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IN THIS SUPPLEMENT, we provide several supporting results that are used in the main pa-
per. In Section S.1, we provide a general local expected-utility result for mixture-averse
preferences that nests Proposition 1 in the main paper as a special case. In Section S.2,
we establish the relationship between mixture-averse preferences and several prominent
non-expected-utility theories, including rank-dependent utility, betweenness, disappoint-
ment aversion, and cautious expected utility. Section S.3 describes the implications of
preference for diversification for insurance demand, and discusses how preference for
diversification is equivalent to risk aversion for either rank-dependent utility or any pref-
erence that is quasiconcave in probabilities. Section S.4 establishes the existence of a
value function for the optimal risk attitude representation. Proofs are contained in Sec-
tion S.5.

S.1. LOCAL EXPECTED-UTILITY ANALYSIS

When applying the optimal risk attitude model, one important consideration is how
properties of the set of transformations ® in the representation relate to properties of the
corresponding risk preference. In this section, we show that the certainty equivalent for an
ORA representation respects a stochastic order if and only if each of the transformations
¢ € ® also respects this order. This result is similar in spirit to the local expected-utility
analysis introduced in the influential paper by Machina (1982). After presenting the main
theorem of this section, we will make precise connections to Machina’s results and the
many generalizations and extensions that appeared in the literature that followed. We
will also describe how the expected-utility core recently developed by Cerreia-Vioglio,
Maccheroni, and Marinacci (2017) can be related to the ORA representation.

The main result of this section applies to any convex utility representation on a set
of lotteries A(X), where X is any compact metric space. Of particular interest is the
special case where X is an interval, for example, a set of monetary outcomes or the set
of continuation values for an ORA representation. We first state a general definition of
stochastic orders generated by sets of functions.

DEFINITION S.1: Let C be a set in the space of real-valued continuous functions C(X)
for some compact metric space X. The order >. on A(X) generated by C is defined by

pEenm e /¢(X)dM(X)Z/¢(X)dn(X), v eC.

A function W : A(X) — R is monotone with respect to the order >. if u >, n implies
W(w) = W(n).
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This definition includes as special cases all of the stochastic orders typically used in
economics. For example, if X is a subset of the real numbers, the first-order stochastic
dominance order is generated by taking C to be the set of all nondecreasing continuous
functions; the second-order stochastic dominance order is generated by taking C to be the
set of all nondecreasing and concave continuous functions; and so on.

For any set C of continuous functions in C(X), let {C) denote smallest closed convex
cone containing C and all the constant functions, that is, (C) is the closed convex hull of
the set of all affine transformations of functions in C. It is easy to see that the stochastic
order generated by (C) is the same as the stochastic order generated by C. The following
result shows that a convex function respects the order generated by a set C if and only if
it can be expressed as the supremum of some subset of (C).

THEOREM S.1: Suppose W : A(X) — R for some compact metric space X, and suppose
C C C(X). The following are equivalent:

1. W is lower semicontinuous in the topology of weak convergence, convex, and monotone
with respect to the order >.

2. There exists a set of functions ® C (C) such that

Wp) = SUP/ ¢ (x)du(x). (S.1)

ped

It is a standard result that a convex and lower semicontinuous function can be expressed
as the supremum of a set of linear functions (Aliprantis and Border (2006, Theorem 7.6)).
The new content of Theorem S.1 is that each of the linear functions in this set respects
the same stochastic order as the original convex function.

Proposition 1 in the main text, which we now restate for convenience, is the special case
of Theorem S.1 where X = [a, b] and the stochastic order is either first-order stochastic
dominance (FOSD) or second-order stochastic dominance (SOSD).

COROLLARY S.1: Suppose W : A([a, b]) — R is lower semicontinuous in the topology of
weak convergence and convex. Then:

1. W is monotone with respect to FOSD if and only if it satisfies Equation (S.1) for some
collection ® of nondecreasing continuous functions ¢ : [a, b] — R.

2. W is monotone with respect to SOSD if and only if it satisfies Equation (S.1) for some
collection ® of nondecreasing and concave continuous functions ¢ : [a, b] - R.

Corollary S.1 is a variation of the main local expected-utility results from Machina
(1982). Machina’s approach was to assume Fréchet differentiability of the function W
and relate the global properties of W to the local properties of its derivative. A number
of papers have since explored relaxations of this differentiability assumption. Most re-
cently, Cerreia-Vioglio, Maccheroni, and Marinacci (2017) showed that Machina’s results
can be extended to any Gateaux differentiable utility function and any integral stochastic
order (as in Definition S.1). Since the ORA representation is in general not differentiable,
these results will not suffice for the analysis in this paper. Theorem S.1 and Corollary S.1
complement the existing literature by showing that one can relax differentiability to the
much weaker requirement of lower semicontinuity when dealing with convex functions.

'Local expected-utility results for convex functions have also been obtained elsewhere, but under the as-
sumption of differentiability or else stronger forms of continuity. For example, Machina (1984) considered
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Theorem S.1 also provides a way of relating the ORA representation to the expected-
utility core analyzed by Cerreia-Vioglio (2009), Cerreia-Vioglio, Dillenberger, and Ortol-
eva (2015), and Cerreia-Vioglio, Maccheroni, and Marinacci (2017).?

DEFINITION S.2: The expected-utility core of a function W : A([a, b]) — R is the binary
relation > on A([a, b]) defined by

wen = W(a,u—}—(l—a)v)ZW(an—I—(l—a)v), Ya € (0, 1],VveA([a,b]).
It follows immediately from this definition that &> is consistent with ¥ in the sense that
pn = W z=Wm).

If W satisfies independence,’ then the converse is also true and hence > is a complete and
transitive binary relation on A([a, b]) that is represented by W. However, if W does not
satisfy independence, then > is necessarily incomplete. As discussed in Cerreia-Vioglio,
Maccheroni, and Marinacci (2017), the expected-utility core > is the largest relation that
is consistent with W and satisfies independence.

Applying the results of Cerreia-Vioglio, Maccheroni, and Marinacci (2017) together
with Theorem S.1 gives the following corollary.*

COROLLARY S.2: Suppose W : A([a, b]) — R is continuous in the topology of weak con-
vergence and convex. Let > denote the expected-utility core of W. Then:
1. There exists a collection of continuous functions C such that >==>., that is,

b b
pEn = /¢(X)dM(X)Z/ $(x)dn(x), V¢ eC.

2. If a collection of continuous functions ® satisfies Equation (S.1) for W, then C C (®).
3. There exists a collection of continuous functions ®™ that satisfies Equation (S.1) for W
and satisfies (C) = (®™).

Parts 1 and 2 of Corollary S.2 come from Cerreia-Vioglio, Maccheroni, and Marinacci
(2017, Lemma 1). For part 3, note that u >, n implies W(u) > W (7). Therefore, Theo-
rem S.1 implies there exists a set @ C (C) that satisfies Equation (S.1).° Note that parts 2
and 3 of this result together imply that (&™) C (®) for any set of continuous functions ®
that satisfies Equation (S.1). Thus the expected-utility core provides a way of identifying
a set of transformations that is minimal in terms of the associated set of expected-utility
preferences.

convex and Fréchet differentiable functions and therefore was able to apply many results from his prior work
(Machina (1982)). Chatterjee and Krishna (2011) relaxed the assumption of differentiability and obtained
several local expected-utility results for concave and Lipschitz continuous functions.

>The expected-utility core is the risk counterpart of the revealed unambiguous preference relation studied
by Ghirardato, Maccheroni, and Marinacci (2004), Cerreia-Vioglio et al. (2011), and Ghirardato and Sinis-
calchi (2012).

3Say that W satisfies independence if W (w) > W (n) implies W (au + (1 — a)v) > W(an + (1 — a)v).

*I thank David Dillenberger for suggesting the connection to the expected-utility core and Simone Cerreia-
Vioglio for detailed comments about how to formalize this result.

STheorem 1 in Cerreia-Vioglio, Maccheroni, and Marinacci (2017) provides a similar result to part 3 of this
corollary for Gateaux differentiable functions: If W is Gateaux differentiable, then (VW) = (C). The ORA
representation is in general not differentiable, and hence the connection between the dual representation of
W and the set C representing the expected-utility core instead relies on Theorem S.1.
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S.2. RELATED NON-EXPECTED-UTILITY PREFERENCES

In this section, we discuss the relationship between the optimal risk attitude repre-
sentation and other non-expected-utility theories. The conclusions of this discussion are
summarized in Figure 1 of the paper.

S.2.1. Probability Weighting and Rank-Dependent Utility

An important alternative to expected utility is the rank-dependent utility model (see, e.g.,
Quiggin (1982), Yaari (1987), Segal (1989)). For a probability measure u € A([a, b]), the
certainty equivalent for rank-dependent utility takes the form

W () = h-l( / h(x)d(gom(x)),

where £ : [a, b] — R is continuous and strictly increasing, F,, is the cumulative distribu-
tion function for the measure u, and g : [0, 1] — [0, 1] is continuous, strictly increasing,
and onto. The function g in the representation permits distortions of the cumulative prob-
abilities. If g(p) = p for all p € [0, 1], then the expression above reduces to the certainty
equivalent for expected utility. However, when g(F,(x)) > F,(x) for some x, the prob-
ability of obtaining an outcome below x is distorted upward, capturing the intuition that
low-probability bad events may be overweighted. Reweighting of probabilities also played
an important role in the prospect theory of Kahneman and Tversky (1979) and Tversky
and Kahneman (1992).

Chew, Karni, and Safra (1987) showed that a rank-dependent utility preference is risk
averse (dislikes mean-preserving spreads) if and only if both /4 and g are concave. In this
case, the certainty equivalent I is a convex function (see Wakker (1994, Observation 2) or
Chatterjee and Krishna (2011, Proposition 4.6)). The argument is as follows: For concave

&
g(Faqufa)n(x)) = g(aF“(x) + - a)Fn(x)) = ag(F“(x)) + 1 - a)g(Fn(x))

for all x € [a, b]. Since A is increasing, this FOSD relationship between the transformed
distributions implies

/h(x)d(goFmaa)n)(X)Ea/h(x)d(goF,L)(x)Jr(l—a)/h(X)d(gan)(x).

Finally, concavity of 4 implies 2! is convex, which yields the convexity of W. Since any
recursive model with a convex certainty equivalent can be expressed as an ORA repre-
sentation by Theorem 1 of the paper, this shows that Epstein—Zin preferences with a
risk-averse RDU certainty equivalent are a special case of mixture-averse preferences.

The kinked transformation example from the main text is one of the special cases of
the ORA representation that overlaps with recursive RDU. The following proposition
formalizes the connection.

PROPOSITION S.1: Fix 6 € [0, 1] and define ¢ (x|, 0) as in Equation (8) of the main text:

y+A+0)(x—vy) ifx=<y,

PO = =y Fx>y.
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Then, for any u € A([a, b)),

sup [ & (xly, ) du(x) = / xd(goF,)(x),

yeR
where

A+ 0)a fora<1/2,
gla)= {(1 —O)a+0 fora>1/2.

We close this section by pointing out another useful connection stemming from the re-
lationship between mixture-averse preferences and RDU. In a recent paper, Masatlioglu
and Raymond (2016) found a somewhat surprising relationship between rank-dependent
utility and a model of endogenous reference points developed by Kdészegi and Rabin
(2006, 2007). They showed that whenever the choice-acclimating personal equilibrium
(CPE) concept for reference point formation from Kdészegi and Rabin (2006, 2007) leads
to a risk preference that respects first-order stochastic dominance, that preference con-
forms to rank-dependent utility. The implication for our model is that any CPE represen-
tation that respects both FOSD and SOSD also satisfies mixture aversion.

S.2.2. Disappointment Aversion, Betweenness, and Quasiconcave Risk Preferences

Another important class of non-expected-utility preferences are the betweenness prefer-
ences developed by Chew (1983) and Dekel (1986). One of the more widely used special
cases of betweenness preferences is the disappointment aversion model of Gul (1991).
Grant, Kajii, and Polak (2000, Lemma 2) showed that any betweenness preference that
has a convex representation must be an expected-utility preference. Thus, in a dynamic
setting, the only overlap of recursive betweenness preferences and mixture-averse prefer-
ences is EZKP expected utility.

Another intriguing related model is the cautious expected utility representation recently
proposed by Cerreia-Vioglio, Dillenberger, and Ortoleva (2015). The certainty equiva-
lent for this model is the minimum of a set of expected-utility certainty equivalents. This
representation has a nontrivial intersection with betweenness preferences that includes
risk-averse disappointment aversion preferences. However, since cautious expected util-
ity preferences are quasiconcave with respect to lotteries, they only overlap with mixture-
averse preferences in the case of linear indifference curves, that is, betweenness pref-
erences. Therefore, by the previous observations, the intersection of recursive cautious
expected utility and mixture-averse preferences is again EZKP utility.

S.3. PREFERENCE FOR DIVERSIFICATION

In this section, we consider random variables defined on some fixed probability space.®
We will use X to denote a random variable and u; to denote the distribution of that ran-
dom variable. As stated in the paper, a risk preference with a certainty equivalent W
satisfies preference for diversification if it is quasiconcave with respect to random vari-
ables.

®Note that we are presuming that the probability measure is known, and therefore we are still working within
a framework of objective risk, as opposed to subjective beliefs.
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DEFINITION S.3: A certainty equivalent W : A([a, b]) — [a, b] exhibits preference for
diversification (PD) if, for any random variables X and y and any « € [0, 1],

Wiue) = W) = W(ai+ra-ay) = W (s).

Preference for diversification is a useful property of a model of risk preferences for
several reasons: Together with homotheticity of preferences, PD permits representative
agent analysis; it also implies the sufficiency of first-order conditions in maximization
problems (e.g., portfolio choice). However, while each of these arguments supports PD as
enhancing the analytic tractability of economic models, neither speaks to its descriptive
realism, and in the paper we observed several compelling reasons for relaxing this con-
dition. In Section 4.2 of the paper, we showed that relaxing PD permits heterogeneity in
stock market participation even when agents have identical preferences. In this section,
we show that obtaining the properties of demand for insurance discussed in Section 4.1
of the paper also requires violating PD. We then discuss the connection between PD and
risk aversion.

S.3.1. Preference for Diversification and Insurance Demand

Suppose, as in Example 3 from Section 4.1 of the main text, that an individual has
wealth w and faces a loss of amount L with probability . Let P(y) denote this individ-
ual’s maximum willingness to pay (reservation price) for y € [0, L] dollars of insurance
coverage paid in the event of a loss. The following property relates the willingness to pay
for additional insurance to the existing level of coverage.

DEFINITION S.4: An individual has a nonincreasing marginal willingness to pay for in-
surance coverage if P(y + ¢€) — P(y) is nonincreasing in y for every y, ¢ > 0 such that
y+e<L.

In Section 4.1 of the paper, we argued that the above definition may be overly restrictive
and that violations of this property may better match observed insurance choices—people
often accept large increases in premiums in order to reduce their insurance deductibles
(Sydnor (2010)). We also showed that the ORA representation can permit a marginal
willingness to pay for additional insurance coverage that increases at some levels of cov-
erage (while still maintaining risk aversion). In contrast, the following result shows that
any risk preference that satisfies preference for diversification must exhibit nonincreasing
marginal willingness to pay for insurance.

PROPOSITION S.2: Ifthe certainty equivalent W for an individual’s risk preferences exhibits
preference for diversification, then this individual has a nonincreasing marginal willingness to
pay for insurance coverage.

The implications of Proposition S.2 are immediate in the case of expected utility. If an
individual does not have a nonincreasing marginal willingness to pay for insurance cov-
erage, then she must violate preference for diversification. For an expected-utility maxi-
mizer, preference for diversification is satisfied if and only if her Bernoulli utility function
is concave. Thus, in order to have a marginal willingness to pay for insurance coverage
that increases at some levels of coverage (e.g., near full coverage), the individual must
violate risk aversion. The next section shows that this conclusion also extends to many
non-expected-utility models.
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S.3.2. Preference for Diversification and SOSD

The connection between preference for diversification and risk aversion (monotonicity
with respect to SOSD) has been well documented for a number of models. Dekel (1989)
showed that preference for diversification implies risk aversion for any risk preference.
He also showed that the converse is true for preferences that are quasiconcave in prob-
abilities. The following proposition summarizes his result as well as related observations
for rank-dependent utility from Chew, Karni, and Safra (1987).

PROPOSITION S.3:

1. (Dekel (1989)) If W is quasiconcave in probabilities and respects SOSD, then it satisfies
preference for diversification.

2. (Chew, Karni, and Safra (1987)) If W is a rank-dependent utility certainty equivalent
and it respects SOSD, then it satisfies preference for diversification.”

Note that Proposition S.3 applies to all of the risk preferences discussed in Section S.2.
Thus, other than our model of mixture-averse preferences, most of the non-expected-
utility preferences considered in the literature are encompassed by this result. The only
prominent theory that we are aware of that is not covered by this result is the quadratic
utility model of Chew, Epstein, and Segal (1991). To our knowledge, it remains an open
question whether quadratic utility can violate PD while still respecting SOSD.

S.4. EXISTENCE OF A VALUE FUNCTION

The value function V' is included explicitly in the definition of the ORA representation.
However, it may be desirable to obtain such a value function from the other parameters
(u, @, B) of the representation. Using similar techniques to Epstein and Zin (1989), the
following result shows that this is possible.®

PROPOSITION S.4: Suppose B € (0,1) and u : C — R is a continuous and nonconstant

function. Let [a,b] = u(C) where —oo < a < b < +00,” and let a = ﬁ, b= ﬁ. Let ®
be any collection of continuous and nondecreasing functions ¢ : [a, b] — R that satisfies
SUP4ep (X)) = x for all x € [a, b]. Then, there exists a bounded and lower semicontinuous

function V' : D — [a, b] that satisfies Equation (3) in the paper, that is,

V(c,m)=u(c)+ Bsup | &(V (¢, m))dm(e,m),

$ed JD

forall (c,m) € D.

For the ORA representation to be well-defined, the functions ¢ € ® must be defined
everywhere on the set V(D). However, if I/ is not known and needs to be determined
from the other parameters of the representation (u, ®, B8), then the relevant domain of
the functions ¢ € ® is not known a priori. Nonetheless, Proposition S.4 shows that the

"Chew, Karni, and Safra (1987) assumed Gateaux differentiability in their result. However, Grant, Kajii,
and Polak (2000, Lemma 3) showed that the same result holds true without any differentiability assumptions.

8 As with most other recursive non-expected-utility models, it is not possible to apply the standard techniques
from Blackwell (1965) to prove existence of a value function.

9Since C is compact and connected and u is continuous, u(C) is a closed and bounded interval in R.
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range of I/ can be determined from the range of u, and hence it suffices to consider
functions ¢ defined on this interval [a, b]. In particular, if u > 0 (u < 0, respectively),
then it suffices to define each ¢ on R, (R_, respectively).

There are two noticeable gaps in Proposition S.4. First, it does not ensure the unique-
ness of the function V. Second, it does not ensure that the function V' is continuous, only
lower semicontinuous. There are similar limitations to the existence results in Epstein
and Zin (1989). Since resolving these issues is not central to the analysis in this paper,
obtaining a stronger version of this result is left as an open question for future research.
However, it is worth noting that in the case of homothetic preferences, it is possible to
ensure both uniqueness and continuity of the value function using recent results from
Marinacci and Montrucchio (2010).

S.5. PROOFS
S.5.1. Proof of Theorem S.1

Theorem S.1 will be proved by means of a separation argument. Since >.=>,, it is
without loss of generality to assume that C is a closed convex cone in the space of contin-
uous functions C(X) that contains the constant functions. Let ca(X) denote the set of all
signed (countably-additive) Borel measures of bounded variation on the compact metric
space X. Consider the following subset of ca(X):

KE{,u,eca(X):/d)(x)d,u(x)zOforevery¢>eC}. (S.2)

Note that K is a cone in ca(X). In addition, since the constant functions identically equal
to 1 and —1 are both in C, u(X) =0 for all u € K. The following lemma makes some
other simple observations about K that will be used in the proof of the proposition.

LEMMA S.1: The set K defined in Equation (S.2) is a weak* closed convex cone in ca(X),
and for any ., n € A(X),

p=mn <= pn—mek.

PROOF: For any ¢ € C, the set

K,= {,u,eca(X):/¢(x)d,u(x) 20}

is weak® closed and convex. Since K = (1), Ky is the intersection of closed and con-
vex sets, it is also closed and convex. The equivalence in the displayed equation follows
directly from the definition of >. QE.D.

Continuing the proof of Theorem S.1, it is immediate that 2 implies 1. To prove that
1 implies 2, it suffices to show that for any u € A(X) and any « < W(u), there exists
a function ¢, , € C such that @ < [ ¢, .(x)du(x) and [ ¢, .(x)dn(x) < W(n) for all
1n € A(X). Then, letting

D={¢..:pnerX),a<W),
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it follows directly that

W) = SUP/ b (x)du(x).
ped
Fix any u € A(X) and any « < W (). The proof is completed by showing the existence
of a function ¢, , as described above. This is accomplished using a separation argument
similar to standard duality results for convex functions (see, e.g., Ekeland and Turnbull
(1983) or Phelps (1993)). The epigraph of W is defined as follows:

epiW) ={(n,1) e A(X) xR:t>=W(n)}.

Since W is convex with a convex domain A(X), epi(W) is a convex subset of ca(X) x R.
Moreover, as a weak™ lower semicontinuous function with a weak* closed domain, it is a
standard result that epi(W) is a closed subset of ca(X) x R." Now, define a set K,, , as
follows:

Kuo=({n}+K) x{a}={pn+v:veK}x{a).

By Lemma S.1, K,, , is a closed and convex subset of ca(X') x R. Establishing the following
claim allows the separating hyperplane theorem to be applied.!!

CLAIM S.1: For o < W (), the set epi(W) — K, , is convex, and (0, 0) ¢ cl(epi(W) —
K,.).

PROOF OF CLAIM S.1: First, note that K, , Nepi(W) = . To see this, take any (7, t) €
K, .. Then, by definition, t =a and n — n € K. If n ¢ A(X), then it is trivial that (7, t) ¢
epi(W). Alternatively, if n € A(X), then Lemma S.1 implies > w. In this case, W (n) >
W(u) > a=t, so again (n, t) ¢ epi(W). Thus, K, , and epi(W) are disjoint, closed, and
convex sets.

Since K, , and epi(W) are convex and disjoint, epi(W) — K,, , is convex and (0, 0) ¢
epi(W) — K, .. Since W is weak™ lower semicontinuous and has a weak* compact domain
A(X), it attains a minimum value W. Therefore, epi(W) can be written as the union of
the following two sets:

Bi=epiW) N (AX) x [W,Ww)])={(m, ) e AX) x R: W () > 1> W(n)},
By =epi(W) N (A(X) x [W (), +00)) ={(n, 1) € AX) x R:t > max{W(n), W(uw)}}.

As the intersection of a closed set and a compact set, B; is compact, and as the intersection
of two closed sets, B, is closed. Since the difference of a compact set and a closed set is
closed, B, — K, is closed. Since B; — K, , C epi(W) — K, ,, this set does not contain
(0,0). Also note that for every (v,t) € B, — K, ,, it must be that t > W(u) — a > 0.
Therefore, B, — K, . C ca(X) x [W(u) —a, +00), a closed set not containing (0, 0). Thus,
epi(W) — K, is contained in the union of the closed sets B; — K, , and ca(X) x [W () —
a, +00), each of which does not contain (0, 0). QO.E.D.

0The set ca(X) x R is endowed with the product topology generated by the weak* topology on ca(X) and
the Euclidean topology on R.

1 Although epi(W) and K, , are disjoint, closed, and convex sets, standard separation theorems require
that at least one of the sets either be compact or have a nonempty interior. Therefore, a slightly more involved
argument is required here.



10 TODD SARVER

Continuing the proof of Theorem S.1, note that ca(X) x R is a locally convex Haus-
dorff space (Theorem 5.73 in Aliprantis and Border (2006)). Therefore, the separating
hyperplane theorem (Theorem 5.79 in Aliprantis and Border (2006)) implies there exists
a weak™ continuous linear functional F : ca(X) — R and A € R such that

Fw)+ At <F0)+A0=0, V(,t)ecepi(W)—

For any (7, t) € epi(W) and v € K, we have (u + v, @) € K,, , and therefore (n — u —
v,t—a)ecepi(W)—-K,,. Thus

F(n)+ M <F(u) + F(v) + Aa, V(m,1) €epi(W),VveK. (S.3)

Taking (7, t) = (u, W(w)) and v =0, it follows that AW (n) < Aa. Since a < W (u), this
implies A < 0. Therefore, setting v = 0 in Equation (S.3), conclude that for all n € A(X),

F F
F)+AWm) <F(u)+ra = Wm) > _ﬂJr%Jr

Consider the weak* continuous linear functional 1 — —@ defined on ca(X). Since the
weak™ topology on ca(X) is generated by C(X), every weak® continuous linear func-
tional on ca(X) corresponds to some y € C(X) (Theorem 5.93 in Aliprantis and Bor-
der (2006)). In particular, there exists ¢ € C(X) such that —@ = [Y(x)dn(x) for all
n € ca(X). Define ¢, , € C(X) by ¢, .(x) = (x) + @ + a for x € X. Then, for every
n € AX),

W(n)>_/¢f(X)dH(X)+ ('u) /[l!/( )+%%-a}dn(X)—f%,a(X)dn(X)-

In addition,

/¢M(X)du(x)—— (AM) F(A“)Jra:a

The final step in the proof is to show that ¢, , € C. Fix any v € K, and note that rv € K
for all » > 0. Therefore, Equation (S.3) implies

F(u) + AW () < F(p) + F(rv) + Aa
=F(p)+rF(v) + Aa.

For this to be true for every r > 0, it must be that F(v) > 0. That is, f Y (x)dv(x) >0 for
all v € K. Thus there is no v € ca(X) such that

/(p(x)dv(x)<0 and /c,b(x)dv(x)zo, V¢ eC.

An infinite-dimensional version of Farkas’s lemma (Corollary 5.84 in Aliprantis and Bor-
der (2006)) therefore implies ¢ € C. Since C is a convex cone that contains all constant
functions, conclude also that ¢, ., € C. This completes the proof.
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S.5.2. Proof of Proposition S.1

Ben-Tal and Teboulle (2007) showed that the supremum for this parameterized kinked
transformation function is attained by taking y* equal to the median of w. More precisely,
the maximizer is any y* € [a, b] such that F,(y*—) <1/2 < F,(y*), where F,(y*—) =
lim, -, F,,(x) denotes the left-hand limit for F, at y*. Thus, fixing any such y*, the left
side of the equality in the statement of the proposition is equal to

SUP/ b (xly, 0)du(x)

yeR

= / ¢ (x]y*, 0) dF,(x)
[a,b]

=y [ aro@-y)aRm+ [ a-o@-y)dRw
la,v*]

(y*,b]

(l—I-B)xdF#(xH—f (1—-0)xdF,(x).

(v*,b]

=0y (1-2,(r) +

la,v*]

The right side of the equality in the statement of the proposition is equal to
/xd(g oF,)(x)

= [s(E )~ gE )] + [

[a,y*)

(1+0)xdF,L(x)+/ (1-0)xdF,(x)

(v*,b]

== 0)y (Fu(v") —1/2) + 1+ 0)y"(1/2 = Fu(y'-))

+/ (1+0)xdF#(x)+/ (1—-60)xdF,(x)
[a,y*)

(y*,b]

= 0y*(1-2F,(v")) + (1 + 0)y*(Fu(¥") — Fu(v'-))

—1—/ 1+ 0)xdF,(x) —1—] (1—-0)xdF,(x)
[a,y*)

(v*,b]

1+ 0)xdF,(x) —1—/ (1—-0)xdF,(x),

(v*,b]

=0y (1-2F,(v")) + /

[a,y*]

which is identical to the expression in the equation above.

S.5.3. Proof of Proposition S.2

Fix any w, L, 7w and any y, ' € [0, L]. By definition, the individual is indifferent between
insurance coverage y at premium P(y) and insurance coverage )’ at premium P(y’):

w—P(y)—-L+y 7 \_ w—P(y)-L+y T
W( w— P(y) 1—77)_W( w— P(y) 1—77)

:W(w—L T >
w 1—m
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Preference for diversification therefore implies that for any « € [0, 1],

w—aP(y)—(l—a)P(y/)—L—{—ay—i—(l—a)y’ T w— L T
W( w—aP(y) — (1 - a)P(y) 1—7T>ZW< w 1—77)'

Since W respects FOSD, this implies P(ay + (1 — @)y') > aP(y) + (1 — a)P(y'), so P is
concave. Thus the individual has a nonincreasing marginal willingness to pay for insurance
coverage.

S.5.4. Proof of Proposition S.4

As in the statement of the proposition, let [a, l;] =u(C) and a = ﬁ, b= %. Let L

denote the space of all lower semicontinuous functions from D to [a, b]:
L= { f:D —[a,b]: fislower semicontinuous}.

Define an operator T on L by

Tf(c,m)=u(c)+Bsup | $(f(& m))dm(E, ),

¢ped JD

for (¢, m) € D.
The first step is to show that Tf € L forall f € L, and hence T: L — L. Fixany f € L.
Since f is bounded by a and b and each ¢ is nondecreasing, it follows that

$(a) < f $(f (2, ) dm(e, ) < p(b), ¥me AD), b cd.
D

Taking the supremum of each expression and using the property sup,, ., ¢ (x) = x gives

a< sup/ $(f(, m))dm(é,m) <b.
D

ded

Since (1 — B)a < u(c) < (1 — B)b for all ¢ € C, this implies a < Tf < b. Next, the
lower semicontinuity of f implies that ¢ o f is lower semicontinuous for all ¢ € P,
since each ¢ is continuous and nondecreasing. This in turn implies that the mapping
m > [, &(f(¢,m))dm(¢, m) is lower semicontinuous (see Theorem 15.5 in Aliprantis
and Border (2006)). It is a standard result that the supremum of any collection of lower
semicontinuous functions is lower semicontinuous. Together with the continuity of u, con-
clude that Tf is lower semicontinuous. Hence Tf € L for all f € L.

The proof is completed by showing that 7" has a fixed point V' € L. To show the existence
of a fixed point, first construct a sequence as follows: Let V] (c, m) = a for all (¢, m) € D,
andlet V,,; = TV, for all n € N. Since each ¢ € ® is nondecreasing, it follows immediately
that T is monotone: f < g implies 7f < Tg. Note that V; <V, since V; < g forany g€ L
by definition. Thus V, = TV} < TV, = V;. Proceeding by induction, V,, <V, for all n € N.
Since {},} is an increasing sequence of bounded functions, it converges pointwise to some
function V' : D — [a, b]. Moreover, since V' is equal to the supremum of the collection of
lower semicontinuous functions {V, : n € N}, it is lower semicontinuous. Hence V' € L.

The last step is to show TV = V. Since V,, < V' for all n, monotonicity of the operator 7'
implies V,,, = TV, < TV. Taking limits gives JV < TV. To establish the opposite inequal-
ity, note first that for any m € A(D) and ¢ € ®, the mapping f — [, ¢(f(¢, m)) dm(¢, )



DYNAMIC MIXTURE-AVERSE PREFERENCES 13

is continuous in the product topology (i.e., the topology of pointwise convergence) by the
dominated convergence theorem. This implies the mapping f +— Tf(c, m) is lower semi-
continuous for all (¢, m) € D. Thus V,, — V' implies

TV (c,m) <liminf TV, (c, m) =liminfV,  (c, m) =V (c, m),

for all (¢, m) € D. Hence TV =V, which completes the proof.
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