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Appendix A provides additional mathematical background on multidimensional
polynomial optimization. Appendix B gives a brief overview of Chebyshev interpola-
tion. Appendix C provides some additional information on Example 3 in Section 5.2.

APPENDIX A: OPTIMIZATION OF POLYNOMIALS

WE FIRST INTRODUCE THE BASIC CONCEPTS from semidefinite optimization.
Then we discuss multivariate polynomial optimization.

A.1. Semidefinite Programming

For a matrix M = (mij) ∈ R
n×n, the sum of its diagonal elements,

tr(M)=
n∑

i=1

mii�

is called the trace of M . Note that

tr(CX)=
n∑

i�j=1

CijXij

for matrices C�X ∈ Sn is a linear function on the set Sn of symmetric n × n
matrices X . Recall that we denote the property of semidefiniteness of a sym-
metric matrix X by X � 0. A semidefinite optimization problem (in standard
form) is defined as follows.

DEFINITION A.1: Let C�Aj ∈ R
n×n for all j = 1� � � � �m be symmetric ma-

trices and b ∈ R
m. We then call the following convex optimization problem a

semidefinite program (SDP):

sup
X

tr(CX)(20)

s.t. tr(AjX)= bj� j = 1� � � � �m�

X � 0�

Note that the SDP has a linear objective function and a closed convex feasi-
ble region. Thus, semidefinite programs are a special class of convex optimiza-
tion problems. In fact, semidefinite programs can be solved efficiently both in
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theory and in practice; see Vandenberghe and Boyd (1996) and Boyd and Van-
denberghe (2004).

We need to reformulate this into an NLP and so we first look at the following
definition.

DEFINITION A.2: Let M = (mij)i=1�����n�j=1�����n ∈ R
n×n be a matrix and let I ⊂

{1� � � � � n}. Then det((mij)(i�j)∈I×I) is called a principal minor. If I = {1� � � � �k},
then det((mij)(i�j)∈I×I) is called the kth leading principal minor.

PROPOSITION A.1: Let Q ∈ R
n×n be a symmetric matrix with rank m. Then the

following statements are equivalent:
(a) Q is positive semidefinite.
(b) All principal minors of Q are nonnegative.
(c) There exists a matrix V ∈ R

n×m with Q = V V T and m≤ n.
(d) There exists a lower triangular matrix L ∈ R

n×n with nonnegative diagonal
such that Q = LLT .

(e) All eigenvalues are nonnegative.

Note here that the equivalent statements for positive semidefiniteness can
be expressed by polynomial equations and inequalities. Statement (b) gives a
set of polynomial inequalities. Statement (c) involves a system of polynomial
equations. Statements (d) and (e) are given by a system of equations and in-
equalities.

A.2. Optimization of Multivariate Polynomials

As we previously observed, the reformulation of univariate polynomial opti-
mization problems involves two steps. First, we need to rewrite the optimiza-
tion problem such that the optimal value is characterized by a set of nonneg-
ativity constraints. In the second step, we use a sum of squares representation
of nonnegative polynomials to replace the nonnegativity constraints by finitely
many convex (SDP-style) constraints in order to obtain an equivalent optimiza-
tion problem. Our method for multivariate optimization follows the same gen-
eral two-step reformulation approach. However, we encounter an important
difficulty. While the set of nonnegative polynomials and the set of sums of
squares are identical for univariate polynomials, this identity does not hold
true for multivariate polynomials. A classical result of Hilbert (1888) states
that this identity holds only for quadratic multivariate polynomials and for
degree 4 polynomials in two variables; or, equivalently, it holds for degree 4
homogeneous polynomials in three variables. The general lack of the identity
of the sets of nonnegative polynomials and sums of squares for multivariate
polynomials forces us to work directly with positive polynomials. As a result,
our final optimization problem is not equivalent to the original principal–agent
problem. Instead, it delivers (only) an upper bound on the optimal objective
function value. Nevertheless, this approach also proves very useful.
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We again rely on Laurent (2009) and Lasserre (2010) for a review of mathe-
matical results.

A.2.1. Multivariate Representation and Optimization

Putinar’s Positivstellensatz is the analogue of the univariate sum of squares
representation result from Proposition 2 for the multivariate case.

PROPOSITION A.2—Putinar’s Positivstellensatz (Lasserre (2010, Theo-
rem 2.14)): Let f�g1� � � � � gm ∈ R[x] be polynomials and K = {x ∈ R

n | g1(x) ≥
0� � � � � gm(x) ≥ 0} ⊂ R

n a basic semi-algebraic set such that at least one of the
following conditions holds:

(1) g1� � � � � gm are affine and K is bounded; or
(2) for some j, the set {x ∈R

n | gj(x)≥ 0} is compact.
If f is strictly positive on K, then

f = σ0 +
m∑
i=1

σigi(21)

for some σ0� � � � �σm ∈ Σ[x].

The assumptions of Putinar’s Positivstellensatz are not as restrictive as they
may appear at first glance. For example, if we know an upper bound B such
that ‖x‖2 ≤ B for all x ∈ K, then we can add the redundant ball constraint B2 −∑

i x
2
i ≥ 0. Note that in contrast to Proposition 2 for univariate polynomials,

Putinar’s Positivstellensatz does not provide any bounds on the degree of the
sums of squares σj .

For a multivariate polynomial p ∈ R[x1�x2� � � � � xn] and a nonempty semi-
algebraic set K = {x ∈ R

n | g1(x) ≥ 0� � � � � gm(x) ≥ 0}, consider the constrained
polynomial optimization problem

pmin = inf
x∈K

p(x)�(22)

Similarly to the univariate case, we can rewrite this problem:

sup
ρ

ρ(23)

s.t. p(x)− ρ > 0 ∀x ∈ K�

Since Putinar’s Positivstellensatz provides a representation for strictly positive
polynomials and does not bound the degrees of the sums of squares in the rep-
resentation, we cannot provide a reformulation of the optimization problem
(23) in the same simple fashion as we did in the univariate case. Instead, we
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now consider a relaxation of the problem by restricting the degrees of the in-
volved sums of squares. For d ≥ max{dp�dg1� � � � � dgm}, consider the relaxation

ρd = sup
ρ�σ0�σ1�����σm

ρ(24)

s.t. p− ρ= σ0 +
m∑
i=1

σigi�

σ0 ∈ Σ2d� σi ∈ Σ2(d−dgi )
�

This problem is again an SDP and thus can be written as

ρd = sup
ρ�Q(0)�Q(1)�����Q(m)

ρ(25)

s.t. p− ρ= vTdQ
(0)vd +

m∑
i=1

giv
T
d−dgi

Q(i)vd−dgi
�

Q(0) � 0� Q(i) � 0 ∀i = 1�2� � � � �m�

Q(0) ∈R(
n+d
d )×(n+d

d )�

Q(i) ∈R
(n+d−dgi

d−dgi
)×(n+d−dgi

d−dgi
) ∀i = 1�2� � � � �m�

vd vector of monomials xα up to degree d�

vd−dgi
vector of monomials xα up to degree d − dgi �

The equality constraint here signifies again equality as polynomials. Thus, we
just have to compare the coefficients of the polynomials on the left-hand and
right-hand side.1 If the problem is infeasible, then ρd = −∞.

For d → ∞, the optimal value ρd then converges from below to the optimal
value pmin of infx∈K p(x). In particular, even if we do not obtain an explicit
solution, we obtain a lower bound on the optimal value pmin. In many cases,
the convergence is finite; that is, for some finite d ≥ max{dp�dg1� � � � � dgm}, it
holds that ρd = pmin. We have the following theorem.

PROPOSITION A.3—Lasserre (2010, Theorem 5.6): If the assumptions of
Putinar’s Positivstellensatz hold, then the optimal solution ρd of the relaxed prob-
lem (24) converges (from below) to the optimal value pmin of the original problem
(22) as d → ∞.

For the rate of convergence, we refer to Nie and Schweighofer (2007).

1To avoid a messy notation, we will forgo expressively writing out those equations in the mul-
tivariate case.
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A.2.2. Rational Objective Function

Jibetean and De Klerk (2006) also proved analogous results for the case of
multivariate rational functions. Recall the optimization problem (10) from the
main body of the paper,

pmin = inf
x∈K�q(x) 
=0

p(x)
q(x)

with p�q ∈ R[x] and K = {x ∈ R
n | g1(x) ≥ 0� � � � � gm(x) ≥ 0}. For such a set K,

the following proposition states that the weak inequality in the definition of
pmin in Proposition 4 can be replaced by a strict inequality.

PROPOSITION A.4—Jibetean and De Klerk (2006, Lemma 1): Suppose that
K is the closure of some open connected set. Also suppose the assumptions of
Proposition 4 hold and q does not change sign on K. If p and q have no common
factor, then

pmin = sup
{
ρ | p(x)− ρq(x) > 0�∀x ∈ K

}
�

Similarly to the polynomial case, we define the relaxation for d ≥ max{dp�
dg1� � � � � dgm},

ρd = sup
ρ�σ0�σ1�����σm

ρ(26)

s.t. p− ρq = σ0 +
m∑
i=1

σigi�

σ0 ∈ Σ2d� σ1 ∈ Σ2(d−dgi )
�

PROPOSITION A.5—Jibetean and De Klerk (2006, Theorem 9): Under the
assumptions of Proposition 4 and Putinar’s Positivstellensatz, the following state-
ments hold:

(1) If pmin = −∞, then ρd = −∞ for all d = 1�2� � � � �
(2) If pmin > −∞, then ρd ≤ ρd+1 ≤ pmin for all d = 1�2� � � � � and limd→∞ ρd =

pmin.

APPENDIX B: CHEBYSHEV INTERPOLATION

Many applications of the principal–agent model, such as those examples in
Sections 5.1 and 5.2, include utility or probability functions that are not ratio-
nal. Such functions must first be approximated by polynomial or rational func-
tions before the polynomial optimization approach becomes applicable. The
tools of polynomial approximation are manifold. Trefethen (2013) provided an
excellent overview of one-dimensional approximation theory and practice. In



6 P. RENNER AND K. SCHMEDDERS

this paper, we restrict ourselves to Chebyshev approximation due to its popu-
larity in economics. In this appendix, we briefly outline Chebyshev interpola-
tion. For many more details, see Judd (1998) and Trefethen (2013).

Consider the problem of approximating a sufficiently smooth function f on
a compact interval. Without loss of generality, we consider the interval [−1�1].
Suppose that x0�x1� � � � � xn are n + 1 distinct points in [−1�1]. There exists a
unique polynomial pn(x) of degree at most n with the property

f (xi)= pn(xi) for i = 0�1� � � � � n�

for the function f : [−1�1] → R. That is, the polynomial pn interpolates the n+
1 points (x0� f (x0))� (x1� f (x1))� � � � � (xn� f (xn)). Next, we define Chebyshev
nodes and Chebyshev polynomials.

DEFINITION B.1: Let n ∈ N and define the points

xj = cos
(
(2j + 1)π

2n+ 2

)
for j = 0� � � � � n�

in the interval [−1�1]. These points are called the Chebyshev nodes.
Define the sequence of polynomials (Tj)j≥0 by

T0 = 1�

T1 = x�

Tk+1 = 2xTk − Tk−1 for k ≥ 1�

We call Tk the kth Chebyshev polynomial.
Let n ∈N and x0� � � � � xn be the Chebyshev nodes. We call the function

Pn(x)=
n∑

i=0

ciTi(x)(27)

the Chebyshev interpolant of f of degree n, where the coefficients c0� � � � � cn are
given by

c0 = 1
n+ 1

n∑
j=0

f (xj)�

ck = 2
n+ 1

n∑
j=0

f (xj) cos
(
k(2j + 1)π

2n+ 2

)
� k= 1� � � � � n�

Note that the Chebyshev nodes x0� � � � � xn correspond to the n + 1 zeros of
the Chebyshev polynomial Tn+1. The interpolant satisfies pn(xj)= f (xj) for all
j = 0� � � � � n. In particular, the interpolation is exact at each node xj .
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The following proposition describes the convergence of the Chebyshev in-
terpolant for ν-times differentiable functions.

PROPOSITION B.1—Judd (1998, Theorem 6.7.3): Let ν > 0 be an integer and
f be a ν-times differentiable function on [−1�1]. Then

‖f −pn‖∞ ≤
(

2
π

ln(n+ 2)+ 1
)
(n+ 1 − ν)!
(n+ 1)!

(
π

2

)ν∥∥f (ν)
∥∥

∞�

Note that the rate of convergence here is O(n−ν). For analytic functions, the
convergence behavior is even better. The Chebyshev interpolation converges
at O(C−n), where C > 1 depends on some properties of the function extended
to the complex plane. For details, see Trefethen (2013, Theorem 8.2).

APPENDIX C: FUNCTIONS FOR APPLICATION ON EXECUTIVE
COMPENSATION IN SECTION 5.2

The following expression is the function, which is used to approximate the
agent’s utility function. It is a Chebyshev polynomial in the variable a:

0�005
√

0�14βO + 1�27βS +wa7 − 0�002
√

0�78βS +wa7

− 0�005
√

0�94βO + 2�08βS +wa7

+ 0�002
√

2�32βO + 3�46βS +wa7

− 0�00
√

0�48βS +wa6 + 0�007
√

0�78βS +wa6

− 0�003
√

0�14βO + 1�27βS +wa6

− 0�005
√

0�94βO + 2�08βS +wa6

+ 0�008
√

2�32βO + 3�46βS +wa6

− 0�003
√

4�86βO + 5�99βS +wa6

− 0�002
√

0�28βS +wa5 + 0�006
√

0�48βS +wa5

+ 0�006
√

0�78βS +wa5 − 0�03
√

0�14βO + 1�27βS +wa5

+ 0�03
√

0�94βO + 2�08βS +wa5 − 0�007
√

2�32βO + 3�46βS +wa5

+ 0�001
√

10�22βO + 11�35βS +wa5 + 0�006
√

0�28βS +wa4

+ 0�005
√

0�48βS +wa4 − 0�05
√

0�78βS +wa4

+ 0�04
√

0�14βO + 1�27βS +wa4 + 0�05
√

0�94βO + 2�08βS +wa4

− 0�06
√

2�32βO + 3�46βS +wa4 − 0�18a3
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+ 0�01
√

4�86βO + 5�99βS +wa4 − 0�04a4 − 0�01
√

0�28βS +wa3

− 0�04
√

0�48βS +wa3 + 0�05
√

0�78βS +wa3

+ 0�15
√

0�14βO + 1�27βS +wa3 − 0�05
√

2�32βO + 3�46βS +wa3

+ 0�05
√

4�86βO + 5�99βS +wa3 − 0�15
√

0�94βO + 2�08βS +wa3

+ 0�005
√

10�22βO + 11�35βS +wa3

+ 0�16
√

2�32βO + 3�46βS +wa2 + 0�01
√

0�28βS +wa2

+ 0�09
√

0�48βS +wa2 + 0�15
√

0�78βS +wa2

− 0�24
√

0�14βO + 1�27βS +wa2

− 0�27
√

0�94βO + 2�08βS +wa2 + 0�09
√

4�86βO + 5�99βS +wa2

+ 0�004
√

10�22βO + 11�35βS +wa2 − 0�28a2

− 0�006
√

0�28βS +wa− 0�09
√

0�48βS +wa− 0�38
√

0�78βS +wa

+ 0�003
√

10�22βO + 11�35βS +wa4

− 0�34
√

0�14βO + 1�27βS +wa+ 0�33
√

0�94βO + 2�08βS +wa

+ 0�41
√

2�32βO + 3�46βS +wa+ 0�08
√

4�86βO + 5�99βS +wa

+ 0�002
√

10�22βO + 11�35βS +wa− 0�18a+ 0�001
√

0�28βS +w

+ 0�03
√

0�48βS +w + 0�67
√

0�14βO + 1�27βS +w

+ 0�71
√

0�94βO + 2�08βS +w + 0�27
√

2�32βO + 3�46βS +w

+ 0�03
√

4�86βO + 5�99βS +w − 0�04 + 0�25
√

0�78βS +w

− 0�005
√

4�86βO + 5�99βS +wa5�

The utility function for the principal, with ten quadrature nodes, is the fol-
lowing:

0�56e−a2/2−0�51a−0�50
(
1�27(1 −βS)− 0�14βO

)
+ 0�56e−a2/2+0�46a−0�46

(
2�082(1 −βS)− 0�94βO

)
+ 0�56e−a2/2+1�48a−1�40

(
3�46(1 −βS)− 2�32βO

)
+ 0�56e−a2/2+2�58a−3�53

(
5�99(1 −βS)− 4�86βO

)
+ 0�56e−a2/2+3�85a−7�42

(
11�35(1 −βS)− 10�22βO

)
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+ 0�44e−a2/2−1�48a−1�47(1 −βS)+ 0�27e−a2/2−2�46a−3�39(1 −βS)

+ 0�16e−a2/2−3�48a−6�36(1 −βS)+ 0�09e−a2/2−4�58a−10�69(1 −βS)

+ 0�04e−a2/2−5�85a−17�14(1 −βS)−w�
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