
Econometrica Supplementary Material

SUPPLEMENTAL TO “SHARP IDENTIFICATION REGIONS IN
MODELS WITH CONVEX MOMENT PREDICTIONS”
(Econometrica, Vol. 79, No. 6, November 2011, 1785–1821)

BY ARIE BERESTEANU, ILYA MOLCHANOV, AND FRANCESCA MOLINARI

OUTLINE

THIS SUPPLEMENT INCLUDES four appendices. Appendix B establishes that the
methodology of Andrews and Shi (2009) can be applied in our context to ob-
tain confidence sets that uniformly cover each element of the sharp identifica-
tion region with a prespecified asymptotic probability. Appendix C shows that
our approach easily applies also to finite games of incomplete information and
characterizes ΘI through a finite number of moment inequalities. Appendix D
specializes our results in the context of complete information games, to the
case that players are restricted to use pure strategies only and Nash equilib-
rium is the solution concept. In this case, ΘI is characterized through a finite
number of moment inequalities, and further insights are provided on how to re-
duce the number of inequalities to be checked so as to compute it. Appendix E
shows that our methodology is applicable to static simultaneous-move finite
games regardless of the solution concept used.1 Appendix F applies the results
in Section 2 of the main paper to the analysis of individual decision making,
looking at random utility models of multinomial choice in the presence of in-
terval regressors data.

APPENDIX B: APPLICABILITY OF ANDREWS AND SHI’S GENERALIZED
MOMENT SELECTION PROCEDURE2

B.1. Finite Games of Complete and Incomplete Information

Andrews and Shi (2009, Section 9; AS henceforth) considered conditional
moment inequality problems of the form E(md(y� ¯x�θ�u)|¯x) ≥ 0 for all u ∈ B,

¯x-a.s., d = 1� � � � �D� They showed that the conditional moment inequalities can
be transformed into equivalent unconditional moment inequalities, by choos-
ing appropriate weighting functions (instruments) g ∈ G , with G a collection of
instruments and g that depend on ¯x� This yields E(md(y� ¯x�θ�g�u)) ≥ 0 for
all u ∈ B� g = [g1� � � � � gD]′ ∈ G , and d = 1� � � � �D� where md(y� ¯x�θ�g�u) =
md(y� ¯x�θ�u)g(¯x)� In the models that we analyzed in Section 3 and in Ap-
pendix C below, the conditional moment inequalities are of the ≤ type, and

m(y� ¯x�θ�u)= u′[1(y = tk)�k= 1� � � � � κY ] − E[h(Qθ�u)|¯x]�
1Specifically, we illustrate this by looking at games where rationality of level 1 is the solution

concept (a problem first studied by Aradillas-Lopez and Tamer (2008)) and by looking at games
where correlated equilibrium is the solution concept.

2We are grateful to Xiaoxia Shi for several discussions that helped us develop this section.
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m(y� ¯x�θ�g�u)= (u′[1(y = tk)�k= 1� � � � � κY ]
− E[h(Qθ�u)|¯x])g(¯x)�

Notice that E[h(Qθ�u)|¯x] is a known (or simulated) function of θ, u, and ¯x�and that for each u ∈ B� we have only one inequality. Notice also that by the
positive homogeneity of the support function, our moment inequalities can be
written equivalently as E(m(y� ¯x�θ�g�u)) ≤ 0 for all g ∈ G and u ∈ S ≡ {u ∈
�κY :‖u‖ = 1}� Hence, they are invariant to rescaling of the moment function,
which is important for finite sample inference (see, e.g., Andrews and Soares
(2010)).

In all that follows, to simplify the exposition, we abstract from the choice
of G� Once we establish that our problem fits into the general framework of
AS, we can choose instruments g as detailed in Section 3 of AS. To avoid ambi-
guity, in this section we denote F(y|¯x) ≡ [P(y = tk|¯x)�k = 1� � � � �κY ]. We first
establish that ΘI can be equivalently defined using only the first κY − 1 entries
of Y� thereby avoiding the problems for inference associated with linear de-
pendence among the entries of F(y|¯x) and also lowering the dimension over
which the maximization is performed. Let F̃(y|¯x) denote the first κY − 1 rows
of F(y|¯x), B

κY −1 = {u ∈ �κY −1 :‖u‖ ≤ 1}, SκY −1 = {u ∈ �κY −1 :‖u‖ = 1}, and

Q̃θ = {q̃ = [[q(σ)]k�k= 1� � � � � κY − 1]�σ ∈ Sel(Sθ)
}
�

THEOREM B.1: Let Assumptions 3.1 (or C.1 below) and 3.2 hold. Then

Θ̃I ≡
{
θ ∈ Θ : max

u∈BκY −1

(
u′F̃(y|¯x)− E[h(Q̃θ�u)|¯x])= 0� ¯x-a.s.

}
=
{
θ ∈ Θ :

[
max

u∈SκY −1

(
u′F̃(y|¯x)− E[h(Q̃θ�u)|¯x])]

+
= 0� ¯x-a.s.

}
= ΘI�

PROOF: The equality between the two representations above follows by
standard arguments; see, for example, Beresteanu and Molinari (2008, Lem-
ma A.1). To establish that Θ̃I = ΘI , observe that θ ∈ Θ̃I if and only if F̃(y|¯x) ∈
E(Q̃θ|¯x). Pick θ ∈ ΘI� Then F(y|¯x) = E(q|¯x) for some q ∈ Sel(Qθ)� Notice
that this implies F̃(y|¯x)= E(q̃|¯x) for q̃ ∈ (Q̃θ); hence, θ ∈ Θ̃I� Conversely, pick
θ ∈ Θ̃I� Then F̃(y|¯x)= E(q̃|¯x) for some q̃ ∈ Sel(Q̃θ)� which in turn implies that
q = [q̃;1 −∑κY −1

k=1 q̃] ∈ Sel(Qθ) and F(y|¯x)= E(q|¯x); hence, θ ∈ΘI� Q.E.D.

AS proposed a confidence set with nominal value 1 − α for the true param-
eter vector as

CSn = {θ ∈ Θ :Tn(θ) ≤ cn�1−α(θ)}�
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where Tn(θ) is a test statistic and cn�1−α(θ) is a corresponding critical value
for a test with nominal significance level α. AS established that, under certain
assumptions, this confidence set has correct uniform asymptotic size.3 To apply
the construction in AS, we maintain the following assumption:

ASSUMPTION B.1: The researcher observes an i.i.d. sequence of equilibrium
outcomes and observable payoff shifters {yi� ¯xi}ni=1� Define Σ̃

¯x
= diag(F̃(y|¯x)) −

F̃(y|¯x)F̃(y|¯x)
′ and let Σ̃

¯x
be nonsingular with a < ‖Σ̃

¯x
‖< b, ¯x-a.s. for some con-

stants 0 < a < b < ∞� where ‖Σ̃
¯x
‖ is a matrix norm for Σ̃

¯x
compatible with the

Euclidean norm.

AS proposed various criterion functions Tn: some of the Cramér–von Mises
type, some of the Kolmogorov–Smirnov type. Here, we work with a mix of
Cramér–von Mises and Kolmogorov–Smirnov statistic using a modification of
the function S1 on page 10 of AS. Specifically, we use

Tn(θ) =
∫ (

max
u∈BκY −1

√
nm̄n(θ�g�u)

)2
dΓ(B.1)

=
∫ (

max
u∈SκY −1

√
nm̄n(θ�g�u)

)2

+
dΓ

=
∫

max
u∈SκY −1

(
√
nm̄n(θ�g�u))

2
+ dΓ�

where Γ denotes a probability measure on G whose support is G as detailed in
Section 3 of AS, the second equality follows from the proof of Theorem B.1,
and

m̄n(θ�g�u) = 1
n

n∑
i=1

(u′w(yi)− f (¯xi� θ�u))g(¯xi)�

f (¯xi� θ�u) = E[h(Q̃θ�u)|¯xi]�
w(yi)= [1(yi = tk)�k= 1� � � � � κY − 1]�

3Imbens and Manski (2004) discussed the difference between confidence sets that uniformly
cover the true parameter vector with a prespecified asymptotic probability, and confidence sets
that uniformly cover ΘI (see also Stoye (2009)). Providing methodologies to obtain asymptotically
valid confidence sets of either type when the conditioning variables have a continuous distribu-
tion is a developing area of research, to which the method of AS belongs. In certain empirically
relevant models (see, for example, Appendix C and Appendix D), the characterization in Theo-
rem 2.1 yields a finite number of (conditional) moment inequalities. In such cases, the methods of
Chernozhukov, Hong, and Tamer (2007) and Romano and Shaikh (2010) can be applied after dis-
cretizing the conditioning variables to obtain confidence sets which cover ΘI with a prespecified
asymptotic probability, uniformly in the case of Romano and Shaikh (2010). Ciliberto and Tamer
(2009) verified the required regularity conditions for finite games of complete information.
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so that m̄n(θ�g�u) is the sample analog of a version of E(m(y� ¯x�θ�g�u)),which is based on the first κY − 1 entries of Y and on Q̃θ. Note that by the
same argument which follows, our problem specified as in equation (3.6) corre-
sponds to the Cramér–von Mises test statistic of AS, with modified function S1.

Below we show that our modified function S1 satisfies Assumptions S1–S4
of AS and that Assumption M2 of AS is also satisfied. This establishes that
their generalized moment selection procedure with infinitely many conditional
moment inequalities is applicable. We note that one can take the confidence
set CSn applied with confidence level 1/2 to obtain half-median-unbiased es-
timated sets; see AS and Chernozhukov, Lee, and Rosen (2009). Finally, one
can also take the criterion function in Theorem B.1, replace there F̃(y|¯x) with
its sample analog, and construct a Hausdorff-consistent estimator of ΘI using
the methodology proposed by Chernozhukov, Hong, and Tamer (2007, equa-
tion (3.2) and Theorem 3.1). To see that their results are applicable, recall
that the payoff functions are assumed to be continuous in (xj� εj). Hence, the
Nash equilibrium correspondence has a closed graph; see Fudenberg and Ti-
role (1991, Section 1.3.2). This implies that Qθ has a closed graph and, there-
fore, the same is true for E(Qθ|¯x); see Aumann (1965, Corollary 5.2). In turn,
this yields lim supθn→θ E(Qθn |¯x) ⊆ E(Qθ|¯x)� Observe that

max
u∈BκY −1

(
u′F̃(y

¯
|x)− E[h(Q̃θ�u)|¯x])= dH(F̃(y|¯x)�E(Q̃θ|¯x))�

The criterion function s(θ) ≡ ∫ dH(F̃(y|¯x)�E(Q̃θ|¯x))dF¯x
� with F

¯x
the proba-

bility distribution of ¯x (or a probability measure which dominates it), is there-
fore lower semicontinuous in θ� because

lim inf
θn→θ

s(θn) ≥
∫

lim inf
θn→θ

dH(F̃(y|¯x)�E(Q̃θn |¯x))dF¯x

≥
∫

dH(F̃(y|¯x)� lim sup E(Q̃θn |¯x))dF¯x

≥
∫

dH(F̃(y|¯x)�E(Q̃θ|¯x))dF¯x
= s(θ)�

Conditions (c)–(e) in Assumption C1 of Chernozhukov, Hong, and Tamer
(2007) are verified by standard arguments.

We now verify AS’s assumptions.

THEOREM B.2: Let Assumption B.1 hold. Then Assumptions S1–S4 and M2
of AS are satisfied.

PROOF: Assumption S1(a) follows because the moment inequalities are de-
fined for u ∈ SκY −1; hence any rescaling of the moment function is absorbed
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by a corresponding rescaling in u� The rest of Assumption S1 and Assump-
tions S2–S4 are verified by AS. To verify Assumption M2, observe that

m̃(y� ¯x�θ�u)≡ u′w(y)− f (¯x�θ�u)
is given by the sum of a linear function of u and a Lipschitz function of u� with
Lipschitz constant equal to 1. It is immediate that the processes {u′w(yin)� u ∈
SκY −1� i ≤ n� n ≥ 1} satisfy Assumption M2. We now show that the same holds
for the processes {f (¯xin� θn�u)� u ∈ SκY −1� i ≤ n� n ≥ 1}� Assumption M2(a)
holds because for all u ∈ SκY −1�∣∣∣∣ f (¯x�θ�u)

Var(m̃(y� ¯x�θ�u))
∣∣∣∣ ≤ ∣∣∣∣f (¯x�θ�u)

E(u′Σ̃
¯x
u)

∣∣∣∣≤ c
∣∣E[h(Q̃θ�u)|¯x]∣∣

≤ cE(‖Q̃θ‖H |¯x) ≤ c� ¯x-a.s.�

where the first inequality follows from the variance decomposition formula, c is
a constant that depends on a and b from Assumption B.1, and the last inequal-
ity follows by recalling that Q̃θ takes its realizations in the unit simplex which is
a subset of the unit ball. Assumption M2(b) follows immediately because the
envelope function is a constant. Assumption M2(c) is verified by observing that
f (¯x�θ�u) is Lipschitz in u� with Lipschitz constant equal to 1. By Lemma 2.13
in Pakes and Pollard (1989), the class of functions {f (·�u)� u ∈ SκY −1} is Eu-
clidean with envelope equal to a constant and, therefore, is manageable. As-
sumption M2 for the processes {(u′w(yin) − f (¯xin� θn�u))� u ∈ SκY −1� i ≤ n�
n ≥ 1} then follows by Lemma E1 of AS. Q.E.D.

B.2. BLP With Interval Outcome and Covariate Data

We maintain the following assumption:

ASSUMPTION B.2: The researcher observes an i.i.d. sequence of tuples {yiL� yiU�
xiL�xiU}ni=1. E(|yi|2)� E(|xj|2)� E(|yixj|2)� and E(x4

j ) are all finite for each i� j =
L�U�

Let Qθi be the mapping defined as in equation (5.1) using (yiL� yiU�xiL�xiU).
Beresteanu and Molinari (2008, Lemmas A.4 and A.5, and proof of Theo-
rem 4.2) established that {Qθi}ni=1 is a sequence of i.i.d. random closed sets,
such that E(‖Qθi‖2

H) <∞� Define Tn(θ) similarly to the previous section,

Tn(θ) =
(

max
u∈B

(−√
nm̄n(θ�u))

)2 =
(

max
u∈S

−√
nm̄n(θ�u)

)2

+

= max
u∈S

(−√
nm̄n(θ�u))

2
+�
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m̄n(θ�u)= 1
n

n∑
i=1

h(Qθi�u)�

where, again, the fact that u ∈ S guarantees that the above test statistic is in-
variant to rescaling of the moment function. This preserves concavity of the
objective function. We then have the following result:

THEOREM B.3: Let Assumptions 5.1 and B.2 hold. Then Assumption EP of
AS (p. 37) is satisfied.

PROOF: Let m(yiL� yiU�xiL�xiU� θ�u) = h(Qθi�u)� Following AS notation,
define

√
nm̄n(θ�u) = 1√

n

n∑
i=1

h(Qθi�u)�

γ1�n(θ�u) = √
nE[h(Qθi�u)]�

γ2(θ�u�u
∗)= E[h(Qθi�u)h(Qθi�u

∗)] − E[h(Qθi�u)]E[h(Qθi�u
∗)]�

νn(θ�u)= 1√
n

n∑
i=1

[
h(Qθi�u)− E(h(Qθi�u))

]
�

Given the above definitions, we have
√
nm̄n(θ�u) = νn(θ�u)+ γ1�n(θ�u)�

By the central limit theorem for i.i.d. sequences of random sets (Molchanov
(2005, Theorem 2.2.1)),

νn(θ� ·)�⇒ νγ2(θ)(·)�
a Gaussian process with mean zero, covariance kernel γ2(θ�u�u

∗)� and contin-
uous sample paths. It follows from the strong law of large numbers in Banach
spaces of Mourier (1955) that the sample analog estimator γ̂2�n(θ�u�u

∗) which
replaces population moments with sample averages, satisfies γ̂2�n(θ� ·� ·) a�s�→
γ2(θ� ·� ·) uniformly in u�u∗� Q.E.D.

APPENDIX C: ENTRY GAMES OF INCOMPLETE INFORMATION

We now consider the case that players have incomplete information (see,
e.g. Aradillas-López (2010), Brock and Durlauf (2001, 2007), Seim (2006),
Sweeting (2009)). We retain the notation introduced in the main paper, but we
substitute for Assumption 3.1 the following assumption, which is fairly stan-
dard in the literature. We continue to maintain Assumption 3.2.
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ASSUMPTION C.1: (i) The set of outcomes of the game Y is finite. The observed
outcome of the game results from simultaneous-move, pure strategy Bayesian
Nash play.

(ii) All players and the researcher observe payoff shifters xj� j = 1� � � � � J� The
payoff shifter εj is private information to player j = 1� � � � � J� and unobservable
to the researcher. Conditional on {xj� j = 1� � � � � J}� εj is independent of {εi}i �=j�
Players have correct common prior Fθ(ε|¯x)�(iii) The payoffs are additively separable in ε :πj(yj� y−j� xj� εj;θ) = π̃j(yj� y−j�
xj;θ)+ εj� Assumption 3.1(iii) holds.

The independence condition in Assumption C.1(iii) substantially simplifies
the task of calculating the set of Bayesian Nash equilibria (BNE). Conceptu-
ally, however, our methodology applies also when players’ types are correlated.
The resulting difficulties associated with calculating the set of BNE are to be
faced with any methodology for inference in this class of games. The correct-
common-prior condition in Assumption C.1(iii) can be relaxed, but we main-
tain it here for simplicity.

For the sake of brevity, we restrict attention to two player entry games. How-
ever, this restriction is not necessary. Our results easily extend, with appropri-
ate modifications to the notation and the definition of the set of pure strategy
Bayesian Nash equilibria, to the case of J ≥ 2 players, each with 2 ≤ κYj

< ∞
strategies. In what follows, we characterize the set of BNE of the game, bor-
rowing from the treatment in Grieco (2009, Section 4), and then apply our
methodology to this set.4 To conserve space, we do not explicitly verify Assump-
tions 2.1–2.5. Assumptions 2.1–2.3 follow by similar arguments as in Section 3.
Assumptions 2.4 and 2.5 follow by the same construction that we provide at the
end of Section 3, replacing equation (3.7) with equation (8) in Grieco (2009,
Theorem 4).

With incomplete information, players’ strategies are decision rules yj : E →
{0�1}� with E the support of ε. The set of outcomes of the game is Y =
{(0�0)� (1�0)� (0�1)� (1�1)}� Given θ ∈ Θ and a realization of ¯x and εj� player j
enters the market if and only if his expected payoff is nonnegative. There-
fore, equilibrium mappings (decision rules) are step functions determined
by a threshold: yj(εj) = 1(εj ≥ tj)� j = 1�2� As a result, player j’s beliefs
about player −j’s probability of entry under the common prior assumption
is
∫
y−j(ε−j) dFθ(ε−j|¯x) = 1 −Fθ(t−j|¯x) and, therefore, player j’s best response

4We refer to Grieco (2009) for a thorough discussion of the related literature and of identifica-
tion problems in games of incomplete information with multiple BNE. See also Berry and Tamer
(2007, Section 3).
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cutoff is5

tbj (t−j� ¯x;θ) = −π̃j(1�0�xj;θ)Fθ(t−j|¯x)− π̃j(1�1�xj;θ)(1 − Fθ(t−j|¯x))�
Hence, the set of equilibria can be defined as the set of cutoff rules

Tθ(¯x) = {(t1� t2) : tj = tbj (t−j� ¯x;θ) ∀j = 1�2}�
Note that the equilibrium thresholds are functions of ¯x only. The set Tθ(¯x)might contain a finite number of equilibria (e.g., if the common prior is
the Normal distribution) or a continuum of equilibria. For ease of notation
we write the set Tθ(¯x) and its realizations, respectively, as Tθ and Tθ(ω) ≡
Tθ(¯x(ω))� ω ∈Ω�

For a given realization of the random variables that characterize the model,
that is, for given ω ∈ Ω� we need to map the set of equilibrium decision rules
of each player into outcomes of the game. Consider the realization t(ω) of
t ∈ Sel(Tθ)� Through the threshold decision rule, such a realization implies the
action profile

q(t(ω)) =

⎡⎢⎢⎣
1(ε1(ω) ≤ t1(ω)�ε2(ω) ≤ t2(ω))

1(ε1(ω) ≥ t1(ω)�ε2(ω) ≤ t2(ω))

1(ε1(ω) ≤ t1(ω)�ε2(ω) ≥ t2(ω))

1(ε1(ω) ≥ t1(ω)�ε2(ω) ≥ t2(ω))

⎤⎥⎥⎦ ∈ Δ3�(C.1)

with Δ3 the simplex in �4� The vector q(t(ω)) indicates which of the four possi-
ble pairs of actions is played with probability 1, when the realization of (¯x�ε) is
(¯x(ω)�ε(ω)) and the equilibrium threshold is t(ω) ∈ Tθ(¯x(ω)). Applying this
construction to all measurable selections of Tθ� we construct a random closed
set in Δ3:

Qθ = {q(t) : t ∈ Sel(Tθ)}�
For given ¯x and θ ∈ Θ� define the conditional Aumann expectation

E(Qθ|¯x) = {E(q(t)|¯x) : t ∈ Sel(Tθ)
}
�

Notice that for a specific selection t ∈ Sel(Tθ)� given the independence assump-
tion on ε1� ε2� the first entry of the vector E(q(t)|¯x) is

E(1(ε1 ≤ t1� ε2 ≤ t2)|¯x) = (1 − Fθ(t1|¯x))(1 − Fθ(t2|¯x))�
5For example, with payoffs linear in ¯x and given by π(yj� y−j� ¯x�εj;θ)= yj(y−jθ1j +xjθ2j +εj),

we have that player 1 enters if and only if (ε1 +x1θ21)Fθ(t2|¯x)+ (ε1 +x1θ21 +θ11)(1−Fθ(t2|¯x))≥
0� Therefore, the cutoff is tbj (t−j� ¯x;θ) = −x1θ21Fθ(t2|¯x)− (x1θ21 +θ11)(1 −Fθ(t2|¯x))= −x1θ21 −
θ11(1 − Fθ(t2|¯x))�
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and similarly for other entries of E(q(t)|¯x)� This yields the multinomial distri-
bution over outcome profiles determined by equilibrium threshold t ∈ Sel(Tθ).
By the same logic as in Section 3, E(Qθ|¯x) is the set of probability distributions
over action profiles conditional on ¯x which are consistent with the maintained
modeling assumptions, that is, with all the model’s implications. By the same
results that we applied in the main papers, the set E(Qθ|¯x) is closed and con-
vex.

Observe that regardless of whether Tθ contains a finite number of equilibria
or a continuum, Qθ can take on only a finite number of realizations that corre-
spond to each of the vertices of Δ3, because the vectors q(t) in equation (C.1)
collect threshold decision rules.6 As we show in the proof of Theorem C.1, this
implies that E(Qθ|¯x) is a closed convex polytope ¯x-a.s., fully characterized by a
finite number of supporting hyperplanes. In turn, this allows us to characterize
ΘI through a finite number of moment inequalities and to compute it using
efficient algorithms in linear programming.

THEOREM C.1: Let Assumptions C.1 and 3.2 hold. Then

ΘI =
{
θ ∈Θ : max

u∈B
(
u′P(y|¯x)− E[h(Qθ�u)|¯x])= 0� ¯x-a.s.

}
= {θ ∈Θ :u′P(y|¯x)≤ E[h(Qθ�u)|¯x] ∀u ∈D� ¯x-a.s.

}
�

where D= {u= [u1 · · · uκY ]′ :ui ∈ {0�1}� i = 1� � � � � κY }�
PROOF: By the same argument as in the proof of Theorem 2.1,

ΘI = {θ ∈ Θ : P(y|¯x) ∈ E(Qθ|¯x)� ¯x-a.s.}
=
{
θ ∈Θ : max

u∈B
(
u′P(y|¯x)− E[h(Qθ�u)|¯x])= 0� ¯x-a.s.

}
= {θ ∈Θ :u′P(y|¯x)≤ E[h(Qθ�u)|¯x] ∀u ∈ B� ¯x-a.s.

}
�

It remains to show equivalence of the conditions

(i) u′P(y|¯x) ≤ E[h(Qθ�u)|¯x] ∀u ∈ B�

(ii) u′P(y|¯x) ≤ E[h(Qθ�u)|¯x] ∀u ∈ D�

By the positive homogeneity of the support function, condition (i) is equivalent
to u′P(y|¯x) ≤ E[h(Qθ�u)|¯x] ∀u ∈ �κY � It is obvious that this condition implies
condition (ii). To see why condition (ii) implies condition (i), observe that be-
cause the set Qθ and the set co[Qθ] are simple, one can find a finite measurable

6Hence, the set Qθ is a “simple” random closed set in Δ3, in the sense that there exists a finite
measurable partition Ω1� � � � �Ωm of Ω and sets K1� � � � �Km ∈ F such that Qθ(ω) = Ki for all
ω ∈Ωi� 1 ≤ i ≤m�
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partition Ω1� � � � �Ωm of Ω and convex sets K1� � � � �Km ∈ ΔκY −1, such that by
Theorem 2.1.21 in Molchanov (2005),

E(Qθ|¯x) =K1P(Ω1|¯x)⊕K2P(Ω2|¯x)⊕ · · · ⊕KmP(Ωm|¯x)�
with Ki the value that co[Qθ(ω)] takes for ω ∈ Ωi� i = 1� � � � �m (see Molchanov
(2005, Definition 1.2.8)). By the properties of the support function (see
Schneider (1993, Theorem 1.7.5)),

h(E(Qθ|¯x)�u) =
m∑
i=1

P(Ωi|¯x)h(Ki�u)�

Finally, for each i = 1� � � � �m� the vertices of Ki are a subset of the vertices
of ΔκY −1. Hence the supporting hyperplanes of Ki� i = 1� � � � �m� are a subset
of the supporting hyperplanes of the simplex ΔκY −1� which in turn are obtained
through its support function evaluated in directions u ∈D� Therefore, the sup-
porting hyperplanes of E(Qθ|¯x) are a subset of the supporting hyperplanes
of ΔκY −1� Q.E.D.

REMARK 1: Grieco (2009) introduced an important model, where each
player has a vector of payoff shifters that are unobservable by the researcher.
Some of the elements of this vector are private information to the player, while
the others are known to all players. Our results in Section 2 apply to this setup
as well, by the same arguments as in Section 3 and in this appendix.

REMARK 2: Appendix B verifies the regularity conditions required by AS for
models that satisfy Assumptions C.1 and 3.2 under the additional assumption
that the researcher observes an i.i.d. sequence of equilibrium outcomes and
observable payoff shifters {yi� ¯xi}ni=1.

APPENDIX D: PURE STRATEGIES ONLY: FURTHER SIMPLIFICATIONS

We now assume that players in each market do not randomize across their
actions. In a finite game, when restricting attention to pure strategies, one nec-
essarily contends with the issue of the possible nonexistence of an equilibrium
for certain parameter values θ ∈ Θ and realizations of (¯x�ε)� To deal with this
problem, one can impose Assumption D.1 below:

ASSUMPTION D.1: One of the following statements holds:
(i) For a subset of values of θ ∈Θ which includes the values of θ that have gen-

erated the observed outcomes y� a pure strategy Nash equilibrium exists (¯x�ε)-a.s.
(ii) For each θ ∈ Θ and realizations of ¯x�ε such that a pure strategy Nash

equilibrium does not exist, Sθ(¯x�ε) = vert(Σ(Y))� with vert(·) the vertices of the
set in parentheses.
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Assumption D.1(i) requires an equilibrium always to exist for the values of
θ that have generated the observed outcomes y� If the model is correctly spec-
ified and players in fact follow pure strategy Nash behavior, then this assump-
tion is satisfied. However, the assumption implicitly imposes strong restrictions
on the parameter vector θ� the payoff functions, and the payoff shifters ¯x�ε�On the other hand, Assumption D.1(ii) posits that if the model does not have
an equilibrium for a given θ ∈ Θ and realization of (¯x�ε)� then the model has
no prediction on what should be the action taken by the players, and “anything
can happen.” In this respect, one may argue that Assumption D.1(ii) is more
conservative than Assumption D.1(i). We do not take a stand here on which
solution to the existence problem the applied researcher should follow. Either
way, the approach that we propose delivers the sharp identification region ΘI ,
although the set ΘI will differ depending on whether Assumption D.1(i) or
D.1(ii) is imposed. Moreover, one may choose not to impose Assumption D.1
at all and to use a different solution concept. In that case as well, as we illus-
trate in Appendix E, our approach can be applied to characterize the sharp
identification region.

When players play only pure strategies, the set Sθ takes its realizations as
subsets of the vertices of Σ(Y)� because each pure strategy Nash equilibrium is
equivalent to a degenerate mixed strategy Nash equilibrium placing probability
1 on a specific pure strategy profile. Hence, the realizations of the set Qθ lie in
the subsets of the vertices of ΔκY −1�

EXAMPLE 1: Consider a simple two player entry game similar to the one in
Tamer (2003), omit the covariates, and assume that players’ payoffs are given
by πj = yj(y−jθj + εj)� where yj ∈ {0�1} and θj < 0� j = 1�2� Assume that play-
ers do not randomize across their actions, so that each σj� j = 1�2� can take
only values 0 and 1. Figure S.1 plots the set Sθ resulting from the possible real-
izations of ε1� ε2� In this case, Sθ assumes only five values:

Sθ(ε)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{(0�0)} if ε ∈ E (0�0)
θ ≡ (−∞�0] × (−∞�0]�

{(1�0)} if ε ∈ E (1�0)
θ ≡ [−θ1�+∞)× (−∞�−θ2]

∪ [0�−θ1] × (−∞�0]�
{(0�1)} if ε ∈ E (0�1)

θ ≡ (−∞�0] × [0�+∞)
∪[0�−θ1] × [−θ2�+∞)�

{(1�1)} if ε ∈ E (1�1)
θ ≡ [−θ1�+∞)× [−θ2�+∞)�

{(0�1)� (1�0)} if ε ∈ E M
θ ≡ [0�−θ1] × [0�−θ2]�

where, in the above expressions, E (·�·)
θ denotes a region of values for ε such

that the game admits the pair in the superscript as a unique equilibrium
and E M

θ denotes the region of values for ε such that the game has multi-
ple equilibria. Consequently, also the set Qθ assumes only five values, equal,
respectively, to {[1 0 0 0]′}� {[0 1 0 0]′}� {[0 0 1 0]′}� {[0 0 0 1]′}� and
{[0 1 0 0]′� [0 0 1 0]′}�
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FIGURE S.1.—The random set of pure strategy Nash equilibrium profiles Sθ and the random
set of pure strategy Nash equilibrium outcomes Yθ as a function of ε1� ε2 in a two player entry
game. In this simple example, the two sets coincide.

Hence, the sets Sθ and Qθ are “simple” random closed sets in Σ(Y) and
ΔκY −1, respectively. Because the probability space is nonatomic and Qθ is sim-
ple, E(Qθ|¯x) is a closed convex polytope, fully characterized by a finite number
of supporting hyperplanes.

EXAMPLE 1—Continued: Consider again the simple two player entry game
with pure strategies only in Example 1. Then for ε ∈ E M

θ , the set Qθ contains
only two points, [0 1 0 0]′ and [0 0 1 0]′� and for ε /∈ E M

θ it is a singleton.
Therefore, the expectations of the selections of Qθ are given by

E(q) =
[
P
(
ε ∈ E (0�0)

θ

)
P
(
ε ∈ E (1�0)

θ

)
P
(
ε ∈ E (0�1)

θ

)
P
(
ε ∈ E (1�1)

θ

)]′
+ [0 p1 1 −p1 0]′P(ε ∈ E M

θ )�

where p1 = P(ΩM
1 |ω :ε(ω) ∈ E M

θ ) for all measurable ΩM
1 ⊂ {ω :ε(ω) ∈ E M

θ }�
i = 1�2� If the probability space has no atoms, then the possible values for p1

fill in the whole [0�1] segment. Hence, E(Qθ) is a segment in Δ3.

Hence, checking whether P(y|¯x) ∈ E(Qθ|¯x) amounts to checking whether a
point belongs to a polytope, that is, whether a finite number of moment in-
equalities hold ¯x-a.s. In Theorem D.1, we show that these inequalities are ob-
tained by checking inequality u′P(y|¯x) ≤ E[h(Qθ�u)|¯x] for the 2κY possible u
vectors whose entries are either equal to 0 or to 1.

THEOREM D.1: Assume that players use only pure strategies, that Assump-
tions 3.1 and 3.2 in BMM and Assumption D.1 are satisfied. Then for ¯x-a.s. these
two conditions are equivalent:

(i) u′P(y|¯x) ≤ E[h(Qθ�u)|¯x] ∀u ∈ �κY .
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(ii) u′P(y|¯x) ≤ E[h(Qθ�u)|¯x] ∀u ∈ D = {u = [u1 · · · uκY ]′ :ui ∈ {0�1}� i =
1� � � � � κY }�

The proof follows using the same argument as in the proof of Theorem C.1.
In Appendix D.2, we connect this result to a related notion in the theory

of random sets—that of a capacity functional (the “probability distribution”
of a random closed set)—and we provide an equivalent characterization of
the sharpness result which gives further insights into our approach. In Ap-
pendix D.2, we provide results that significantly reduce the number of inequal-
ities to be checked, by showing that, depending on the model under consider-
ation, many of the 2κY inequalities in Theorem D.1 are redundant.

To conclude this appendix, it is important to discuss why the sharp identifica-
tion region cannot, in general, be obtained through a finite number of moment
inequalities. When players are not allowed to randomize over their actions, the
family of possible equilibria is finite. Hence, the range of values that ε takes
can be partitioned into areas in which the set of equilibria remains constant,
that is, does not depend on ε any longer. However, when players randomize
across their actions, in equilibrium they must be indifferent among the actions
over which they place positive probability. This implies that there exist regions
in the sample space where the equilibrium mixed strategy profiles are a func-
tion of ε directly.7 When the distribution of ε is continuous, Qθ may take a
continuum of values as a function of ε� and E(Qθ|¯x) may have infinitely many
extreme points. Therefore, one needs an infinite number of moment inequali-
ties to determine whether P(y|¯x) belongs to it. In this case, the most practical
approach to obtain the sharp identification region is by solving the maximiza-
tion problem in Theorem 3.2.

D.1. Example: Two Type, Four Player Entry Game With Pure Strategies Only

Consider a game where in each market there are four potential entrants,
two of each type. The two types differ from each other by their payoff func-
tion. This model is an extension of the seminal papers by Bresnahan and Reiss
(1990, 1991). An empirical application of a version of this model appears in
Ciliberto and Tamer (2009, CT henceforth). We adopt the version of this model
described in Berry and Tamer (2007, pp. 84 and 85), and for illustration pur-
poses we simplify it by omitting the observable payoff shifters ¯x and by setting
to zero the constant in the payoff function.

Let ajm ∈ {0�1} be the strategy of firm j = 1�2 of type m = 1�2. Entry is
denoted by ajm = 1� with ajm = 0 denoting staying out. Players j = 1�2 of type 1

7For example, in the two player entry game in Example 1, for ε ∈ Eθ
M� Sθ = {(0�1)�

( ε2
−θ2

� ε1
−θ1

)� (1�0)}� However, if one restricts players to use pure strategies, then for ε ∈ Eθ
M�

Sθ = {(0�1)� (1�0)}� with no additional dependence of the equilibria on ε�
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and type 2 have, respectively, the payoff functions

πj1(aj1� a−j1� a12� a22� ε1)= yj1(θ11(a−j1 + a12 + a22)− ε1)�(D.1)

πj2(aj2� a−j2� a11� a21� ε2)= aj2(θ21(a11 + a21)+ θ22a−j2 − ε2)�(D.2)

We assume that θ11, θ21, and θ22 are strictly negative and that θ22 > θ21. This
means that a type 2 firm is worried more about rivals of type 1 than of rivals of
its own type. Since firms of a given type are indistinguishable to the econome-
trician, the observable outcome is the number of firms of each type which enter
the market. Let y1 = a11 + a21 denote the number of entrants of type 1 and let
y2 = a12 + a22 denote the number of entrants of type 2 that a firm faces, so that
ym ∈ {0�1�2}� m = 1�2� Then there are nine possible outcomes to this game, or-
dered as follows: Y = {(0�0)� (0�1)� (1�0)� (1�1)� (2�0)� (0�2)� (1�2)� (2�1)�
(2�2)}� Notice that here players’ actions and observable outcomes of the game
differ. Figure S.2 plots the outcomes of the game against the realizations of

FIGURE S.2.—The random set of pure strategy Nash equilibrium outcomes as a function of
ε1� ε2 in a four player, two type entry game.
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ε1� ε2. In this case, Qθ takes its realizations in the vertices of Δ8� For example,
for ω :ε1(ω) ≥ θ11� ε2(ω) ≥ θ22� the game has a unique equilibrium outcome,
y = (0�0)� and Qθ(ω) = {[1 0 0 0 0 0 0 0 0]′}; for ω : 2θ11 ≤ ε1(ω) ≤ θ11�
2θ22 ≤ ε2(ω) ≤ θ22� the game has two equilibrium outcomes, y = (0�1) and
y = (1�0)� and Qθ(ω) = {[0 1 0 0 0 0 0 0 0]′� [0 0 1 0 0 0 0 0 0]′}; and
so forth.

Because the set Y has cardinality 9� in principle, there are 29 = 512 inequal-
ity restrictions to consider, corresponding to each binary vector of length 9.
However, the number of inequalities to be checked is significantly smaller. Be-
cause we are allowing only pure strategy equilibria, the realizations of any
σ ∈ Sθ are vectors of 0’s and 1’s. Hence, for all ω ∈ Ω� [q(σ(ω))]k = 1 if∏J

j=1 σj(ω� tkj ) = 1 and equals 0 otherwise. Consider two equilibria tk� tl ∈ Y�
1 ≤ k �= l ≤ κY� such that{

ω :
J∏

j=1

σj(ω� tkj )= 1
∣∣∣¯x
}

∩
{
ω :

J∏
j=1

σj(ω� tlj)= 1
∣∣∣¯x
}

= ∅�(D.3)

that is, the set of ω for which Sθ admits both tk and tl as equilibria has prob-
ability 0. Let uk be a vector with each entry equal to 0 and entry k equal to 1,
and similarly for ul� Then the inequality (uk + ul)′P(y|¯x) ≤ E[h(Q(Sθ)�u

k +
ul)|¯x] does not add any information beyond that provided by the inequalities
u′P(y|¯x) ≤ E[h(Q(Sθ)�u)|¯x] for u = uk and for u = ul� The same reasoning
can be extended to tuples of pure strategy equilibria of size up to κY � Apply-
ing this simple reasoning, the sharp identification region that we give in this
example is based on 26 inequalities, whereas ΘABJ

O and ΘCT
O are based, respec-

tively, on 9 and 18 inequalities. Hence, the computational burden is essentially
equivalent.

Figure S.3 and Table S.I report ΘI� Θ
CT
O (the outer region proposed by CT),

and ΘABJ
O (the outer region proposed by Andrews, Berry, and Jia (2004, ABJ

henceforth)), in a simple example with (ε1� ε2)
i�i�d�∼ N(0�1) and Θ = [−5�0]3�

In the figure, ΘABJ
O is given by the union of the yellow, red, and black seg-

ments, and ΘCT
O is given by the union of the red and black segments; ΘI

is the black segment. Notice that the identification regions are segments
because the outcomes (0�0) and (2�2) can only occur as unique equilib-
rium outcomes, and, therefore, imply two moment equalities which make
θ21 and θ22 a function of θ11� While, strictly speaking, the approach in ABJ
does not take into account this fact, as it uses only upper bounds on the
probabilities that each outcome occurs, it is clear (and indicated in their
paper) that one can incorporate equalities into their method. Hence, we
also use the equalities on P(y = (0�0)) and P(y = (2�2)) when calculating
ΘABJ

O � We generate the data with θ�
11 = −0�15� θ�

21 = −0�20� and θ�
22 = −0�10,

and use a selection mechanism to choose the equilibrium played in the
many regions of multiplicity. The resulting observed distribution is P(y) =
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FIGURE S.3.—Identification regions in a four player, two type entry game with pure strategy
Nash equilibrium as the solution concept.

[0�3021 0�0335 0�0231 0�0019 0�2601 0�2779 0�0104 0�0158 0�0752]′. Our
results clearly show that ΘI is substantially smaller than ΘCT

O and ΘABJ
O � The

width of the bounds on each parameter vector obtained using our method is
about 46% of the width obtained using ABJ’s method, and about 63% of the
width obtained using CT’s method.

To further illustrate the computational advantages of our characterization
of ΘI in Theorem 3.2, we also recalculated the sharp identification region for
this example solving for each candidate θ ∈ Θ the problem maxu∈B(u′P(y|¯x)−
E[h(Qθ�u)|¯x]), without taking advantage of our knowledge of the structure

TABLE S.I

PROJECTIONS OF ΘABJ
O � ΘCT

O , AND ΘI , AND REDUCTION IN BOUNDS WIDTH COMPARED TO
ABJ: FOUR PLAYER, TWO TYPE ENTRY GAME WITH PURE STRATEGY NASH EQUILIBRIUM

AS THE SOLUTION CONCEPT

Projections

True Values ΘABJ
O

ΘCT
O

ΘI

θ�
11 −0�15 [−0�154�−0�144] [−0�153�−0�146] [−0�152�−0�147]

(27%) (54%)
θ�

21 −0�20 [−0�206�−0�195] [−0�204�−0�197] [−0�203�−0�198]
(27%) (54%)

θ�
22 −0�10 [−0�106�−0�096] [−0�104�−0�097] [−0�103�−0�098]

(27%) (54%)
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of the game that reduces the number of inequalities to be checked to 26. We
modified the simple Nelder–Mead algorithm described in Section 3.4 to apply
to a minimization in �9� wrote it as a program in Fortran 90, and compiled and
ran it on a Unix machine with a single processor of 3.2 GHz. Our recalculation
of ΘI yielded exactly the same result as described above, and checking 106

candidate values for θ ∈Θ took less than 1 minute.

D.2. Dual Characterization of the Sharpness Result in the Pure Strategies Case

For a given realization of (¯x�ε) and value of θ ∈ Θ� the set of outcomes
generated by pure strategy Nash equilibria8 is

Yθ(¯x�ε) = {y ∈ Y :πj(yj� y−j� xj� εj� θ)≥ πj(ỹj� y−j� xj� εj� θ)(D.4)

∀ỹj ∈ Yj ∀j}�
As we did for Sθ� we omit the explicit reference to this set’s dependence on ¯xand ε. Given Assumption 3.1, one can easily show that Yθ is a random closed
set in Y (see Definition A.1). Because the realizations of Yθ are subsets of the
finite set Y� it immediately follows that Yθ is a random closed set in Y without
any requirement on the payoff functions.

The researcher observes the tuple (y� ¯x), and the random set Yθ is a func-
tion of ¯x (and of course ε). Under Assumptions 3.1, 3.2, and D.1, and given
the covariates ¯x� the observed outcomes y are consistent with the model if and
only if there exists at least one θ ∈ Θ such that y(ω) ∈ Yθ(ω), ¯x-a.s. (i.e., y is
a selection of Yθ, ¯x-a.s.; see Definition A.3). A necessary and sufficient condi-
tion which guarantees that a random vector (y� ¯x) is a selection of (Yθ, ¯x) is
given by the results of Artstein (1983), Norberg (1992), and Molchanov (2005,
Theorem 1.2.20 and Section 1.4.8), and amounts9 to

P{(y� ¯x) ∈ K ×L} ≤ P{(Yθ� ¯x)∩K ×L �= ∅}
∀K ⊂ Y for all compact sets L ⊂ X �

8Restrict the set Sθ to be a set of pure strategy Nash equilibria. Then when players’ actions
and outcomes of the game coincide, Yθ coincides with Sθ. However, under the more general
assumption that y = g(a), where a ∈ A is a strategy profile and g is an outcome rule, these two
sets differ and

Yθ(¯x�ε) = {y ∈ Y :y = g(a)�a ∈ A and

πj(aj� a−j � xj� εj� θ) ≥ πj(ãj� a−j� xj� εj� θ) ∀ãj ∈ Aj ∀j}�
9Beresteanu and Molinari (2006, 2008, Proposition 4.1) used this result to establish sharpness

of the identification region of the parameters of a best linear predictor with interval outcome data.
Galichon and Henry (2006) used it to define a correctly specified partially identified structural
model, and derived a Kolmogorov–Smirnov test for Choquet capacities.
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This inequality can be written as P{y ∈ K|¯x ∈ L}P{¯x ∈ L} ≤ P{Yθ ∩ K �= ∅|¯x ∈
L}P{¯x ∈ L} for all K ⊂ Y and compact sets L⊂ X such that P{¯x ∈L} > 0� and
it is satisfied if and only if

P{y ∈ K|¯x} ≤ P{Yθ ∩K �= ∅|¯x} ∀K ⊂ Y� ¯x-a.s.(D.5)

Because Y is finite, all its subsets are compact. The functional P{Yθ ∩K �= ∅|¯x}
on the right-hand side of (D.5) is called the capacity functional of Yθ given ¯x�The following definitions formally introduce the unconditional version of this
functional and a few related ones:

DEFINITION D.1: Let Z be a random closed set in �d and denote by K the
family of compact subsets of �d� The functionals TZ : K → [0�1]� CZ : K →
[0�1]� and IZ : K → [0�1]� given by

TZ(K)= P{Z ∩K �= ∅}� CZ(K)= P{Z ⊂K}�
IZ(K)= P{K ⊂ Z}� K ∈ K�

are said to be, respectively, the capacity functional of Z, the containment func-
tional of Z, and the inclusion functional of Z.

Denoting by Kc the complement of the set K� the following relationship
holds:

CZ(K)= 1 − TZ(K
c)�(D.6)

EXAMPLE 2: Consider again the simple two player entry game in Exam-
ple 1. Figure S.1 plots the set Yθ against the realizations of ε1� ε2� In this
case, TYθ

({(0�0)}) = P(ε1 ≤ 0� ε2 ≤ 0)� TYθ
({(1�0)}) = P(ε1 ≥ 0� ε2 ≤ −θ2)�

TYθ
({(0�1)}) = P(ε1 ≤ −θ1� ε2 ≥ 0)� TYθ

({(1�1)}) = P(ε1 ≥ −θ1� ε2 ≥ −θ2)�
and TYθ

({(1�0)� (0�1)}) = TYθ
({(1�0)}) + TYθ

({(0�1)}) − P(0 ≤ ε1 ≤ −θ1�0 ≤
ε2 ≤ −θ2)� The capacity functional of the remaining subsets of Y can be calcu-
lated similarly.

Notice that given equation (D.6), inequalities (D.5) can be equivalently writ-
ten as

CYθ|¯x
(K)≤ P{y ∈ K|¯x} ≤ TYθ|¯x

(K) ∀K ⊂ Y� ¯x-a.s.�(D.7)

where the subscript Yθ|¯x denotes that the functional is for the random set Yθ

conditional on ¯x� We return to this representation of inequalities (D.5) when
discussing the relationship between our analysis and that of CT. Clearly, if one
considers all K ⊂ Y� the left-hand side inequality in (D.7) is superfluous: when
the inequalities in (D.7) are used, only subsets K ⊂ Y of cardinality up to half
of the cardinality of Y are needed.
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We can redefine the identified set of parameters θ as

ΘI = {θ ∈ Θ : P{y ∈ K|¯x} ≤ TYθ|¯x
(K) ∀K ⊂ Y� ¯x-a.s.

}
�(D.8)

For comparison purposes, we reformulate the definition of the outer regions
given by ABJ and CT, respectively, through the capacity functional and the
containment functional:

ΘABJ
O = {θ ∈ Θ : P{y = t|¯x} ≤ TYθ|¯x

(t) ∀t ∈ Y� ¯x-a.s.
}
�(D.9)

ΘCT
O = {θ ∈Θ : CYθ|¯x

(t)≤ P{y = t|¯x} ≤ TYθ|¯x
(t) ∀t ∈ Y� ¯x-a.s.

}
�(D.10)

Both ABJ and CT acknowledged that the parameter regions they gave are not
sharp. Comparing the sets in equations (D.9) and (D.10) with the set in equa-
tion (D.8), one observes that ΘABJ

O is obtained by applying inequality (D.5) only
for K = {t} for all t ∈ Y � Similarly, ΘCT

O is obtained by applying inequality (D.7)
only for K = {t} (or, equivalently, applying inequality (D.5) for K = {t} and
K = Y \ {t} for all t ∈ Y ). Clearly both ABJ and CT do not use the information
contained in the remaining subsets of Y� while this information is used to ob-
tain ΘI� Two questions arise: (i) whether ΘI as defined in equation (D.8) yields
the sharp identification region of θ and (ii) if and by how much ΘI differs from
ΘABJ

O and ΘCT
O . We answer here the first question. Appendix D.1 answers the

second question by looking at a simple example.

THEOREM D.2: Assume that players use only pure strategies, and that Assump-
tions 3.1, 3.2, and D.1 are satisfied. Then for ¯x-a.s., the following two conditions
are equivalent:

(i) u′P(y|¯x) ≤ E[h(Qθ�u)|¯x] ∀u ∈ �κY .
(ii) P{y ∈ K|¯x} ≤ TYθ|¯x

(K) ∀K ⊂ Y �

For the proof, see Beresteanu, Molchanov, and Molinari (2008, Theo-
rem 4.1).

D.3. On the Number of Inequalities to Be Checked in the Pure Strategies Case

As discussed in Appendix D.1, when it is assumed that players play only pure
strategies, often there is no need to verify the complete set of 2κY inequalities,
because many are redundant. Using the insight in Theorem D.2, one can show
that the result in equation (D.3) can be restated using the set Yθ and its capacity
functional. In particular, if K1 and K2 are two disjoint subsets of Y such that

{ω :Yθ(ω)∩K1 �= ∅|¯x} ∩ {ω :Yθ(ω)∩K2 �= ∅|¯x} = ∅�(D.11)

that is, the set of ω for which Yθ intersects both K1 and K2 has probability 0,
then the inequality P{y ∈ K1 ∪ K2|¯x} ≤ P{Yθ ∩ (K1 ∪ K2) �= ∅|¯x} does not add
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any information beyond that provided by the inequalities P{y ∈K1|¯x} ≤ P{Yθ ∩
K1 �= ∅|¯x} and P{y ∈ K2|¯x} ≤ P{Yθ ∩K2 �= ∅|¯x}. Therefore, prior knowledge of
some properties of the game can be very helpful in eliminating unnecessary
inequalities. For example, in a Bresnahan and Reiss entry model with four
players, if the number of entrants is identified, the number of inequalities to be
verified reduces from 65,536 to at most 100. Theorem D.3 below gives a general
result which may lead to a dramatic reduction in the number of inequalities to
be checked. While its proof is simple, this result is conceptually and practically
important.

THEOREM D.3: Take θ ∈Θ, and let Assumptions 3.1, 3.2, and D.1 hold. Con-
sider a partition of Ω into sets Ω1� � � � �ΩM of positive probability. Let

Yi =
⋃

{Yθ(ω) :ω ∈Ωi}

denote the range of Yθ(ω) for ω ∈ Ωi� If Y1� � � � � YM are disjoint, then it suffices
to check (D.5) only for all subsets K such that there is i = 1� � � � �M for which
K ⊆ Yi.

For the proof, see Beresteanu, Molchanov, and Molinari (2008, Theo-
rem 5.1).

A simple corollary to Theorem D.3, the proof of which is omitted, follows:

COROLLARY D.4: Take θ ∈ Θ, and let Assumptions 3.1, 3.2, and D.1 hold.
Assume that Ω =Ω1 ∪Ω2 with Ω1 ∩Ω2 = ∅� such that Yθ(ω) is a singleton almost
surely for ω ∈ Ω1� Let Yi =⋃ω∈Ωi Yθ(ω)� i = 1�2� and assume that Y1 ∩ Y2 = ∅
and that κY2 ≤ 2� Then inequalities (D.5) hold if

P{Yθ = {t}|¯x} ≤ P{y = t|¯x} ≤ P{t ∈ Yθ|¯x}�(D.12)

¯x-a.s. for all t ∈ Y .

An implication of this corollary is that in a static entry game with two play-
ers in which only pure strategies are played, the outer region proposed by
CT coincides with ours and is sharp.10 In this example, Y1 = {(0�0)� (1�1)}�
Y2 = {(0�1)� (1�0)}� and Ω2 = {ω :Yθ ∩ Y2 �= ∅}� An application of equation
(D.3) shows that actually the sharp identification region can be obtained by
checking only five inequalities which have to hold for ¯x-a.s. and are given by
inequalities (D.5) for K = {(0�0)}� {(1�0)}� {(0�1)}� {(1�1)}� {(1�0)� (0�1)}�
On the other hand, the example in Section 3.4 shows that CT’s approach does
not yield the sharp identification region when mixed strategies are allowed for.

10A literal application of ABJ’s approach does not take into account the fact that in this game,
(0�0) and (1�1) only occur as unique equilibria of the game, and, therefore, does not yield the
sharp identification region, as ABJ discussed (see p. 32).



SHARP IDENTIFICATION REGIONS 21

When no prior knowledge of the game such as, for example, that required in
Theorem D.3 is available, it is still possible to use the insight in equation (D.11)
to determine which inequalities yield the sharp identification region, by de-
composing Y into subsets such that Yθ does not jointly hit any two of them
with positive probability. One may wonder whether, in general, the set of in-
equalities yielding the sharp identification region is different from the set of
inequalities used by ABJ or CT. The following result shows that, in general,
the answer to this question is “yes.”

THEOREM D.5: Let Assumptions 3.1, 3.2, and D.1 hold. Assume that there
exists θ ∈ Θ with Yθ �= ∅, P-a.s., such that for all ¯x ∈ X̃ ⊂ X with P(X̃ ) > 0, there
exist t1� t2 ∈ Y with

IYθ|¯x
(t1� t2) > 0�(D.13)

(a) If P{{t1� t2} ∩ Yθ �= ∅|¯x} < 1 for all t1� t2 ∈ Y , then there exists a random
vector z which satisfies inequalities (D.5) for K = {t} for all t ∈ Y but is not a
selection of Yθ�

(b) If

P
{
κYθ

> 1|¯x
}
> IYθ|¯x

(t1)+ IYθ|¯x
(t2)− CYθ|¯x

(t1)− CYθ|¯x
(t2)�(D.14)

then there exists a random vector z which satisfies inequalities (D.5) for K = {t}
and K = Y \ {t} for all t ∈ Y but is not a selection of Yθ�

See Beresteanu, Molchanov, and Molinari (2008, Theorems 5.2 and 5.3) for
a proof.

These results show that the extra inequalities matter, in general, compared
to those used by ABJ, and CT, to fully characterize Yθ and determine if
y ∈ Sel(Yθ). In fact, the assumptions of Theorem D.5(a) are satisfied when-
ever the model has multiple equilibria with positive probability, which implies
that the expected cardinality of Yθ given ¯x is strictly greater than 1, and it has at
least three different equilibria. The assumptions of Theorem D.5(b) are satis-
fied whenever (a) there are regions of the unobservables of positive probability
where two different outcomes can result from equilibrium strategy profiles and
(b) the probability that the cardinality of Yθ is greater than 1 exceeds the prob-
ability that each of these two outcomes is not a unique equilibrium. It is easy to
see that these assumptions are not satisfied in a two player entry game where
players are allowed only to play pure strategies, but they are satisfied in the
four player, two type game described in Section D.1.

APPENDIX E: EXTENSIONS TO OTHER SOLUTION CONCEPTS

While in Section 3 and Appendix D, we focus on economic models of games
in which Nash equilibrium is the solution concept employed, our approach
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easily applies to other solution concepts. Here we consider the case that players
are assumed to be only level-1 rational and the case that they are assumed to
play correlated strategies. For simplicity, we exemplify these extensions using a
two player simultaneous-move static game of entry with complete information.

E.1. Level-1 Rationality

Suppose that players are only assumed to be level-1 rational. The identifica-
tion problem under this weaker solution concept was first studied by Aradillas-
Lopez and Tamer (2008, AT henceforth). Let the econometrician observe play-
ers’ actions. A level-1 rational profile is given by a mixed strategy for each
player that is a best response to one of the possible mixed strategies of her
opponent. In this case, one can define the θ-dependent set

Rθ(¯x�ε) = {σ ∈ Σ(Y) :∀j ∃σ̃−j ∈ Σ(Y−j) s.t.

πj(σj� σ̃−j� xj� εj� θ)≥ πj(σ
′
j� σ̃−j� xj� εj� θ) ∀σ ′

j ∈ Σ(Yj)
}
�

Omitting the explicit reference to its dependence on ¯x and ε� Rθ is the set of
level-1 rational strategy profiles of the game. By arguments similar to those we
used above, this is a random closed set in Σ(Y)� Figure S.4 plots this set against
the possible realizations of ε1� ε2� in a simple two player simultaneous-move,
complete information, static game of entry in which players’ payoffs are given
by πj = yj(y−jθj + εj)� yj ∈ {0�1}� and θ1 and θ2 are assumed to be negative.

The same approach as in Section 3 allows us to obtain the sharp identifica-
tion region for θ as

ΘI = {θ ∈ Θ :u′P(y|¯x) ≤ E
[
h(Q(Rθ)�u)|¯x

] ∀u ∈ B� ¯x-a.s.
}
�

FIGURE S.4.—The random set of level-1 rational profiles as a function of ε1� ε2 in a two player
entry game.
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with

Q(Rθ)= {([q(σ)]k�k= 1� � � � � κY
)

:σ ∈ Sel(Rθ)
}
�

where [q(σ)]k�k= 1� � � � � κY� is defined in Section 3.
In our simple example in Figure S.4, with omitted covariates, for any ω ∈ Ω

such that ε(ω) ∈ [0�−θ1] × [0�−θ2]�[
q

((
ε2(ω)

−θ2
�
ε1(ω)

−θ1

))]
∈ co
[{[q(0�0)]� [q(1�0)]� [q(0�1)]� [q(1�1)]}]�

and, therefore, it follows that E(Q(Rθ)) is equal to E(Q(R̃θ))� with R̃θ re-
stricted to be the set of level-1 rational pure strategies. Hence, by Theorem D.1
below, ΘI can be obtained by checking a finite number of moment inequalities.

For the case that ε has a discrete distribution, AT (Section 3.1) suggested
to obtain the sharp identification region as the set of parameter values that
return value 0 for the objective function of a linear programming problem.
For the general case in which ε may have a continuous distribution, AT ap-
plied the same insight of CT and characterized an outer identification region
through eight moment inequalities similar to those in equation (D.10). One
may also extend ABJ’s approach to this problem, and obtain a larger outer re-
gion through four moment inequalities similar to those in equation (D.9). Our
approach, which yields the sharp identification region, in this simple example
requires one to check just 14 inequalities.

As shown in AT (Figure 3), the model with level-1 rationality only places up-
per bounds on θ1 and θ2. Figure S.5 plots the upper contours of ΘI� Θ

CT
O � and

ΘABJ
O in a simple example with (ε1� ε2)

i�i�d�∼ N(0�1) and Θ = [−5�0]2� The data
are generated with θ�

1 = −1�15 and θ�
2 = −1�4� and using a selection mech-

anism which picks outcome (0�0) for 40% of ω :ε(ω) ∈ [0�−θ�
1] × [0�−θ�

2]�
outcome (1�1) for 10% of ω :ε(ω) ∈ [0�−θ�

1] × [0�−θ�
2], and each of out-

comes (1�0) and (0�1) for 25% of ω :ε(ω) ∈ [0�−θ�
1] × [0�−θ�

2]. Hence, the
observed distribution is P(y) = [0�5048 0�2218 0�1996 0�0738]′. Our method-
ology allows us to obtain significantly lower upper contours compared to AT
(and CT) and ABJ. The upper bounds on θ1 and θ2 resulting from the projec-
tions of ΘABJ

O � ΘCT
O , and ΘI are, respectively, (−0�02�−0�02)� (−0�15�−0�26)�

and (−0�54�−0�61).

E.2. Objective Correlated Equilibria

Suppose that players play correlated equilibria, a notion introduced by
Aumann (1974). A correlated equilibrium can be interpreted as the distribu-
tion of play instructions given by some “trusted authority” to the players. Each
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FIGURE S.5.—Upper contours of the identification regions in a two player entry game with
level-1 rationality as the solution concept.

player is given her instruction privately but does not know the instruction re-
ceived by others. The distribution of instructions is common knowledge across
all players. Then a correlated joint strategy γ ∈ ΔκY −1� where ΔκY −1 denotes
the set of probability distributions on Y� is an equilibrium if, conditional on
knowing that her own instruction is to play yj� each player j has no incentive
to deviate to any other strategy y ′

j� assuming that the other players follow their
own instructions. In this case, one can define the θ-dependent set

Cθ(¯x�ε) =
{
γ ∈ ΔκY −1 :

∑
y−j∈Y−j

γ(yj� y−j)πj(yj� y−j� xj� εj� θ)

≥
∑

y−j∈Y−j

γ(yj� y−j)πj(y
′
j� y−j� xj� εj� θ)

∀yj ∈ Yj� ∀y ′
j ∈ Yj� ∀j

}
�

Omitting the explicit reference to its dependence on ¯x and ε� Cθ is the set of
correlated equilibrium strategies of the game. By similar arguments as those
used before, it is a random closed set in ΔκY −1� Notice that Cθ is defined by a fi-
nite number of linear inequalities on the set ΔκY −1 of correlated strategies and,
therefore, it is a nonempty polytope. Yang (2008) was the first to use this fact,
along with the fact that co[Q(Sθ)] ⊂ Cθ� to develop a computationally easy-to-
implement estimator for an outer identification region of θ when the solution
concept employed is Nash equilibrium. Here we provide a simple characteriza-
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FIGURE S.6.—The random set of correlated equilibria as a function of ε1� ε2 in a two player
entry game. The correlated equilibria γ1�γ2, and γ3 are defined in Section E.2.

tion of the sharp identification region ΘI when the solution concept employed
is objective correlated equilibrium. In particular, the same approach of Sec-
tion 3 allows us to obtain the sharp identification region for θ as

ΘI = {θ ∈ Θ :u′P(y|¯x) ≤ E[h(Cθ�u)|¯x] ∀u ∈ B� ¯x-a.s.
}
�

In our simple two player simultaneous-move, complete information, static
game of entry, Yj = {0�1}� j = 1�2� Y = {(0�0)� (1�0)� (0�1)� (1�1)}� Again
omitting the covariates, we assume that players’ payoffs are given by πj =
yj(y−jθj + εj)� where yj ∈ {0�1} and θj is assumed to be negative (monopoly
payoffs are higher than duopoly payoffs), j = 1�2� Figure S.6 plots the set
Cθ against the possible realizations of ε1� ε2� for this example. Notice that
for ω ∈ Ω such that ε(ω) /∈ [0�−θ1] × [0�−θ2]� the game is dominance solv-
able and, therefore, Cθ(ω) is given by the singleton Qθ(ω) that results from
the unique Nash equilibrium in these regions. For ω ∈ Ω such that ε(ω) ∈
[0�−θ1] × [0�−θ2]� Cθ(ω) is given by a polytope with five vertices—three of
which are implied by Nash equilibria (see Calvó-Armengol (2006))—and is
given by

γ0(ω) = [0 0 1 0]′�

γ1(ω) =
[

1 − ε2(ω)

θ2 + ε2(ω)
− ε1(ω)

θ1 + ε1(ω)
0
]′

×
(

1 − ε1(ω)

θ1 + ε1(ω)
− ε2(ω)

θ2 + ε2(ω)

)−1

�
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FIGURE S.7.—Identification regions in a two player entry game with correlated equilibrium as
the solution concept.

γ2(ω) =
[(

1 + ε2(ω)

θ2

)(
1 + ε1(ω)

θ1

)
−ε2(ω)

θ2

(
1 + ε1(ω)

θ1

)
−
(

1 + ε2(ω)

θ2

)
ε1(ω)

θ1

ε2(ω)

θ2

ε1(ω)

θ1

]′
�

γ3(ω) =
[

0 − ε2(ω)

θ2 + ε2(ω)
− ε1(ω)

θ1 + ε1(ω)

ε1(ω)

θ1 + ε1(ω)

ε2(ω)

θ2 + ε2(ω)

]′
×
(

ε1(ω)

θ1 + ε1(ω)

ε2(ω)

θ2 + ε2(ω)
− ε1(ω)

θ1 + ε1(ω)
− ε2(ω)

θ2 + ε2(ω)

)−1

�

γ4(ω) = [0 1 0 0]′�
Also in this case, one can extend the approaches of ABJ and CT to obtain outer
regions defined, respectively, by four and eight moment inequalities.

Figure S.7 and Table S.II report ΘI� ΘCT
O � and ΘABJ

O in a simple example
with (ε1� ε2)

i�i�d�∼ N(0�1) and Θ = [−5�0]2� In the figure, ΘABJ
O is given by the

union of the yellow, red, and black areas, and ΘCT
O is given by the union of the

red and black areas; ΘI is the black region. The data are generated with θ�
1 =
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TABLE S.II

PROJECTIONS OF ΘABJ
O � ΘCT

O , AND ΘI , REDUCTION IN BOUNDS WIDTH (IN PARENTHESES), AND
AREA OF THE IDENTIFICATION REGIONS COMPARED TO ABJ: TWO PLAYER ENTRY GAME

WITH CORRELATED EQUILIBRIUM AS SOLUTION CONCEPT

Projections

True Values ΘABJ
O ΘCT

O ΘI

θ�
1 −1�15 [−4�475�−0�485] [−4�475�−0�585] [−4�125�−0�595]

(2�5%) (11�5%)
θ�

2 −1�40 [−4�585�−0�625] [−4�585�−0�725] [−4�425�−0�735]
(2�4%) (6�8%)

Approximate reduction in total area compared to ΘABJ
O (7�9%) (23�1%)

−1�15 and θ�
2 = −1�4� and using a selection mechanism which picks each of

outcomes (0�0) and (1�1) for 10% of ω :ε(ω) ∈ [0�−θ�
1] × [0�−θ�

2], and each
of outcomes (1�0) and (0�1) for 40% of ω :ε(ω) ∈ [0�−θ�

1] × [0�−θ�
2]. Hence,

the observed distribution is P(y) = [0�26572 0�34315 0�36531 0�02582]′. Also
in this case, ΘI is smaller than ΘCT

O and ΘABJ
O � although the reduction in the size

of the identification region is less pronounced than in the case where mixed
strategy Nash equilibrium is the solution concept.

APPENDIX F: MULTINOMIAL CHOICE MODELS WITH INTERVAL
REGRESSORS DATA

This section of the supplement applies the methodology introduced in Sec-
tion 2 to provide a tractable characterization of the sharp identification region
of the parameters θ that characterize random utility models of multinomial
choice when only interval information is available on regressors. In doing so,
we extend the seminal contribution of Manski and Tamer (2002), who consid-
ered the same inferential problem in the case of binary choice models. For
these models, Manski and Tamer (2002) provided a tractable characterization
of the sharp identification region and proposed set estimators which are con-
sistent with respect to the Hausdorff distance. However, their characterization
of the sharp identification region does not easily extend to models in which the
agents face more than two choices, as we illustrate below.

We assume that an agent chooses an alternative y from a finite choice set
C = {0� � � � �κC − 1} to maximize her utility. The agent possesses a vector of
socioeconomic characteristics w� Each alternative k ∈ C is characterized by an
observable vector of attributes zk and an attribute εk which is observable by the
agent but not by the econometrician. The vector (y�w� {zk�εk}κC −1

k=0 ) is defined
on a nonatomic probability space (Ω�F�P)� The agent is assumed to possess a
random utility function of known parametric form.

To simplify the exposition, we assume that the random utility is linear, and
that w� zk, and εk� k = 0� � � � � κC −1� are all scalars. However, all these assump-
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tions can be relaxed and are in no way essential for our methodology. We let the
random utility be π(k;xk�εk�θk) = αk + zkδ + wβk + εk ≡ xkθk + εk� k ∈ C�
with xk = [1 zk w] and θk = [αk δ βk]′� We normalize π(0;x0� ε0� θ0) = ε0�
For simplicity, we assume that εk is independently and identically distributed
across choices with a continuous distribution function F(ε) that is known. We
let θ = [{αk}κC −1

k=1 δ {βk}κC −1
k=1 ]′ ∈ Θ be the vector of parameters of interest, with

Θ the parameter space. We denote εk = εk − ε0� k ∈ C� and ε = [{εk}κC −1
k=1 ]�

Under these assumptions, if the econometrician observes a random sample of
choices, socioeconomic characteristics, and alternatives’ attributes, the param-
eter vector θ is point identified.

Here we consider the identification problem that arises when the econo-
metrician observes only realizations of {y� zkL� zkU�w}� but not realizations
of zk� k = 1� � � � �κC − 1� Following Manski and Tamer (2002), we assume
that for each k = 1� � � � � κC − 1� P(zkL ≤ zk ≤ zkU) = 1 and that δ > 0�
We let xkL = [1 zkL w]� xkU = [1 zkU w]� ¯xk = [1 zkL zkU w]� and ¯x =
[1 {zkL}κC −1

k=1 {zkU}κC −1
k=1 w]� Incompleteness of the data on zk� k = 1� � � � � κC −

1� implies that there are regions of values of the exogenous variables where the
econometric model predicts that more than one choice may maximize utility.
Therefore, the relationship between the outcome variable of interest and the
exogenous variables is a correspondence rather than a function. Hence, the
parameters of the utility functions may not be point identified.

In the case of binary choice, Manski and Tamer (2002) established that the
sharp identification region for θ is given by

ΘI = {θ ∈Θ : P(x1Lθ+ ε1 > 0|¯x) ≤ P(y = 1|¯x)
≤ P(x1Uθ+ ε1 > 0|¯x)� ¯x-a.s.

}
�

This construction is based on the observation that if the agent chooses alterna-
tive 1, this implies that ε1 > −x1θ ≥ −x1Uθ� On the other hand, ε1 > −x1Lθ ≥
−x1θ implies that the agent chooses alternative 1.11 In the case of more than
two choices, one may wish to apply a similar insight as in the work of CT and
construct the region

ΘO = {θ ∈ Θ :∀m ∈ C� ¯x-a.s.�(F.1)

P
(
xmθm + εm ≥ xkθk + εk ∀(xm�xk) ∈ [xmL�xmU ] × [xkL�xkU ]�

∀k ∈ C� k �= m|¯x
)

≤ P(y = m|¯x)≤ P
(∃xm ∈ [xmL�xmU ] s.t. ∀k ∈ C� k �= m�∃xk ∈ [xkL�xkU ]

with xmθm + εm ≥ xkθk + εk|¯x
)}
�

11For −x1Uθ ≤ ε1 ≤ −x1Lθ� the model predicts that either alternative 0 or 1 may maximize the
agent’s utility.
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The lower bound on P(y = m|¯x) in equation (F.1) is given by the probability
that ε falls in the regions where choice m ∈ C is the only optimal alternative.
The upper bound is given by the probability that ε falls in the regions where
choice m ∈ C is one of the possible optimal alternatives. Similarly to the case of
ΘCT

O in the finite games analyzed in Section 3, ΘO is just an outer region for θ
and is not sharp in general. Appendix D.2 provides further insights to explain
the lack of sharpness of ΘO .12

We begin our treatment of the identification problem by noticing that if xk

were observed for each k ∈ C� one would conclude that a choice m ∈ C maxi-
mizes utility if

π(m;xm�εm�θm) = xmθm + εm ≥ xkθk + εk

= π(k;xk�εk�θk) ∀k ∈ C�k �=m�

Hence, for a given θ ∈ Θ, and realization of ¯x and ε� we can define the θ-
dependent set

Mθ(¯x�ε) = {m ∈ C :∃xm ∈ [xmL�xmU ] s.t. ∀k ∈ C�k �=m�(F.2)

∃xk ∈ [xkL�xkU ] with xmθm + εm ≥ xkθk + εk
}
�

This is the set of choices associated with a specific value of θ and realiza-
tion of ¯x and ε� which are optimal for some combination of xk ∈ [xkL�xkU ]�
k ∈ C� and, therefore, form the set of the model’s predictions. As we did in
Section 3, we write the set Mθ(¯x�ε) and its realizations, respectively, as Mθ

and Mθ(ω) ≡ Mθ(¯x(ω)�ε(ω))� omitting the explicit reference to ¯x and ε� Be-
cause Mθ is a subset of a discrete space and any event of the type {m ∈ Mθ}
can be represented as a combination of measurable events determined by εk�
k ∈ C� Mθ is a random closed set in C ; see Definition A.1.

We now apply to the random closed set Mθ the same logic that we applied to
the random closed set Sθ in Section 3. The treatment which follows is akin to
the treatment of static, simultaneous-move finite games of complete informa-
tion when players use only pure strategies.

For a given parameter value θ ∈ Θ and realization m(ω)� ω ∈ Ω� of a selec-
tion m ∈ Sel(Mθ)� the individual chooses alternative k = 0� � � � � κC − 1 if and
only if m(ω) = k� Hence, we can use a selection m ∈ Sel(Mθ) to define a ran-
dom point q(m) whose realizations have coordinates [q(m(ω))]k = 1(m(ω) =
k), k = 0� � � � � κC − 1� with 1(·) the indicator function of the event in paren-
theses. Clearly, the random point q(m) is an element of the unit simplex in the
space of dimension κC , denoted ΔκC −1. Because Mθ is a random closed set in C�

12Appendix D.2 focuses on the lack of sharpness of ΘCT
O in finite games with multiple pure

strategy Nash equilibria. The same reasoning applies to the set ΘO in equation (F.1).
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the set resulting from repeating the above construction for each m ∈ Sel(Mθ)
and given by

Q(Mθ)= {([q(m)]k�k= 0� � � � � κC − 1
)

:m ∈ Sel(Mθ)
}

is a closed random set in ΔκC −1. Hence we can define the set

E(Q(Mθ)|¯x) = {E(q|¯x) :q ∈ Sel(Q(Mθ))
}

= {(E([q(m)]k|¯x
)
�k= 0� � � � � κC − 1

)
:m ∈ Sel(Mθ)

}
�

Because the probability space is nonatomic and the random set Q(Mθ) takes its
realizations in a subset of the finite dimensional space �κC � the set E(Q(Mθ)|¯x)is a closed convex set for ¯x-a.s. By construction, it is the set of probability distri-
butions over alternatives conditional on ¯x which are consistent with the main-
tained modeling assumptions, that is, with all the model implications. If the
model is correctly specified, there exists at least one value of θ ∈ Θ such that
the observed conditional distribution of y given ¯x� P(y|¯x)� is a point in the set
E(Q(Mθ)|¯x) for ¯x-a.s., where P(y|¯x) ≡ [P(y = k|¯x)�k= 0� � � � � κC − 1]�

Using the same mathematical tools that lead to Theorem 3.2, we obtain that
the set of observationally equivalent parameter values which form the sharp
identification region is given by

ΘI =
{
θ ∈ Θ : max

u∈B
(
u′P(y|¯x)− E

[
h(Q(Mθ)�u)|¯x

])= 0� ¯x-a.s.
}
�(F.3)

with B the unit ball in �κC �
Notice that the set Q(Mθ) assumes at most a finite number of values, and

its realizations lie in the subsets of the vertices of ΔκC −1. The conditional Au-
mann expectation of Q(Mθ) is given by the weighted Minkowski sum of the
possible realizations of co[Q(Mθ)]. Each of these realizations is a polytope
and, therefore, E(Q(Mθ)|¯x) is a closed convex polytope. By Theorem D.1, a
candidate θ belongs to ΘI as defined in equation (F.3) if and only if u′P(y|¯x) ≤
E[h(Q(Mθ)�u)|¯x] for each of the 2κC possible u vectors whose entries are equal
to either 0 or 1. Hence, ΘI can be obtained through a finite set of moment in-
equalities which have to hold for ¯x-a.s.
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