 0.
The second-order approximation d2ξi is obtained by deriving (66) a second time with

respect to {d logpit}. We have

d2ξi = εi

[∫
(logpif − logpi)2 df −

(∫
(logpif − logpi) df

)2]
�

The following lemma shows how to write the present discounted sum of within-sector
losses as a function of sectoral inflation rates.

LEMMA 5: It holds that

∑
s≥0

ρsξit+s ≈ εi
1 − δ̂i

δ̂i

∑
s≥0

ρsπ2
it+s� (67)

Define

Dit ≡
∫

(logpif t+s − logpit+s)2 df −
(∫

(logpif t+s − logpit+s) df
)2

�

Given the Calvo assumption, in each sector i the fraction δi of firms who adjust prices set

logpif t − logpit = (1 − δi)
(
logp∗

it − logpit−1

) = 1 − δi

δi

πit �

For the remaining fraction (1 − δi) of non-adjusting firms, we have

logpif t − logpit = (−δi)
(
logp∗

it − logpit−1

) + (logpif t−1 − logpit−1)

= (logpif t−1 − logpit−1) −πit�

It follows that, around a steady state where logpif t − logpit = 0 ∀f ,

Dit = (1 − δi)
(

1
δi

π2
it +Dit−1

)
�



NETWORKS, PHILLIPS CURVES, AND MONETARY POLICY 15

This in turn implies the desired result:

∑
s

ρsDit+s =
∑
s

ρs 1 − δi

δi

π2
is

(∑
τ≥s

(
ρ(1 − δi)

)τ−s
)

= 1 − δ̂i

δ̂i

∑
s

ρsπ2
is�

Together, equations (57) and (67) also allow us to express the second-order welfare loss
from within-sector misallocation as a quadratic function of sectoral inflation rates:

∑
t

ρtλTξt ≈ −1
2

∑
t

ρtπT
t (I −�)�−1 diag(λ) diag(ε)πt�

Q.E.D.

PROOF OF LEMMA 4: Denote

A≡

⎛
⎜⎜⎜⎝

1
ρ

(I − V)−1 1
ρ

(I − V)−1V − 1
ρ

(I − V)−1B(γ +ϕ)

I I 0
ζ

γ
λT (I −�)�−1 0T 1

⎞
⎟⎟⎟⎠ �

The dynamic system that governs the economy under the given Taylor rule is
⎛
⎝Eπ t+1

pt

Eỹt+1

⎞
⎠ =A

⎛
⎝ π t

pt−1

ỹt

⎞
⎠ −

⎛
⎝(I − V)−1V

O

0T

⎞
⎠d log At � (68)

The matrix A has a unit eigenvalue, with eigenvector π = 0, p = 1, ỹ = 0. Lemma 6 below
demonstrates that the system (68) has a unique bounded solution for any given past prices
pt−1 and productivity shocks d log At , if and only if the matrix A has N + 1 additional
eigenvalues strictly larger than 1, and N − 1 strictly smaller than 1 in modulus. For now,
let us take this result as given and prove that the condition is satisfied.

Any eigenvector
(

π

p
ỹ

)
of the matrix A, with corresponding eigenvalue ν �= 1, must sat-

isfy

p = π

ν − 1
�

ỹ = ζ

ν − 1
γ +ϕ

γ
λT (I −�)�−1π�

ρν(I − V)π =
[
I + V

ν − 1
− ζ

ν − 1
γ +ϕ

γ
BλT (I −�)�−1

]
π� (69)

The last equation can be rearranged to obtain the condition

1 − ρν + ρν2

ν
(I − V)π =

[
I − ζ

ν

γ +ϕ

γ
BλT (I −�)�−1

]
π� (70)

Denote the eigenvectors of the matrix I − V by vi� i ∈ {1� � � � �N}, ordering them so that
vN = 1, and denote by {ξi}Ni=1 the corresponding eigenvalues, recalling that |ξi| ∈ (0�1)
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for i = 1� � � � �N − 1.4 It is easy to verify that λT (I − �)�−1vi = 0 ∀i ∈ {1� � � � �N − 1}.
Therefore, the eigenvectors v1� � � � � vN−1 satisfy condition (70), setting

1 − ρν + ρν2

ν
= ξi� (71)

For |ξi|∈ (0�1), equation (71) has two roots, ν+
i and ν−

i , such that |ν+
i |> 1 and |ν−

i |< 1.
Hence, {ν+

i � ν
−
i }N−1

i=1 are N − 1 pairs of eigenvalues of A, one with modulus strictly greater
than 1, and the other with modulus strictly smaller than 1. To construct the remaining
pair, note that premultiplying the first equation in (68) times the vector λT (I − �)�−1

implies the divine coincidence result:5

(γ +ϕ)ỹt = λT (I −�)�−1(π t − ρEπ t+1)�

This condition must hold for the eigenvectors of A as well, implying

(γ +ϕ)ỹt = ζ

ν − 1
γ +ϕ

γ
λT (I −�)�−1π = (1 − ρν)λT (I −�)�−1π t �

Rearranging the equality yields[
(1 − ρν)(1 − ν) + ζ

γ +ϕ

γ

]
λT (I −�)�−1π = 0�

We know that this condition is satisfied when setting π = vi, i ={1� � � � �N −1}. Moreover,
it is also satisfied when ν is such that

(1 − ρν)(1 − ν) + ζ
γ +ϕ

γ
= 0� (72)

For ζ = 0, the solutions to this equation are ν−
N = 1 and ν+

N = 1
ρ
. For ζ > 0, therefore, both

solutions must have modulus larger than 1. From equation (70), the inflation component
of the corresponding eigenvectors is given by

π =
[
I − 1 − ρν + ρν2

ν
(I −�
)−1(I −�)

]−1

B

for ν = ν−
N or ν = ν+

N , respectively.6 The components corresponding to lagged prices and
the output gap can then be computed using (69). Q.E.D.

4This follows from the Perron–Frobenius theorem, and from the fact that I − V is a probability matrix.
5To obtain the result, we used the relations

λT (I −�)�−1M = λT (I −�)�−1�

λT (I −�)�−1V = 0T �

λT (I −�)�−1B= 1�

6The matrix I − 1−ρν+ρν2

ν
(I −�
)−1(I −�) is always invertible, because equation (72) implies |1−ρν+ρν2

ν
|< 1

for ν = ν+
N or ν = ν−

N , while all eigenvalues of the matrix (I − �
)−1(I − �) have modulus greater than or
equal to 1. To see this, it is easier to show that all the eigenvalues of the inverse matrix (I −�)−1(I −�
) are
weakly smaller than 1 in modulus. This follows from the Perron–Frobenius theorem, because this matrix has
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LEMMA 6: The system (68) has a unique bounded solution if and only if the matrix A has
N eigenvalues strictly smaller than 1 in modulus, and N eigenvalues strictly larger than 1, in
addition to the unit eigenvalue.

PROOF: Given our assumptions about the productivity process, we have that

E lim
t→∞

⎛
⎝ π t

pt−1

ỹt

⎞
⎠ = lim

t→∞
At

⎛
⎝π0

p−1

ỹ0

⎞
⎠

− lim
t→∞

(∑
s≤t

ηsAt−s

)⎛
⎜⎜⎝

1
ρ

(I − V)−1V
O

0T

⎞
⎟⎟⎠d log A0�

We can decompose the productivity term as a linear combination of the eigenvectors of
A, {w1� � � � �w2N+1}:⎛

⎜⎜⎝
1
ρ

(I − V)−1V
O

0T

⎞
⎟⎟⎠d log A0 = b1w1 + · · · + b2Nw2N+1�

Let us also write
( π0

p−1
ỹ0

)
in components with respect to {w1� � � � �w2N+1}:

⎛
⎝π0

p−1

ỹ0

⎞
⎠ =

2N+1∑
i=1

xiwi�

Denote by {ν1� � � � � ν2N+1} the eigenvalues corresponding to {w1� � � � �w2N+1}. We have

lim
t→∞

At

⎛
⎝π0

p−1

ỹ0

⎞
⎠ +

(∑
s≤t

ηsAt−s

)⎛
⎜⎜⎝

1
ρ
M−1V (I −
)

O

0T

⎞
⎟⎟⎠d log A0

= lim
t→∞

∑
i/|νi|≥1

[
xi + νi

νi −η
bi

]
νtiwi�

To have a bounded solution, we need⎛
⎝π0

p−1

ỹ0

⎞
⎠ = −

∑
i/|νi|>1

νi

νi −η
biwi +

∑
i/|νi|≤1

xiwi� (73)

all positive elements, and the sum of each row is less than or equal to

1 − min
k

{δ̂k}
∑
j


ij

1 − min
k

{δ̂k}
= 1�
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This is a system of 2N + 1 equations, with unknowns π0, ỹ0, and {xi}i/|νi|≤1. The system has
a unique solution if and only if the matrix A has exactly N − 1 eigenvalues with modulus
strictly smaller than 1. Q.E.D.

Example 7

In this example, we complete the derivation of the horizontal component of the optimal
output gap. This component is similar to equation (35), with an extra term coming from
wage rigidity (δL < 1):

y∗
hor = (ε− σ)(γ +ϕ)

δL

(
1 −Eβ(δ)

)
1 − δLEβ(δ)

Eβ(1−δ)π�

where Eβ(1−δ) is defined as in Example 6. Note that y∗
hor = 0 when wages are fully rigid, be-

cause in this case monetary policy has no effect on wages and prices. Solving for inflation
as a function of the oil shock, we find

Eβ(1−δ)π = −
[
Eβ(1−δ) (δωoil)

− δL

(
1 −Eβ(δ)

)
1 − δLEβ(δ)

Eβ(1−δ) (δ)Eβ(1−δ) (ωi�oil)
]

logAoil� (74)

The expression in square brackets is similar to the covariance Covβ(1−δ) (δ�ωoil), slightly
modified to account for wage rigidity. The expectation Eβ(1−δ) (δωoil) is the direct effect
of productivity on marginal costs, while the product Eβ(1−δ) (δ)Eβ(1−δ) (ωoil) is the indirect
effect through lower wages. This second effect is muted with wage rigidities (δL < 1), so
that (74) is always larger than the covariance Covβ(1−δ) (δ�ωoil). In practice, when calibrat-
ing sectoral oil shares and price adjustment frequencies to the U.S. data, equation (74) is
positive for logAoil < 0, but small.
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