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This appendix contains supplementary material and proofs for the paper “A Geo-
metric Approach to Nonlinear Econometric Models,” by Isaiah Andrews and Anna
Mikusheva. Section S1 introduces geometric concepts used in the proofs. Sections S2
and S3 prove Theorems 1 and 2 of the paper, respectively. Section S4 proves Lemma 2
from the paper and gives a related uniform asymptotic result. Section S5 proves
Lemma 3 and shows that tests which both minimize critical values over subsets of pa-
rameters and restrict attention to curvature on a finite ball continue to control size. Sec-
tion S6 proves Lemma 1 from the paper. Section S7 shows that models that are weakly
identified in the sense of Stock and Wright (2000) imply nonlinear null hypothesis man-
ifolds. Section S8 shows how nonlinearity arises from weak identification in an analytic
DSGE example. Numerical examples applying our approach to DSGE and New Key-
nesian Phillips Curve models may be found in the working paper version, available on
Anna Mikusheva’s website.1

S1. GEOMETRIC CONCEPTS

IN THIS PAPER, we focus on regular manifolds embedded in k-dimensional
Euclidean space. A subset S ⊂ R

k is called a p-dimensional regular manifold
if, for each point q ∈ S, there exists a neighborhood V in R

k and a twice-
continuously-differentiable map x : Ũ → V ∩ S from an open set Ũ ⊂ R

p onto
V ∩ S ⊂ R

k such that (i) x is a homeomorphism, which is to say it has a contin-
uous inverse, and (ii) the Jacobian dxq has full rank. A mapping x that satisfies
these conditions is called a parameterization or a system of local coordinates,
while the set V ∩ S is called a coordinate neighborhood.

Note that the manifold S is defined as a set, rather than as a map. In keeping
with this spirit, many of the statements below will be invariant to parameteri-
zation. We begin by developing some geometrical concepts for the special case
of a regular one-dimensional manifold, also known as a curve. In particular,
let S be a curve given by γ : (t0� t1)→ R

k where γ is twice continuously dif-
ferentiable and (t0� t1) is an interval in R. Let γ̇(t) and γ̈(t) denote the first
and second derivatives of γ with respect to t. Let (γ̈(t))⊥ be the part of γ̈(t)
orthogonal to γ̇(t); then the curvature at q= γ(t) is defined as κq(S)= ‖(γ̈(t))⊥‖

‖γ̇(t)‖2 .
One can show that this definition of curvature is invariant to parameterization.
The curvature measures how quickly the curve S deviates from its tangent line
local to q, and the scaling is such that a circle of radius C has curvature 1/C at
all points.

These concepts can all be extended to general regular manifolds. Fixing a
p-dimensional manifold S, for any curve γ : (−ε�ε)→ S on S which passes
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through the point q= γ(0) ∈ S, the vector γ̇(0) is called a tangent vector to S
at q. For x a system of local coordinates at q, the set of all tangent vectors to S
at q coincides with the linear space spanned by the Jacobian dxq and is called
the tangent space to S at q (denoted Tq(S)). While we have defined the tangent
space using the local coordinates x, as one would expect Tq(S) is independent
of the parameterization.

To calculate the curvature at q, consider a curve γ : (−ε�ε)→ S which lies in
S and passes through q= γ(0). Taking T⊥

q to be the k− p-dimensional linear
space orthogonal to Tq(S), define

κq(γ�S)=
∥∥(γ̈(0))⊥∥∥∥∥γ̇(0)∥∥2 �

where (W )⊥ stands for the projection of W onto the space T⊥
q . One can show

that κq(γ�S) depends on the curve γ only through γ̇(0), so for two curves γ and
γ∗ in S with γ(0)= γ∗(0)= q and γ̇(0)= γ̇∗(0), we have κq(γ�S)= κq(γ∗� S).
We can also show that for any X ∈ Tq(S), one can find a curve γ in S with
property that γ(0)= q and γ̇(0)=X . The measure of curvature we consider is

κq(S)= sup
X∈Tq(S)�γ̇(0)=X

κq(γ�S)= sup
X∈Tq(S)�γ̇(0)=X

∥∥(γ̈(0))⊥∥∥∥∥γ̇(0)∥∥2 �

This measure of curvature is closely related to the Second Fundamental Ten-
sor (we refer the interested reader to Kobayashi and Nomizu (1969, v. 2,
Chapter 7)), and is equal to the maximal curvature over all geodesics passing
through the point q. As with the curvature measure discussed for curves, κq(S)
is invariant to the parameterization. Also analogous to the one-dimensional
case, if S is a p-dimensional sphere of radius C, then, for each q ∈ S, we have
κq(S)= 1/C . Finally, if S is a linear subspace, its curvature is zero at all points.

How to calculate curvature in practice. Let S be a p-dimensional manifold
in R

k, and let x be a local parameterization at a point q, q = x(y∗). Denote
the derivatives of x at q by vi = ∂x

∂yi
(y∗). By the definition of a local param-

eterization, we know that the Jacobian Z = (v1� � � � � vp) is full rank, so the
tangent space Tq(S) = span{v1� � � � � vp} is p-dimensional. As before, for any
vector W ∈ R

k, let W ⊥ denote the part of W orthogonal to Tq(S), that is,
W ⊥ = NZW = (I − Z(Z′Z)−1Z′)W . Finally, denote the p2 vectors of second
derivatives Vij = ∂2

∂yi ∂yj
x(y∗). The curvature can then be written as

κq(S)= sup
u=(u1�����up)∈Rp
‖∑p

i=1 uivi‖=1

∥∥∥∥∥
p∑

i�j=1

uiujV
⊥
ij

∥∥∥∥∥= sup
(w1�����wp)∈Rp

∥∥∥∥∥
p∑

i�j=1

wiwjV
⊥
ij

∥∥∥∥∥∥∥∥∥∥
p∑
i=1

wivi

∥∥∥∥∥
2 �
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S2. PROOF OF THEOREM 1 OF THE PAPER

The proof is based on the following lemma:

LEMMA S1: Assume the curve γ(s) : [0� b] → DC ⊂ R
k is parameterized by

arc length and that its curvature κ(s)= ‖γ̈(s)‖ ≤ 1
C

for all points s. Assume that
γ(0)= 0 and γ̇(0)= v ∈ span{e1� � � � � ep}, where e1� � � � � ep are first p basis vec-
tors. Then the curve γ(s) is contained in the set Mv ∩DC , where

Mv = {x : 〈x�v〉2 + (C − ∥∥x− 〈x�v〉v∥∥)2 ≥ C2
}
�(S1)

PROOF: Consider the curve defined by β(s)= γ̇(s), the first derivative of γ.
Since the curve γ is parameterized by arc length, ‖β(s)‖ = ‖γ̇(s)‖ = 1 and the
new curve β lies on the unit sphere Sph = {x ∈ R

k : ‖x‖ = 1}, with β(0) = v.
Let t ≤ π

2C and t ≤ b. Consider the arc length of the restriction of the curve β
to the interval [0� t]:

length(t)=
∫ t

0

∥∥β̇(s)∥∥ds=
∫ t

0

∥∥γ̈(s)∥∥ds =
∫ t

0
κ(s)ds ≤ t

C
�

This implies that the geodesic (a curve of a shortest length) on the sphere Sph
connecting β(0) and β(t) has length less than or equal to t

C
or, equivalently,

that the angle between vectors β(0) = v and β(t) is less than or equal to t
C

.
Hence 〈

v�β(t)
〉= 〈v� γ̇(t)〉≥ cos

(
t

C

)
�(S2)

Since γ(s) is parameterized by arc length, from inequality (S2) we have∥∥γ̇(t)− 〈v� γ̇(t)〉v∥∥≤
∣∣∣∣sin
(
t

C

)∣∣∣∣�(S3)

This, in turn, implies that∥∥γ(t)− 〈v�γ(t)〉v∥∥=
∥∥∥∥∫ t

0

(
γ̇(s)− 〈v� γ̇(s)〉v)ds∥∥∥∥

≤
∫ t

0

∥∥γ̇(s)− 〈v� γ̇(s)〉v∥∥ds
≤
∫ t

0
sin
(
s

C

)
ds= C −C cos

(
t

C

)
�

Inequality (S2) also implies that

〈
v�γ(t)

〉≥ ∫ t

0
cos
(
s

C

)
ds= C sin

(
t

C

)
�(S4)
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Combing these results yields〈
v�γ(t)

〉2 + (C − ∥∥γ(t)− 〈v�γ(t)〉v∥∥)2 ≥ C2

for all t ≤ π
2C. Notice that (S4) implies that, for τ = π

2C, we have 〈v�γ(τ)〉 ≥ C ,
and thus for the first p coordinates of γ(τ), which we denote γ(1)(τ), we have
‖γ(1)(τ)‖ ≥ C, so the curve is leaving or has already left the cylinder DC and
thus b≤ π

2C. This concludes the proof of the lemma. Q.E.D.

PROOF OF STATEMENT (a) OF THEOREM 1: First, let us show that⋃
v∈T0(S)

‖v‖=1

Mv = {∥∥x(1)∥∥2 + (C − ∥∥x(2)∥∥)2 ≥ C2
}=M�(S5)

where Mv is defined in (S1), M is defined in equation (5) of the paper, and
T0(S) is the tangent space to S at zero and is spanned by first p basis vectors.
Indeed, the set on the left-hand side consists of points x for which there exists
a vector v ∈ span{e1� � � � � ep}�‖v‖ = 1, such that

〈x�v〉2 + (C − ∥∥x− 〈x�v〉v∥∥)2 ≥ C2�(S6)

For each x, let us find the maximum of the expression on the left-hand side of
inequality (S6) over v ∈ T0(S)�‖v‖ = 1:

〈x�v〉2 + (C − ∥∥x− 〈x�v〉v∥∥)2

= 〈x�v〉2 +C2 + ‖x‖2 − 〈x�v〉2 − 2C
∥∥x− 〈x�v〉v∥∥

= C2 + ‖x‖2 − 2C
∥∥x− 〈x�v〉v∥∥�

where we used that ‖x−〈x�v〉v‖2 = ‖x‖2 −〈x�v〉2. We see that maximizing the
left-hand side of (S6) over v ∈ span{e1� � � � � ep}�‖v‖ = 1 is equivalent to min-
imizing ‖x − 〈x�v〉v‖. The minimum is achieved at the projection of x onto
T0(S)= span{e1� � � � � ep}, that is, v = 1

‖x(1)‖(x
(1)�0� � � � �0), where x(1) ∈ R

p con-
sists of the first p components of x. As a result, the maximum of the left-hand
side of (S6) equals

C2 + ‖x‖2 − 2C
∥∥x(2)∥∥= ∥∥x(1)∥∥2 + (C − ∥∥x(2)∥∥)2

�

This proves statement (S5).
Now assume that statement (a) of Theorem 1 is incorrect and there exists a

point q ∈ SC with q /∈M. Take a geodesic (a curve of the shortest distance lying
in SC) γ(s) connecting q and 0 lying in SC , where such a curve exists since SC
is a connected manifold. Parameterize this curve by arc length. The curve γ(s)
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is a geodesic in S if and only if, at any point q = γ(t), the second derivative
γ̈(t) is perpendicular to Tq(S) (see Spivak (1999) for discussion of geodesics,
v. 3, p. 3). As a result, the curvature of the geodesic γ at each point q = γ(t)
is equal to κq(X�S) (where X = γ̇(t)), and thus it is less than 1

C
. Denote the

tangent to this curve at 0 by v ∈ T0(S). Applying Lemma S1, we obtain that the
curve belongs to Mv ∩DC and thus belongs to M ∩DC . We have arrived at a
contradiction. Q.E.D.

PROOF OF STATEMENT (c) OF THEOREM 1: Let

f (u)= ρ2(ξ�Nu)= min
x(1)∈Rp�z∈R+

‖x(1)‖2+(C−z)2=C2

∥∥ξ(1) − x(1)∥∥2 + ∥∥ξ(2) − zu∥∥2
�

We need to find the maximizer of f (u) subject to the constraint ‖u‖ = 1. To
differentiate f (u), we use the “envelope theorem” that allows one to differen-
tiate a function which is the optimum of a constrained optimization problem
and yields df (u)

du
= −2(ξ(2) − zu). Hence, the first-order condition for finding ũ

implies that u is proportional to ξ(2). The sign is a reflection of the fact that we
search for a max rather than a min. Q.E.D.

PROOF OF STATEMENT (b) OF THEOREM 1: For a given point ξ ∈ R
k, find

the sphere Nũ furthest from ξ, where ũ is described in Theorem 1(c), and the
point τ ∈ Nũ such that ρ(ξ�Nũ) = ρ(ξ�τ). Consider the k − p-dimensional
linear space Rτ = {x ∈ R

k : x(1) = τ(1)} that restricts the first p components of
x to coincide with the first p components of τ. We prove two statements: first,
that all points in the intersection Rτ ∩ M ∩DC are no further from ξ than τ;
and second, that this intersection Rτ ∩ M ∩ DC contains at least one point
from S. Together, these two statements imply that ρ(ξ�S)≤ ρ(ξ�τ).

The intersection of the three sets Rτ ∩M∩DC can be written as follows:

Rτ ∩M∩DC = {x= (τ(1)� x(2)) ∈DC : ∥∥τ(1)∥∥2 + (C − ∥∥x(2)∥∥)2 ≥ C2
}

= {x= (τ(1)� x(2)) : ∥∥x(2)∥∥≤ C −
√
C2 − ∥∥τ(1)∥∥2}

�

Now let us show that, for each x ∈ Rτ ∩ M ∩DC , we have ρ(ξ�x) ≤ ρ(ξ�τ).
Indeed, one can solve the constrained maximization problem

ρ(ξ�x)2 = ∥∥ξ(1) − τ(1)∥∥2 + ∥∥ξ(2) − x(2)∥∥2 → max

s.t. x ∈Rτ ∩M∩DC�

From the first-order condition for this problem, one can see that the maxi-
mum is achieved at x(2) proportional to ξ(2). We recall that τ ∈ Nũ and, by
statement (c), τ(2) is proportional to ξ(2). Further inspection reveals that the
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maximum is achieved at x = τ. Hence, all points lying in the intersection
Rτ ∩M∩DC have distance to ξ less than or equal to ρ(ξ�Nũ).

To complete the proof, we need only show that Rτ ∩ M ∩ DC contains at
least one point from the manifold S. Recall that from the definition of τ ∈Nũ,
it follows that ‖τ(1)‖ ≤ C. Then Assumption 1 guarantees that the intersection
of SC with Rτ is nonempty, while statement (a) of Theorem 1 implies that SC ⊆
M∩DC . Q.E.D.

PROOF OF STATEMENT (d) OF THEOREM 1: Note that since ũ is proportional
to ξ(2) by statement (c), both ξ and Nũ belong to the same p+ 1-dimensional
linear subspace Lũ = {x : x= (x(1)�−zũ)�x(1) ∈ R

p� z ∈ R}. Let us restrict our
attention to this subspace only. Let (x(1)� z) be the coordinate system in this
subspace, so ξ corresponds to ξ̃ = (ξ(1)�‖ξ(2)‖), and Nũ corresponds to the
sphere NC = {x = (x(1)� z) ∈ R

p+1 : ‖x(1)‖2 + (C + z)2 = C2}. The distance on
Lũ implied by the distance in R

k is the usual Euclidean metric, which we denote
by ρ̃. So far, we proved that ρ(ξ�Nũ)= ρ̃(̃ξ�NC). By invariance of the distance
to orthonormal transformations of first p components, we have ρ̃(̃ξ�NC) =
ρ̃(ξ∗�NC), where ξ∗ = (‖ξ(1)‖�0� � � � �0�‖ξ(2)‖) ∈ R

p+1. From this, it is easy to
see that

ρ(ξ�Nũ)= ρ2

(
η�NC

2

)
�

where η = (‖ξ(1)‖�‖ξ(2)‖) ∈ R
2, NC

2 = {(z1� z2) ∈ R
2 : z2

1 + (C + z2)
2 = C2},

and ρ2 is Euclidean distance in R
2. It then follows that if ξ ∼ N(0� Ik), then

components of η have independent
√
χ2
p and

√
χ2
k−p distributions, respec-

tively. Q.E.D.

S3. PROOF OF THEOREM 2 OF THE PAPER

The procedure described in Section 2.4 of the paper guarantees that finite-
sample size is controlled when the reduced-form parameter estimates are nor-
mally distributed with a known covariance matrix. In this section, we prove
Theorem 2 of the paper, which asserts that the procedure is asymptotically
correct uniformly over a large set of models on which the reduced-form pa-
rameter estimator is uniformly asymptotically Gaussian. For ease of reference,
we restate much of the discussion of Section 3.1 of the paper.

We define a model to be a set consisting of the true value of the k-
dimensional reduced-form parameter θ0, the data-generating process Fn con-
sistent with θ0, and a link function connecting the structural and reduced-form
parameters, or more generally a manifold S̃n describing the null hypothesis
H0 : θ0 ∈ S̃n. We assume that the null holds. We allow the data-generating pro-
cess Fn and the structural model S̃n to change with the sample size n; this
accommodates sequences of link functions such as those which arise under
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drifting asymptotic embeddings, for example the weak identification embed-
dings of D. Andrews and Cheng (2012) and Stock and Wright (2000). It also
allows us to model the case when the researcher tries to fit a more compli-
cated or nonlinear model when she has a larger sample. Let us have an estima-
tor, θ̂n, which will be asymptotically normal with asymptotic covariance matrix
Σ= Σ(Fn). Let Σ̂n be an estimator for Σ. We consider the set of possible mod-
els M= {M :M = (θ0� {Fn}∞

n=1� {S̃n}∞
n=1)} and impose the following assumption.

ASSUMPTION 2:
(i)

√
nΣ−1/2(θ̂n − θ0)⇒N(0� Ik) uniformly over M;

(ii) Σ̂n −Σ→p 0 uniformly over M;
(iii) the maximal and minimal eigenvalues of Σ are bounded above and away

from zero uniformly over M;
(iv) for each n and manifold Sn = {x= √

nΣ−1/2(y−θ0)� y ∈ S̃n}, the manifold
Sn satisfies Assumption 1 for C = Cn = 1/ supq∈Sn κq(Sn).

Assumption 2(i) and (ii) require that the reduced-form parameter estimates
are uniformly asymptotically normal with a uniformly consistently estimable
covariance matrix. This assumption holds quite generally for many standard
reduced-form estimators, such as OLS estimates and sample covariances, over
large classes of models. Care is needed when using parameter estimates from
ARMA models, however, as these models can suffer from near-root cancel-
lation, leading to nonstandard large-sample behavior (see D. Andrews and
Cheng (2012)). Assumption 2(iii) uniformly bounds the eigenvalues of the
asymptotic covariance matrix above and below, and will generally follow from
a uniform bound on the moments of the data-generating process. Finally, As-
sumption 2(iv) is the natural extension of Assumption 1 to allow for sequences
of different manifolds. For implicitly defined manifolds, this will again follow
from Lemma 1.

Description of the procedure. Let us introduce a manifold Ŝn = {√nΣ̂−1/2
n (x−

θ0) : x ∈ S̃n}, which differs from Sn in using an estimator Σ̂n in place of Σ.
Let Ĉn = 1/(supq∈Ŝn κq(Ŝn)). Our main test uses the statistic nminθ∈S̃n (θ̂n −
θ)′Σ̂−1

n (θ̂n − θ) along with critical value F1−α(Ĉn�k�p), where we denote by
F1−α(C�k�p) the (1 −α)-quantile of the random variable ψC discussed in Sec-
tion 2.3.

THEOREM 2: If Assumption 2 holds, then the testing procedure described above
has uniform asymptotic size α:

lim
n→∞

sup
M∈M

P
{
nmin
θ∈S̃n

(θ̂n − θ)′Σ̂−1
n (θ̂n − θ) > F1−α(Ĉn�k�p)

}
≤ α�

This result establishes the uniform asymptotic validity of our test allowing
for arbitrarily nonlinear (or linear) behavior in the sequence of null hypothe-



8 I. ANDREWS AND A. MIKUSHEVA

sis manifolds S̃n. In particular, if curvature arises from weak identification, this
result allows for arbitrarily weakly or strongly identified sequences. The key to
this result is that our critical values reflect the curvature of the null hypothesis
manifold measured relative to the uncertainty about the reduced-form param-
eters for each sample size.

PROOF OF THEOREM 2: Assume that ξ ∼ N(0� Ik). Our main theorem
states:

P
{
ρ2(ξ�S) > F1−α(C�k�p)

}≤ α�
uniformly (over M) for all sets S = Sn if C = Cn is such that the assumptions
of Theorem 1 of the paper hold, that is, the maximal curvature of Sn is less
than 1/Cn and Assumption 1 is true. For the rest of the proof, we suppress the
index n for notational simplicity in Sn, S̃n, and Ŝn and the corresponding C’s.
Let ξn = √

nΣ̂−1/2
n (θ̂n − θ0). We note that the statistic of interest can be written

as nminθ∈S̃(θ̂n − θ)′Σ̂−1
n (θ̂n − θ) = ρ2(ξn� Ŝ). Assumption 2(i)–(iii) imply that

ξn ⇒N(0� Ik) uniformly over M.
This weak convergence can be metrized by Prokhorov’s metric. Letβn ≥ 0 be

Prokhorov’s distance between the distributions of random variables ξ and ξn,
where all terms are implicitly indexed by model M . According to Dudley’s
(1968) result, we can construct a probability space and two random vari-
ables ξ̃n and ξ̃ with the same marginal distributions as ξn and ξ such that
P{‖̃ξ − ξ̃n‖ > βn} ≤ βn. From now on, for simplicity of notation we will drop
tildes and assume that ξn and ξ satisfy this condition. Thus we have

P
{
ρ(ξn� Ŝ) > F

1/2
1−α(Ĉ�k�p)

}
(S7)

≤ P{ρ(ξ� Ŝ) > F 1/2
1−α(Ĉ�k�p)−βn

}+ P{‖ξ− ξn‖>βn
}
�

where we used that |ρ(ξn� Ŝ) − ρ(ξ� Ŝ)| ≤ ‖ξn − ξ‖. The second term on the
right-hand side in (S7) does not exceed βn, and βn converges to zero uniformly
over the set of models M.

Let C = 1/(supq∈S κq(S)), and note that Assumption 1 from the paper holds
for this value of C and the manifold S. Fix some small ε > 0. We can notice
that

P
{
ρ(ξ� Ŝ) > F 1/2

1−α(Ĉ�k�p)−βn
}

(S8)

≤ P{∣∣ρ(ξ� Ŝ)− ρ(ξ�S)∣∣> ε}
+ P{ρ(ξ�S) > F 1/2

1−α(C�k�p)− 2ε−βn
}

+ P{∣∣F 1/2
1−α(Ĉ�k�p)− F 1/2

1−α(C�k�p)
∣∣> ε}�
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Below, we show that the first and third terms on the right-hand side of equation
(S8) are asymptotically negligible uniformly over M, while by choosing small
ε we can bound the second term from above by a number arbitrarily close to α.

For the first term, note that the manifold Ŝ = {Ax : x ∈ S} for matrix
A = Σ̂−1/2

n Σ1/2. Let ‖X‖ denote the matrix norm of a square matrix X (i.e.,
the maximal eigenvalue in absolute value). Below, we show that∣∣ρ(ξ� Ŝ)− ρ(ξ�S)∣∣≤ 2‖ξ‖max

{‖I −A‖�∥∥I −A−1
∥∥}�(S9)

Indeed, consider first the case when ρ(ξ� Ŝ) ≥ ρ(ξ�S), and assume that
ρ(ξ�S)= ρ(ξ�x) for a point x ∈ S. ThenAx ∈ Ŝ, and ρ(ξ� Ŝ)≤ ρ(ξ�Ax). This
implies that

0 ≤ ρ(ξ� Ŝ)− ρ(ξ�S)
≤ ρ(ξ�Ax)− ρ(ξ�x)
≤ ρ(x�Ax)
≤ ‖I −A‖ · ‖x‖�

Next, we notice that since 0 ∈ S, ‖x‖ ≤ ‖ξ‖ + ρ(ξ�x) ≤ 2‖ξ‖. The case when
ρ(ξ� Ŝ) < ρ(ξ�S) can be considered analogously. This establishes the validity
of inequality (S9). Since ‖ξ‖2 is distributed as χ2

k, and according to Assump-
tions 2(ii)–(iii) the two maximal eigenvalues in equation (S9) converge to zero
uniformly, we can see that the first term in (S8) is asymptotically small uni-
formly over M.

For the second term, our main theorem guarantees that

P
{
ρ(ξ�S) > F 1/2

1−α(C�k�p)− 2ε−βn
}

(S10)

≤ P{ψ1/2
C > F 1/2

1−α(C�k�p)− 2ε−βn
}
�

where ψC = ρ2
2(η�N

C
2 ), for η a random vector with two independent coordi-

nates distributed as (
√
χ2
p�
√
χ2
k−p) and NC

2 a circle of radius C with center at

point (0�−C), while ρ2 is a Euclidean distance in R
2. First notice that function

f (x�C) = ρ2(x�N
C
2 ) for x ∈ R

2 is continuous in x uniformly over all values
of C; indeed, |ρ2(x�N

C
2 )− ρ2(y�N

C
2 )| ≤ ρ2(x� y). Since η is continuously dis-

tributed with bounded p.d.f. and the variable ψC has a p.d.f. which is bounded
above uniformly over C, this means that by choosing small enough ε and βn,
we can make the right-hand side in equation (S10) arbitrarily close to α.

It is easy to see that the function ρ2(x�N
C
2 ) is uniformly continuous in C.

Thus F1−α(C�k�p), the (1 − α)-quantile of random variable ψC , is contin-
uous in C uniformly over all values of C. As C → ∞, the (1 − α)-quantile
F1−α(C�k�p) converges to the (1 − α)-quantile of a χ2

k−p distribution, which
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can be called F1−α(∞�k�p). For any small ε > 0, there exists a constant c such
that, for any C > c, we have |F1/2

1−α(C�k�p)− F 1/2
1−α(∞�k�p)|< ε.

What we are left to show is that (i) Ĉ →p C uniformly over the subset of
models M for which C < c(1 + ε) and (ii) for any probability arbitrarily close
to 1, there exists a sample size such that, for all models in M with C > c(1+ε),
we have Ĉ > c with at least this probability.

First, we examine the asymptotic relationship between C and Ĉ . Let
us consider a point q ∈ S and curvature κq(S) = ‖∑p

i�j=1 uiujV
⊥
ij ‖, where

(u1� � � � � up) is the optimizer from formula (4) in the paper with the condition
‖∑p

i=1 uivi‖ = 1. By Theorem 6.4 in chapter III of Kobayashi and Nomizu
(1969), there exists a unique geodesic γ(t) ∈ S defined for t in an open
neighborhood of zero with initial conditions: γ(0)= q and γ̇(0)=∑p

i=1 uivi ∈
Tq(S). In particular, the fact that γ(t) is a geodesic curve on S means that
γ̈(0) =∑p

i�j=1 uiujVij is perpendicular to tangent space Tq(S) spanned by Z =
(v1� � � � � vp). This implies that κq(S)= ‖γ̈(0)‖ = ‖NZγ̈(0)‖ and ‖γ̇(0)‖ = 1.

Let us consider a curve γ̂(t)=Aγ(t) and notice that this curve lies on man-
ifold Ŝ and passes through the point q̂ =Aq ∈ Ŝ. Let Z be the set of vectors
spanning the tangent space Tq(S); then AZ spans Tq̂(Ŝ).

From formula (4) of the paper, we can see that

κq̂(Ŝ)≥

∥∥∥∥NAZ

d2γ̂(0)
dt2

∥∥∥∥∥∥∥∥dγ̂(0)dt

∥∥∥∥2 =
∥∥NAZAγ̈(0)

∥∥∥∥Aγ̇(0)∥∥2 �

as the left-hand-side expression is the maximum of the right-hand-side expres-
sion taken over all possible curves in Ŝ passing through q̂.

Let us consider the following sequence of inequalities:

κq(S)= ∥∥γ̈(0)∥∥(S11)

= ∥∥NZγ̈(0)
∥∥

≤ ∥∥(NAZA−NZ)γ̈(0)
∥∥+ ∥∥NAZAγ̈(0)

∥∥
≤ ‖NAZA−NZ‖∥∥γ̈(0)∥∥+ κq̂(Ŝ)

∥∥Aγ̇(0)∥∥2
�

We can notice that ‖Aγ̇(0)‖ ≤ ‖A‖ since ‖γ̇(0)‖ = 1. Finally, notice that

NAZA−NZ =A−AZ(Z′A2Z
)−1
Z′A2 − I +Z(Z′Z

)−1
Z

= (A− I)+ (I −A)Z(Z′Z
)−1
Z

+AZ(Z′Z
)−1
Z
(
I −A2

)
+AZ(Z′Z

)−1
Z′(A2 − I)Z(Z′A2Z

)−1
Z′A2�



GEOMETRIC APPROACH TO NONLINEAR ECONOMETRIC MODELS 11

where we use A2 to denote A′A. Recall that A→p I uniformly over M; thus
‖NAZA−NZ‖ ≤ C‖I −A‖ with probability approaching 1 uniformly over M,
where C is a constant that does not depend on M . Putting this reasoning to-
gether with inequality (S11), we obtain that with probability tending to 1 uni-
formly over M,

κq(S)≤ C‖I −A‖κq(S)+ κq̂(Ŝ)‖A‖2�(S12)

or

κq(S)− κq̂(Ŝ)≤ C‖I −A‖κq(S)+ κq̂(Ŝ)
(‖A‖2 − 1

)
�

Symmetric reasoning reversing the roles of the “hatted” and “nonhatted” vari-
ables yields

κq̂(Ŝ)≤ C∥∥I −A−1
∥∥κq̂(Ŝ)+ κq(S)

∥∥A−1
∥∥2
�

which implies that

κq̂(Ŝ)− κq(S)≤ C∥∥I −A−1
∥∥κq̂(Ŝ)+ κq(S)

(∥∥A−1
∥∥2 − 1

)
�

and

κq̂(Ŝ)≤ 1
1 −C∥∥I −A−1

∥∥κq(S)∥∥A−1
∥∥2
�

SinceA→p I uniformly over M, we get that for any finite constantK, |κq̂(Ŝ)−
κq(S)| →p 0 uniformly over all points q ∈ S such that κq(S)≤K and uniformly
over the set of models M.

What we have just shown is that, for any fixed constantsK1 andK2 and ε > 0,
we have that |Ĉ −C| →p 0 uniformly over all models in M with K1 <C <K2

and P{Ĉ > K2(1 − ε)} → 1 uniformly over all models in M with C > K2. In-
equality (S12) also implies that if C < K1, that is, if there exists a point q ∈ S
with κq(S) > 1/K1, then κq̂(Ŝ) is also large and for any ε there is a sample
size that guarantees Ĉ < K1(1 + ε) with high probability for all such models
uniformly over M. Thus we have that (i) Ĉ →p C uniformly over the sub-
set of models M for which C < c(1 + ε) and (ii) for any probability arbitrar-
ily close to 1, there exists a sample size such that, for all models in M with
C > c(1 + ε), we have Ĉ > c with at least this probability. This concludes the
proof of Theorem 2. Q.E.D.

S4. PROOF OF LEMMA 2 AND A RELATED ASYMPTOTIC RESULT

In this section, we establish two results related to the modification described
in Section 4.1. First, we prove Lemma 2, establishing the validity of the modi-
fied procedure which calculates curvature on a finite ball around the reduced-
form parameter estimate in the exact normal model. Second, we show that this
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procedure has correct uniform asymptotic size under assumptions as in Sec-
tion 3.1.

S4.1. Proof of Lemma 2

Let ξ = Σ−1/2(θ̂− θ0)∼N(0� Ik) and S = {Σ−1/2(θ− θ0)�θ ∈H0} ⊂ R
k. Let

ψC(ξ�R) be defined as

ψC(ξ�R)=
{
ρ2(ξ�Nũ)� if ‖ξ‖ ≤R,
‖ξ‖2� if ‖ξ‖>R,

where Nũ = {x ∈ R
k : x = (x(1)� zũ)�x(1) ∈ R

p� z ∈ R+�‖x(1)‖2 + (C − z)2 =
C2}� ũ = − 1

‖ξ(2)‖ξ
(2). Random variable ψC(ξ�R) has the same distribution as

ψC(R) defined in formula (8) in the paper but is defined on a different prob-
ability space, as ψC(R) is written in terms of the random vector η ∈ R

2 de-
scribed in Theorem 1(d). Consider the infeasible test ϕ which rejects (ϕ= 1) if
and only if ψC∧R(ξ�R)≥ F1−α(C ∧R�R�k�p). The size is Eϕ(ξ)= α, so since
P{χ2

k ≥R2}< α we know that ϕ rejects for all realizations of ξ where ‖ξ‖>R
as ‖ξ‖ ≥ ρ(ξ�Nũ). This test is infeasible, however, since we do not know the
true value of θ0 and hence cannot calculate ξ. The (feasible) test described in
Lemma 2 is

ϕ̃=
{

1� if MD ≥ F1−α
(
C∗
R�R�k�p

)
,

0� otherwise.

We claim that ϕ̃ ≤ ϕ almost surely (realization-by-realization). To show that
this is the case, assume that ϕ̃ = 1. If at the same time ‖ξ‖ > R, then ϕ = 1,
so the claim holds. If, on the other hand, ‖ξ‖ ≤ R, then the cylinder D̃R(x0)

around x0 = Σ−1/2θ0 lies inside of the ball B∗ of radius (1 + √
2)R around x̂=

x0 + ξ, and thus

C∗
R =

(
min

q∈S∗∩B∗ 1/κq
(
S∗))∧R≤

(
min

q∈S∗∩D̃R(x0)
1/κq

(
S∗))∧R≤ C�(S13)

Indeed, to justify the last inequality, consider the two cases R ≤ C and
R > C . In the first case, C∗

R ≤ R ≤ C , while in the second case,
minq∈S∗∩D̃R(x0)

1/κq(S∗)≤ C .
Note that the function F1−α(c�R�k�p) is decreasing in c, and hence

F1−α(C ∧R�R�k�p)≤ F1−α(C∗
R�R�k�p). Further, all the assumptions of The-

orem 1 are satisfied so MD = ρ2(ξ�S) ≤ ρ2(ξ�Nũ) ≤ ψC∧R(ξ�R). Combining
these results, we obtain that

F1−α(C ∧R�R�k�p)≤ F1−α
(
C∗
R�R�k�p

)
≤ MD = ρ2(ξ�S)≤ψC∧R(ξ�R)�
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and thus ϕ= 1. Hence whenever ϕ̃= 1, we get that ϕ= 1 as well, so ϕ̃≤ ϕ as
we wanted to show, and the size of the feasible test ϕ̃ is bounded above by α,
completing the proof. Q.E.D.

S4.2. Asymptotic Result

Consider a set of models M, a reduced-form parameter estimator θ̂n, and
covariance estimator Σ̂n satisfying Assumption 2 in the paper, which is re-
stated in Section S3 above. For any R such that R2 > χ2

k�1−α, let B̃R = {x :
‖x − Σ̂−1/2

n θ̂n‖ ≤ (1 + √
2)R} be the ball of radius (1 + √

2)R around the
reduced-form parameter estimate. Let

C̃R =
⎧⎨⎩R∧

[
1/
(

max
q̃∈Σ̂−1/2

n S̃n∩B̃R
κq̃
(
Σ̂−1/2
n S̃

))]
� if Σ̂−1/2

n S̃n ∩ B̃R �= ∅,

0� if Σ̂−1/2
n S̃n ∩ B̃R = ∅.

The modified version of our test uses the statistic nminθ∈S̃n(θ̂n−θ)′Σ̂−1
n (θ̂n−θ)

along with critical value F1−α(C̃R�R�k�p), where we denote by
F1−α(CR�R�k�p) the (1 − α)-quantile of the random variable ψC(R).

THEOREM S1: Under Assumption 2 with C in part (iv) replaced by Cn ∧ R
where Cn = 1/ supq∈Sn∩DR(0) κq(Sn), the testing procedure described above has uni-
form asymptotic size α:

lim sup
n→∞

sup
M∈M

P
{
nmin
θ∈S̃n

(θ̂n − θ)′Σ̂−1
n (θ̂n − θ) > F1−α(C̃R�R�k�p)

}
≤ α�

PROOF: The proof of this theorem combines the proofs of Theorem 2 and
Lemma 2. For the remainder of the proof, we suppress the index n for nota-
tional simplicity in Sn, S̃n, and Ŝn and the corresponding C’s.

We first restate the definition of C∗
R:

C∗
R =

{
R∧

[
1/
(

max
q∗∈S∗∩B∗

R

κq∗
(
S∗))]� if S∗ ∩B∗

R �= ∅,

0� if S∗ ∩B∗
R = ∅,

where B∗
R = {x : ‖x− ξ‖ ≤ (1 + √

2)R}. The quantity C∗
R differs from C̃R in two

respects: first, it relates to the curvature of S∗ = Σ−1/2S̃, while C̃R is connected
to the curvature of Σ̂−1/2

n S̃; second, the maximal curvature is found over the
ball B∗

R which is centered at ξ, while B̃R is a ball around Σ̂−1/2
n θ̂n. Lemma 2

in the paper states that, for any r > χ2
1−α�k and any manifold S such that the

assumptions of Lemma 2 hold, we have

P
{
ρ2(ξ�S) > F1−α

(
C∗
r � r�k�p

)}≤ α�(S14)
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We proceed along the same lines as the proof of Theorem 2 to obtain the
following inequality which holds for any r > χ2

1−α�k:

P
{
ρ(ξn� Ŝ) > F

1/2
1−α(C̃R�R�k�p)

}
(S15)

≤ P{ρ(ξ�S) > F 1/2
1−α
(
C∗
r � r�k�p

)− 2ε−βn
}

+ P{∣∣ρ(ξ� Ŝ)− ρ(ξ�S)∣∣> ε}+ P{‖ξ− ξn‖>βn
}

+ P{F 1/2
1−α(C̃R�R�k�p) < F

1/2
1−α
(
C∗
r � r�k�p

)− ε}�
As we argued in the proof of Theorem 2, the second and the third terms in
(S15) are uniformly asymptotically negligible. Due to statement (S14) and the
fact that ψC(r) has uniformly bounded density, the first term in (S15) can be
made uniformly asymptotically bounded by any value larger than α by way of
choosing small ε > 0, sinceβn → 0 uniformly over M. We are left only to prove
that for some choice of r, the last term in (S15) is uniformly asymptotically
negligible. We choose r = (1 − δ)R for small δ > 0.

First, we note that the distribution of random variable ψC(R), which is de-
fined in equation (8) in the paper, is uniformly continuous in R; thus, we can
always choose δ small enough that supC |F1−α(C�R�k�p)−F1−α(C� r�k�p)|<
ε/2. It is then enough to show that

lim
n→∞

sup
M
P
{
F 1/2

1−α(C̃R�R�k�p) < F
1/2
1−α
(
C∗
r �R�k�p

)− ε/2}= 0�

Given the monotonicity of F1−α(C�R�k�p), it is enough to show that, for any
ε2 > 0 (where we choose δ above so that δ < ε2/R), we have C̃R ≤ C∗

r +ε2 with
probability arbitrarily close to 1 uniformly over M in large samples.

Let q̃ = Aq∗, where A = Σ̂−1/2
n Σ1/2. Note that q∗ ∈ S∗ is equivalent to

q̃ ∈ Σ̂−1/2
n S̃. Now let q̃ ∈ B̃R, again defined as ‖q̃ − Σ̂−1/2

n θ̂n‖ ≤ (1 + √
2)R. We

have that q̃− Σ̂−1/2
n θ̂ =Aq∗ − ξn. Given that A uniformly converges to I and

ξ − ξn uniformly converges to zero, we have that AB∗
r ⊂ B̃R with probability

arbitrarily close to 1 in large samples, which in turn implies

max
q̃∈Σ̂−1/2

n S̃∩B̃R
κq̃
(
Σ̂−1/2
n S̃

)≥ max
q̃∈Σ̂−1/2

n S̃∩AB∗
r

κq̃
(
Σ̂−1/2
n S̃

)
�(S16)

In the proof of Theorem 2, we showed that, for q∗ ∈ S∗ and q̃=Aq∗ ∈ Σ̂−1/2
n S̃,

we have that |κq∗(S∗)−κq̃(Σ̂−1/2
n S̃)| converges to zero uniformly over points q∗

at which curvature is below a fixed constant and over M. Hence, asymptotically
(for any ε3 > 0) with probability arbitrarily close to 1, we have

max
q̃∈Σ̂−1/2

n S̃∩AB∗
r

κq̃
(
Σ̂−1/2
n S̃

)≥ max
q∗∈S∗∩B∗

r

κq̃
(
S∗)− ε3�
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Joining this last inequality with (S16) and the definitions of C∗
R and C̃R, we

arrive to the conclusion that for any positive ε2 and any probability arbitrar-
ily close to 1, there exists a sample size such that C̃R ≤ C∗

r + ε2 holds with at
least this probability uniformly over M. This concludes the proof of Theo-
rem S1. Q.E.D.

S5. PROOF OF LEMMA 3

For ease of reference, we repeat some definitions from Section 4.2 of the
paper. For J a subset of indexes {1� � � � �p}, let βJ denote the corresponding el-
ements of β, and let β−J denote the remaining elements. Let U−J and UJ(β−J)
denote {β−J : ∃βJ ∈ R

|J| s.t. (βJ�β−J) ∈U} and {βJ ∈ R
|J| : (βJ�β−J) ∈U)}, re-

spectively. Let J be a collection of subsets J.

LEMMA 3: Assume that θ̂ ∼ N(θ0�Σ), and that S∗ = {Σ−1/2θ(β)�β ∈ R
p} ⊆

R
k is a manifold passing through θ0. For J ∈ J and β−J ∈U−J , consider the |J|-

dimensional sub-manifold

S∗(β−J)= {Σ−1/2θ(βJ�β−J)�βJ ∈UJ(β−J)
}
�

For q ∈ S∗(β−J), let κq(S∗(β−J)) be the curvature of the |J|-dimensional sub-
manifold S∗(β−J). Define

C∗
J = inf

β−J∈U−J
inf

q∈S∗(β−J )

1
κq
(
S∗(β−J)

)
to be the inverse of the maximal curvature with respect to sub-parameter βJ only,
where the maximum is taken over all |J|-dimensional sub-manifolds S(β−J). As-
sume that, forβ−J�0, the true value ofβ−J , S(β−J�0)= {x−Σ−1/2θ0 : x ∈ S∗(β−J�0)},
satisfies Assumption 1 with C = C∗

J . Then the test that rejects the null if and only
if MD> F1−α(C∗

J �k� |J|) has size at most α. In fact, we can minimize the critical
values over J , and the test that rejects if and only if MD>minJ∈J F1−α(C∗

J �k� |J|)
has size at most α.

Critical values F1−α(C∗
J �k� |J|) may be smaller than those based on the full

parameter vector due to smaller curvature, or larger since |J| ≤ p. Note, how-
ever, that so long as J includes the full set of indices {1� � � � �p}, minimizing
critical values over J can only decrease our critical values relative to the base-
line procedure. Moreover, this modification may be freely combined with that
in the previous section, allowing us to simultaneously restrict attention to a
finite ball around θ̂ and calculate curvature over only a subset of parame-
ters.
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To formalize this statement, for J ∈ J we recall the following notation from
Section 4.3 of the text:

ZJ(β)= Σ−1/2 ∂

∂βJ
θ(β)� VJ�ij(β)= Σ−1/2 ∂2

∂βi ∂βj
θ(β)�

V ⊥
J�ij(β)= (I −ZJ(β)

(
ZJ(β)

′ZJ(β)
)−1
ZJ(β)

′)VJ�ij(β)=NZJ(β)VJ�ij�

where i� j ∈ J. The inverse of the maximal curvature over subset J and ball
BR(x̂)= {x : ‖x−Σ−1/2θ̂‖ ≤ (1 + √

2)R} is

C∗
J�R = inf

β∈U :Σ−1/2θ(β)∈BR(x̂)
inf

(w1�����w|J|)∈R|J|

∥∥ZJ(β)w∥∥2∥∥∥∥∥
|J|∑
i�j=1

wiwjV
⊥
ij (β)

∥∥∥∥∥
�

Lemma 3 follows from the following lemma, setting R= ∞.

LEMMA S2: Assume that θ̂∼N(θ0�Σ), and that S∗ = {Σ−1/2θ(β)�β ∈ R
p} ⊆

R
k is a manifold passing through θ0. Let S∗(β−J) and C∗

J�R be defined as above.
If, for all J ∈J , we have that S∗(β−J�0) satisfies Assumption 1 for CJ ∧R with CJ
as defined below, then the test that rejects if and only if

MD>min
J∈J

F1−α
(
C∗
J�R�R�k� |J|

)
has size not exceeding α.

PROOF: Let S = {Σ−1/2(θ(β)− θ0)�β ∈ U} ⊆ R
k be the infeasible manifold

passing through zero. Assume that β0 is such that θ(β0)= θ0.
Let us take any J ∈J and consider a |J|-dimensional sub-manifold

SJ = {Σ−1/2
(
θ(βJ�β−J�0)− θ0

)
�βJ ∈UJ(β−J�0)

}
�

where β−J�0 denotes the elements of the true structural parameter β0 corre-
sponding to indices not in set J. Let T0(SJ) be the tangent space to the man-
ifold SJ at zero, and let T⊥

0 (SJ) be the orthogonal complement to this space.
For each R> 0, let us define the cylinder DJ�R as a set of points whose orthog-
onal projections to T0(SJ) and T⊥

0 (SJ) both have length at most R. Define CJ
as CJ = 1/ supq∈SJ∩DJ�R κq(SJ).

Define J̌ ∈ arg minJ∈J F1−α(CJ ∧R�R�k� |J|), where J̌ may be selected arbi-
trarily when the argmin is nonunique, and let Č = CJ̌ ∧ R. Note that neither
J̌ nor Č is random. The value F1−α(Č�R�k� |J̌|) is an infeasible critical value
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which would control the size of the corresponding minimum-distance test. In-
deed, all the assumptions of Theorem 1 are satisfied and we have that almost
surely

MD = ρ2(ξ�S)≤ ρ2(ξ�SJ̌)≤ ρ2(ξ�NJ̌�ũ)≤ψJ̌�Č(ξ�R)�
The first inequality comes from the fact that the distance to a manifold (a set)
cannot be smaller than the distance to a sub-manifold (a subset). The second
inequality is the result of Theorem 1 applied to sub-manifold SJ̌ , and the last
comes defining

ψJ̌�C(ξ�R)=
{
ρ2(ξ�NJ̌�ũ)� if ‖ξ‖ ≤R,
‖ξ‖2� if ‖ξ‖>R,

whereNJ�ũ is defined analogously to setN in Theorem 1(b) and (c), redefining
x(1) and x(2) as projections on T0(SJ̌) and T⊥

0 (SJ̌), respectively.
The infeasibility of the critical value F1−α(Č�R�k� |J̌|) comes from the fact

that Č as well as CJ ’s have been calculated using infeasible (and nonrandom)
manifold S. The remainder of the argument proceeds much as the proof of
Lemma 2. In particular, we notice that if realization of random variable ξ is
such that ‖ξ‖> R, then the infeasible test rejects anyway. If instead ‖ξ‖ ≤ R,
then the feasible critical value is almost surely (weakly) larger than the infeasi-
ble one:

min
J∈J

F1−α
(
C∗
J�R�R�k� |J|

) ≥ min
J∈J

F1−α
(
CJ ∧R�R�k� |J|)

= F1−α
(
Č�R�k� |J̌|)�

Indeed, repeating the proof of Lemma 2 for each J ∈ J , we get an analog of
formula (S13): C∗

J�R ≤ CJ ∧R, and thus, due to monotonicity,

F1−α
(
C∗
J�R�R�k� |J|

)≥ F1−α
(
CJ ∧R�R�k� |J|)�

which implies the required statement. Q.E.D.

S6. PROOF OF LEMMA 1

LEMMA 1: Let the p-dimensional manifold S in R
k be defined by S =

{x ∈ R
k� g(x)= 0} for a continuously differentiable function g : Rk → R

k−p. As-
sume that zero belongs to S, and in particular that g(0k) = 0. For some C > 0,
let SC denote the connected component of S intersected with DC which contains
zero. Assume that ∂

∂x′g(x) is full rank for all x ∈ SC . If the maximal curvature over
SC is not larger than 1/C , then Assumption 1 stated in the paper holds. In partic-
ular, if T0(SC) is spanned by the first p basis vectors, then for any y(1) ∈ R

p with
‖y(1)‖<C , there exists a point x ∈ SC with x(1) = y(1).
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PROOF: Note that the implicit function theorem implies that SC is a p-
dimensional regular manifold. Further, S is complete by the continuity of g.
Without loss of generality, we assume that T0(S) is spanned by the first p basis
vectors. To prove Lemma 1, we proceed by induction on the dimension p of
the manifold.

Initial Step: p = 1 In this case, the manifold S is a curve. According to the
Hopf–Reinow Theorem (see, e.g., Section 8.2, Theorem 5 in Bishop and Crit-
tenden (2001)), any complete manifold is geodesically complete and, in par-
ticular, any geodesic curve that belongs to S can be indefinitely extended.
Let γ(t) ∈ S be a geodesic parameterized by arc length with γ(0) = 0 and
t ∈ [0�∞). Denote by v = γ̇(0) the tangent vector at zero, which is equal to
the first unit vector (1�0� � � � �0) up to sign. The proof of Lemma S1 implies
that, for t ≤ π

2
C such that γ(s) ∈ SC ∀s ≤ t, we have 〈v�γ(t)〉 ≥ C sin( t

C
). Thus,

we know that for some t̃ ≤ π
2C, 〈v�γ(̃t)〉 ≥ C . Notice that 〈v�γ(t)〉 is a contin-

uous function of t and 〈v�γ(0)〉 = 0. The intermediate value theorem gives us
that, for any y(1) ∈ [0�C], there exists a t∗ ∈ [0� t̃] such that the first coordinate
of γ(t∗) is 〈v�γ(t∗)〉 = y(1). Thus, there exists a point x ∈ SC with x(1) = y(1), and
the result of Lemma 1 holds for p= 1.

Induction Step: Suppose that the conclusion of Lemma 1 holds for all
p ≤ p∗ − 1. Here we prove that it holds for p = p∗ as well when k is held
fixed and k> p∗.

Consider some y(1) ∈R
p∗ with ‖y(1)‖<C , and note that y = ((y(1))′�0k−p∗)′ ∈

T0(SC). Let v ∈ T0(SC) be some unit vector such that v′y = 0. Define new func-
tion ǧ : Rk → R

k−p∗+1 as ǧ(x) = (g(x)′� v′x)′, and consider a new manifold
Š = {x ∈ R

k� ǧ(x) = 0}. Below, we check that ŠC , the connected part of the
new manifold laying strictly inside DC , is a regular p∗ − 1-dimensional mani-
fold. In particular, Lemma S3 below states that, for any x ∈ SC , vector v is not
perpendicular to the tangent space Tx(SC). Since the Jacobian of g at a point
x forms a basis of the space T⊥

x (SC) orthogonal to the tangent space Tx(SC),
this statement implies that the Jacobian of ǧ(x) is full rank at all x ∈ SC . Thus,
by the implicit function theorem, ŠC is a regular p∗ − 1-dimensional manifold,
satisfying the rank condition stated in Lemma 1.

From the definition of curvature, it is easy to see that the maximal curva-
ture of ŠC is less than or equal to 1

C
. Consequently, ŠC is a p∗ − 1-dimensional

manifold which satisfies all the conditions of Lemma 1. By the definition of ǧ,
y ∈ T0(ŠC). Thus, by the inductive assumption, there exists some x ∈ ŠC such
that x(1) = y(1). Since ŠC ⊂ SC , we have found an x ∈ SC such that x(1) = y(1).
Thus, Lemma 1 is proved. Q.E.D.

LEMMA S3: Under the Assumptions of Lemma 1, for any v ∈ T0(SC) with
‖v‖ = 1 and for any x ∈ SC , we have that v /∈ T⊥

x (SC) where T⊥
x (SC) is the lin-

ear space orthogonal to the tangent space Tx(SC).
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PROOF: Let γ : [0� t̄] → SC be a geodesic parameterized by arc-length con-
necting the points 0k and x: γ(0)= 0, γ(t̄)= x with t̄ ≤ π

2C. Note that we can
take t̄ ≤ π

2C since (a) we know that there exists a geodesic in SC connecting 0k
and x, and (b) from the proof of Lemma S1, we know we can travel at most
arc-length π

2C along any geodesic from 0k before exiting the interior of DC .
The idea of the proof is to choose a unit length vector in the space Tx(SC) and,
by considering parallel transport of v along the curve γ, to prove that this vec-
tor cannot be perpendicular to v. As such v cannot lie in the space orthogonal
to Tx(SC).

Let V (t) : [0� t̄] → R
k denote the (unique) parallel transport (or translation)

of vector v along curve γ. V satisfies the conditions V (0)= v, V (t) ∈ Tγ(t)(SC)
and

∇γ̇(t)V (t)≡ 0�

where ∇γ̇(t) denotes covariant differentiation in the direction γ̇(t). The con-
cepts of parallel transport and covariant differentiation are discussed in most
textbooks on Differential Geometry; see, for example, Bishop and Crittenden
(2001, Chapter 5).

Let II(v�w) be the second fundamental tensor (see Kobayashi and Nomizu
(1969, v. 2, Chapter 7)); then we have

d

dt
V (t)= ∇γ̇(t)V (t)+ II

(
γ̇(t)�V (t)

)= II
(
γ̇(t)�V (t)

)
�

Here the regular derivative d
dt

is decomposed into the covariate derivative
(which belongs to the tangent space) and the part orthogonal to the tan-
gent space, which by definition is the second fundamental form. The covariate
derivative is zero since V is a parallel transport.

Next, note that for any two vectors w�u ∈ Tx(SC) of unit length (‖w‖ =
‖u‖ = 1), we have∥∥II(w�u)

∥∥≤ κx(SC)≤ 1
C
�(S17)

Indeed, the second fundamental form is a bilinear transformation from
Tx(SC) × Tx(SC) to T⊥

x (SC). Let n = 1
‖ II(w�u)‖ II(w�u) and consider the bilin-

ear form h : Tx(SC) × Tx(SC)→ R defined by h(v1� v2) = 〈II(v1� v2)�n〉. Any
bilinear form is diagonalizable, so let v∗ be the unit eigenvector corresponding
to the largest eigenvalue. Then∥∥II(w�u)

∥∥= h(w�u)≤ h(v∗� v∗)= 〈II
(
v∗� v∗)� n〉

≤ ∥∥II
(
v∗� v∗)∥∥= κx

(
v∗� SC

)≤ κx(SC)�
where κx(v∗� SC) is defined in equation (4) of the paper.
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By the definition of parallel transport, ‖V (t)‖ ≡ 1, so as we vary t, V (t)
traces out a curve on the unit sphere Sph = {x ∈ R

k : ‖x‖ = 1}. Similarly to the
proof of Lemma S1, we can consider the arc-length of the curve V restricted
to the interval [0� t],

length(t)=
∫ t

0

∥∥II
(
γ̇(s)�V (s)

)∥∥ds ≤
∫ t

0

1
C
ds= t

C
�

where the inequality follows from (S17) applied to the vectors γ̇(t) and V (t)
(both belong to Tγ(t)(SC)) and the assumption that maximal curvature does not
exceed 1

C
. Thus, the angle between V (0) and V (t) is less than or equal to t

C
,

and 〈
V (0)�V (t̄)

〉≥ cos
(
t̄

C

)
�

Thus, for any t̄ ∈ [0� π2C), 〈v�V (t̄)〉 = 〈V (0)�V (t̄)〉 > 0. Since V (t̄) ∈ Tx(SC),
however, this immediately implies that v /∈ T⊥

x , as we wanted to show. Q.E.D.

S7. WEAK IDENTIFICATION AND NONLINEARITY

In this section, we note that sequences of models that are weakly identified
in the sense of Stock and Wright (2000) generate asymptotically nonlinear null
hypothesis manifolds. It is important to emphasize that this discussion is solely
for motivation and that the validity of our method does not rely on the Stock
and Wright (2000) embedding.

Consider a GMM model in which the moment function is additively separa-
ble in the data. In particular, assume that we observe a sample {xi} of size n
consisting of identically and independently distributed observations such that

E
(
h(xi)− θ(λ�β))= 0 for λ= λ0�β= β0�

Here θ0 = Eh(xi) is a k-dimensional reduced-form parameter, while λ and β
are pλ × 1 and pβ × 1 vectors, respectively, with pλ + pβ ≤ k. Assume that
(λ0�β0) is the unique point at which the moment condition is satisfied, so the
model is point identified. As in Stock and Wright (2000), we allow the function
θ(λ�β) to change as the sample size grows. In particular, let

θ(λ�β)= θn(λ�β)= M̃(λ)+ 1√
n
M∗(λ�β)�

where M̃(λ) and M∗(λ�β) are fixed twice-continuously-differentiable func-
tions with full-rank Jacobians. Stock and Wright (2000) labeled λ as strongly
identified and β as weakly identified, because information about β does not
accumulate as the sample size grows.
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Suppose we are interested in testing hypotheses about the structural param-
eters λ and β. Consider first the problem of testing the hypothesis H0 : β= β0

with strongly identified nuisance parameter λ. The appropriate minimum-
distance test statistic is

MD(β0)= min
λ
n

(
1
n

∑
i

h(xi)− θn(λ�β0)

)′

×Σ−1

(
1
n

∑
i

h(xi)− θn(λ�β0)

)
�

where Σ is the covariance matrix of random vector h(xi) (which we take to
be nonsingular) or a consistent estimate thereof. Under the null,
MD(β0) ⇒ χ2

k−pλ . Interested readers may find a full proof of this result in
Stock and Wright (2000); here, we instead show that this testing problem is
asymptotically equivalent to a testing problem with linear S.

Define ξn = √
nΣ−1/2( 1

n

∑
i h(xi)− θn(λ0�β0)). By the central limit theorem,

ξn ⇒ ξ∼N(0� Ik). Let the manifold Sn be the image of the function

mn(λ)= √
nΣ−1/2

(
θn(λ�β0)− θn(λ0�β0)

)
= √

nΣ−1/2
(
M̃(λ)− M̃(λ0)

)+Σ−1/2
(
M∗(λ�β0)−M∗(λ0�β0)

)
= √

nΣ−1/2
(
M̃(λ)− M̃(λ0)

)+O(‖λ− λ0‖
)
�

Then MD(β0) = ρ2(ξn� Sn). Under standard conditions for global identifica-
tion, the value of M̃(λ) is in a small neighborhood of M̃(λ0) only if λ is close
to λ0. Under such conditions, one can easily show that the range of values
of λ such that mn(λ) ∈ Sn ∩ B is of order 1/

√
n for any bounded set B con-

taining zero. Consequently, Taylor approximation shows that the intersection
Sn ∩ B converges to the intersection of B with the pλ-dimensional linear sub-
space S spanned by the columns of the Jacobian of M̃(λ) at point λ0. Infor-
mally, we may say that due to the factor

√
n in the equation for mn, as the

sample size increases, we zoom in on an infinitesimal neighborhood of the
true value λ0 of the strongly identified nuisance parameter. Any regular man-
ifold, however, is arbitrarily well approximated by its tangent space on an in-
finitesimal neighborhood of a regular point. As a result, it is easy to show that
ρ2(ξn� Sn)⇒ ρ2(ξ�S)∼ χ2

k−pλ .
Tests for hypotheses with weakly identified nuisance parameters behave

quite differently. In particular, the curvature of a null hypothesis with a weakly
identified nuisance parameter does not, in general, vanish asymptotically. To il-
lustrate this point, assume that the hypothesis of interest is H0 : λ= λ0, so that
β is a weakly identified nuisance parameter (one could equally well consider
cases where the parameters of interest and nuisance parameter both contain
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a mix of weakly and strongly identified components; this will somewhat com-
plicate the analysis, but will, in general, lead to similar conclusions). Again, we
consider the appropriate minimum distance statistic:

MD(λ0)= min
β
n

(
1
n

∑
i

h(xi)− θn(λ0�β)

)′

×Σ−1

(
1
n

∑
i

h(xi)− θn(λ0�β)

)
�

Define ξn = √
nΣ−1/2( 1

n

∑
i h(xi)−θn(λ0�β0)) as before and let Sn be the image

of

mn(β)= √
nΣ−1/2

(
θn(λ0�β)− θn(λ0�β0)

)
= Σ−1/2

(
M∗(λ0�β)−M∗(λ0�β0)

)
�

By construction, Sn is a pβ-dimensional manifold in k-dimensional Euclidean
space. In contrast to the strongly identified case, however, here Sn does not
change with the sample size so we may denote it by S. Hence, if Sn is nonlinear
for a given sample size, it remains nonlinear in the limit. As a result, we have
that

MD(λ0)= ρ2(ξn� S) ⇒ ρ2(ξ�S)�

where ξ ∼N(0� Ik) and S is a pβ-dimensional manifold but is not, in general,
a linear subspace.

S8. DSGE EXAMPLE

This section studies a highly stylized DSGE example which, unlike most
DSGE models used in practice, is analytically tractable. Using this model, we
show that insufficiently rich dynamics for unobserved processes give rise to
weak identification. We consider minimum-distance inference based on match-
ing the autocovariances θ of the observed series. We show that the link function
has the asymptotic representation

θn(β)=m(β1)+ 1√
n
m̃(β1�β2)+O

(
1
n

)
�

where β1 and β2 are four- and two-dimensional transformations of the struc-
tural parameter, respectively. Thus, the structural parameter β2 has only a
small effect on the reduced-form parameter θ, and is weakly identified in the
sense of Stock and Wright (2000) and thus impossible to estimate consistently.
It is important to note that we do not assume this asymptotic representation,
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but rather derive it as a consequence of the drifting-parameter asymptotics.
The key consequence from our perspective is that we can asymptotically lin-
earize the link function with respect to β1, but the nonlinearity in β2 remains
important even in large samples, rendering classical approaches to inference
inapplicable.

Assume we observe data on inflation πt and a measure of real activity xt for
periods t = 1� � � � � n. Suppose the dynamics of the data are described by the
following small-scale model based on Clarida, Gali, and Gertler (1999):⎧⎨⎩

bEtπt+1 + κxt −πt + εt = 0�
−[rt −Etπt+1 − ρ�at] +Etxt+1 − xt = 0�
λrt−1 + (1 − λ)φππt + (1 − λ)φxxt + ut = rt �

(S18)

The first equation is a Phillips curve, the second is a linearized Euler equation,
and the third is a monetary policy rule. We assume that the interest rate rt is
not observed. The unobserved exogenous shocks �at and ut are generated by
the following law:

�at = ρ�at−1 + εa�t; ut = δut−1 + εu�t;(S19)

(εt� εa�t� εu�t)
′ ∼ i.i.d. N(0�Σ); Σ= diag

(
σ2�σ2

a�σ
2
u

)
�

This is a small-scale DSGE model and contains elements of many more sophis-
ticated models used in practice. To solve the model analytically, we make sev-
eral further assumptions, taking λ= 0�φx = 0�φπ = 1

b
, and σ2 = 0. The model

then has six unknown scalar parameters: (b�κ�ρ�δ�σ2
u�σ

2
a). Under these as-

sumptions, the model (S18) was solved in Andrews and Mikusheva (2015). The
solution can be written as{

xt = B1ut +B2ρ�at�

πt = κ

1 − δbB1ut + κ

1 − ρbB2ρ�at�
(S20)

where B1 = − b
b+κ−δb and B2 = b

b+κ−ρb .
Andrews and Mikusheva (2015) showed that if the persistence of two shocks

is equal, δ= ρ, then the model is under-identified and only four-dimensional
function of the initial parameters can be uncovered from data. If δ= ρ+ γ√

n
,

then the model is weakly identified, where the concept of weak identification
is the same as in D. Andrews and Cheng (2012).

Specifications for shock dynamics in macroeconomic models are often ad
hoc. At the same time, identification of structural parameters often requires
that the dynamics of the data be sufficiently rich, which cannot be guaranteed
a priori. As in the model (S18), insufficiently rich dynamics may lead to identi-
fication failure for structural parameters. As we showed in Andrews and Miku-
sheva (2014), for sample sizes typical in macroeconomic research, a difference
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of 0�2 or less between ρ and δ leads to unreliable performance for conventional
asymptotics in the model (S18). To study the consequences of weak identifi-
cation, we consider a drifting sequence of parameter values, δn = ρ + γ√

n
for

bounded γ. Define

At = b

b+ κ− ρbρ�at and Ut = − b

b+ κ− δbut�

and α= κ
1−ρb , μ= γb

1−ρb . Then (S20) can be rewritten as⎧⎪⎨⎪⎩
xt =At +Ut�

πt = αAt + α

1 − μ√
n

Ut�

where At and Ut are independent AR(1) processes with autoregressive coef-
ficients ρ and ρ + γ√

n
, respectively. For analytic tractability, we reparameter-

ize from the initial β = (b�κ�ρ�γ�σ2
u�σ

2
a) to β̃ = (ρ�γ�α�μ�Σa�Σu), where

Σa = Var(At) = ( b
b+κ−ρb)

2 ρ2

1−ρ2σ
2
a , Σu = Var(Ut) = ( b

b+κ−δb )
2 1

1−δ2σ
2
u . This repa-

rameterization is one-to-one if 0< ρ�δ�b < 1, γ �= 0.
We study inference based on matching the contemporaneous covariances

and first-order autocovariances of (xt�πt). We choose the reduced-form pa-
rameter θ in such a way that its estimator θ̂ is consistent and

√
n-asymptotically

normal. Note that for reasonable estimators for the variance of θ̂, our measure
of curvature and our proposed critical values are all invariant to linear trans-
formations of the reduced-form parameters. Further, note that while, for any
sample size, the covariance matrix for the natural autocovariance estimator is
full rank almost surely, it is degenerate in the limit. To simplify the analysis,
we eliminate this degeneracy by taking a linear transformation of the reduced-
form parameters, and in particular define α= α0 + ψ√

n
and

yt =
√
n(πt − α0xt)

= ψAt +Ut

√
n

⎛⎜⎜⎝α0 + ψ√
n

1 − μ√
n

− α0

⎞⎟⎟⎠
= ψAt +Ut

(
ψ

1 − μ√
n

+ α0μ

1 − μ√
n

)
�

By the invariance of the minimum-distance test (using conventional autoco-
variance estimators) to linear transformation of the reduced-form parameters,
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the finite-sample distribution of the test derived using the linearly transformed
moment condition is the same as that of the original minimum-distance statis-
tic. This transformation is made purely to simplify the derivations, and the fact
that the transformation depends on the true parameter value α0 is irrelevant.
Following this transformation, we can see that the minimum-distance statistic
depends on the moments

θn =

⎛⎜⎜⎜⎜⎜⎜⎝

Var(xt)
Var(yt)

cov(xt� yt)
cov(xt� xt−1)

cov(yt� yt−1)

cov(xt� yt−1)

⎞⎟⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Σa +Σu

ψ2Σa +
(

ψ

1 − μ√
n

+ α0μ

1 − μ√
n

)2

Σu

ψΣa +
(

ψ

1 − μ√
n

+ α0μ

1 − μ√
n

)
Σu

ρΣa +
(
ρ+ γ√

n

)
Σu

ψ2ρΣa +
(

ψ

1 − μ√
n

+ α0μ

1 − μ√
n

)2(
ρ+ γ√

n

)
Σu

ψρΣa +
(

ψ

1 − μ√
n

+ α0μ

1 − μ√
n

)(
ρ+ γ√

n

)
Σu

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

�

One can easily check that the natural estimate of θn by the corresponding sam-
ple averages is consistent and

√
n-asymptotically normal with a consistently

estimable covariance matrix under mild parameter restrictions (e.g., ruling out
unit roots). Further, the asymptotic variance matrix is bounded and positive
definite provided we bound Σa and Σu above and below. Under these condi-
tions, one can show that for any sequence of constants cn → ∞,

inf
‖β̃‖≥cn

(
θ̂n − θn(β̃)

)′
Σ̂
(
θ̂n − θn(β̃)

)→p ∞�

Thus, to study the asymptotic behavior of minimum-distance statistics, it suf-
fices to restrict attention to β̃ lying in bounded neighborhoods.
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The link function between the reduced-form parameter θn and the struc-
tural parameters β = (b�κ�ρ�γ�σ2

u�σ
2
a) depends strongly only on a four-

dimensional function of β, while the dependence on the other two directions is
weak. To be exact, there exists a reparameterization (β1�β2) such that β1 and
β2 are four- and two-dimensional functions of β, respectively, and the struc-
tural model implies

θn(β)=m(β1)+ 1√
n
m̃(β1�β2)+O(1/n)�(S21)

Link functions of this form are often described as the Stock and Wright (2000)
embedding. It is important to note, however, that we do not assume this em-
bedding, but rather find that it emerges naturally from the drifting parameter
framework.

To establish (S21), note that

θn =m(β̃)+ 1√
n
m̃(β̃)+O(1/n)�

uniformly over bounded neighborhoods, where

m(β̃)=

⎛⎜⎜⎜⎜⎜⎜⎝

Σa +Σu
ψ2Σa + (ψ+ α0μ)

2Σu
ψΣa + (ψ+ α0μ)Σu

ρ(Σa +Σu)
ρ
(
ψ2Σa + (ψ+ α0μ)

2Σu
)

ρ
(
ψΣa + (ψ+ α0μ)Σu

)

⎞⎟⎟⎟⎟⎟⎟⎠ ;

m̃(β̃)=

⎛⎜⎜⎜⎜⎜⎜⎝

0
2(ψ+ α0μ)

2μΣu
(ψ+ α0μ)μΣu

γΣu
(ψ+ α0μ)

2Σu(γ+ 2ρμ)
(ψ+ α0μ)Σu(γ+ ρμ)

⎞⎟⎟⎟⎟⎟⎟⎠ �

It is easy to see that m(β̃) depends only on a four-dimensional function of β̃:
β1 = (ρ�S = Σa + Σu�Z = ψ2Σa+(ψ+α0μ)

2Σu
Σa+Σu �W = ψΣa+(ψ+α0μ)Σu

Σa+Σu ). This picks out
the “strongly identified” directions in the parameter space: note that we can
obtain

√
n consistent estimates of these parameters. However, there is a two-

dimensional surface in the parameter space along which we can vary the pa-
rameters while affecting only m̃. We will parameterize this surface in terms
of β2, and show that the manifold obtained from m̃(β1�β2) for fixed β1 and
different values of β2 is nonlinear.
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Note that the function m does not depend on γ, so we can take this to
be one of the parameters in β2. The other parameter can be chosen as
ς = α0μ

Σu
Σa+Σu . In particular, the reparameterization from (ψ�ρ�γ�μ�Σa�Σu)

to (ρ�S�Z�W �γ� ς) is one-to-one, but them function depends only on the first
four parameters of the latter parameterization. From the definition of W , we
have ψ=W − ς. From the definition of Z,

ψ2 + 2ςψ+ α0μς =Z� or μ= Z −W 2 + ς2

ςα0
�

and finally, from the definition of ς,

Σu = S ς

α0μ
= S ς2

Z −W 2 + ς2

and Σa = S −Σu.
Rewriting m̃ using the new parameterization, we obtain

m̃(β̃)=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

2
S
(
Z −W 2 +W ς)2

α0ς

S
(
Z −W 2 +W ς)

α0

γS
ς2

Z −W 2 + ς2
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�

For fixed ρ�S�Z�W , the two-dimensional manifold obtained by allowing γ,
ς to vary is nonlinear.

Changes in β2 = (γ� ς) produce changes in θn of magnitude comparable to
the standard deviation of θ̂, which makes it impossible to consistently esti-
mate β2, while β1 can be estimated precisely in large samples. In the literature,
it is common to call the parameter β1 “strongly identified” in this setting, while
β2 is called “weakly identified.” The key fact for us is that as the sample size
increases, we can linearize link function with respect to β1 with asymptotically
negligible error, while the same is not true for β2. This can be viewed as a re-
flection of the fact that the minimum-distance estimator of β1 is close to the
true parameter value asymptotically, and thus we can guarantee that the re-
mainder term in a first-order Taylor expansion is asymptotically negligible. By
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contrast, the minimum-distance estimator ofβ2 is not consistent forβ2, making
Taylor approximation inaccurate. Thus, minimum-distance statistics for testing
hypotheses concerning a subset of β1 or the hypothesis of correct specification
of the DSGE model will have nonstandard asymptotic distributions.

This example also highlights some features of the weak identification em-
beddings currently studied in the literature. In the present context, we can label
particular functions of the parameters (β1 and β2) as “strongly” and “weakly”
identified, respectively, but these functions relate to the original structural
parameters in rather complicated ways. The “strength of identification,” or
more precisely, the quality of conventional asymptotic approximations, de-
pends heavily on the specific hypothesis tested. Further, existing weak iden-
tification approximations are silent about what sample size is needed to guar-
antee a given accuracy for conventional asymptotic approximations, even when
we know that the limiting distribution of a test is standard. Finally, we can see
that even in this simple, highly stylized model, deriving the weakly and strongly
identified directions in the parameter space is messy, and such derivations will
be difficult if not impossible in richer, more empirically relevant models.
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