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Appendix.A The Perry Preschool Program experiment and curriculum

Preschool overview

During each wave of the experiment, each preschool class consisted of 20–25 children
of ages 3 to 4. The first wave admitted 4-year-olds who only received 1 year of treatment.
The last wave was taught alongside a group of 3-year-olds who were not included in the
Perry study. Classes were 2.5 hours every weekday during the regular school year (mid-
October through May). The preschool teaching staff of four produced a child–teacher
ratio ranging from 5 to 6.25 over the course of the program, with teaching positions filled
by former public-school teachers. Teachers had special training for tutoring disadvan-
taged children and were “certified in elementary, early childhood, and special educa-
tion” (Schweinhart, Barnes, and Weikart (1993, p. 32)).

Home visits

Weekly home visits lasting 1 1
2 hours were conducted by the preschool teachers. The pur-

pose of these visits was to “involve the mother in the educational process” and “imple-
ment the curriculum in the home” (Schweinhart, Barnes, and Weikart (1993, p. 32)). By
way of encouraging the mothers’ participation, teachers also helped with problems aris-
ing in the home during the visit. Occasionally, these visits took the form of field trips to
stimulating environments, such as a zoo.
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Curriculum

The Perry Preschool curriculum was based on the concept of active learning, which is
centered around play that is based on problem-solving and guided by open-ended ques-
tions. Children were encouraged to plan, carry out, and then reflect on their own activ-
ities. The topics in the curriculum were not based on specific facts or topics, but rather
on key developmental factors related to planning, expression, and understanding. These
factors were then organized into 10 topical categories, such as “creative representation,”
“classification” (recognizing similarities and differences), “number,” and “time.”1 These
educational principles were reflected in the types of open-ended questions asked by
teachers: for example,“What happened? How did you make that? Can you show me? Can
you help another child?” (Schweinhart, Barnes, and Weikart (1993, p. 33)).

As the curriculum was developed over the course of the program, its details and ap-
plication varied. While the first year involved “thoughtful experimentation” on the part
of the teachers, experience with the program and a series of seminars during subse-
quent years led to the development and systematic application of teaching principles
with “an essentially Piagetian theory-base.” During the later years of the program, all ac-
tivities took place within a structured daily routine intended to help children “to develop
a sense of responsibility and to enjoy opportunities for independence” (Schweinhart,
Barnes, and Weikart (1993, pp. 32–33)).

Appendix.B The basic evaluation model

A standard model of program evaluation describes the observed outcome Yi by Yi =
DiYi�1 + (1 − D)Yi�0, where (Yi�1�Yi�0) are potential outcomes corresponding to treat-
ment and control status for agent i, respectively, and Di is an assignment indicator:
Di = 1 if treatment occurs, Di = 0 otherwise. The focus of this paper is on testing the
null hypothesis of no treatment effect or, equivalently, that treatment and control out-

come distributions are the same: Yi�1
d= Yi�0, where

d= denotes equality in distribution.
An evaluation problem arises in standard observational studies because either Yi�1

or Yi�0 is observed, but not both. As a result, in nonexperimental samples, the simple dif-
ference in means between treatment and control groups, E(Yi�1|Di = 1)−E(Yi�0|Di = 0),
is not generally equal to the average treatment effect, E(Yi�1 −Yi�0), or to the treatment
effect conditional on participation, E(Yi�1 − Yi�0|Di = 1). Bias can arise from partici-
pant self-selection into the treatment group. Rigorous analysis of treatment effects dis-
tinguishes impacts due to participant characteristics from impacts due to the program
itself.

Randomized experiments solve the selection bias problem by inducing indepen-
dence between (Yi�0�Yi�1) and Di, interpreted as a treatment assignment indicator,
(Yi�0�Yi�1) ⊥⊥ Di, where ⊥⊥ denotes independence. Selection bias can be induced by ran-
domization compromises, which occur when the implemented randomization differs
from an ideal randomization protocol in a way that threatens the statistical indepen-

1For a full list, see Schweinhart, Barnes, and Weikart (1993).



4 Heckman, Moon, Pinto, Savelyev, and Yavitz Supplementary Material

dence of treatment assignments Di and the joint distribution of counterfactual out-
comes (Yi�0�Yi�1). A common feature of compromised experiments is reassignment of
treatment and control status by a method different from an ideal randomization. Ran-
domization for the Perry experiment was compromised by the reassignment of treat-
ment and control labels after initial draws produced an imbalanced distribution of pre-
program variables. This creates a potential for biased inference, as described in the pre-
vious subsection.

Appendix.C Testing methodology

This paper develops a framework for small-sample inference based on permutation test-
ing conditional on a given sample. This section specifies our notation and the theoretical
framework for our testing procedures.

C.1 Setup and notation

General

We use calligraphic capital letters to denote sets. Capital letters denote two different
entities: either the maximum index of a set of natural numbers or random variables.
The usage should be clear from the context. We use lowercase letters to index elements
of sets. We represent a vector of pooled elements of a set with parentheses followed by
its respective indexing. As an example, let [V1� � � � � VN ] be the N-dimensional vector V

indexed by the set V = {1� � � � �N}, and be represented by V ≡ (Vv;v ∈ V).

Treatment assignment

The set of indices of Perry participants is I , where I = {1� � � � � I} and I = 123. Let Di

be the treatment assignment for participant i ∈ I , where Di = 1 if i is treated and Di = 0
if not. Let D = (Di; i ∈ I) be the vector of random assignments.

Outcomes and hypotheses

We represent outcome k by the random vector Yk, which represents an I-dimen-
sional vector of values of variables Yk

i for participants i, Yk = (Yk
i ; i ∈ I). The index set of

outcomes from 1 to K is represented by K = {1� � � � �K}. Our aim is to test the null hypoth-
esis of no treatment effect for outcome Yk. This hypothesis is written as Hk :Yk ⊥⊥ D,
that is, Yk is independent of D. The joint null hypothesis of no treatment effect for out-
comes Yk; ∀k ∈ K, is represented by HK ≡ ⋂

k∈K Hk.

Permutation

A transformation of D that permutes the position of its elements is represented by
gD and is defined as

gD = (
D̃i; i ∈ I|D̃i = Dπg(i)�where πg is a permutation function

(i.e., πg : I → I is a bijection)
)
�
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The permutation function πg is indexed by g. To simplify notation, we represent the
permutation that acts on the data by g. This transformation can be applied to any data
that are indexed by I . In the main text, we use the permutation over the treatment as-
signment D, where gD is the vector of permuted assignments. Equivalently, a permu-
tation can be written as a linear transformation gD ≡ BgD, where Bg is a permutation
matrix2 that swaps the elements of any variable D according to the permutation g.

The randomization hypothesis

Permutation-based inference seeks to test the randomization hypothesis, which
states that the joint distribution of some outcome Y is invariant under permutations
g ∈ G, that is, that outcome distributions are invariant to the swap of its elements ac-
cording to g. We represent the set of valid permutations for which the randomization

hypothesis holds by G, so ∀g ∈ G, (Y�gD)
d= (Y�D), where, as in the text,

d= means equal-
ity in distribution.

Interpreting the randomization hypothesis

The hypothesis of no treatment effect for randomized trials is equivalent to the hy-
pothesis of independence between treatment assignments D and outcome Y , as noted

in Section 4.3. Suppose (Y�gD)
d= (Y�D) holds. Define T(Y�D) as our test statistic. We

assume that it is invariant to the relative ordering of the pair (Yi�Di) in the vector (Y�D).
Then permuting Y instead of D generates the same distribution of the test statistic
T(Y�D). Stated differently, the distribution of the test statistic T(Y�D) will not change
if the outcome positions of some treatment and control participants are swapped in ac-

cordance with permutations g ∈ G. Equivalently, we can write T(Y�D)
d= T(gY�D).

C.2 Conditional exchangeability and independence under the randomization
hypothesis

An idealized randomization generates treatment assignments D that are uncondition-
ally independent of outcomes Y and pre-program variables X = (Xi� i ∈ I). When ran-
domization is compromised, the randomization hypothesis must be altered to account
for the failure of the unconditional independence between treatment assignments D

and outcomes Y .
The randomization procedure in the Perry experiment is compromised by reassign-

ment of treatment labels to balance pre-program variables across treatments and con-
trols (see Section 2 of the main text). The randomization protocol ranked children by
IQ score and then allocated treatment status to either all odd-ranked or all even-ranked
children and control status to the rest. Alterations to this basic assignment rule occurred
from two types of treatment-assignment swaps between individuals. The first type of
swap was intended to balance observable pre-program variables (namely, SES index and

2A permutation matrix A of dimension L is a square matrix A ≡ (aij), i� j = 1� � � � �L, where each row
and each column has a single element equal to 1 and all other elements equal to 0 within the same row or
column. Formally, aij ∈ {0�1},

∑L
j=1 aij = 1, and

∑L
i=1 aij = 1 for all i� j.
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gender). The second type of swap was made after the designation of treatment status,
and was intended to remove children with working mothers from the treatment group
due to logistical problems associated with their participation in the treatment program.
Compromises of the Perry randomization protocol embody both types of swaps. The lat-
ter compromises the independence between D and X , and may also create a potential
dependence between treatment status D and some unobserved variables V = (Vi; i ∈ I)
as well.

Formally, treatment assignments can be said to have been generated by a random-
ization mechanism described by a deterministic function M. The arguments of M are
the variables that can affect treatment assignment. Define R as a random variable that
describes the outcome of a randomization device (in the Perry study, the flip of a coin).
Prior to determining the realization of R, two groups were formed on the basis of ob-
served variables X (e.g., on IQ). Then R was realized by a randomization device. By con-
struction, the distribution of R does not depend on the composition of the two groups.
After the realization of R, some individuals were swapped across initially assigned treat-
ment groups based on some X values (e.g., mother’s working status) and possibly on
some unobserved (by the economist) variables V as well. By assumption, R is indepen-
dent of (X�V ), that is, R ⊥⊥ (X�V ). M captures all aspects of the treatment assignment
mechanism. In this notation, treatment assignments D can be written as

D= M(R�X�V )�

where M is a deterministic vector-valued function.
As a concrete example, suppose that there was only one child per family in Perry

and there were no swaps after initial ranking by IQ score. Denote ˜IQ as vector of in-
dicator variables equal to 1 for odd-ranked IQs within each wave. The Perry treatment
assignment mechanism is characterized as

D=
5∑

w=1

1[W =w] � (1[ ˜IQ = 1]bw + 1[ ˜IQ = 0](1 − bw))�

where (b1� � � � � b5) are independent Bernoulli random variables representing the out-
comes of the coin toss used to assign treatment status after the initial IQ-score ranking
and � is a Hadamard product.3 1[·] is an indicator function.

In Section 4.2, we assume that the randomization procedure is not based on unob-
served variables V . If unobserved variables V were not used to assign treatment status,
then the relevant information on (X�V ) can be represented by the observed character-
istics X . Program participants are characterized by (X�V ). X , V , and R generate D. Any
permutation g of the elements in (X�V ), conditioned on R, generates the same permu-
tation of D:(

M(g(X�V )�R) = gD
)|R� (C-1)

This logic leads to the following proof of the exchangeability of treatment assignments,
conditional on X .

3This is an element-wise product.
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Theorem C.1. Treatment assignments D are exchangeable for participants with the
same X if the randomization does not rely on the unobserved variable V of the partici-
pants.

Proof. Let GX be the set of permutations among participants with the same X . In this
case, gX = X ∀g ∈ GX . By assumption, D = M(R�X), so ∀g ∈ GX ,

Pr(D ∈A) = E
(
E

(
1[M(R�X) ∈A]|R))

= E
(
E

(
1[M(R�gX) ∈ A]|R))

= E
(
E(1[gD ∈A]|R))

= Pr(gD ∈A)�

where GX is defined by

GX = {
g�πg : I → I is a bijection and Xi =Xπg(i)�∀i ∈ I

}
� �

Conditional independence

Another consequence of the randomization protocol M is independence between
D and (Y0�Y1), conditional on X . This follows from the observation that R is indepen-
dent of (Y0�Y1) by construction. The following theorem proves the conditional inde-
pendence (Y0�Y1) ⊥⊥ R|X , assuming that D is generated by (R�X) via M and that X is
observed.

Theorem C.2. Assuming that D = M(X�R), (Y1�Y0) ⊥⊥D|X .

Proof. We have

(Y1�Y0) ⊥⊥R|X (by assumption)

⇒ (Y1�Y0) ⊥⊥φ(R)|X (for any particular function φ)

⇒ (Y1�Y0) ⊥⊥ M(R�X)|X
∴ (Y1�Y0) ⊥⊥D|X� �

This result justifies the following assumption.

Assumption A-1. (Y1�Y0) ⊥⊥D|X .

The assumption justifies matching as a method to correct for compromises in the
randomization protocol.
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Defining the hypothesis of no treatment effect

The null hypothesis of no treatment effect states that the distribution of treatment

outcomes Y1 and control outcomes Y0 is equivalent: Y1
d= Y0. Likewise, in noncompro-

mised experiments, treatment assignments D are independent of outcomes: (Y1�Y0) ⊥⊥
D. As noted in Section 4.2, these two statements imply unconditional independence be-
tween observed outcomes Y and treatment assignments: Y ⊥⊥D.4

However, compromised randomization precludes the use of this statement of the
null hypothesis of unconditional independence (Y ⊥⊥ D) for treatment effect inference.
To understand why, first recall that compromised randomization means that treatment
assignments D are not independent of covariates X . Now, suppose that these X impact
outcomes. In this case, a relationship between Y and D may be induced via X regardless
of whether any real treatment effect exists. Such an induced dependence between Y and
D would invalidate unconditional independence, even under the null hypothesis of no
treatment effect, and would render this representation of the null hypothesis unsuitable
as a basis for testing.

In summary, under our maintained assumptions and compromised randomization,
(Y1�Y0) ⊥⊥ D|X holds, but (Y1�Y0) ⊥⊥ D may not. Thus, a natural way to test the null
hypothesis is to condition on X :

Hypothesis H-1. (Y1
d= Y0)|X .

As stated in Section 4.2, Assumption A-1 and Hypothesis H-1 together imply that
Y ⊥⊥D|X , which is the hypothesis of no treatment effect that we seek to test.

Useful exchangeability properties for testing procedures

The mechanics of testing the hypothesis Y ⊥⊥ D|X rely on the exchangeability prop-
erties of the joint distribution (Y�D). The following theorem shows that the joint dis-
tribution of (Y�D) is invariant across the set of permutations GX that swap treatment

assignments D within the same strata of X values, (Y�D)
d= (Y�gD).

Theorem C.3. Suppose that the randomization is as described in Theorem C.1. Under
Hypothesis H-1, the joint distribution of outcomes Y and treatment assignments D is in-
variant under permutations GX of treatment assignments within strata formed by values

of X : (Y�D)
d= (Y�gD) ∀g ∈ GX .

Proof. Let GX be the set of permutations within participants that share the same data

on X . Then, by Theorem C.1, D
d= gD conditional on X . Moreover, Theorem C.2 shows

4The proof is omitted for reasons of brevity, although the proof of a similar fact can be found in Sec-
tion 4.2.
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that (Y1�Y0) ⊥⊥ D|X . Thus, for all g ∈ GX we can write

Pr((Y�gD) ∈ (AY �AD)|X)

=E(1[Y ∈AY ] � 1[gD ∈AD]|X)

=E
(
1[D�Y1 + (1 −D)�Y0 ∈AY ] � 1[gD ∈AD]|X)

=E(1[Y0 ∈AY ] � 1[gD ∈AD]|X)

by Yi�1
d= Yi�0 ∀i ∈ I , due to Hypothesis H-1

=E(1[Y0 ∈AY ]|X)�E(1[gD ∈AD]|X)

by (Y1�Y0) ⊥⊥D|X
=E(1[Y0 ∈AY ]|X)�E(1[D ∈ AD]|X)

by Theorem C.1, D
d= gD conditional on X

= Pr(Y ∈AY |X)Pr(D ∈ AD|X)

= Pr((Y�D) ∈ (AY �AD)|X)

by Y ⊥⊥D|X. �

Appendix C.5 provides detailed information on how to use Theorem C.3 to design

a testing procedure. One particular consequence of (Y�D)
d= (Y�gD) affects the use of

test statistics. As mentioned, if a test statistic relies only on the relationship between D

and Y (that is, (Yi�Di), regardless of its position in the matrix (Y�D)), then permuting
D is equivalent to permuting Y for testing purposes. For example, suppose we test us-
ing student’s t. Then the value of the t-statistics computed after a permutation of two
elements of D is the same as if we had permuted the associated elements of Y instead.
Put another way, using (gY�D) instead of (Y�gD) would provide equivalent inference in
this setting.

C.3 Restricted permutation groups and sampling

Under the randomization hypothesis of no treatment effect, outcomes for treatments
and controls are exchangeable within each stratum X = x. This section formally defines
the procedure.

Partitioning the data

Suppose without loss of generality that the data on the pre-program variables X take
on J distinct values, say {a1� a2� � � � � aJ}. Let the index set I for participants be partitioned
into J disjoint sets Ij and let j ∈ J ≡ {1� � � � � J}, where each set Ij is defined by the set of
participants that share the same value aj for pre-program variables X . Recall that xi is
the value of the pre-program variable X for participant i. We can define Ij by

Ij ≡ {i ∈ I; xi = aj}�



10 Heckman, Moon, Pinto, Savelyev, and Yavitz Supplementary Material

By definition, the union of the disjoint sets Ij over j ∈ J is equal to the full set of partic-
ipants I , which is the definition of a partition. Alternatively, we can define the partition
of the participants by

I =
J⋃

j=1

Ij� where xi = xi′ ⇔ i� i′ ∈ Ij� for some j�

Definition of a restricted permutation group

Under our assumptions, the set of admissible permutations g comprises those that
only permute indices of participants who share the same values on the pre-program
variables. Notationally, permutations can only occur within each set Ij , that is, among
participants whose values of pre-program variables are equal to aj . We call these re-
stricted permutations. A formal definition of the restricted permutation set GX can be
written as

g ∈ GX ⇔ πg : I → I is such that ∀i ∈ Ij�πg(i) ∈ Ij for all j ∈ J �

This definition says that if a permutation g operates on the participant index i, which
belongs to some partition set Ij , then the permutation image πg(i) of that participant
index also belongs to the same partition set Ij . The definition allows for multiple swaps
in different partition sets, but all swaps are restricted to occur only within each partition
set. For example, suppose that I1 = {1�2} and I2 = {3�4}. Then a permutation g for the
set I1 and I2 that does not permute the elements in other sets can be defined by

πg : I → I; πg ≡
⎧⎨
⎩
πg(i) = i ∀i ∈ I \ (I1 ∪ I2);

πg(1) = 2; πg(2) = 1;
πg(3) = 4; πg(4) = 3�

Alternatively, the permutation g′ defined by

πg′ : I → I; πg′ ≡
⎧⎨
⎩
πg′(i) = i ∀i ∈ I \ (I1 ∪ I2);

πg′(1) = 1; πg′(2) = 3;
πg′(3) = 2; πg′(4) = 4�

permutes the index across partition sets and thus it does not satisfy the conditions re-
quired for inclusion in GX . Recall that we can also write the restricted permutation in
terms of a linear transformation Bg such that BgD ≡ gD, where Bg is the permutation
matrix that imposes the restricted permutation g.

Sampling procedure

Among all possible restricted permutations GX defined in the previous subsection,
we select as valid permutations only the ones that result in equal label assignments for
siblings. In other words, gD assigns the same treatment labels to all members of the
same family. A sampling procedure randomly selects J draws of permutations g ∈ GX
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with replacement. Consequently, we have J permutation matrixes Bg that correspond
to each of the draws of the permutation g. We index these J permutations as gj , where
j = 1� � � � � J. The sample data are described by the identity permutation, which we define
as the (J + 1)st permutation (notationally, gJ+1).

(i) To respect the nonrandom assignment of siblings, we use permutations that as-
sign the younger siblings to the same group to which the elder siblings were assigned. In
this step we follow the randomization protocol exactly. Further steps of the randomiza-
tion protocol are approximated, as described below.

(ii) The IQ pairing and pre-randomization swaps are directed at balancing IQ, gen-
der, and SES index. We forbid permutations between genders as well as between the top
and bottom half of the SES index. Sensitivity analysis reveals that inference is robust to
this choice of percentiles.

(iii) The post-randomization swaps led to unbalanced working status of mothers.
However, we are unable to restrict permutations based on mother’s working status due
to data limitations, although we use it as a linear covariate (see Appendix F for a discus-
sion).

Simple permutation test procedure

Our permutation test is based on the following algorithm:

Step 1. Sample a permutation g ∈ GX with replacement.

Step 2. Compute a test statistic for the permutation draw, based on data modified by
the permutation matrix Bg.

Step 3. Repeat Steps 1 and 2 to simulate the permutation distribution of the test sta-
tistic.

After a “reasonable” number of draws, we compute a test statistic (e.g., Student’s t for
difference in means between the treatment and the control groups) using the simulated
permutation distribution. An example of a permutation-based p-value is the fraction of
the computed permutation distribution that is greater than the statistic computed using
the original unpermuted data. We use the mid-p-value described in Appendix C.5. The
next section describes the construction of our test statistic in greater detail.

C.4 The test statistic

Conditional inference in small samples

As the Perry experiment has a sample of size 123, partitioning participants into de-
tailed categories based on the five pre-program variables is impractical. Restricted per-
mutation orbits would have so few observations as to preclude reliable inference. We
obtain “reasonably-sized” restricted permutation orbits by imposing the additional as-
sumption of a linear relationship between certain pre-program variables and outcomes.
To this end, we divide the vector X into two parts: variables X[L], which are assumed to
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have a linear relationship with Y , and the remaining variables X[N], whose relationship
with Y is unconstrained. Using this partition, write X = [X[L]�X[N]]. The model for out-
comes can be written as Y = δX[L] + f (X[N]� ε), where ε is an error term assumed to be
independent of X[L] and X[N].

Linearity

Define Ỹ = Y − δX[L]. Under the null hypothesis of no treatment effect, the ex-
changeability of Ỹ holds among participants who share the same value of X[N] even if

they have different values of X[L]. Formally, we have that (Ỹ �D)
d= (Ỹ � gD), g ∈ GX[N] . As

a result, we do not have to partition the data for all possible combinations of X[L] and
X[N]—we only partition based on values of X[N], the variables not assumed to have a
linear relationship with the outcomes Y . If δ were known, permuting Ỹ = Y −δX[L] (in-
stead of Y ) within the groups of participants that share the same pre-program variables
X[N] would solve the problem of linear conditioning on X[L]. However, δ is unknown.
We address this problem by using an approach due to Freedman and Lane (1983), which
entails permuting the residuals from the regression of Y on X[L] in orbits that share the
same values of X[N], leaving D fixed. Specifically, Freedman and Lane (1983) use a con-
ditional exchangeability principle and assumed a fully linear model,

Y = f (X�D(X)�ε) = δX +�D+ ε�

where ε is independent of X . As previously noted, if δ is known, we can use the resid-
uals Ỹ = Y − δX in a permutation test of the null � = 0. However, δ is generally not
known and has to be estimated. The Freedman–Lane procedure assumes exchangeabil-
ity of errors under the null, that is, that the errors ε of the regression Y = δX + ε are ex-
changeable under the null of no treatment effect: (H0 :� = 0). We capture the concept of
exchangeable errors in the Freedman–Lane procedure by permuting the residuals from
the linear regression of Y on X[L] that excludes D.5 We account for the nonlinear rela-
tionship between Y and X[N] by using the permutation matrix Bg associated with re-
stricted permutations GX[N] , which only permutes participants who share the same val-
ues of pre-program variables X[N]. Notationally, define the residuals from permutation
g as ε̃g such that

ε̃g ≡ B′
gQXY

= B′
g(Y − Ŷ )�

where Ŷ is the estimated Y and the matrix QX is defined as QX ≡ (I − PX), where I is
the identity matrix and

PX ≡X[L]((X[L])′
X[L])−1(

X[L])′
�

5Permuting D and comparing test statistics for the different permutations assumes no statistical rela-
tionship between X[L] and D. Namely, it assumes no correlation between X[L] and D, which seems unrea-
sonable.
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Matrices PX and QX are well known linear transformations: PX is a linear projection
in the space generated by the columns of X[L]; QX is the projection into the orthogo-
nal space generated by X[L]. We can write the Ỹg = PXY + ε̃g for a new outcome that
preserves the linear relationship between X and Y , but permutes the errors. Use Ỹg

as the permuted outcome data for permutation g and compute the new linear coef-
ficient estimated for the dummy variable of treatment assignment D. This parameter,
(D′QXD)−1D′QXỸg, is the Freedman–Lane coefficient for permutation g.6 We denote
by �j the Freedman–Lane coefficient associated with outcome Y and permutation gj
(indexed by j), that is, �j ≡ (D′QXD)−1D′QXB′

gj
QXY .

In a series of Monte Carlo studies, Anderson and Robinson (2001) compare the dis-
tributions of the test statistics under various approximate permutation methods with
the distribution from a conceptually exact permutation method. All approximate meth-
ods produce permutation distributions under H0 that converge to the same distribu-
tion. However, only the Freedman–Lane procedure has an expected correlation of 1 with
the exact test, while the other methods are found to have smaller correlations. Thus,
the Freedman–Lane procedure comes closest to attaining the results of an exact test
(where δ is known). In a series of Monte Carlo experiments Anderson and Robinson
show, for samples of the size used in this paper, that the Freedman–Lane size is very close
to the exact size where δ is known. Another paper, by Anderson and Legendre (1999),
conducts extensive Monte Carlo simulations and shows that the Freedman–Lane proce-
dure generally gives the best results in terms of Type-I error and power. On the basis of
these studies, we use the Freedman–Lane coefficient as our primary test statistic.

C.5 Formal permutation testing with mid-p-values

In this section, we formally define a mid-p-value under permutation testing and prove
that it constitutes a valid level-α test.7

Following the notation of Section 4.4, suppose that we have a set of J + 1 permuta-
tions gj , test statistics �j computed for each permutation, and ranks T j = ∑J+1

l=1 1[�j ≥
�l]/(J + 1) for those test statistics.8 Then mid-p-values may be defined as

p≡ 1
2(J + 1)

(
J+1∑
l=1

1[T l ≥ TJ+1] +
J+1∑
l=1

1[T l > TJ+1]
)
�

6Observe that

(D′QXD)−1D′QXỸg = (D′QXD)−1D′QX

[
X[L]((X[L])′

X[L])−1
X[L]Y +B′

gQXY
]

= (D′QXD)−1D′QX(B′
gQXY)�

7Note that in this section, we use the fact that, under the randomization hypothesis, any real-valued
statistic of the permuted data (i.e., pj�T j , j = 1� � � � � J + 1) that provides J + 1 distinct values as g varies
in G is uniformly distributed across these J + 1 values. For more details, see Lehmann and Romano (2005,
Chap. 15).

8�j may be substituted for T j without affecting single-hypothesis testing results, but Romano and Wolf
(2005) recommend rank statistics to increase comparability for multiple-hypothesis testing.
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To accurately describe our testing procedure, we need a few more definitions. Fix a nom-
inal level for the testing procedure at α and define

a= (J + 1)− 
α(J + 1)��

where 
α(J + 1)� denotes the largest integer less than or equal to α(J + 1). Let the or-
dered values of T j , j = 1� � � � � J + 1, be represented by T(1)� � � � �T (J+1). Define α0 as the
percentage of test statistics T j that are strictly greater than T(a):

α0 ≡ 1
(J + 1)

J+1∑
j=1

1
[
T j > T(a)

]
�

Define α1 by the percentage of the test statistics T j that is greater than or equal to T(a):

α1 ≡ 1
(J + 1)

J+1∑
j=1

1
[
T j ≥ T(a)

]
�

Observe that α ∈ [α0�α1]. Let the interval [0�1] be partitioned into the three intervals
[0�α0)� [α0�α1], and (α1�1]. Our testing procedure assigns different rejection probabili-
ties whenever p lies in each one of these intervals. Namely, we reject the null hypoth-
esis if p ∈ [0�α0)� we do not reject if p ∈ (α1�1], and we reject with probability α−α0

α1−α0
, if

p ∈ [α0�α1]. We reject the null hypothesis with probability τ, where τ is given by

τ ≡ 1[p< α0](1)+ 1[p> α1](0)+ 1[p ∈ [α0�α1]]
(

α− α0

α1 − α0

)
�

The following theorem shows that this testing procedure yields a level-α test.

Theorem C.4. Suppose that the randomization hypothesis holds. Let J > 0 and 0 <α< 1
be given. Then the test that rejects H0 :Y ⊥⊥D|X with probability τ defined above satisfies
Pr{reject H0|X} = α whenever H0 is true.

Proof. We have

Pr{reject H0|X}
= Pr{τ = 1}
=E[τ]

=E

[
1[p< α0] + 1[p ∈ [α0�α1]]

(
α− α0

α1 − α0

)]

=E

[
1[pJ+1 <α0] + 1[pJ+1 ∈ [α0�α1]]

(
α− α0

α1 − α0

)]

(because p = pJ+1)
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=
[

1
J + 1

J+1∑
j=1

1[pj < α0] + 1[pj ∈ [α0�α1]]
(

α− α0

α1 − α0

)]

(because pj is uniformly distributed across J + 1 permutation values)

=
[

1
J + 1

(
J+1∑
j=1

1
[
T j > T(a)

] +
J+1∑
j=1

1
[
T j = T(a)

]( α− α0

α1 − α0

))]

=

⎡
⎢⎢⎢⎢⎢⎢⎣

J+1∑
j=1

1
[
T j > T(a)

]
J + 1

+

(
J+1∑
j=1

1
[
T j ≥ T(a)

] −
J+1∑
j=1

1
[
T j > T(a)

])

J + 1

(
α− α0

α1 − α0

)
⎤
⎥⎥⎥⎥⎥⎥⎦

=
[
α0 + (α1 − α0)

(
α− α0

α1 − α0

)]
= α� �

The cardinality of the set G can be so large that computing p-values over all elements

becomes infeasible. In this case, we employ a test that uses random samples of J permu-

tations g ∈ G plus the identity permutation as the J+1 draw.9 By construction, a test that

uses random sampling of elements in the permutation set has the same expectation as

a test that uses all elements in the permutation set.

Appendix.D Multiple-hypothesis testing with stepdown10

D.1 Introduction

In multiple-hypothesis testing, there are two generalized Type-I errors: the familywise

error rate (FWER), which is the probability of rejecting any true null hypothesis, and

the false discovery proportion (FDP), which is the proportion of true null hypotheses re-

jected. The stepdown algorithm described below exhibits strong FWER control: FWER

is held at or below a specified level regardless of the true configuration of the full set of

hypotheses (Lehmann, Romano, and Shaffer (2005)).11 We test a number of hypotheses

simultaneously, mandating the choice of FWER as a criterion. FDP is more appropri-

ate in the context of a very large number of hypotheses, such as tens or hundreds of

hypotheses, a common occurrence in fields such as genomics.

9Recall that draw J + 1 is the sample data.
10The structure and examples in this appendix are developed by Romano and Wolf (2005). Readers are

advised to consult this primary source.
11For further discussion of stepdown and its alternatives, see Benjamini and Hochberg (1995),

Benjamini, Krieger, and Yekutieli (2006), Romano and Shaikh (2004, 2006), Romano and Wolf (2005), and
Westfall and Young (1993).
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D.2 Overview of multiple-hypothesis testing

Two traditional but conservative methods for multiple-hypothesis testing are the Bon-
ferroni and the Holm procedures (see Lehmann and Romano (2005) for a description
of these tests). Their goal is to test K joint hypotheses. Each single hypothesis is rep-
resented by Hk, where k ∈ K ≡ {1� � � � �K}, for which we have individual-hypothesis p-
values p1� � � � �pK . The joint hypothesis is given by HK defined by

HK =
⋂
k∈K

Hk�

To control for FWER ≤ α, the traditional procedures use the following rejection rules:

Bonferroni Rejection Rule. Reject each Hk with pk ≤ α/K.

Holm Rejection Rule.

(i) Order the original p-values, with the notation p(1)� � � � �p(K).

(ii) Find the highest k with p(k) ≤ α/(K − k+ 1).

(iii) Reject the hypotheses H(1)� � � � �H(k).

These two methods are computationally simple to implement, but they do not ac-
count for dependence between outcomes, while less conservative methods described
below do.

Modern work is based on the procedure of “closure methods.”12 General closure
methods belong to a testing tradition called multiple comparison procedures (MCP).
These constitute a more flexible and comprehensive framework for multiple-hypothesis
testing on the power set ℘(HK) of hypotheses HK . However, closure methods have two
disadvantages: they are computationally impractical for large numbers of hypotheses,
and computing the test statistics dictated by some joint hypotheses may be infeasible.
Closure methods, such as those developed by Einot and Gabriel (1975) and Begun and
Gabriel (1981), are based on a stepwise MCP. They start with the biggest set K of joint
hypotheses and proceed through smaller sets of joint hypotheses.

Let K′ ⊆ K. The test of the joint hypothesis HK′ = ⋂
k∈K′ Hk at a significance level α

uses a statistic TK′ with a critical value cK′(αK′) at level αK′ . Higher values of TK′ provide
evidence against hypothesis HK , and under HK′ , cK′(αK′) can be defined as

αK′ ≡ Pr(TK′ > cK′(αK′))�

that is, cK′(αK′) is the α-highest quantile of the distribution of the test statistic TK′ .
For the Newman (1939) and Keuls (1952) procedure, αK′ = α. For the Ryan (1959)

procedure,

αK′ = 1 − (1 − α)|K′|/|K|�

12See Lehmann and Romano (2005).
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The test of HK′ is called αK′ -critical if the computed test statistic TK′ for the sample
is bigger than its critical value cK′(αK′). An MCP rejects HK′ if all sets K′′ ⊇ K′ are αK′′ -
critical, where K is the biggest set of joint hypotheses to be tested, in particular, K′ ⊆ K.
In other words, hypothesis HK′ is only rejected if all combinations of the joint hypothe-
ses in K that include the hypothesis in K′ are also rejected.

Observe that if a set of hypotheses K′ is not αK′ -critical, that is, it is not rejected, then
all combination sets of K′ are also not rejected. This rule is called acceptance by implica-
tion (Begun and Gabriel (1981)) and it insures logical coherence. If one joint hypothesis
is not rejected, all subsets of the hypotheses will also fail to be rejected.

Traditional MCP algorithms start by targeting the larger set of joint hypotheses HK .
If not rejected, all remaining combinations of hypotheses are not rejected either. If HK
is rejected, the procedure computes the critical value for all combinations of K − 1 hy-
potheses in the set K without the most statistically significant hypothesis. A new round
of rejections requires the computation of the critical values of all combinations of K − 2
hypotheses in K without the two most statistically significant hypotheses, and so forth.

One computational problem arising from the method is the exponential increase of
intersection hypotheses as K increases. In the worst case, this could require as many as
2K − 1 tests. Another drawback is the computation of the critical values, which may be
difficult for some of the intersection hypotheses. Closure methods strongly control for
FWER, as shown in Marcus, Peritz, and Gabriel (1976).

D.3 Subset pivotality and free stepdown procedure

Data and hypotheses

Assume that the data Y have the true generating distribution P ∈�. The objective is
to test the joint hypotheses HK = ⋂

k∈K Hk, where each Hk corresponds to a family of
distributions ωk ⊆ �, which may contain the true data generating distribution P :

Hk :P ∈ωk�

Assume that the evidence against hypothesis Hk has been summarized using a p-value
pk, k ∈ K. Let pK = (pk; k ∈ K) be the vector of random p-values generated from P . Let
K(P) be the set of indices of the true hypothesis.

Subset pivotality

The distribution of pK has the subset pivotality property if the joint distribution of
any subvector pL = (pl; l ∈ L) for an L ⊂ K would be identical if either K(P) = K or
K(P) = L. Westfall and Young (1993) clarify further by stating that the subset pivotality
condition requires that the multivariate distribution of any subvector of p-values is un-
affected by the truth or falsehood of hypotheses corresponding to the p-values that are
not included in the subvector.

Westfall and Young (1993) argue that the subset pivotality condition is important for
two reasons. First, resampling is particularly convenient under this condition: resam-
pling is done under the assumption that all null hypotheses are true, rather than a sub-
set of the hypotheses. Second, when subset pivotality holds, resampling-based methods
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provide strong control for FWER. At the time Westfall and Young (1993) was published, it
was believed that subset pivotality was a necessary condition for FWER strong control.
However, Romano and Wolf (2005) provide an algorithm that strongly controls for FWER
under weaker conditions.

Cases of failure

Westfall and Young (1993) consider the problem of testing whether the correla-
tions of a vector of N normally distributed random variables are all zero. Notationally,
H(i�j) :ρi�j = 0 and K = {(i� j); i� j ∈ {1� � � � �N}}. In large samples, a traditional test statistic
is T(i�j) = √

n · r(i�j), where n is the sample size and r(i�j) is the sample correlation between
variables i and j. Suppose that hypotheses H(1�2) and H(1�3) are true, with all others false.
Previous analyses by Aitkin (1969, 1971) show that the joint distribution of [T(1�2)�T(1�3)]
is approximately normal, with zero means, unit variances, and correlation ρ2�3. The key
observation is that the joint distribution of the test statistics for hypotheses H(1�2) and
H(1�3) has different statistical properties depending on whether ρ2�3 = 0 or ρ2�3 �= 0. Con-
sider the hypothesis H(2�3) :ρ2�3 = 0 as part of a set of hypotheses {H(1�2)�H(1�3)�H(2�3)}.
In this case, inference on the joint set of hypotheses H(1�2) and H(1�3) changes, depend-
ing on whether hypothesis H(2�3) is true or not. The subset pivotality condition fails here
because the distribution of [T(1�2)�T(1�3)] depends on the value of ρ2�3, which is associ-
ated with another hypothesis not directly tested by T(1�2) or T(1�3). Observe that subset
pivotality would hold if the hypotheses of interest involved only the means of the normal
random variables.

D.3.1. The free stepdown procedure

Westfall and Young (1993) use the assumption of subset pivotality to develop a step-
down procedure that exhibits strong controls over FWER. As mentioned above, pk de-
notes the p-value associated with hypothesis k and the set of hypotheses can be in-
dexed by K = {1� � � � �K}. Without loss of generality, let the computed p-value statistic be
sorted in increasing order; that is, p̂1 ≤ p̂2 ≤ · · · ≤ p̂K . Using some resampling method,
let (pj

1� � � � �p
j
K) be the jth draw of the vector of p-values. These draws generate the joint

testing distribution of (p1� � � � �pK) under HK . Let J be the total number of draws, that
is, j ∈ {1� � � � � J}.

Using this notation, the Westfall and Young (1993) algorithm is defined as follows:

Step 1. For each draw j, compute the successive minima q
j
k = min{pj

k� � � � �p
j
K}. This

step enforces the original monotonicity of observed p-values. Note that k denotes the
original rank of the outcome by significance, with k = 1 being the most significant and
k= K being the least significant.

Step 2. For each k ∈ K, compute p̄k = (
∑J

j=1 1[qjk ≤ p̂k])/J. This step gives the per-

centage of times that the adjusted draws (qjk; j = 1� � � � � J) are equal to or less than p̂k.

Step 3. For each hypothesis k ∈ K, enforce the successive maxima p̃k = max{p̄1� � � � �

p̄k}. This final enforcement of monotonicity ensures that larger unadjusted p-values
correspond to larger adjusted ones.
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The final p̃k are the adjusted p-values proposed by Westfall and Young (1993).
Anderson (2008) claims to use this algorithm in performing multiple-hypothesis infer-
ence. However, the description of his algorithm does not comply with the one proposed
in Westfall and Young (1993). Specifically, his algorithm is described as follows:

Step 1. For each draw j, compute the successive minima q
j
k = min{pj

k� � � � �p
j
K}. This

step enforces the original monotonicity of experimentally observed p-values.

Step 2. For each k ∈ K, compute p̄k = (
∑J

j=1 1[qjk < p̂k])/J. This step gives the per-

centage of times that the adjusted draws (qjk; j = 1� � � � � J) are strictly less than p̂k.

Step 3. For each hypothesis k ∈ K, enforce the successive minima p̃k = min{p̄k� � � � �

p̄K}.

His procedure is different from the one proposed by Westfall and Young (1993) in
the last step. Observe that while Westfall and Young (1993) use successive maxima on
adjusted p-values, Anderson (2008) uses successive minima. Anderson (2008) does not
provide any proof that the method he uses strongly controls for FWER.

D.4 Stepdown multiple-hypothesis testing

Stepdown methods improve upon general closure methods in two ways. First, they re-
quire only K separate tests. Second, the method tests joint hypotheses using only the
test statistics for individual hypotheses, sidestepping the need to construct and com-
pute specific test statistics for a large number of intersection hypotheses. Westfall and
Young (1993) describe various methods of resampling outcomes Y for stepdown proce-
dures, but those methods rely on the assumption of subset pivotality.

A recent result by Romano and Wolf (2005) shows that strong FWER control can be
obtained by ensuring a certain monotonicity condition on the test statistics for the joint
hypothesis that is weaker than subset pivotality. This monotonicity condition states that
the critical value for a joint hypothesis that contains the subset of true hypotheses must
be at least as large as the critical value for the joint hypothesis formed only by true hy-
potheses. Notationally, let K(P) be the set of indices of the true hypothesis, such that

K(P) ⊆ K, so that under probability law P , the monotonicity condition is defined by

cK(α) ≥ cK(P)(α)�

In other words, the critical value for the full set of joint hypotheses indexed by K, which
contain the true hypothesis indices K(P), is greater than or equal to the critical value for
the hypothesis that comprises only true hypothesis HK(P).

In this framework, a set of sufficient conditions for strong FWER control can be
stated as follows:

(i) The joint-hypothesis test statistic at each stepdown stage is chosen to be the max-
imum of the individual-hypothesis test statistics.

(ii) If a permutation-based inference is adopted, then the same draw of permutation
is used to compute all test statistics at each stage.
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(iii) The permutation set from which permutations are drawn is chosen such that,
under the null hypotheses, the distribution of the data is invariant for each permutation.

Below, we discuss how to construct tests that satisfy the first two conditions. The third
condition applies to permutation testing of randomization hypotheses in general, and
requires constructing the permutation groups using knowledge of the experimental de-
sign that generated the data.

D.5 The stepdown algorithm

Data and hypotheses

Assume that we start with outcomes Yk, k ∈ K ≡ {1� � � � �K}, which have the true gen-
erating distribution P ∈�. The objective is to test a set of null hypotheses HK = ⋂

k∈K Hk

jointly, where each Hk corresponds to a family of distributions ωk ⊂ � which may con-
tain the true data generating distribution P :

Hk :P ∈ωk�

Permutation testing

In randomized experiments, the goal is to test the joint hypothesis of no treatment
effect across outcomes Yk, k ∈ K. The general representation of this hypothesis is given
by Hk :Yk ⊥⊥ D, where D is the treatment status. Thus Hk corresponds to a family of
distributions ωk in which the treatment status D is independent of outcome Yk. Let G

be a set of permutations such that the randomization hypothesis holds, that is, the joint
distribution of (Yk�D), such that k ∈ K is invariant under permutations g in G whenever
the true generating distribution P belongs to the family of distributions specified by HK .
Formally,

P ∈
⋂
k∈K

ωk ⇒ [(Yk�D)
d= (Yk�gD) ∀g ∈ G�∀k ∈ K]�

Let Tk ≡ T(Yk�D) be the test statistic computed using the sample data, for which
greater values provide evidence against the null hypothesis Hk. Let Tg

k ≡ T(Yk�gD) be
the test statistic computed using the permuted data according to g ∈ G. The distribution
of Tk can be generated by varying g across G.

Sets of joint hypothesis

The stepdown method starts by testing the full set of joint null hypotheses HK . For
notational purposes, define the set of hypotheses in this first step by K1, such that K1 ≡
K. In each K − 1 successive step, the most-individually-significant hypothesis—the one
most likely to contribute to the significance of the joint null hypothesis—is dropped
from the set of null hypotheses, and the joint test is performed on the reduced set of
hypotheses. Thus the set of hypotheses for the second step is given by

K2 = K1 \ {k∗}� k∗ = arg max(Tk;k ∈ K1)�
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Likewise, the set of hypotheses for the step s is given by

Ks = Ks−1 \ {k∗}� k∗ = arg max(Tk;k ∈ Ks−1)�

Finally, the final step targets the least significant hypothesis: KK = {arg min(Tk;k ∈ K)}.

Joint test statistics and critical values

The test statistic for any step s that tests the joint hypothesis HKs , with Ks as defined
above, is given by

TKs = max (Tk;k ∈ Ks)�

Let Tg
Ks

≡ max (Tg
k ;k ∈ Ks), which is the maximum of the test statistics T

g
k such that k ∈

Ks and g ∈ G. The distribution of TKs can be generated by varying g across G. The critical
value for each hypothesis HKs , s ∈ {1� � � � �K}, at level α is defined as the value of the α-
highest quantile of the distribution of TKs . Namely, if we relabel the statistics Tg

Ks
, g ∈ G,

by arranging them in increasing order

T
(1)

Ks
≤ · · · ≤ T

(|G|)
Ks

�

then the critical value for TKs is given by

cKs (α) = T(a)
Ks

�

where a = 
(1 −α)|G|�, that is, the largest integer less than or equal to (1 −α)|G|. Accord-
ing to Romano and Wolf (2005), the use of the maximum operator in the definition of
the joint statistic ensures the required monotonicity property of the critical values.

We assume full enumeration of the permutation set G for generating the distribution
of the test statistics and to compute critical values described in this section. However, for
implementing the method, it is common to randomly sample permutations g ∈ G and
use the sampled permutations for computing the statistics. Romano and Wolf (2005,
p. 99, Corollary 3) show that FWER control of the stepdown procedure persists when
using randomly sampled permutations in G instead of its full enumeration.

The stepdown algorithm

The stepdown algorithm described in Romano and Wolf (2005) is defined as follows:
Beginning with K1 = K,

[s = 1]
{

If TK1 ≤ cK1(α), accept all Hk, k ∈ K1, and stop.
Otherwise, let K2 = K1 \ {k∗}, k∗ = arg max(Tk;k ∈ K1).

���

[1 < s <K]
{

If TKs ≤ cKs (α), accept all Hk, k ∈ Ks, and stop.
Otherwise, Ks+1 = Ks \ {k∗}, k∗ = arg max(Tk;k ∈ Ks).

���

[s =K]
{

If TKK
≤ cKK

(α), accept HKK
, KK = {arg min(Tk;k ∈ K)}�

Otherwise, reject all Hk, k ∈ K.
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Romano and Wolf (2005, p. 99, Corollary 2) demonstrate strong FWER control on a test
of multiple hypotheses HK at level α if one performs this stepdown algorithm using the
joint test statistics and the critical values defined above.

Appendix.E Asymptotic and permutation p-values

The Perry study has about 60 observations per outcome for each gender. Our analysis
confirms a well known fact about the validity of asymptotic statistics in samples of this
size (Good (2000)). Traditional resampling techniques, such as the bootstrap and unre-
stricted permutation, produce distributions of some common sufficient statistics which
are very close to their asymptotic versions. As an example, we compute the asymptotic
p-value for the t-statistics of the difference in means between treatment groups. We
also compute two comparison p-values: the p-value based on an unrestricted permuta-
tion method and another based on the usual bootstrap procedure. All three p-values are
computed for 350 Perry outcomes chosen for their reliability and relevance to the topic
of study. There is little difference between asymptotic p-values and the values based on
resampling. Indeed, in 50% of the outcomes, the absolute difference between the as-
ymptotic p-values and resampling values was less than 0�5 percentage point; in 95% of
the cases, it was less than 4 percentage points. Figure E.1 shows the histograms of the
outcomes with respect to the absolute difference between the asymptotic and permuta-
tion p-values.

Appendix.F Sensitivity analysis

The test results reported in this paper rely on Freedman–Lane linear parametric approx-
imations. We can choose either parametric or nonparametric conditioning for each co-
variate (see Section 4.5 of the paper). In calculating our main results (Tables 3–6), we use
nonparametric conditioning on an indicator for whether the socioeconomic status (SES)
index is above or below the median and use parametric conditioning on the remaining
covariates: Stanford–Binet IQ, mother’s employment status, and father’s presence in the
home, all measured at the time of entry into the study.

The purpose of this appendix is to examine the sensitivity of our estimates to differ-
ent choices of conditioning variables. We focus on two aspects of our procedure. First,
what happens when additional covariates are introduced into the nonparametric con-
ditioning set. Second, since some discretization of the continuous variable SES index is
necessary to make possible nonparametric conditioning, we examine the sensitivity of
our inferences to alternative plausible discretizations. The results of this analysis are de-
scribed below. We conclude that our main results are robust to alternative choices of the
conditioning variables.

Parametric versus nonparametric conditioning

Columns (1)–(4) of Tables F.1–F.4 show the sensitivity of the p-values derived from the
Freedman–Lane procedure to shifting additional covariates from the parametric por-
tion of the model to the nonparametric portion. Column (1) shows partial linearity re-
sults comparable to the “Partial Linearity” column of our main results (Tables 3–6), while
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Figure E.1. Difference between asymptotic and permutation p-values. 350 observations of dif-
ferences between one-sided asymptotic and one-sided permutation p-values were used. No
blocks or clusters were used while permuting. The 350 observations are p-values for the null
hypothesis of no treatment effect based on 350 outcomes of Perry subjects such as wages, test
scores, number of arrests, and so forth chosen by the authors for Perry reanalysis for their relia-
bility and relevance to the outcomes studied in this paper.

columns (2), (3), and (4) show the effect of shifting mother’s employment status, father’s
presence, and Stanford–Binet IQ, respectively, from the parametric portion to the non-
parametric portion of the regression function. In each case, we condition parametrically
on the two remaining covariates.

The p-values are quite comparable across columns. Only rarely does inference
vary, depending on choices of conditioning variables. Similarly, p-values for the other
outcomes—that is, the outcomes for which no column indicates statistical signifi-
cance—are comparable across alternative conditioning sets, although in cases of non-
significance, p-values vary greatly. The differences that arise do not exhibit an obvious
pattern. These results support the analysis of the text by indicating that the choice of the
conditioning variables does not greatly affect the main results reported in Section 5.

Discretizing nonparametric conditioning variables

Columns (1), (5), and (6) of Tables F.1–F.4 show the sensitivity of our results to using dif-
ferent discretizations of the SES index for nonparametric conditioning. To use nonpara-
metric conditioning for a continuous covariate, that variable must be transformed into a
discrete covariate on which the permutation orbits used in testing can be restricted (see
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Table F.1. Main outcomes by conditioning: Females, part 1.a

Restriction/Conditioningb

IQc — — — Median — —
M. Workd — Yes — — — —

F. Pres.e — — Yes — — —
SESf Median Median Median Median Tercile Quartile

Freedman–Lane p-Valuesg

Outcome Age (1) (2) (3) (4) (5) (6) N

Education
Learning Disabled? ≤19 0.009 0.026 0.007 0.011 0.019 0.008 46
Mentally Impaired? ≤19 0.004 0.008 0.007 0.004 0.007 0.005 46
Yrs. in Disciplinary Program ≤19 0.070 0.082 0.070 0.071 0.117 0.066 46
Yrs. of Special Services ≤14 0.012 0.016 0.012 0.016 0.024 0.016 51
HS Graduation 19 0.000 0.000 0.000 0.000 0.000 0.000 51
# Years Held Back ≤19 0.098 0.100 0.161 0.088 0.135 0.092 46
Highest Grade Completed 19 0.002 0.005 0.005 0.002 0.005 0.002 49
GPA 19 0.000 0.000 0.003 0.001 0.000 0.000 30
Vocational Training Certificate ≤40 0.107 0.100 0.134 0.100 0.146 0.115 51

Health
No Health Problems 19 0.139 0.167 0.122 0.130 0.119 0.147 49
No Doctors for Illness, Past Yr. 19 0.543 0.551 0.465 0.455 0.535 0.510 49
No Nonroutine Care, Past Yr. 27 0.491 0.487 0.662 0.411 0.551 0.549 44
No Sick Days in Bed, Past Yr. 27 0.523 0.571 0.545 0.458 0.498 0.537 47
No Treat. for Illness, Past 5 Yrs. 27 0.242 0.247 0.195 0.180 0.226 0.243 47
Routine Annual Health Exam 27 0.734 0.717 0.734 0.654 0.777 0.728 47
No Tobacco Use 27 0.292 0.322 0.319 0.325 0.402 0.249 47
Infrequent Alcohol Use 27 0.364 0.231 0.372 0.329 0.425 0.365 45
Alive 40 0.193 0.240 0.225 0.146 0.249 0.184 51
Has Any Children ≤19 0.331 0.324 0.327 0.288 0.410 0.328 48
# Out-of-Wedlock Births ≤40 0.401 0.474 0.386 0.392 0.317 0.433 42

Crime
Any Non-Juv. Arrests ≤27 0.128 0.161 0.155 0.111 0.165 0.109 51
# Non-Juv. Arrests ≤27 0.003 0.009 0.010 0.002 0.007 0.002 51
Any Misd. Arrests ≤40 0.519 0.498 0.580 0.465 0.577 0.538 51
# Misd. Arrests ≤40 0.086 0.093 0.117 0.066 0.138 0.074 51
Any Non-Juv. Arrests ≤40 0.519 0.498 0.580 0.465 0.577 0.538 51
# Non-Juv. Arrests ≤40 0.052 0.059 0.077 0.039 0.089 0.046 51
Any Arrests ≤40 0.240 0.244 0.268 0.230 0.316 0.250 51
# Total Arrests ≤40 0.043 0.041 0.059 0.029 0.069 0.038 51

aMonetary values adjusted to thousands of year-2006 dollars using annual national CPI. b“—” indicates parametric con-
ditioning, and all others indicate nonparametric conditioning: “yes” if the covariate is discrete, in which case that direct non-
parametric conditioning is possible, and otherwise (e.g., “Tercile”) to indicate the levels used in conditioning on a continuous
covariate. cStanford–Binet IQ, at study entry. dMaternal working status at study entry. eFather’s presence in the home at study
entry. fSocioeconomic Status (SES) index at study entry. gOne-sided p-values for the significance of the treatment coefficient,
computed using the Freedman–Lane procedure, with nonparametric conditioning as indicated at the top. p-values below 0.1
are in bold.

Section 4.4).13 We examine three possible transformations of the nonparametric con-
ditioning covariate SES index: Column (1)—comparable to the “Partial Linearity” col-

13Kernel methods would be impractical in samples of the size analyzed in this paper.
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Table F.2. Main outcomes by conditioning: Females, part 2.a

Restriction/Conditioningb

IQc — — — Median — —
M. Workd — Yes — — — —

F. Pres.e — — Yes — — —
SESf Median Median Median Median Tercile Quartile

Freedman–Lane p-Valuesg

Outcome Age (1) (2) (3) (4) (5) (6) N

Employment
Current Employment 19 0.033 0.031 0.048 0.015 0.063 0.018 51
No Job in Past Year 19 0.005 0.004 0.005 0.000 0.009 0.002 51
Jobless Months in Past 2 Yrs. 19 0.019 0.022 0.027 0.013 0.050 0.010 42
Current Employment 27 0.042 0.056 0.058 0.050 0.062 0.034 47
No Job in Past Year 27 0.038 0.038 0.044 0.023 0.041 0.039 48
Jobless Months in Past 2 Yrs. 27 0.170 0.152 0.173 0.130 0.197 0.156 47
Current Employment 40 0.617 0.627 0.591 0.743 0.681 0.622 46
No Job in Past Year 40 0.057 0.051 0.052 0.052 0.087 0.060 47
Jobless Months in Past 2 Yrs. 40 0.533 0.488 0.504 0.571 0.601 0.524 46

Earningsh

Monthly Earn., Current Job 19 0.216 0.187 0.261 0.129 0.266 0.195 51
Monthly Earn., Current Job 27 0.116 0.114 0.121 0.084 0.121 0.120 47
Yearly Earn., Current Job 27 0.282 0.266 0.244 0.242 0.282 0.303 47
Monthly Earn., Current Job 40 0.269 0.239 0.180 0.291 0.328 0.269 46
Yearly Earn., Current Job 40 0.228 0.224 0.180 0.240 0.273 0.219 46

Economic
Car Ownership 27 0.148 0.167 0.149 0.075 0.155 0.157 47
Checking Account 27 0.474 0.447 0.484 0.366 0.589 0.476 47
Savings Account 27 0.052 0.051 0.067 0.029 0.075 0.042 47
Car Ownership 40 0.264 0.255 0.255 0.350 0.342 0.261 46
Checking Account 40 0.236 0.260 0.219 0.245 0.333 0.230 46
Credit Card 40 0.236 0.213 0.162 0.202 0.285 0.245 46
Savings Account 40 0.522 0.479 0.502 0.516 0.556 0.518 46

# Months on Welfare 18–27 0.122 0.113 0.148 0.106 0.168 0.108 47
>30 Mos. on Welfare 18–27 0.073 0.081 0.103 0.052 0.099 0.060 47
Ever on Welfare 18–27 0.048 0.051 0.112 0.048 0.062 0.047 47
Never on Welfare 16–40 0.138 0.131 0.157 0.157 0.168 0.148 51
Never on Welfare (Self Rep.) 26–40 0.670 0.633 0.644 0.709 0.716 0.647 46

aMonetary values adjusted to thousands of year-2006 dollars using annual national CPI. b“—” indicates parametric con-
ditioning, and all others indicate nonparametric conditioning: “yes” if the covariate is discrete, in which case that direct non-
parametric conditioning is possible, and otherwise (e.g., “Tercile”) to indicate the levels used in conditioning on a continuous
covariate. cStanford–Binet IQ, at study entry. dMaternal working status at study entry. eFather’s presence in the home at study
entry. fSocioeconomic Status (SES) index at study entry. gOne-sided p-values for the significance of the treatment coefficient,
computed using the Freedman–Lane procedure, with nonparametric conditioning as indicated at the top. hAge-19 measures
are conditional on at least some earnings during the period specified—observations with zero earnings are omitted in com-
puting means and regressions. p-values below 0.1 are in bold.

umn of our main results (Tables 3–6)—conditions nonparametrically on an indicator
for whether SES index is above or below the median, column (5) conditions on terciles,
and column (6) conditions on quartiles. In all cases, we continue to condition paramet-
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Table F.3. Main outcomes by conditioning: Males, part 1.a

Restriction/Conditioningb

IQc — — — Median — —
M. Workd — Yes — — — —

F. Pres.e — — Yes — — —
SESf Median Median Median Median Tercile Quartile

Freedman–Lane p-Valuesg

Outcome Age (1) (2) (3) (4) (5) (6) N

Education
Learning Disabled? ≤19 0.768 0.760 0.763 0.794 0.906 0.777 66
Mentally Impaired? ≤19 0.055 0.058 0.053 0.037 0.053 0.046 66
Yrs. in Disciplinary Program ≤19 0.130 0.149 0.142 0.124 0.145 0.227 66
Yrs. of Special Services ≤14 0.212 0.222 0.209 0.194 0.286 0.163 72
HS Graduation 19 0.418 0.438 0.426 0.437 0.431 0.577 72
# Years Held Back ≤19 0.740 0.753 0.738 0.721 0.803 0.714 66
Highest Grade Completed 19 0.304 0.321 0.315 0.261 0.336 0.414 72
GPA 19 0.338 0.355 0.327 0.336 0.403 0.360 47
Vocational Training Certificate ≤40 0.411 0.395 0.416 0.368 0.308 0.316 72

Health
No Health Problems 19 0.863 0.859 0.870 0.813 0.814 0.830 72
No Doctors for Illness, Past Yr. 19 0.448 0.433 0.468 0.373 0.432 0.470 72
No Nonroutine Care, Past Yr. 27 0.547 0.527 0.544 0.568 0.358 0.529 63
No Sick Days in Bed, Past Yr. 27 0.162 0.158 0.162 0.127 0.188 0.168 70
No Treat. for Illness, Past 5 Yrs. 27 0.381 0.388 0.379 0.422 0.411 0.276 70
Routine Annual Health Exam 27 0.441 0.445 0.457 0.530 0.490 0.433 68
No Tobacco Use 27 0.253 0.252 0.264 0.238 0.189 0.275 70
Infrequent Alcohol Use 27 0.049 0.050 0.054 0.083 0.020 0.043 66
Alive 40 0.155 0.197 0.164 0.125 0.197 0.250 72

Crime
Any Fel. Arrests ≤27 0.436 0.464 0.436 0.350 0.603 0.629 72
# Fel. Arrests ≤27 0.042 0.046 0.044 0.041 0.093 0.069 72
Any Non-Juv. Arrests ≤27 0.291 0.307 0.296 0.210 0.412 0.431 72

# Non-Juv. Arrests ≤27 0.015 0.018 0.016 0.013 0.040 0.043 72
Any Misd. Arrests ≤40 0.193 0.207 0.195 0.127 0.351 0.340 72
# Misd. Arrests ≤40 0.023 0.021 0.026 0.017 0.069 0.063 72
Any Fel. Arrests ≤40 0.082 0.086 0.082 0.068 0.088 0.131 72
# Fel. Arrests ≤40 0.086 0.099 0.089 0.081 0.152 0.150 72
Any Non-Juv. Arrests ≤40 0.076 0.088 0.080 0.053 0.154 0.150 72
# Non-Juv. Arrests ≤40 0.025 0.025 0.028 0.020 0.072 0.069 72
Any Arrests ≤40 0.125 0.140 0.120 0.096 0.185 0.197 72
# Total Arrests ≤40 0.035 0.038 0.038 0.032 0.098 0.089 72
Ever Incarcerated ≤40 0.112 0.134 0.109 0.112 0.112 0.157 72

aMonetary values adjusted to thousands of year-2006 dollars using annual national CPI. b“—” indicates parametric con-
ditioning, and all others indicate nonparametric conditioning: “yes” if the covariate is discrete, in which case that direct non-
parametric conditioning is possible, and otherwise (e.g., “Tercile”) to indicate the levels used in conditioning on a continuous
covariate. cStanford–Binet IQ, at study entry. dMaternal working status at study entry. eFather’s presence in the home at study
entry. fSocioeconomic Status (SES) index at study entry. gOne-sided p-values for the significance of the treatment coefficient,
computed using the Freedman–Lane procedure, with nonparametric conditioning as indicated at the top. p-values below 0.1
are in bold.



Supplementary Material Analyzing social experiments as implemented 27

Table F.4. Main outcomes by conditioning: Males, part 2.a

Restriction/Conditioningb

IQc — — — Median — —
M. Workd — Yes — — — —

F. Pres.e — — Yes — — —
SESf Median Median Median Median Tercile Quartile

Freedman–Lane p-Valuesg

Outcome Age (1) (2) (3) (4) (5) (6) N

Employment
Current Employment 19 0.104 0.108 0.112 0.121 0.166 0.229 72
No Job in Past Year 19 0.858 0.843 0.849 0.841 0.893 0.894 72
Jobless Months in Past 2 Yrs. 19 0.779 0.767 0.769 0.763 0.800 0.794 70
Current Employment 27 0.220 0.228 0.215 0.196 0.190 0.246 69
No Job in Past Year 27 0.187 0.213 0.177 0.178 0.184 0.237 72
Jobless Months in Past 2 Yrs. 27 0.029 0.038 0.029 0.028 0.037 0.044 69
Current Employment 40 0.010 0.012 0.011 0.009 0.011 0.016 66
No Job in Past Year 40 0.068 0.082 0.073 0.058 0.086 0.100 72
Jobless Months in Past 2 Yrs. 40 0.018 0.021 0.019 0.014 0.021 0.036 66

Earningsh

Monthly Earn., Current Job 19 0.088 0.097 0.092 0.112 0.100 0.102 72
Monthly Earn., Current Job 27 0.011 0.009 0.010 0.007 0.009 0.016 68
Yearly Earn., Current Job 27 0.186 0.177 0.178 0.153 0.183 0.295 66
Monthly Earn., Current Job 40 0.192 0.187 0.180 0.162 0.237 0.365 66
Yearly Earn., Current Job 40 0.145 0.161 0.141 0.136 0.208 0.314 66

Economic
Car Ownership 27 0.059 0.061 0.060 0.048 0.029 0.104 70
Checking Account 27 0.576 0.586 0.575 0.567 0.519 0.617 70
Savings Account 27 0.395 0.395 0.392 0.388 0.396 0.586 70
Car Ownership 40 0.001 0.002 0.001 0.001 0.002 0.004 66
Checking Account 40 0.486 0.496 0.473 0.429 0.504 0.559 66
Credit Card 40 0.198 0.205 0.201 0.178 0.194 0.297 66
Savings Account 40 0.001 0.001 0.001 0.001 0.001 0.002 66

# Months on Welfare 18–27 0.520 0.514 0.520 0.460 0.606 0.550 66
>30 Mos. on Welfare 18–27 0.431 0.433 0.440 0.359 0.449 0.466 66
Ever on Welfare 18–27 0.595 0.596 0.598 0.554 0.710 0.682 66
Never on Welfare 16–40 0.027 0.035 0.030 0.020 0.068 0.064 72
Never on Welfare (Self Rep.) 26–40 0.052 0.051 0.052 0.047 0.059 0.116 64

aMonetary values adjusted to thousands of year-2006 dollars using annual national CPI. b“—” indicates parametric con-
ditioning, and all others indicate nonparametric conditioning: “yes” if the covariate is discrete, in which case that direct non-
parametric conditioning is possible, and otherwise (e.g., “Tercile”) to indicate the levels used in conditioning on a continuous
covariate. cStanford–Binet IQ, at study entry. dMaternal working status at study entry. eFather’s presence in the home at study
entry. fSocioeconomic Status (SES) index at study entry. gOne-sided p-values for the significance of the treatment coefficient,
computed using the Freedman–Lane procedure, with nonparametric conditioning as indicated at the top. p-values below 0.1
are in bold. hAge-19 measures are conditional on at least some earnings during the period specified—observations with zero
earnings are omitted in computing means and regressions.

rically on the remaining covariates (mother’s employment status, father’s presence, and
Stanford–Binet IQ, measured at study entry).

As with our comparison of parametric versus nonparametric conditioning, p-values
are comparable across the columns. Inference varies across approaches for only a hand-
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ful of outcomes. These results further reinforce the conclusion that our choice of condi-
tioning sets does not substantially affect the results reported in Section 5.

Appendix.G Analysis of test scores

Additional tables and figures

Stanford–Binet IQ scores during childhood

The graphs in Figure G.1 compare Stanford–Binet IQ scores by gender. IQ effects for
the Perry program fade out by age 9. Table G.1 shows that this is especially true for males.
For females there is some persistence of the treatment effect, but not in the Stanford–
Binet test. (See Table G.1, row labeled “Stanford–Binet.”) Yet, strong effects are found for
achievement tests for both males and females. Heckman, Malofeeva, Pinto, and Savelyev
(2010) analyze this phenomenon in more detail and establish that socioemotional skills
were enhanced by the Perry program, driving the boost in test performance. This is con-
sistent with the evidence from Borghans, Golsteyn, Heckman, and Humphries (2010),
who report that roughly 50% of the variance in achievement tests is due to variability in
noncognitive skills. These results are also consistent with the evidence from Duckworth
and Seligman (2005) that higher motivation is predictive of better test scores.

Appendix.H Representativeness of the Perry sample

Perry control group verus NLSY79 subsamples

Figures H.1–H.5 compare the Perry control group with two comparison groups on se-
lected background characteristics that mimic the Perry eligibility criteria. To extract
these comparison groups, we use the National Longitudinal Survey of Youth 1979
(NLSY79), which is a nationally representative longitudinal survey whose respondents
represent almost the same birth cohorts as the Perry sample (1956–1964 and 1957–1962,
respectively).

The first comparison group is the full black subsample of the NLSY79, while the sec-
ond is restricted by subject birth order, socioeconomic status (SES) index, and Armed
Forces Qualification Test (AFQT) score. These restrictions are chosen to mimic the pro-
gram eligibility criteria of the Perry study.

A practical difficulty in imposing these restrictions on NLSY79 is that we do not have
enough information to perfectly mimic the original Perry experiment eligibility criteria.
Specifically, we do not know the number of rooms in each NLSY79 respondent’s dwelling
at age 3, which was used to construct the SES index in the Perry study; neither do we
know their IQ scores. Given this lack of information, we construct proxies for these two
variables. First, to construct a proxy for the SES index, we first regress the number of
rooms in the Perry data set on mother’s education, father’s occupation, and family size
to estimate a linear predictor for the number of rooms. The estimated function is used
to predict the number of rooms for each NLSY79 black respondent, which in turn is used
to construct a proxy for the SES index. Second, without having IQ scores in the NLSY79,
we instead use the AFQT scores as our proxy. While AFQT is an achievement test, not
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Figure G.1. Perry subjects’ IQ by gender and treatment status. Data are IQ scores measured us-
ing the Stanford–Binet IQ test (1960 revision). The first entry cohort is excluded, as that treatment
group received only 1 year of treatment.



30 Heckman, Moon, Pinto, Savelyev, and Yavitz Supplementary Material

Table G.1. Early cognitive outcomes by gender.a

Age

Measurement Eb 3 4 5 6 7 8 9

Males
Stanford–Binet 0.191 — 0.000 0.001 0.004 0.049 0.630 0.593
Leiter — 0.103 0.001 0.009 0.458 0.685 0.793 0.107
PPVT — 0.026 0.001 0.000 0.069 0.276 0.110 0.302
ITPA — 0.148 — 0.000 0.236 0.448 0.299 0.350

Joint Testb — 0.073 0.000 0.000 0.014 0.155 0.312 0.295

Females
Stanford–Binet 0.107 — 0.000 0.002 0.070 0.036 0.039 0.108
Leiter — 0.001 0.001 0.000 0.012 0.035 0.039 0.004
PPVT — 0.067 0.001 0.001 0.062 0.057 0.389 0.245
ITPA — 0.073 — 0.000 0.079 0.035 0.063 0.043

Joint Testb — 0.001 0.000 0.000 0.039 0.100 0.133 0.015

ap-values are for the joint hypothesis consisting of one-sided hypotheses for the significance of treatment effect, corre-
sponding to the first step of a stepdown test on the group of outcomes. Constituent p-values are computed using Mann–
Whitney U-statistics, with permutations conditioned on maternal employment and paternal presence, and restricted on SES
index and IQ percentiles and maternal employment; siblings were permuted as a block. A complete set of cognitive test scores
and detailed tests of California Achievement Test scores can be found in Table G.2. p-values below 0.1 are in bold.

bFor each age, the joint test p-value is the joint-hypothesis test of all available outcomes in the rows above for that gender.

Table G.2. California achievement test (CAT) scores by gender.a

Age

CATb Subscore 7 8 9 10 11 14

Males
Reading 0.324 0.443 0.208 0.148 0.154 0.086
Arithmetic 0.207 0.114 0.069 0.082 0.366 0.032
Language 0.454 0.627 0.092 0.087 0.188 0.013

Joint Test 0.403 0.226 0.135 0.148 0.243 0.032

Females
Reading 0.024 0.022 0.055 0.042 0.112 0.041
Arithmetic 0.020 0.038 0.017 0.205 0.304 0.063
Language 0.085 0.031 0.039 0.078 0.158 0.002

Joint Test 0.043 0.043 0.030 0.076 0.180 0.006

ap-values are for the joint hypothesis consisting of one-sided hypotheses for the significance of treatment effect, corre-
sponding to the first step of a stepdown test on the group of outcomes. Constituent p-values are computed using Mann–
Whitney U-statistics, with permutations conditioned on maternal employment and paternal presence, and restricted on SES
index and IQ percentiles and maternal employment; siblings were permuted as a block; each test comprises a single outcome
(and hypothesis) in the joint test. p-values below 0.1 are in bold.

bAt ages prior to 14, the CAT hypotheses corresponded to the reading, arithmetic, and language subscores; at age 14, each
divided into two further subscores.
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Figure H.1. Perry versus NLSY79: cdf of mean parental highest grade completed. The full
NLSY79 sample is the full black subsample. The restricted NLSY79 sample is the black subsample
limited to those with at least one elder sibling, Socioeconomic Status (SES) index no greater than
11, and 1979 AFQT score less than the black median. SES is a weighted linear combination of av-
erage parental highest grade completed, working parent’s employment status (father if present),
and ratio of rooms to people in household. The t statistic is for the difference in means between
the two distributions.
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Figure H.2. Perry versus NLSY79: cdf of age-27 earnings. The full NLSY79 sample is the full
black subsample. The restricted NLSY79 sample is the black subsample limited to those with
at least one elder sibling, Socioeconomic Status (SES) index no greater than 11, and 1979 AFQT
score less than the black median. SES is a weighted linear combination of average parental high-
est grade completed, working parent’s employment status (father if present), and ratio of rooms
to people in household. Earnings discounted to year-2000 dollars. The t statistic is for the differ-
ence in means between the two distributions.
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Figure H.3. Perry versus NLSY79: cdf of age-40 earnings. The full NLSY79 sample is the full
black subsample. The restricted NLSY79 sample is the black subsample limited to those with
at least one elder sibling, Socioeconomic Status (SES) index no greater than 11, and 1979 AFQT
score less than the black median. SES is a weighted linear combination of average parental high-
est grade completed, working parent’s employment status (father if present), and ratio of rooms
to people in household. Earnings discounted to year-2000 dollars. The t statistic is for the differ-
ence in means between the two distributions.
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Figure H.4. Perry versus NLSY79: cdf of mother’s age at subject birth. The full NLSY79 sample is
the full black subsample. The restricted NLSY79 sample is the black subsample limited to those
with at least one elder sibling, Socioeconomic Status (SES) index no greater than 11, and 1979
AFQT score less than the black median. SES is a weighted linear combination of average parental
highest grade completed, working parent’s employment status (father if present), and ratio of
rooms to people in household. The t statistic is for the difference in means between the two
distributions.
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Figure H.5. Perry versus NLSY79: cdf of Socioeconomic Status index. The full NLSY79 sample is
the full black subsample. The restricted NLSY79 sample is the black subsample limited to those
with at least one elder sibling, Socioeconomic Status (SES) index no greater than 11, and 1979
AFQT score less than the black median. SES is a weighted linear combination of average parental
highest grade completed, working parent’s employment status (father if present), and ratio of
rooms to people in household. The t statistic is for the difference in means between the two
distributions.
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Table H.1. Comparison of Perry subjects and the U.S. black population: Males at ages 3, 27,
and 40.a

Perry Subjects NLSY79: Restricted Black Subsamples

Younger
Ctl. Treat. Allb Siblingc Low Abilityd Low SESe All Rerictionsf

Sample Size 39 33 706 564 352 290 128
Pop. Represented 2,222,597 1,749,519 1,085,137 879,363 372,004

Age 3
Parents’ 9.5 9.3 10.7 10.5 9.9 9.8 9.3

Education (2.0) (2.0) (2.6) (2.7) (2.5) (2.3) (2.4)
SES Index 8.6 8.9 10.7 10.6 10.0 8.9 8.6

(1.4) (1.7) (3.0) (3.0) (2.6) (1.3) (1.4)
Mother’s 25.6 26.5 25.1 26.2 25.2 25.6 26.7

Age at Birth (6.6) (6.5) (6.7) (6.5) (7.0) (7.0) (6.9)

Age 27
High School 0.54 0.48 0.71 0.68 0.59 0.71 0.59

Graduation (0.51) (0.51) (0.45) (0.47) (0.49) (0.45) (0.49)
Employed 0.56 0.60 0.82 0.80 0.77 0.84 0.76

(0.50) (0.50) (0.38) (0.40) (0.42) (0.37) (0.43)
Yearly 12,495 14,858 20,239 18,799 16,349 19,268 14,579

Earnings (11,354) (10,572) (18,261) (15,850) (14,835) (16,305) (11,819)

Age 40
Employed 0.50 0.70 0.84 0.83 0.76 0.82 0.75

(0.51) (0.47) (0.37) (0.37) (0.43) (0.38) (0.43)
Yearly 21,119 27,347 28,729 27,581 19,700 26,992 18,860

Earnings (23,970) (24,224) (26,929) (26,059) (17,947) (25,256) (21,256)

aAll NLSY79 figures weighted by the initial (1979) sampling weights. Numbers in parentheses are standard deviations. All

monetary values in year-2000 dollars. bNo restrictions. cSubjects with at least one elder sibling (all Perry subjects also meet
this criterion). dAFQT scores below the black median. eSocioeconomic Status (SES) index at most 11. fCombines the three
restrictions to the left.

an ability test like the IQ test, it can serve as a proxy for ability as long as achievement
and ability are highly correlated. We adjust the AFQT score for age and educational level
at the time of testing and use it as our proxy. The method used for adjustment is based
on the method of Carneiro, Heckman, and Masterov (2005), which is a simpler version
of the method of Hansen, Heckman, and Mullen (2004). This method corrects for re-
verse causality arising from the effect of education on test scores. The early childhood
background characteristics—pre-experimental measures in the Perry sample—that we
are comparing in this appendix are parents’ average highest grade completed, an SES
index, and mother’s age at subject’s birth, all measured at age 3. Adult outcomes consist
of earnings at ages 27 and 40.

Relative to the full black NLSY79 subsample, children in the Perry control group have
more disadvantaged family backgrounds. This is not surprising, as the Perry program
was targeted toward such children through the aforementioned eligibility. One inter-
esting finding is that this disadvantage is also reflected in adult earnings. Compared to
the fully restricted NLSY79 subsample (the final column), however, the relative disad-



Supplementary Material Analyzing social experiments as implemented 37

Table H.2. Comparison of Perry subjects and the U.S. black population: Females at ages 3, 27,
and 40.a

Perry Subjects NLSY79: Restricted Black Subsamples

Younger
Ctl. Treat. Allb Siblingc Low Abilityd Low SESe All Rerictionsf

Sample Size 26 25 957 732 434 385 146
Pop. Represented 2,305,560 1,757,547 1,007,214 902,001 341,721

Age 3
Parents’ 9.0 9.0 10.4 10.1 9.6 9.4 8.7

Education (2.0) (1.9) (2.7) (2.8) (2.7) (2.5) (2.8)
SES Index 8.5 8.7 10.6 10.3 9.7 8.9 8.4

(1.2) (1.4) (3.0) (2.9) (2.6) (1.3) (1.4)
Mother’s 25.7 26.7 25.1 26.5 24.9 25.5 27.2

Age at Birth (7.5) (5.9) (6.9) (6.7) (7.0) (7.3) (6.9)

Age 27
High School 0.31 0.84 0.76 0.75 0.60 0.75 0.60

Graduation (0.47) (0.37) (0.42) (0.43) (0.49) (0.43) (0.49)
Employed 0.55 0.80 0.65 0.62 0.50 0.60 0.45

(0.51) (0.41) (0.48) (0.48) (0.50) (0.49) (0.50)
Yearly 8986 11,554 12,701 11,849 7582 11,430 6263

Earnings (9007) (9393) (12,880) (12,235) (8578) (12,120) (7779)

Age 40
Employed 0.82 0.83 0.78 0.78 0.70 0.78 0.70

(0.39) (0.38) (0.41) (0.41) (0.46) (0.42) (0.46)
Yearly 17,374 20,866 20,365 19,511 12,588 19,624 11,530

Earnings (16,907) (20,292) (18,433) (17,655) (11,386) (18,663) (10,885)

aAll NLSY79 figures weighted by the initial (1979) sampling weights. Numbers in parentheses are standard deviations. All

monetary values in year-2000 dollars. bNo restrictions. cSubjects with at least one elder sibling (all Perry subjects also meet
this criterion). dAFQT scores below the black median. eSocioeconomic Status (SES) index at most 11. fCombines the three
restrictions to the left.

vantage disappears in both childhood and adult outcome measures. These restrictions
induce broad comparability between the subsample of the NLSY79 constructed using
these principles and the controls in the Perry sample. This analysis supports the use of
this NLSY79 subsample as a comparison group for the Perry control group.

The U.S. population in 1960 was 180 million, of which 10.6% (19 millions) were
black.14 We use NLSY79, a representative sample of the total population that was born
between 1957 and 1964, to estimate the number of persons in the United States that
resemble the Perry population at study entry (age 3). According to NLSY79, the black
cohort born in 1957–1964 is composed of 2.2 million males and 2.3 million females. Our
criteria indicate that 712,000 persons out of this 4.5 million black cohort resemble the
Perry population. We estimate that 17% of the male cohort and 15% of the female cohort
would be eligible for the Perry program if it were applied nationwide.

14Visit http://www.census.gov/population/www/documentation/twps0056/twps0056.html for more
details.

http://www.census.gov/population/www/documentation/twps0056/twps0056.html
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Appendix.I The role of the local economy in explaining gender differences

in treatment outcomes

The local economic history of Washtenaw County15 has peculiarities that may explain
the age pattern of male treatment effects and thus explain gender differences in a num-
ber of program outcomes. In the 1970’s, employment in Ypsilanti and Washtenaw in-
creased by 50%—a much higher rate than for the state (14%) or the country (25%) as
a whole (see Table I.1). This rapid growth coincided with a boom in the local manu-
facturing sector, which subsequently contracted during later decades, although the ser-
vice sector continued to expand (see Figure I.1). The boom was particularly prevalent
in the male-friendly manufacturing sector.16�17 This economic boom created plentiful
jobs during subjects’ late teens, increasing the opportunity cost of attending school and
resulting in a higher dropout rate for boys. In later decades, as the manufacturing sector
shrank, it became more difficult for males to find jobs, while sectors in which females
were mostly employed (such as the service sector) expanded.

These labor market dynamics may partially explain the lack of a positive male pro-
gram treatment effect for high school graduation. Further, the exceptionally rapid em-
ployment growth in the Ypsilanti area suggests the possibility that regional economic
shocks drive program treatment effects. Therefore, we do not observe a significant treat-
ment effect on male employment at age 19 or for male educational attainment, since at
the time Perry participants entered the labor market, manufacturing jobs did not require
a high school degree.

While it is not easy to verify this interpretation with any precision, it is consistent
with observed patterns of migration out of economically troubled Michigan. At age 27,
treatment males were more likely to migrate than their control counterparts, although
the difference is not statistically significant at conventional levels (see Table I.2). This
evidence is consistent with a positive effect of Perry on the skills of participants. Many

Table I.1. Historical employment trends in Ypsilanti, Michigan.

Ypsilanti Washtenaw Michigan U.S. Total

Year Emp. � % Emp. � % Emp. � % Emp. � %

1970 12,634 — 105,058 — 3,558,467 — 91,281,600 —
1980 19,441 54 164,723 57 4,039,438 14 114,231,200 25
1990 19,773 2 213,928 30 4,826,388 19 139,426,900 22
2000 17,716 −10 232,175 9 5,654,522 17 167,465,300 20

Source: Southeast Michigan Council of Governments (2002).

15Washtenaw County, which contains Ypsilanti and Ann Arbor, is located in the Detroit metropolitan
area.

16Goldin and Katz (2008) discuss the positive relationship between the demand for labor in the manu-
facturing sector and the high school dropout rate. Manufacturing jobs did not require skilled workers (high
school graduates).

17At age 19, 12 out of 31 working males reported their jobs as assembly or auto mechanic, while 8 out of
15 working females reported their jobs as cashier, food service, or dishwasher.
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Figure I.1. Michigan employment by industry. Source: Southeast Michigan Council of Govern-
ments (2002).

studies of migration show a positive link between education and migration (Sjaastad

(1962), Vigdor (2002a, 2002b)). The observed differences in migration between treat-

ments and controls support the interpretation that treatment had some positive ef-

fect on skills and motivation, even if we do not observe this directly in terms of its ef-

fect on educational attainment of males. This pattern is also consistent with the pat-

tern that males had strong treatment effects on earnings outcomes despite insignificant

treatment effects on education, as well as the finding that treatment males had greater

noncognitive skills and better achievement test scores than their control counterparts.

(See Heckman et al. (2010).)

Table I.2. Migration by gender.

% Out of Males Females

Michigan Ctl. Trt. pa Ctl. Trt. pa

At age 27b 12�8 21�2 0.174 26�9 8�0 0.040
At age 40c 25�0 26�7 0.440 13�6 4�2 0.132

N 39 33 26 25

ap-values are for asymptotic one-sided tests.
bAt the time of age-27 survey.
c1996–2002.
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