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APPENDIX C: RESULTS ON CONVERGENCE TO THE LIMIT

C.1. Model With Fixed Labor

PROPOSITION 8: SUPPOSE LABOR IS INFLEXIBLE, so that each sector’s production func-
tion is still

Yi = ζZiL
1−α
i

(∑
j

A
1/σi
i�j X

(σi−1)/σi
i�j

)ασi/(σi−1)

(66)

but Li is no longer a choice variable. Then the leading term of the asymptotic expansions for
prices and GDP remains unchanged from Lemma 3.1 and Theorem 1:

lim
t→∞

pi(θt)/t =φi(θ)� (67)

lim
t→∞

gdp(θt)/t = λ(θ)� (68)

where λ(θ) = −β′φ(θ)� (69)

where φi is defined as in equation (7).

PROOF: In addition to the claims in the proposition itself, we also prove the further
results that

lim
t→∞

yi

t
= lim

t→∞
ci

t
= −φi (70)

(now suppressing the θ for convenience).
Normalizing nominal GDP to 1 (which affects only equation (73)), the equilibrium

conditions are

Yi = ζ exp(zi)L1−α
i

(∑
j

A
1/σi
i�j X

(σi−1)/σi
i�j

)ασi/(σi−1)

� (71)

Yj = Cj +
∑
i

Xi�j� (72)

βj = PjCj� (73)

Pj = αPi exp(zi)L1−α
i

(
Yi/

(
exp(zi)L1−α

i

))(α−(σi−1)/σi)/αA
1/σi
i�j X

−1/σi
i�j 
 (74)
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We first prove some small lemmas. Define

fi(φ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

max
j∈Si

φj if σi < 1�∑
j

Ai�jφj if σi = 1�

min
j∈Si

φj if σi > 1


(75)

LEMMA C1: fi(φ) + σi(φj − fi(φ)) ≥φj for all j ∈ S(i).

PROOF: Trivial algebra. Q.E.D.

Note that fi is defined over arbitrary vectors. Consider a vector φ̂i with jth element
equal to fi(φ) + σi(φj − fi(φ)).

LEMMA C2:

fi(φ̂) = fi(φ)
 (76)

PROOF: This follows from the quasilinearity of fi, where for scalars a and b, fi(aφ +
b) = afi(φ) + b. In the case of this lemma, a= σi and b= (1 − σi)fi(φ), so that

fi(φ̂i) = σifi(φ) + (1 − σi)fi(φ) (77)

= fi(φ)
 (78)

Q.E.D.

To prove the proposition, we also need the use of inputs. We guess that

lim
t→∞

xi�j

t
= −fi(φ) − σi

[
φj − fi(φ)

]

 (79)

We need to verify that the above, along with the solution in the proposition, satisfies, in
the limit, the equilibrium conditions (71)–(74).

We first take limits of the equilibrium conditions. For any variable gj , define

φg�j ≡ lim
t→∞

gj

t

 (80)

Taking logs of the equilibrium conditions (equations (71)–(74), respectively) and divid-
ing by t and taking limits as t → ∞ yield

φy�i = θi + αfi
(
[φx�i�j]

)
� (81)

φy�j = max
{
φc�j�max

i
φx�i�j

}
� (82)

0 = φp�j +φc�j� (83)

φp�j = φp�i + θi + α− (σi − 1)/σi

α
(φy�i − θi) − σ−1

i φx�i�j� (84)

where [φx�i�j] is a vector with jth element equal to φx�i�j .
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Equation (81) holds by applying Lemma C2 to fi([φx�i�j]). Equation (82) holds using the
guesses and Lemma C1. Equations (83) and (84) hold trivially after inserting the various
guesses. Q.E.D.

Intuitively, the result here simply says that productivity eventually dominates realloca-
tion of inputs. That idea already underlies the main results, in fact. Reallocation, or lack
thereof, affects convergence to the limit (see Section 6.2), but it does not affect the value
of the limit.

C.2. Quasi-Dynamic Model With Inventories

This section considers an extension of the model in Dew-Becker and Vedolin (2023),
which is itself closely related to the model of Jones (2011).

Suppose output in sector i on date τ is

Yi�τ =Zi�τXi�τ−1� (85)

where Xi�τ−1 is the quantity of material inputs purchased by sector i on date τ − 1 (i.e.,
inventories of materials) and Zi�τ is productivity. There is a final good produced according
to the function

Yτ =
(∑

i

a1/σ
i Y

(σ−1)/σ
i�τ

)σ/(σ−1)

(86)

(i.e., all of the output of the individual sectors goes to produce the final good) and the
resource constraint says that the final good can be allocated to either consumption or
inventories of inputs for use on date τ + 1:

Yτ = Cτ +
∑
i

Xi�τ
 (87)

This can be mapped into the main model by making final good production its own sector,
with each sector only using the final good as an input and also consumption only involving
the final good (though that is without the dynamics).

Combining the production functions yields

Yτ =
(∑

i

a1/σ
i (Zi�τXi�τ−1)(σ−1)/σ

)σ/(σ−1)


 (88)

A fully dynamic version of this model could be studied by specifying processes for the
Zi�τ. However, that does not appear to be tractable. I therefore consider a one-time sur-
prise shock. Specifically, I assume that for τ < 0, agents believe that Zi�τ = 1 for all i,
and τ. On date τ = 0 a surprise shock occurs, with each sector receives a random Zi�0, af-
ter which productivity permanently stays at the new level (I discuss the case of a transitory
shock, which is less interesting, below).

Specifically, Zi�τ = 1 for all τ < 0, and Zi�τ =Zi�0 for all τ > 0. We proceed by solving the
model under the agents’ assumption that there are no shocks. If we define

∑
i Xi�τ = X̄τ,

then it is straightforward to show that the optimal choice of Xi�τ each period satisfies

Xi�τ = X̄τ

aiZ
σ−1
i∑

i

aiZ
σ−1
i


 (89)
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Define effective productivity, output per unit of inputs, to be Yτ/X̄τ. We have

Yτ/X̄τ−1 = 1 for all τ < 0� (90)

Y0/X̄−1 =
(∑

i

aiZ
(σ−1)/σ
i�0

)σ/(σ−1)

� (91)

Yτ/X̄τ−1 =
(∑

i

aiZ
σ−1
i�0

)1/(σ−1)

for all τ > 0
 (92)

C.3. Which Is the Right Approximation to Use?

The usual Taylor approximation is around z = 0, while this paper focuses on z → ∞. As
z grows, the tail approximation is eventually superior, so for any statements about limiting
probabilities as gdp → ±∞, it is the correct representation. But at what point does that
transition happen? To shed light on that question, first note that gdp(0) = 0. So, to know
the size of the error from using the tail approximation when z = 0, we need to know the
constants μ(θ).

The constant in the tail approximation is −β′μ where the vector μ solves the recursion

μi = α

(1 − σi)
log

( ∑
j∈j∗(i)

Ai�j exp
(
(1 − σi)μj

))
(93)

and

j∗(i) ≡

⎧⎪⎨
⎪⎩

{
j : φj = max

k∈Si
φk

}
if σi < 1�{

j : φj = min
k∈Si

φk

}
if σi > 1


(94)

When j∗(i) is a singleton,

μi = α

(1 − σi)
logAi�j∗(i) + αμj∗(i)
 (95)

The constant, μ(θ), thus increases when the elasticity of substitution is closer to 1 and
when the upstream source of shocks is units that are relatively small (have small Ai�j).
Those factors cause the tail approximation to have a relatively larger error as t → 0.

The Concave Case

In the case where gdp is globally concave in the shocks—σi ≤ 1 ∀ i—a stronger result
is available. The error for the tail approximation then is smaller than for the first-order
Taylor series when

t >
μ(θ)

D′
ssθ− λ(θ)


 (96)

The tail approximation is superior if t is sufficiently large—larger when the constant μ(θ)
is larger or the gap between the local and tail approximations, D′

ssθ−λ(θ), is smaller. That
immediately implies that when any elasticity gets closer to 1, the cut-off point gets larger,
since σi has no impact on λ and Dss away from 1. The closer are the various elasticities
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to 1, the larger the shocks have to be in order for the tail approximation to be superior to
a local approximation.

It is less clear what the effects of the Ai�j parameters on the cut-off is because they
affect both μ and Dss. Note, though, that (in the concave case), when λ(θ) < 0, that is,
when thinking about shocks that reduce GDP, the tail approximation cannot possibly be
the better of the two until μ(θ) +λ(θ)t < 0, and the point where that happens necessarily
increases as the A parameters for the minimizing units (i.e., the units j ∈ j∗(i) for some i)
decline.

APPENDIX D: EXTENSIONS AND ADDITIONAL RESULTS

D.1. Neoclassical Growth Model

Each sector’s output on date τ is

Yi�τ = ζZi�τ

(
Kη

i�τL
1−η
i�τ

)1−α
X̄α

i�τ� (97)

where X̄i�τ ≡
(∑

i

A
1/σi
i�j X

(σi−1)/σi
i�j�τ

)σi/(σi−1)


 (98)

Note that the first-order optimality conditions for each sector’s use of capital and labor
imply that they all use the same mix of capital and labor. If the aggregate capital stock is
K̄τ and we normalize aggregate labor to 1,

∑
i Li�τ = 1, we have that Ki�τ =Li�τK̄τ. Define

Mi�τ ≡Kη
i�τL

1−η
i�τ =Li�τK̄

η
τ 
 (99)

Now normalize the price of the labor-capital bundle to 1.37 Aggregate nominal income is
then ∑

i

Mi�τ = K̄η
τ 
 (100)

Inserting Mi�τ into the production function yields (trivially)

Yi�τ = ζZi�τM
1−α
i�τ X̄α

i�τ
 (101)

This is exactly the same structure as in Section 2, just replacing labor, Li�τ, with the capital-
labor bundle, Kη

i�τL
1−η
i�τ . Lemma 1 and Theorem 1 then continue to hold, with the only

modification that GDP is proportional to K̄η
τ (in the baseline case aggregate labor adds

up to 1; here, the sum of Mi is instead K̄η
τ ). That is,

GDPτ = K̄η
τ /exp

(
β′pτ

)
� (102)

where pτ is the log price vector satisfying the recursion in (3) (which depends only on
productivity). Note that there is a multiplier effect of α that is absorbed in the solution
for pτ.

Now consider a dynamic but nonstochastic version of the model in which households
maximize lifetime utility. To keep things simple, I assume that capital and final consump-
tion both use the same mix of goods. That is, there is some final good producing sector

37Again, we can always normalize one price. Mi�τ here plays the same role as labor in the baseline case in
the main text, so we normalize its price to 1 analogously to the normalization of the wage to 1 in the baseline
case.
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with the production function in equation (2) that produces interchangeable consumption
and capital goods and the household’s budget constraint is

K̄τ+1 +Cτ = (1 − δ)K̄τ + K̄η
τ exp

(−β′pτ

)

 (103)

The household’s Lagrangian is then

max
∞∑
j=0

βj
[
U (Cτ) − λτ

(
K̄τ+1 +Cτ − (1 − δ)K̄τ − K̄η

τ exp
(−β′pτ

))]



Assuming the productivities are fixed at some level Zi�τ = Zi, the steady state for GDP is

GDPτ = [(
β−1 − 1 + δ

)−1
η

]η/(1−η)
exp

( −1
1 −η

β′pτ

)
� (104)

where pτ solves the recursion from (3) given the productivities Zi.

D.2. Relaxing the CES Assumption

This section extends the baseline result to a broader class of production functions. Con-
sider the same competitive economy as in the main analysis, with the only difference that
each sector’s production need not be CES. Rather, just assume that it each sector has
constant returns to scale. Again, without loss of generality, assume that labor and mate-
rials are combined with a unit elasticity of substitution. Those assumptions imply that, in
competitive equilibrium, the price of good i is given by

Pi = 1
Zi

W 1−α
(
Ci(P1� 
 
 
 �Pn)

)α
� (105)

where Zi is the productivity shock to industry i, Ci is a homogenous function of degree
one, and α < 1. In addition to the intermediate input producing industries, there is also
an industry with cost function C0 that produces a final good, which is then sold to the
representative consumer. Therefore, the final good price, P0, also satisfies equation (105),
with the convention that α0 = 1 and Z0 = 1.

To find cirumstances under which limits of the form in Theorem 1 appear, again nor-
malize W = 1, insert the guess that pi → φit and take limits,

φi = lim
t→∞

−θi + αt−1 logCi

(
exp(φ1t)� 
 
 
 �exp(φnt)

)

 (106)

So, if it is the case that

lim
t→∞

1
t

logCi

(
exp(φ1t)� 
 
 
 �exp(φnt)

) = f̃i(φl�φ1� 
 
 
 �φn) (107)

for some function f̃i, then we have a recursion as in the main text. For the CES case in the
main text, the function f̃ is the term in braces in (7), which can be seen by just plugging
in the CES cost function, Ci(P) = (

∑
j ai�jP

1−σi
j )1/(1−σi) and taking limits.

A sufficient condition for the limit in (107) to exist is that

lim
t→∞

d

dt
logCi

(
exp(φlt)�exp(φ1t)� 
 
 
 �exp(φnt)

)
(108)
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exists. That is, it is sufficient that the gradients of the cost functions have limits, but even
that is not strictly necessary. Intuitively, equation (107) requires that the cost function
eventually scales approximately linearly. It does not have to be literally linear, though.
For example, the function y(t) = at + sin(t) has the limit limt→∞ t−1y(t) = a. The at term
dominates for large t.

D.2.1. The Heterogeneous CES Setup of Chodorow-Reich, Gabaix, and Koijen (2022)

Chodorow-Reich, Gabaix, and Koijen (2022) study an aggregator of the form

∑
i

φi

(Xi/Y )(σi−1)/σi − 1
(σi − 1)/σi

+φ0 = 0� (109)

where the Xi are uses of inputs, The φi are parameters, and Y is output, which is an
implicit function of the inputs (see also Matsuyama and Ushchev (2017) and Baqaee,
Farhi, and Sangani (2023)). They show that the unit cost function for this case is solved by

C = μ
∑
i

(Pi/μ)1−σi � (110)

where μ solves ∑
i

σi

σi − 1
(Pi/μ)1−σi +φ0 = 0
 (111)

Now suppose the prices all have limits logPi → git as t → ∞. It is then the case that if
all σi < 1, C → (maxi gi)t, while if σi > 1, C → (mingi)t. That is, in this more general
case, the precise value of the elasticity of substitution for each good continues to play no
role, as long as all of the elasticities (within a given sector) are above or below 1. In the
case where elasticities are mixed within a sector in this model, the analysis, for general gi,
becomes much more difficult and does not yield a simple solution.

APPENDIX E: EXPONENTIAL EXAMPLE

We begin with a general result for Weibull-tailed shocks. The shocks have a Weibull-
type tail if, for t > t̄,

F̄ (t) = c exp
(−η(t − t̄)κ

)
� (112)

where c = Pr(t ≤ t̄) (113)

for parameters κ > 0 and η> 0. Denote the essential supremum with respect to the mea-
sure m over θ of any function f (θ) by ‖f (θ)‖∞.38 For example, in the typical case where
m has full support, ‖f (θ)‖∞ = maxθ f (θ) (note that it is not the maximum of |f (θ)|).
‖f (θ)‖∞;�∗ denotes the essential supremum on some subset of the sphere �∗.

PROPOSITION 9: If the shocks have Weibull tails,

lim
x→∞

Pr[gdp <−x]1/(xκ) = exp
(

−η

(
1∥∥−s(θ)λ(θ)

∥∥
∞

)κ)

 (114)

38Formally, ‖f (θ)‖∞ = inf{a ∈R :m({θ : f (θ) > a}) = 0}.
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Furthermore, for any set �∗ such that ‖−s(θ)λ(θ)‖∞;�∗ < ‖−s(θ)λ(θ)‖∞,

lim
x→∞

Pr
[
θ ∈�∗ | gdp <−x

] = 0
 (115)

Analogous results hold for Pr[gdp > x].

In the independent exponential case, the probability density in the tail is exp(−‖z‖1;v/
η), where

‖z‖1�v ≡
∑
j

|zj|/vj (116)

denotes an l1-type norm weighted by a vector v, representing the volatility of each shock.
To confirm that s(θ) = 1/‖θ‖1�v, note that

exp
(−(

t/s(θ)
)
/η

) = exp
(

−
(

‖z‖
∥∥∥∥ z

‖z‖
∥∥∥∥

1�v

)
/η

)
(117)

= exp
(−‖z‖1�v/η

)
(118)

as required.
The aim is to find maxθ̃:‖θ̃‖2=1 ‖−s(θ̃)λ(θ̃)‖. Now note that bλ(θ̃) = λ(bθ̃), and hence

s(θ̃)λ(θ̃) = λ(θ̃s(θ̃)). We can then apply a change of variables, with θ = θ̃s(θ̃). Note that
θ̃ = θ/‖θ‖, so we have

max
θ̃:‖θ̃‖=1

∥∥−s(θ̃)λ(θ̃)
∥∥ = max

θ:‖θ/s(θ/‖θ‖)‖=1

∥∥−λ(θ)
∥∥
 (119)

Now in this particular case, ∥∥θ/s(θ/‖θ‖)∥∥ = ∥∥θ∥∥θ/‖θ‖∥∥
1�v

∥∥ (120)

= ‖θ‖1�v
 (121)

The objective is then

−max
θ

max
n

D′
nθ = −max

n
max

θ
D′

nθ (122)

subject to the constraint ‖θ‖1�v = 1. The inner maximization on the right is a problem with
a linear objective and a linear constraint, so it is simply solved at the point that maximizes
Dn�jvj . We then have

−max
n

max
j

Dn�jvj
 (123)

The example in the text is the special case of vj = 1 ∀ j.

E.1. Proof of Proposition 9

The statement of Theorem 2 is∫
θ:λ(θ)<0

F̄

(
x−μ(θ) + ε(x)

−s(θ)λ(θ)

)
dm(θ) ≤ Pr[gdp < −x]

≤
∫
θ:λ(θ)<0

F̄

(
x−μ(θ) − ε(x)

−s(θ)λ(θ)

)
dm(θ)
 (124)
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In this case, we have

F̄ (s) = c exp
(−β(t − t̄)κ

)
� (125)

where c = Pr(t ≤ t̄)
 (126)

If the limits of the two integrals in (124) are the same, then that limit is also the limit
for Pr[gdp < −x]. This section gives the derivation for the right-hand side limit, with the
arguments holding equivalently on the left with the sign of ε(x) reversed.

We have
(∫

θ:λ(θ)<0
F̄

(
x−μ(θ) − ε(x)

−s(θ)λ(θ)

)
dm(θ)

)1/xκ

(127)

=
[∫

θ∈�
exp

(
−

(
1

−s(θ)λ(θ)
− ε(x) +μ(θ)

x

1
s(θ)λ(θ)

− t̄

x

)κ)xκ

dm(θ)
]1/xκ


 (128)

Now consider the limit as x → ∞. I show that the limit of the right-hand side is the essen-
tial supremum of exp(−( 1

−s(θ)λ(θ) )κ) with respect to the measure m(θ) (i.e., the measure of
the set of θ such that exp(−( 1

s(θ)λ(θ) )κ) is above the essential supremum is zero). Denote
that by ‖exp(−( 1

s(θ)λ(θ) )κ)‖∞.
The structure of this proof is from Ash and Doleans-Dade (2000, p. 470), with the

addition of the convergence of the argument of the integral with respect to x.
Define, for notational convenience,

f (θ) = exp
(

−
(

1
s(θ)λ(θ)

)κ)
� (129)

f (θ;x) = exp
(

−
(

1
s(θ)λ(θ)

− ε(x) +μ(θ)
x

1
s(θ)λ(θ)

− t̄

x

)κ)

 (130)

LEMMA E3: limx→∞ ‖f (θ;x)‖∞ = ‖f (θ)‖∞.

PROOF: f (θ;x) → f (θ) pointwise trivially. The difference |f (θ;x) − f (θ)| is bounded
due to the facts that ε(x) and μ(θ) are bounded and that f (θ;x) is decreasing in s(θ)λ(θ)
(for sufficiently large x), which is bounded from above (and below, by zero). f (θ;x) then
converges uniformly to f (θ), from which ‖f (θ;x)‖∞ → ‖f (θ)‖∞ follows, since using the
reverse triangle inequality,

∣∣∥∥f (θ;x)
∥∥

∞ − ∥∥f (θ)
∥∥

∞
∣∣ ≤ ∥∥f (θ) − f (θ;x)

∥∥
∞
 (131)

Q.E.D.

LEMMA E4: lim supx→∞[
∫
θ∈� f (θ;x)xκ dm(θ)]1/xκ ≤ ‖f (θ)‖∞.

PROOF: We have (except possibly on a set of measure zero)
∥∥f (θ;x)

∥∥
xκ

≤ ∥∥∥∥f (θ;x)
∥∥

∞
∥∥
xκ
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Taking limits of both sides,

lim
x→∞

∥∥f (θ;x)
∥∥
xκ

≤ lim
x→∞

∥∥∥∥f (θ;x)
∥∥

∞
∥∥
xκ

(132)

= lim
x→∞

∥∥f (θ;x)
∥∥

∞ (133)

= ∥∥f (θ)
∥∥

∞� (134)

where the second line follows from the fact that ‖f (θ;x)‖∞ is constant and the third line
uses Lemma E3. Q.E.D.

LEMMA E5: lim infx→∞[
∫
f (θ;x)xκ dm(θ)]1/xκ ≥ ‖f (θ)‖∞.

PROOF: Consider some η> 0, and set

A=
{
θ : exp

(
−

(
1

−s(θ)λ(θ)

)κ)
≥

∥∥∥∥exp
(

−
(

1
−s(θ)λ(θ)

)κ)∥∥∥∥
∞

−η

}

 (135)

Consider also the set

A′ =
{
θ : exp

(
−

(
1

s(θ)λ(θ)
− ±ε(x) +μ(θ)

x

1
λ(θ)

− t̄

x

)κ)

≥
∥∥∥∥exp

(
−

(
1

s(θ)λ(θ)

)κ)∥∥∥∥
∞

−η

}

 (136)

For any η such that A has positive measure, there exists an x̄(η) sufficiently large
that A′ has positive measure for all x > x̄(η) due to the continuity of exp(−( 1

s(θ)λ(θ) −
±ε(x)+μ(θ)

x
1

s(θ)λ(θ) − t̄
x
)κ) and the fact that exp(−( 1

s(θ)λ(θ) − ±ε(x)+μ(θ)
x

1
λ(θ) )κ) → exp(−( 1

s(θ)λ(θ) )κ)
as x→ ∞.

It is then the case that for x > x̄(η),
∫

exp
(

−
(

1
λ(θ)

− ±ε(x) +μ(θ)
x

1
s(θ)λ(θ)

− t̄

x

)κ)xκ

dm(θ) (137)

≥
∫
A′

exp
(

−
(

1
λ(θ)

− ±ε(x) +μ(θ)
x

1
s(θ)λ(θ)

− t̄

x

)κ)xκ

dm(θ) (138)

≥
(∥∥∥∥exp

(
−

(
1

λ(θ)

)κ)∥∥∥∥
∞

−η

)xκ

μ
(
A′)
 (139)

Since μ(A′) > 0 from the definition of ‖exp(−( 1
s(θ)λ(θ) )κ)‖∞ (ignoring the trivial case of a

constant value for exp(−( 1
s(θ)λ(θ) )κ)), and since the above holds for any η> 0,

lim inf
x→∞

[∫
exp

(
−

(
1

s(θ)λ(θ)
− ±ε(x) +μ(θ)

x

1
λ(θ)

− t̄

x

)κ)xκ]1/xκ

dm(θ) (140)

≥
∥∥∥∥exp

(
−

(
1

s(θ)λ(θ)

)κ)∥∥∥∥
∞

 (141)

Q.E.D.
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PROOF OF THE PROPOSITION: Since both the lim inf and lim sup are equal to
‖exp(−( 1

s(θ)λ(θ) )κ)‖∞, the limit is also.
For the second part, in the set �∗, there exists an η such that |−s(θ)λ(θ)| <

‖−s(θ)λ(θ)‖∞ −η. Therefore,
∫
�∗

exp
(

−
(
x+ ε(x) −μ(θ)

−s(θ)λ(θ)
− t̄

)κ)
dm(θ)

∫
exp

(
−

(
x− ε(x) −μ(θ)

−s(θ)λ(θ)
− t̄

)κ)
dm(θ)

(142)
≤ Pr

[
θ ∈ �∗ | gdp <−x

]

≤

∫
�∗

exp
(

−
(
x− ε(x) −μ(θ)

−s(θ)λ(θ)
− t̄

)κ)
dm(θ)

∫
exp

(
−

(
x+ ε(x) −μ(θ)

−s(θ)λ(θ)
− t̄

)κ)
dm(θ)


 (143)

Again, we show that both sides of the inequality have the same limit. For a sufficiently
large x,

∫
�∗

exp
(

−
(
x± ε(x) −μ(θ)

−s(θ)λ(θ)
− t̄

)κ)
dm(θ)

∫
exp

(
−

(
x± ε(x) −μ(θ)

−s(θ)λ(θ)
− t̄

)κ)
dm(θ)

(144)

≤

∫
�∗

exp
(

−
(

x± ε(x) −μ(θ)(∥∥−s(θ)λ(θ)
∥∥

∞ −η
) − t̄

)κ)
dm(θ)

∫
θ:|λ(θ)|>|λ(θ)|−η/2

exp
(

−
(
x− ±ε(x) −μ(θ)

−s(θ)λ(θ)
− t̄

)κ)
dm(θ)

(145)

≤
exp

(
−

(
x− ±ε(x) −μ(θ)

−(∥∥s(θ)λ(θ)
∥∥

∞ −η
) − t̄

)κ)

exp
(

−
(

x− ±ε(x) −μ(θ)
−(∥∥s(θ)λ(θ)

∥∥
∞ −η/2

) − t̄

)κ) 1
m

({
θ : ∣∣λ(θ)

∣∣> ∥∥λ(θ)
∥∥

∞ −η/2
}) (146)

→ 0
 (147)

Q.E.D.
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