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This paper considers issues related to identification, inference, and computation
in linearized dynamic stochastic general equilibrium (DSGE) models. We first pro-
vide a necessary and sufficient condition for the local identification of the struc-
tural parameters based on the (first and) second order properties of the process.
The condition allows for arbitrary relations between the number of observed en-
dogenous variables and structural shocks, and is simple to verify. The extensions,
including identification through a subset of frequencies, partial identification,
conditional identification, and identification under general nonlinear constraints,
are also studied. When lack of identification is detected, the method can be fur-
ther used to trace out nonidentification curves. For estimation, restricting our at-
tention to nonsingular systems, we consider a frequency domain quasi-maximum
likelihood estimator and present its asymptotic properties. The limiting distribu-
tion of the estimator can be different from results in the related literature due to
the structure of the DSGE model. Finally, we discuss a quasi-Bayesian procedure
for estimation and inference. The procedure can be used to incorporate relevant
prior distributions and is computationally attractive.

Keywords. Infinite dimensional mapping, local identification, MCMC, noniden-
tification curve, rank condition, spectral domain.
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1. Introduction

The formal quantitative analysis of dynamic stochastic general equilibrium (DSGE)
models has become an important subject of modern macroeconomics. It is typically
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conducted in the time domain using a state space representation with the aid of Kalman
or particle filtering; see An and Schorfheide (2007) and Fernández-Villaverde (2010) for
reviews of related literature. This paper considers issues related to identification, in-
ference, and computation from a spectral domain perspective. The goal is to present
a unified framework for identifying and estimating linearized DSGE models based on
the mean and the spectrum of the underlying process.

The identification of DSGE models is important for both calibration and formal sta-
tistical analysis, although the relevant literature is relatively sparse. Substantial progress
has been made recently, notably by Iskrev (2010) and Komunjer and Ng (2011), and by
Canova and Sala (2009), Consolo, Favero, and Paccagnini (2009), and Fukac, Waggoner,
and Zha (2007). Komunjer and Ng (2011) documented that an inherent difficulty in the
identification analysis is that the reduced form parameters (i.e., the ones appearing di-
rectly in the solution of the model) are in general not identifiable, thus the traditional
approach of identifying structural parameters from the reduced form breaks down. Also,
the solution system of a DSGE model can be singular (i.e., when the number of observed
endogenous variables is greater than the number of exogenous shocks), which consti-
tutes an additional layer of conceptual difficulty. They provided necessary and suffi-
cient conditions for the local identification of the dynamic parameters by exploiting the
dynamic structure of the model. Our identification analysis is distinctly different from
theirs and other related work in the literature. Specifically, we work in the frequency do-
main, treating the spectral density as an infinite dimensional mapping, and delivering
simple identification conditions applicable to both singular and nonsingular DSGE sys-
tems without relying on a particular (say, the minimal state) representation.

We first focus on the identification of the dynamic parameters from the spectrum.
We treat the elements of the spectral density matrix as mappings from the structural
parameter space to complex valued functions defined over [−π�π] in a Banach space.
Then the parameters are locally identified if and only if the overall mapping is locally
injective (that is, if any local change in parameter values leads to a different image).
This leads to a necessary and sufficient rank condition for local identification, which
depends on the first order derivative of the spectral density matrix with respect to the
structural parameters of interest. Depending on the model at hand, the resulting con-
dition can be easily evaluated analytically or numerically. The result is general because
the assumptions mainly involve the uniqueness of the DSGE solution (i.e., determinacy)
and the continuity and smoothness of the spectral density matrix. Note that although
the identification condition is formulated in the spectral domain, it has a time domain
interpretation as well. Specifically, under some regularity condition that ensures a one-
to-one mapping between the spectral density matrix and the autocovariance functions,
the condition is also necessary and sufficient for local identification through the com-
plete set of autocovariances. Next, we incorporate the steady state parameters into the
analysis and study identification through both the first and second order properties of
the process. The result we obtain is analogous to the previous case with the addition of
an extra term depending on the steady state parameters. When interpreted in the time
domain, this condition is necessary and sufficient for local identification through the
mean and the complete set of autocovariances.
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We discuss various extensions of these two identification results. (i) We study iden-
tification through a subset of frequencies. This is relevant for situations where it is de-
sirable to construct estimators based on a subset of frequencies to minimize the effect
of unmodeled seasonality or measurement errors. (ii) We consider partial identifica-
tion, that is, identifying a subset of parameters without making identification statements
about the rest. (iii) We give a necessary and sufficient condition for conditional identi-
fication, that is, the identification of a subset of parameters while holding the values of
the other parameters fixed at some known value. (iv) We also study identification under
general nonlinear parameter constraints. For example, this allows us to constrain some
monetary shocks to have no long run effect on real variables, which can be easily formu-
lated as a set of restrictions on the spectral density matrix at frequency zero. The second
and third extensions are motivated by Komunjer and Ng (2011), although the assump-
tions they used are different. The first extension is new. It provides the identification
foundation for inference based on a subset of frequencies studied later in the paper.

Furthermore, when lack of identification is detected, our method can be used to
trace out parameter values that yield processes with identical (first and) second order
properties. We summarize the path of these values via nonidentification curves and
provide a simple algorithm to obtain them. It appears that our paper is the first to de-
liver such curves. They can serve three purposes. First, because they showcase which
parameters are unidentified and their equivalent parameter values, they are useful for
building a DSGE model. Second, because they characterize the size of the nonidentified
local neighborhood, they are useful for inference. In particular, if the neighborhood is
very small, then the lack of local identification arguably may not be a great threat to in-
ference that assumes identification nonetheless; otherwise, serious thoughts should be
given. Third, the curves can be embedded into a procedure to ensure the robustness of
the identification analysis. This point is elaborated using an example in Section 3.2.

We illustrate the proposed method using a model considered by An and Schorfheide
(2007) and document a serious concern about the identification of the parameters in
the Taylor rule equation. The result shows that when varying parameters in this equa-
tion along a certain path, the (mean and) spectrum of the observables stay the same;
thus it is impossible to uniquely pin down the parameter values even with an infinite
sample. The values on the curve suggest that in this model it is impossible to distinguish
between a hawkish rule (a long run policy coefficient of 1.57 on inflation and 0.00 on
output, resulting in respective Taylor rule weights of 0.41 and 0.00) and a more dovish
rule (0.99 on inflation and 1.00 on output, with Taylor rule weights of 0.20 on each). To
our knowledge, the current paper is the first to document such an identification feature
about the Taylor rule parameters.

As will become clear, our results, as well as their proofs, are closely connected to
Rothenberg (1971), who considered identification of parametric econometric models
from the density functions and provided rank conditions based on the information ma-
trix. However, there exists an important difference. Namely, in our analysis, the spectral
density is a complex valued matrix that may be singular. Under singularity, the conven-
tional information matrix does not exist. This generates some conceptual and technical
difficulties that do not arise in Rothenberg (1971). Consequently, our condition is based
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on a criterion function different from the information matrix. We further show that when
restricting to the nonsingular special case, our condition is equivalent to evaluating the
rank of the information matrix. Therefore, the condition of Rothenberg (1971) still ap-
plies, albeit only to nonsingular models.

An identification result is useful only if it corresponds to an estimator. This motivates
the consideration of the frequency domain quasi-maximum likelihood (FQML) estima-
tion in this paper. The FQML approach was first proposed by Whittle (1951). Its statisti-
cal properties have been studied by, among others, Dunsmuir and Hannan (1976), Dun-
smuir (1979), and Hosoya and Taniguchi (1982 ) in the statistics literature. In the eco-
nomics literature, Hansen and Sargent (1993) derived the FQML as an approximation to
the time domain Gaussian quasi-maximum likelihood (QML) and used it to understand
the effect of seasonal adjustment in estimating rational expectations models. Diebold,
Ohanian, and Berkowitz (1998) laid out a general framework for estimation and model
diagnostics based on a full second order comparison of the model and data dynamics.
Their criterion function includes FQML as a special case.

The contribution of the current paper in the area of FQML estimation is threefold.
First, we formally establish the link between the identification result and the property of
the estimator by showing that the rank condition derived is necessary and sufficient for
the estimator to be asymptotically locally unique. Therefore, the identification result is
empirically relevant. Second, we derive the limiting distribution of the estimator under
mild conditions. Finally, we discuss a computationally attractive method to obtain the
estimates, following the approach of Chernozhukov and Hong (2003). In addition to the
computational advantage, it allows us to impose priors on the parameters, thus having
a (quasi-) Bayesian interpretation. Note that the above results allow for estimation using
only a subset of frequencies.

In addition to the above mentioned papers, there exists a small but growing litera-
ture that exploits the merits of estimation and diagnosis of econometric models in the
spectral domain. Engle (1974) considered band spectrum regressions and demonstrated
their value in dealing with errors in variables and seasonality. Altug (1989) applied FQML
to estimate models with additive measurement errors. Watson (1993) suggested plotting
the model and data spectra as one of the most informative diagnostics. Berkowitz (2001)
considered the estimation of rational expectation models based on the spectral prop-
erties of the Euler residuals. Also see Christiano, Eichenbaum, and Marshall (1991) and
Christiano and Vigfusson (2003) for applications of FQML to various problems. We be-
lieve that the identification, estimation, and computational results obtained in this pa-
per can be useful to further develop the literature in this field and to facilitate estimation
and comparison of more sophisticated models.

The paper is organized as follows. The structure of the DSGE solution is discussed
in Section 2. Section 3 considers the local identification of the structural parameters
together with an algorithm to trace out nonidentification curves and an illustrative ex-
ample. The FQML estimator and its asymptotic properties are studied in Section 4. The
discussion on interpretation of the estimates in misspecified models is also included.
Section 5 presents a quasi-Bayesian approach for computation and inference. Section 6
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concludes. All proofs are contained in the Appendix available in a supplementary file on
the journal website, http://qeconomics.org/supp/126/supplement.pdf.

The following notation is used: |z| is the modulus of z; the imaginary unit is denoted
by i; X∗ stands for the conjugate transpose of a complex valued matrix X . For a random
vector xt , xta denotes its ath element. For a matrix A, Aab stands for its (a�b)th entry.
If fθ ∈ R

k is a differentiable function of θ ∈ R
p, then ∂fθ0/∂θ

′ is a k × p matrix of partial
derivatives evaluated at θ0. We use the notation “→p” and “→d” to denote convergence
in probability and in distribution, and Op(·) and op(·) are the usual symbols for stochas-
tic orders of magnitude.

2. The model

Suppose a discrete time DSGE model has been solved and log-linearized around the
steady state. Assume the solution is unique. Let Yd

t (θ) be the log deviations of endoge-
nous variables from their steady states, with θ being a finite dimensional structural pa-
rameter vector containing the dynamic parameters. The log deviations Yd

t (θ) can be
represented in various ways, and our method does not rely on a particular representa-
tion. To maintain generality, we only assume that they are representable as

Yd
t (θ)=

∞∑
j=0

hj(θ)εt−j� (1)

where hj(θ) (j = 0� � � � �∞) are real valued matrices of constants and {εt} is a white noise
process of unobserved structural shocks. The dimensions of the relevant variables and
parameters are

Yd
t (θ) :nY × 1� εt :nε × 1� hj(θ) :nY × nε� θ :q× 1�

Let H(L;θ) denote the matrix of lagged polynomials, that is,

H(L;θ)=
∞∑
j=0

hj(θ)L
j� (2)

Then Yd
t (θ) can be written concisely as

Yd
t (θ)=H(L;θ)εt � (3)

Remark 1. We work directly with the vector moving average representation (3) with-
out assuming invertibility, that is, εt = ∑∞

j=0 gj(θ)Y
d
t−j(θ) for some gj(θ). Invertibility

is restrictive because it requires nY ≥ nε. Consequently, we allow for both nY ≥ nε and
nY < nε. Note that the system is singular if nY > nε.

Assumption 1. The process {εt} satisfies E(εt) = 0�E(εtε′
t ) = Σ(θ) with Σ(θ) being a fi-

nite nε × nε matrix for all θ, and E(εtε
′
s)= 0 for all t �= s:

∑∞
j=0 tr(hj(θ)Σ(θ)hj(θ)

′) <∞.

http://qeconomics.org/supp/126/supplement.pdf
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Assumption 1, along with (1), implies that Yd
t (θ) is covariance stationary and has a

spectral density matrix fθ(ω) that can be written as

fθ(ω) = 1
2π

H(exp(−iω);θ)Σ(θ)H(exp(−iω);θ)∗� (4)

where X∗ denotes the conjugate transpose of a generic complex matrix X . To illustrate
the flexibility of the above framework, we consider the following two examples.

Example 1. Consider a linear rational expectations system as in Sims (2002) (in this
example and the next, we omit the dependence of the parameters on θ to simplify nota-
tion),

Γ0St = Γ1St−1 +ΨZt +Πηt� (5)

where St is a vector of model variables that includes the endogenous variables and the
conditional expectation terms, Zt is an exogenously evolving, possibly serially corre-
lated, random disturbance, and ηt is an expectational error. Models with more lags or
with lagged expectations can be accommodated by expanding the St vector accordingly.
Then, under some conditions (Sims (2002, p. 12)), the system can be represented as

St =Θ1St−1 +Θ0Zt +ΘS

∞∑
j=1

Θ
j−1
f ΘZEtZt+j� (6)

where Θ0, Θ1, ΘS , Θf , and ΘZ are functions of Γ0, Γ1, Ψ , and Π. Assuming Zt follows a
vector linear process (for example,Zt+1 =ΦZt +εt+1), we then have St =Θ1St−1 +B(L)εt
for some lag polynomial matrix B(L), implying St = (I −Θ1L)

−1B(L)εt .
Let A(L) be a matrix of finite order lag polynomials that specifies the observables

such that

Yd
t =A(L)St�

Then we have

Yd
t =A(L)(I −Θ1L)

−1B(L)εt �

Therefore, the spectral density of Yd
t is given by (4) with H(L;θ) = A(L)(I − Θ1L)

−1 ×
B(L).

Remark 2. In the above example, the matrix A(L) offers substantial flexibility since it
allows us to study identification and estimation based on a subset of variables (equa-
tions) or a linear transformation of them. To see this, suppose St includes two endoge-
nous variables xt and wt . Then A(L) can be chosen such that Yd

t includes only xt but
not wt , or includes xt − xt−1 but not xt . Consequently, it is straightforward to analyze
DSGE models with latent endogenous variables simply by assigning 0s and 1s to the en-
tries of A(L). We illustrate the specification of A(L) in Section 3.2 through a concrete
example. Note that such analysis is permitted because we do not impose restrictions on
the relation between nY and nε.
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Example 2. Another representation used in the literature by, among others, Uhlig
(1999), is

kt+1 = Pkt +Qzt�

wt = Rkt + Szt�

zt+1 = Ψzt + εt+1�

where kt is a vector of observed endogenous (state) variables whose values are known at
time t, wt is a vector of observed endogenous (jump) variables, zt has the same definition
as in the previous example, and P , Q, R, S, and Ψ are matrices of constants depending
on the structural parameter θ. Let

Yd
t =

(
kt

wt

)
� (7)

Then the spectral density of Yd
t is given by (4) with

H(L;θ)=
(
L−1[I − PL] 0

−R I

)−1 (
Q

S

)
[I −ΨL]−1�

Again, one can study identification and estimation based on a subset of equations or
a linear combination of them by picking an appropriate A(L) and considering Yd

t =
A(L)(k′

t �w
′
t )

′ instead of (7), which corresponds to

H(L;θ)= A(L)

(
L−1[I − PL] 0

−R I

)−1 (
Q

S

)
[I −ΨL]−1� (8)

As becomes clear later, if estimating the dynamic parameters is the main objective,
then it is not necessary to specify the steady states of the DSGE solution. However, in
some cases one may be interested in estimating the dynamic and steady state param-
eters jointly, for example, for conducting welfare analyses. Our framework permits this.
First, recall that θ denotes the dynamic parameter vector. Importantly, parameters that
affect both the steady states and the log deviations are treated as dynamic, and thus are
included in θ. Next, let α denote the parameters that affect only the steady states, which
is possibly a null set in some DSGE models. Finally, define the augmented parameter
vector

θ̄ = (θ′�α′)′

and assume that the observables (Yt ) are related to the log deviations (Yd
t (θ)) and the

steady states (μ(θ̄)) via

Yt = μ(θ̄)+Yd
t (θ)�

The above expression acknowledges that in DSGE models, the constant term μ typically
depends on both θ and α. In the remainder of the paper, we examine the identification
and estimation of θ based on the properties of fθ(ω) alone, and of θ̄ based jointly on
μ(θ̄) and fθ(ω).
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3. Local identification of structural parameters

We first consider the identification of θ at some θ0 and subsequently of θ̄ at some θ̄0. The
next assumption imposes some restrictions on the parameter space.

Assumption 2. We have θ ∈Θ ⊂ R
q and θ̄ ∈ Θ̄ ⊂ R

p+q with Θ and Θ̄ being compact and
convex. Assume θ0 and θ̄0 are interior points of Θ and Θ̄, respectively.

Note that for identification analysis alone, we do not require the compactness and
convexity assumptions on Θ and Θ̄. However, they are needed to study the asymptotic
properties of the parameter estimates.

The concept for location identification is defined in the same way as in Rothenberg
(1971, see his Definition 3).

Definition 1. The dynamic parameter vector θ is said to be locally identifiable from
the second order properties of {Yt} at a point θ0 if there exists an open neighborhood of
θ0 in which fθ1(ω) = fθ0(ω) for all ω ∈ [−π�π] implies θ0 = θ1.

The above concept is formulated in the frequency domain. However, there is an
equivalent formulation in the time domain in terms of autocovariance functions.
Specifically, suppose {Yt} satisfy Assumption 1 with autocovariance function Γ (k)

(k = 0�±1� � � �) satisfying Γ (k) = Γ (−k) and that fθ(ω) is continuous in ω. Then The-
orem 1′′ in Hannan (1970, p. 46) implies that there is a one-to-one mapping between
Γ (k) (k= 0�±1� � � �) and fθ(ω) (ω ∈ [−π�π]) given by

Γ (k) =
∫ π

−π
exp(ikω)fθ(ω)dω�

Therefore, θ is locally identifiable from fθ(ω) if and only if it is locally identifiable from
the complete set of autocovariances {Γ (k)}∞

k=−∞ of Yt .

The spectral density matrix has n2
Y elements. Each element can be viewed as a map

from Θ to complex valued functions defined over [−π�π] in a Banach space. Therefore,
the parameters are locally identified at θ0 if and only if the overall mapping is locally in-
jective (i.e., any local change in parameter values will lead to a different image for some
element). The mappings are infinite dimensional and difficult to analyze directly. How-
ever, it turns out the identification can be characterized by a finite dimensional matrix.
To state this precisely, we start with the following assumption.

Assumption 3. The elements of fθ(ω) are continuous in ω, and continuous and differ-
entiable in θ. The elements of the derivatives ∂vec(fθ(ω))/∂θ′ are continuous in θ and ω.
Let

G(θ) =
∫ π

−π

(
∂vec(fθ(ω)′)

∂θ′

)′(
∂vec(fθ(ω))

∂θ′

)
dω� (9)

Assume there exists an open neighborhood of θ0 in which G(θ) has a constant rank.
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This first part of the assumption requires the spectral density to be smooth with con-
tinuous first order derivatives. The second part requires θ0 to be a regular point of the
matrix G(θ). These assumptions are quite mild. Note that in the definition of G(θ), the
primes (′) denote simple transposes rather than conjugate transposes. Alternatively, we
can also write G(θ) as∫ π

−π

(
∂vec(fθ(ω))

∂θ′

)∗(
∂vec(fθ(ω))

∂θ′

)
dω�

where the asterisk (∗) now denotes the conjugate transpose.

Remark 3. The dimension of G(θ) is always q × q and independent of nY or nε. Its
(j�k)th element is given by

Gjk(θ)=
∫ π

−π
tr

{
∂fθ(ω)

∂θj

∂fθ(ω)

∂θk

}
dω�

We use this representation to compute G(θ) in the application in Section 3.2. Lemma A.1
in the Appendix provides another representation, showing explicitly that the integrand
of G(θ), therefore G(θ) itself, is real, symmetric, and positive semidefinite. This feature
is useful for proving the subsequent theoretical results.

Theorem 1. Let Assumptions 1–3 hold. Then θ is locally identifiable from the second
order properties of {Yt} at a point θ0 if and only if G(θ0) is nonsingular.

The main computational work in obtaining G(θ0) is to evaluate the first order deriva-
tives and to compute the integral. This is typically straightforward using numerical
methods. First, divide the interval [−π�π] into N subintervals to obtain (N + 1) fre-
quency indices. Let ωs denote the sth frequency in the partition. Then ∂fθ0(ωs)/∂θj can
be computed numerically using a simple two-point method,

fθ0+ejhj (ωs)− fθ0(ωs)

hj
� j = 1� � � � �N + 1�

where ej is a q × 1 unit vector with the jth element equal to 1 and hj is a step size that
can be parameter dependent. In practice, to obtain the right hand side quantity, we only
need to solve the DSGE model twice, once using θ = θ0 and once with θ = θ0 +ejhj . After
this is repeated for all parameters in θ, we can compute Gjk(θ0) using

2π
N + 1

N+1∑
s=1

tr
{
∂fθ(ωs)

∂θj

∂fθ(ωs)

∂θk

}
�

Note that no simulation is needed in this process. For the model considered in Sec-
tion 3.2 (An and Schorfheide (2007)), the computation takes less than a minute to finish
with N = 9999.
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Because G(θ) is real, symmetric, and positive semidefinite, its eigendecomposition
always exists. Therefore, the rank of G(θ0) can be evaluated using an algorithm for eigen-
value decomposition and counting the number of nonzero eigenvalues.

Theorem 1 is closely related to Theorem 1 in Rothenberg (1971), who considered
identification in parametric models. In his case, fθ(ω) is replaced by the parametric den-
sity function and G(θ) is simply the information matrix. Since the information matrix
describes the local curvature of the log-likelihood as a function of θ, its rank naturally
provides a measure for identification, for lack of identification is simply the lack of suffi-
cient information to distinguish between alternative structures. In our case, the result is
equally intuitive, since the parameters are locally identified if and only if any deviation
of the parameters from θ0 leads to different mappings for fθ(ω). We now state a result
that formally establishes the link with Rothenberg’s (1971) condition. Note that under
Gaussianity the information matrix is given by1

I(θ0)= 1
4π

∫ π

−π

∂vec(fθ0(ω)′)′

∂θ

(
f−1
θ0

(ω)′ ⊗ f−1
θ0

(ω)
)∂vec(fθ0(ω))

∂θ′ dω�

which is defined only if the system is nonsingular. We restrict our attention to such a
situation.

Corollary 1. Let Assumptions 1–3 hold. In addition, assume fθ0(ω) has full rank for all
ω ∈ [−π�π]. Then G(θ0) and I(θ0) have the same rank. Also, for any c ∈ R

q, G(θ0)c = 0 if
and only if I(θ0)c = 0.

Therefore, Rothenberg’s (1971) condition applies to DSGE models, albeit only to
nonsingular systems. Because G(θ0) and I(θ0) share the same null space, they deliver
the same information about nonidentification. The issue of nonidentification is further
addressedin Section 3.1.

Given the insight conveyed by Theorem 1, it becomes straightforward to study the
identification of θ̄ based on both first and second order properties of the process.

Definition 2. The parameter vector θ̄ is said to be locally identifiable from the first and
the second order properties of {Yt} at a point θ̄0 if there exists an open neighborhood of
θ̄0 in which μ(θ̄1)= μ(θ̄0) and fθ1(ω) = fθ0(ω) for all ω ∈ [−π�π] implies θ̄0 = θ̄1.

Assumption 4. The elements of μ(θ̄) are continuously differentiable with respect to θ̄.
Let

Ḡ(θ̄) =
∫ π

−π

(
∂vec(fθ(ω)′)

∂θ̄′

)′(
∂vec(fθ(ω))

∂θ̄′

)
dω+ ∂μ(θ̄)′

∂θ̄

∂μ(θ̄)

∂θ̄′ �

Assume there exists an open neighborhood of θ̄0 in which Ḡ(θ) has a constant rank.

1Under Gaussianity, I(θ0)
−1 is the asymptotic covariance matrix of the FQML estimator based on the full

spectrum; see Section 4, in particular Theorem 3 and the expression (18) that follows.
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Remark 4. The dimension of Ḡ(θ̄) is (p + q) × (p + q). The first term is a bordered
matrix, consisting of G(θ) with p rows and columns of 0s appended to it. Both terms are
positive semidefinite, hence taking the sum cannot decrease the rank. Also note that the
(j�k)th element of Ḡ(θ̄) is given by

Ḡjk(θ̄)=
∫ π

−π
tr

{
∂fθ(ω)

∂θ̄j

∂fθ(ω)

∂θ̄k

}
dω+ ∂μ(θ̄)′

∂θ̄j

∂μ(θ̄)

∂θ̄k
�

Theorem 2. Let Assumptions 1–4 hold. Then θ̄ is locally identifiable from the first and
second order properties of {Yt} at a point θ̄0 if and only if Ḡ(θ̄0) is nonsingular.

Theorems 1 and 2 can be further extended in various directions. In what follows, we
discuss four such extensions.

DSGE models are often designed to explain business cycle movements, not very long
run or very short run fluctuations. At the latter frequencies, such models can be severely
misspecified. It is therefore important to consider estimation and inference based on
business cycle frequencies only. Such consideration may also arise due to concerns
about unmodeled seasonality or measurement errors; see Hansen and Sargent (1993),
Diebold, Ohanian, and Berkowitz (1998), and Berkowitz (2001). We now present a re-
sult that lays the identification foundation for such an analysis. Let W (ω) denote an
indicator function defined on [−π�π] that is symmetric around 0 and equal to 1 over a
finite number of closed intervals. Extend the definition of W (ω) to ω ∈ [π�2π] by using
W (ω) = W (2π −ω).2 Define the matrices

GW (θ) =
{∫ π

−π
W (ω)

(
∂vec(fθ(ω)′)

∂θ′

)′(
∂vec(fθ(ω))

∂θ′

)
dω

}
�

ḠW (θ̄) =
{∫ π

−π
W (ω)

(
∂vec(fθ(ω)′)

∂θ̄′

)′(
∂vec(fθ(ω))

∂θ̄′

)
dω

}
+ ∂μ(θ̄)′

∂θ̄

∂μ(θ̄)

∂θ̄′ �

Corollary 2 (Identification From a Subset of Frequencies).

(i) Let Assumptions 1–3 hold, but with G(θ) replaced by GW (θ). Then θ is locally iden-
tifiable from the second order properties of {Yt} through the frequencies specified by W (ω)

at a point θ0 if and only if GW (θ0) is nonsingular.

(ii) Let Assumptions 1–4 hold, but with Ḡ(θ̄) replaced by ḠW (θ̄). Then θ̄ is locally iden-
tifiable from the first and second order properties of {Yt} through the frequencies specified
by W (ω) at a point θ̄0 if and only if ḠW (θ̄0) is nonsingular.

The proof is the same as for Theorems 1 and 2, because W (ω) is a nonnegative real
valued function; therefore, it is omitted. Note that because the quantities(

∂vec(fθ(ω)′)
∂θ′

)′(
∂vec(fθ(ω))

∂θ′

)
2This extension is needed for FQML estimation since the objective function involves summation over

ωj = 2π/T� � � � �2π(T − 1)/T ; see (15).
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are positive semidefinite for any ω ∈ [−π�π], the difference G(θ0) − GW (θ0) is always
positive semidefinite. This ensures that if θ0 is identified using a subset of frequencies,
it is also identified if considering the full spectrum. The converse does not necessarily
hold. The same statement can be made about the relation between Ḡ(θ̄0) and ḠW (θ̄0).

The second extension concerns the identification of a subset of parameters without
making identification statements about the rest (partial identification). Specifically, let
θs be a subset of parameters from θ. We say it is locally identified from the second order
properties of {Yt} if there exists an open neighborhood of θ0 in which fθ1(ω) = fθ0(ω) for
all ω ∈ [−π�π] implies θs0 = θs1. Note that, as in Rothenberg (1971, footnote p. 586), the
definition does not exclude there being two points satisfying fθ1(ω) = fθ0(ω) and having
θs arbitrarily close in the sense of ‖θs0 −θs1‖/‖θ0 −θ1‖ being arbitrarily small. Analogously,
we can define the identification of a subset of θ̄, say θ̄s, based on the first and second or-
der properties. The following result is a consequence of Theorem 8 in Rothenberg (1971),
which can be traced back to Wald (1950) and Fisher (1966).

Corollary 3 (Partial Identification).

(i) Let Assumptions 1–3 hold. Then θs is locally identifiable from the second order
properties of {Yt} at a point θs0 if and only if G(θ0) and

Ga(θ0) =
[

G(θ0)

∂θs0/∂θ
′

]
have the same rank.

(ii) Let Assumptions 1–4 hold. Then θ̄s is locally identifiable from the first and second
order properties of {Yt} at a point θ̄s0 if and only if Ḡ(θ̄0) and

Ḡa(θ̄0) =
[

Ḡ(θ̄0)

∂θ̄s0/∂θ̄
′

]
have the same rank.

The proof is given in the Appendix. Furthermore, one may be interested in studying
the identification of a subset of parameters while keeping the values of the others fixed
at θ0 (conditional identification). The result for this extension is formally stated below.

Corollary 4 (Conditional Identification).

(i) Let Assumptions 1–3 hold. Then a subvector of θ, θs, is conditionally locally identi-
fiable from the second order properties of {Yt} at a point θ0 if and only if

G(θ0)
s =

∫ π

−π

(
∂vec(fθ0(ω)′)

∂θs′

)′(
∂vec(fθ0(ω))

∂θs′

)
dω

is nonsingular.
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(ii) Let Assumptions 1–4 hold. Then a subvector of θ̄, θ̄s, is conditionally locally identi-
fiable from the first and second order properties of {Yt} at a point θ̄0 if and only if

Ḡ(θ̄0)
s =

∫ π

−π

(
∂vec(fθ0(ω)′)

∂θ̄s′

)′(
∂vec(fθ0(ω))

∂θ̄s′

)
dω+ ∂μ(θ̄0)

′

∂θ̄s
∂μ(θ̄0)

∂θ̄s′

is nonsingular.

The proof is the same as for Theorems 1 and 2 because G(θ0)
s and Ḡ(θ̄0)

s have the
same structure as G(θ0) and Ḡ(θ̄0), but with derivatives taken with respect to a subset
of parameters. Therefore the detail is omitted. Comparison between Corollaries 3 and 4
suggests that the latter is often practically more relevant and its result is also simpler to
interpret; we therefore expect it to be more frequently applied in practice.

Next, we consider identification under general constraints on the parameters. One
potential example is that shocks to monetary variables have no long term effect on real
variables, which can be formulated as a set of restrictions on the spectral density at fre-
quency zero.

Corollary 5 (Identification Under General Constraints).

(i) Let Assumptions 1–3 hold. Suppose θ0 satisfies ψ(θ0) = 0 with ψ(θ) a k × 1 con-
straint vector continuously differentiable in θ. Define the Jacobian matrix Ψ(θ) with the
(j� l)th element given by

Ψjl(θ)= ∂ψj(θ)/∂θl�

Suppose θ0 is a regular point of both G(θ) and Ψ(θ). Then θ satisfying ψ(θ) = 0 is locally
identified from the second order properties of {Yt} at a point θ0 if and only if[

G(θ0)

Ψ(θ0)

]
has full column rank equal to q.

(ii) Let Assumptions 1–4 hold and let the other conditions stated in part (i) of this corol-
lary hold with θ replaced by θ̄. Then θ̄ satisfying ψ(θ̄) = 0 is locally identified from the first
and second order properties of {Yt} at a point θ̄0 if and only if[

Ḡ(θ̄0)

Ψ̄ (θ̄0)

]
has rank (q+p).

Note that Corollary 5 can also be used to study conditional identification, because
the latter is a special case of simple linear restrictions. However, Corollary 4 is simpler to
apply, especially if the dimension of θs is much smaller compared to that of θ. Clearly,
Corollaries 3–5 can be applied in conjunction with Corollary 2 to study identification
through a subset of frequencies.
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We now compare the above analysis with those of Iskrev (2010) and Komunjer and
Ng (2011). Iskrev (2010) suggested to identify the parameters from the mean and the
first T autocovariances of the observables. Because his result (Theorem 2) assumes T is
finite, the resulting conditions are sufficient but not necessary. Meanwhile, the key dif-
ferences between our work and Komunjer and Ng (2011) can be summarized along five
aspects. First, the perspective is different. Komunjer and Ng (2011) regarded the solu-
tion of a DSGE model as a minimal system with miniphase. Their condition effectively
exploits the implication of the latter two features for identification. Instead, we regard
the spectrum of a DSGE model as an infinite dimensional mapping. The analysis stud-
ies its property under local perturbation of the structural parameter vector. Second, the
assumption is different. We do not require the solution system to have minimal phase.
Therefore, we permit the rank of the spectral density matrix to vary across frequencies.
This is practically relevant. For example, in Smets and Wouters (2007), the rank of the
spectral density is lower at frequency zero because the first differences of stationary
variables are considered. Third, the system representation requirement is different. Ko-
munjer and Ng (2011) required a minimal state representation, while we do not. What-
ever is the state representation under which the model is solved (St in the GENSYS algo-
rithm, for example), the spectral density can be computed and that is all that is needed.
Fourth, the treatment of stochastic singularity is different. Komunjer and Ng (2011) gave
separate results for singular and nonsingular systems, while our single condition ap-
plies to both. Intuitively, this follows because the dimension of our criterion function is
independent of those of the observation vector and the vector of innovations, but only
depends on that of the structural parameter vector. Finally, the computation is differ-
ent. Although both methods require numerical differentiation, it is applied to different
objects. In Komunjer and Ng (2011), it is applied to the coefficient matrices in the state
space representation, while in our case, we compute the derivative of the spectral den-
sity with respect to the structural parameter vector.

3.1 Tracing out nonidentification curves

In this section, the discussion focuses on θ because for θ̄ the procedure works in the
same way. Suppose Theorem 1 or Corollary 2 shows that θ is locally unidentifiable.

First, consider the simple case where G(θ0) has only one zero eigenvalue. Let c(θ0)

be a corresponding real eigenvector satisfying ‖c(θ0)‖ = 1. Then c(θ0) is unique up to
multiplication by −1 and thus can be made unique by restricting its first nonzero ele-
ment to be positive. This restriction is imposed in the subsequent analysis. Let δ(θ0) be
an open neighborhood of θ0. Under Assumptions 1–3, G(θ) is continuous and has only
one zero eigenvalue in δ(θ0), while c(θ) is continuous in δ(θ0). As in Rothenberg (1971),
define a curve χ using the function θ(v), which solves the differential equation

∂θ(v)

∂v
= c(θ)�

θ(0)= θ0�
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where v is a scalar that varies in a neighborhood of 0 such that θ(v) ∈ δ(θ0). Then along χ,
θ is not identified at θ0 because

∂vec(fθ(v)(ω))

∂v
= ∂vec(fθ(v)(ω))

∂θ(v)′
c(θ)= 0 (10)

for all ω ∈ [−π�π], where the last equality uses Assumption 3 and the fact that c(θ) is the
eigenvector corresponding to the zero eigenvalue (cf. (A.3) in the Appendix). We call χ
the nonidentification curve.

Clearly, this curve is continuous in v. It is also locally unique, in the sense that there
does not exist another continuous curve containing θ0 and satisfying fθ1(ω) = fθ0(ω) for
all ω ∈ [−π�π]. We state this result as a corollary:

Corollary 6. Let Assumptions 1–3 hold and let rank(G(θ0)) = q − 1. Then, in a small
neighborhood of θ0, there exists precisely one curve passing through θ0 that satisfies
fθ1(ω)= fθ0(ω) for all ω ∈ [−π�π].

Corollary 6 is not a trivial result because it involves infinite dimensional maps. The
key idea in the proof is to reduce the problem to a finite dimensional one by considering
projections of fθ(·) associated with finite partitions of [−π�π]. Then a standard constant
rank theorem can be applied. The details of the proof are in the Appendix.

The nonidentification curve can be evaluated numerically in various ways. The sim-
plest example is the Euler method. First, obtain c(θ0) as described above. Then compute
recursively

θ(vj+1)≈ θ(vj)+ c(θ(vj))(vj+1 − vj)� vj+1 ≥ vj ≥ 0� j = 0�1� � � � �
(11)

θ(vj−1)≈ θ(vj)+ c(θ(vj))(vj−1 − vj)� vj−1 ≤ vj ≤ 0� j = 0�−1� � � � �

where |vj+1 − vj| is the step size, which can be set to some small constant, say h. The
associated approximation error in each step is of O(h2) if θ(v) has bounded first and
second derivatives. Therefore, the cumulative error over a finite interval is O(h). It is
important to note that because δ(θ0) is usually unknown, so is the domain of the curve.
However, this is not a problem in practice, because we can first obtain a curve over a wide
support, then resolve the model and compute the spectral density using points on this
curve. The curve can then be truncated to exclude the points that violate determinacy,
the natural bounds of the parameters (e.g., the discount rate, stationary autoregressive
coefficients), and those yielding fθ(ω) different from fθ0(ω).

Next, consider the case where G(θ0) has multiple zero eigenvalues. Then, in general,
there exists an infinite number of curves satisfying (10), because any linear combina-
tion of the eigenvectors points to a direction of nonidentification. It is not useful to try
reporting all such curves. To see this, suppose θ0 = (θ1

0� θ
2
0)

′ and that changing θ1 along
a certain curve χ1 while keeping θ2 fixed at θ2

0 yields identical spectral densities. Also
suppose the same property holds when we vary θ2 and fix θ1 at θ1

0, yielding a curve χ2.
Suppose the rank of G(θ) stays constant in a local neighborhood of θ0. Then changing
θ1 and θ2 simultaneously can also generate new curves and there are infinitely many of
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them. In this example, χ1 and χ2 contain essentially all the information, as the rest of the
curves are derived from them, and thus it suffices to report only two of them. Motivated
by the above observation, we propose a simple four-step procedure that delivers a finite
number of nonidentification curves. The key idea underlying this procedure is to distin-
guish between separate sources of nonidentification by using Corollary 4. More specifi-
cally, we apply the rank condition recursively to subsets of parameters to find the ones
that are not identified and depict their observationally equivalent values using curves.

Step 1. Apply Theorem 1 to verify whether all the parameters in the model are
locally identified. Proceed to Step 2 if lack of identification is detected.

Step 2. Apply Corollary 4 to each individual parameter. If a zero eigenvalue of
G(θ)s evaluated at θ0 is found, then it implies that the corresponding parameter is not
locally conditionally identified. Apply the procedure outlined above to obtain a non-
identification curve (changing only this element and fixing the value of the others at θ0).
Repeating this for all individual parameters, we obtain a finite number of curves, with
each curve being a scalar valued function of v.

Step 3. Increase the number of parameters in the considered subsets of θ0 by one
at a time. Single out the subsets with the following two properties: (i) it does not include
the subset detected in previous steps as a proper subset and (ii) when applying Corol-
lary 4, it reports only one zero eigenvalue. Repeat the procedure outlined above for all
such subsets to obtain nonidentification curves. Note that if the subset has k elements,
then the associated curve is a k× 1 vector valued function of v.

Step 4. Continue Step 3 until all subsets are considered. Solve the model using
parameter values from the curves to determine the appropriate domain for v. Truncate
the curves obtained in Steps 1–4 accordingly.

Step 2 returns nonidentification curves resulting from changing only one element in
the parameter vector. In Step 3, the number of elements is increased sequentially. For
each iteration, the algorithm first singles out parameter subvectors whose elements are
not separately identified. Then only subvectors satisfying the two properties outlined
in Step 3 are further considered. The first property is to rule out redundancy because if
a k-element subset constitutes a nonidentification curve, including any additional ele-
ment (fixing its value or varying it if it itself is not conditionally identifiable) by defini-
tion constitutes another such curve, but it conveys no additional information. The sec-
ond property serves the same purpose, because if some subvector yields a G(θ)s with
multiple zero eigenvalues, then it must be a union of subvectors identified in previous
steps and containing fewer elements. To see that this is necessarily the case, suppose
that for a given subvector, two zero eigenvalues are reported. Then there exists a lin-
ear combination of the two corresponding eigenvectors that makes the first element of
the resulting vector zero. Similarly, there is a combination that makes the second ele-
ment zero. The two resulting vectors are valid eigenvectors; however, they correspond
to lower dimensional subvectors of θ. Now apply Corollary 4 to these two subvectors. If
single zero eigenvalues are reported, then it implies that they have already been consid-
ered in the previous steps. Otherwise, the dimension of the subvectors can be further
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reduced by using the same argument, eventually leading to the conclusion that they
have been previously considered. The general case with more than two zero eigenvalues
can be analyzed similarly.

In Steps 3 and 4, we do not remove any parameter from θ after nonidentifica-
tion curves are found. Otherwise, we may fail to detect some curves. To see this, sup-
pose θ ∈ R

4, and that the subvectors (θ1� θ2) and (θ1� θ3� θ4) form two nonidentification
curves. If we removed θ1 and θ2 from θ after considering two-parameter subsets, then
we would miss (θ1� θ3� θ4). Finally, in Step 4, the truncation narrows down the domain of
the nonidentification curve, which can be used, for example, to exclude parameter val-
ues that are incompatible with the economic theory. This is computationally simple to
implement in practice because the domain of any curve is always one dimensional. For
illustration, consider the curve (θ1(v)�θ2(v)) and suppose that the economic theory re-
quires the value of θ1 to be nonnegative. Then we simply chop off those v with θ1(v) ≤ 0.
If the theory also imposes restriction on θ2, then we simply drop those v over which at
least one restriction is violated.

This procedure delivers a finite number of curves with the following two features.
First, the curves are minimal in the sense that, for each curve, all elements in the cor-
responding subvector have to change to generate nonidentification. Fixing the value of
any element shrinks the corresponding curve to a single point. Second, the curves are
sufficient in the sense that, for any subvector that can generate a nonidentification curve
passing through θ0, it or one of its subsets are already included. Finally, the procedure
is simple to implement because it mainly involves repeated applications of Corollary 4.
This simplicity is achieved because we start with the lowest dimension, thus there is
no need to directly handle the situation with multiple zero eigenvalues. It should also
be noted that, apart from evaluating the nonidentification curves, the procedure is not
computationally demanding. Once G(θ) is computed in Step 1, the G(θ)s for any sub-
vector considered can be obtained by simply picking out relevant elements of G(θ) (cf.
Remark 3). Specifically, suppose we are interested in a particular k-element subvector
of θ. If we number parameters inside θ, and let Φ be a set of parameter numbers of in-
terest (i.e., if we want to vary only parameters 1, 2, and 5, then Φ = {1�2�5}), then the
(i� j)th element of G(θ)s is given by

G(θ)si�j =G(θ)Φi�Φj
� i = 1�2� � � � �k; j = 1�2� � � � �k� (12)

Also note that in the case of Theorem 2, the same logic applies to the term [∂μ(θ̄0)
′/∂θ̄s]×

[∂μ(θ̄0)/∂θ̄
s′], that is, having computed it once, one can repeatedly apply Corollary 4 by

selecting relevant elements from it and G(θ)s in the same fashion as in (12).

3.2 An illustrative example

To provide a frame of reference, we consider a DSGE model from An and Schorfheide
(2007) whose identification also was studied by Komunjer and Ng (2011). We consider
identification based on the (first and) second order properties and also obtain noniden-
tification curves.
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The log-linearized solutions are given by

yt =Etyt+1 + gt −Etgt+1 − 1
τ
(rt −Etπt+1 −Etzt+1)�

πt = βEtπt+1 + τ(1 − ν)

νπ2φ
(yt − gt)�

ct = yt − gt�

rt = ρrrt−1 + (1 − ρr)ψ1πt + (1 − ρr)ψ2(yt − gt)+ ert�

gt = ρggt−1 + εgt�

zt = ρzzt−1 + εzt�

where ert = εrt , εrt ∼ WN(0�σ2
r ), εgt ∼ WN(0�σ2

g), and εzt ∼ WN(0�σ2
z ) are mutually

uncorrelated shocks, and π is the steady state inflation rate. The vector of parameters to

be identified is

θ = (τ�β�ν�φ�π2�ψ1�ψ2�ρr�ρg�ρz�σ
2
r �σ

2
g�σ

2
z )�

We use parameter values3

θ0 = (2�0�9975�0�1�53�6797�1�0082�1�5�0�125�0�75�0�95�0�9�0�4�3�6�0�9)�

as given in Table 3 of An and Schorfheide (2007).

We first describe how to compute the spectrum for a given parameter vector. We can

write the model as in (5) with

St = (zt� gt� rt� yt�πt� ct�Et(πt+1)�Et(yt+1))
′� (13)

The exact formulations of the matrices Γ0, Γ1, Ψ , and Π are omitted here.4 We use the

GENSYS algorithm provided by Sims (2002) to obtain the model solution numerically in

the form of (6), specifically

St =Θ1St−1 +Θ0εt�

where Θ1 and Θ0 are functions of θ. The spectral density, as noted before, can then be

computed using (4) with

H(L;θ)= A(L)(I −Θ1L)
−1Θ0�

3Note that we scale the values for the variances (σ2
r �σ

2
g �σ

2
z ) from An and Schorfheide (2007) by 105. This

scaling is merely to ensure numerical stability and does not affect any of our conclusions.
4Please refer to the MATLAB code available from the authors’ web pages for details.
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Given the St in (13) and Yd
t = (rt−1�yt�πt� ct)

′, the matrix A(L) is given by5⎛⎜⎜⎜⎝
0 0 L 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

⎞⎟⎟⎟⎠ �

Note that the results in this example do not rely on using the solution algorithm of Sims
(2002). Other algorithms considered in the literature (e.g., that in Uhlig (1999)), can be
used to obtain the same conclusions. The algorithm will produce the P , Q, R, S repre-
sentation as in (7), with kt+1 = rt , wt = (yt�πt� ct)

′, and zt = (ert� gt� zt)
′. The spectrum

can then be computed as in (8).

3.2.1 Analysis based on the second order properties. To compute G(θ0), the inte-
gral in G(θ0) is approximated numerically by averaging over 10,000 Fourier frequen-
cies from −4999π/5000 to 4999π/5000 and multiplying by 2π. The results reported
are robust to varying the number of frequencies between 5000 and 10,000. The step
size for the numerical differentiation6 is set to 10−7 × θ0. The rank of G(θ0) is com-
puted as the number of nonzero eigenvalues, using the MATLAB default tolerance set
at tol = size(G)eps(‖G‖), where eps is the floating point precision of G. We obtain
rank(G(θ0)) = 10. Because q = 13, this means that the entire parameter vector cannot
be identified from the spectrum. In addition, this suggests that three parameters have
to be fixed to achieve identification.

Since the model is not identified, we can follow the procedure outlined in Section 3.1
to pinpoint the sources of nonidentification. In Step 2, we apply Corollary 4 to all one-
element subsets of θ which, as noted above in (12), simply amounts to checking whether
any diagonal elements of G(θ0) are zero. None is found, hence we continue to Step 3 and
consider all two-element subvectors of θ. We find three subvectors that yield Gs(θ0) with
one zero eigenvalue: (ν�φ), (ν�π2), and (φ�π2). This finding is very intuitive, since all
of these parameters enter the slope of the Phillips curve equation and thus are not sep-
arately identifiable, as noted by An and Schorfheide (2007). We do not report the non-
identification curves for these cases, as they are trivial and can be eliminated by repa-
rameterizing the model with κ≡ τ(1 − ν)/(νπ2φ) as a new parameter instead. However,
highlighting them does play a useful part in illustrating our procedure at work.

Before we continue, we exclude all three-parameter subvectors that contain either
of the three nonidentification sets identified above as proper subsets. Considering all
remaining three-element subvectors of θ yields no new nonidentification sets. However,
there is one four-element subvector which has one zero eigenvalue:

(ψ1�ψ2�ρr�σ
2
r )�

Interestingly, all of these parameters enter the Taylor rule equation in the model.

5Considering rt instead of rt−1 in Yd
t yields the same result. We only need to replace the lag operator in

the first row of A(L) by 1. Such a feature is true in general.
6A simple two-point method is used. In our experience, using higher order methods did not change the

conclusions.
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Having excluded all subvectors containing the nonidentification parameter sets
above and repeating Step 4 with more parameters, we do not find any more sources
of nonidentification in this model. The result implies that to achieve identification, it is
necessary and sufficient to fix two parameters out of ν, φ and π2, and one parameter out
of ψ1, ψ2, ρr , and σ2

r .
The above finding is further confirmed when we repeat the exercise by considering

a reparameterization of the model with κ as defined above: θ is still not identified and
G(θ0) has only one zero eigenvalue. Note that the reparameterization amounts to fixing
two parameters out of ν, φ, and π2. This leaves only one direction of nonidentification,
which turns out to be, not surprisingly, along the (ψ1�ψ2�ρr�σ

2
r ) subvector.

We then proceed to evaluate the nonidentification curve, consisting of combinations
of ψ1, ψ2, ρr , and σ2

r , using the Euler method with step size h = 10−5 in a small neigh-
borhood around θ0. The result is presented in Figure 1. The figure shows the noniden-
tification curve pertaining to each parameter. The initial value is at θ0 and the curve is
extended in each direction using (11). The directions are marked on the graph by bold
and dotted lines. Note that ψ2, which governs the output weight in the Taylor rule and
must be nonnegative, is decreasing along direction 1. Therefore, we truncate the curve
at the closest point to zero where ψ2 is still positive. Along direction 2, we reach an in-
determinacy region before any natural bounds on parameter values are violated, and
hence truncate the curve at the last point that yields a determinate solution. Therefore,
this case also provides an illustration of how to narrow down the domain of the non-
identification curve in practice.

To give a quantitative idea of the parameter values on the curve, we also present a
sample of values from various points on the curve in Table 1. Specifically, 10 points were
taken at regularly spaced intervals from θ0 in the positive and negative direction.

Of course it is necessary to verify that the points on the curve result in identical spec-
tral densities. We do this by computing the fθ(ω) at half of the Fourier frequencies used
in the computation of G(θ0) (i.e., 5000 frequencies between 0 and π)7 for each point
on the curve and then compare it to the ones computed at θ0. Due to numerical error
involved in solving the model, the computation of the G matrix, and the approximation
method for the differential equation, small discrepancies between the spectra computed

Figure 1. The nonidentification curve (ψ1�ψ2�ρr�σ
2
r ). The nonidentification curve is given

by ∂θ(v)/∂v = c(θ), θ(0) = θ0, where c(θ) is the eigenvector corresponding to the only zero
eigenvalue of G(θ). The curve is computed recursively using the Euler method, so that
θ(vj+1) = θ(vj)+ c(θ(vj))h, where h is the step size, fixed at 1e–05. The variables (ψ1�ψ2�ρr�σ

2
r )

change simultaneously along the curve in the indicated directions. Directions 1 and 2 are ob-
tained by restricting the first element of c(θ) to be positive or negative, respectively. Since a neg-
ative Taylor rule weight contradicts economic theory, direction 1 is truncated at the last point
where ψ2 is nonnegative. Direction 2 is truncated at the boundary of the determinacy region.
Consequently, the curve is extended from θ0 for 14,475 steps in direction 1 and for 101,972 steps
in direction 2.

7There is no need to consider ω ∈ [−π�0] because fθ(ω) is equal to the conjugate of fθ(−ω).
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Table 1. Parameter values and the corresponding two smallest eigenvalues along the noniden-
tification curve.a

ψ1 ψ2 ρr σ2
r λ1 λ2

θ0 1�500000 0�125000 0�750000 0�400000 7.09E–10 3�251348

Panel (a): Direction 1
θ1 1�507156 0�112571 0�749192 0�399139 1.47E–10 3�266554
θ2 1�514316 0�100134 0�748378 0�398272 4.73E–10 3�281960
θ3 1�521476 0�087698 0�747559 0�397401 9.56E–10 3�297558
θ4 1�528636 0�075262 0�746735 0�396525 1.15E–09 3�313348
θ5 1�535796 0�062827 0�745905 0�395644 5.33E–10 3�329337
θ6 1�542955 0�050392 0�745070 0�394758 1.79E–09 3�345526
θ7 1�550114 0�037958 0�744229 0�393868 1.90E–09 3�361918
θ8 1�557272 0�025524 0�743383 0�392973 1.82E–10 3�378520
θ9 1�564431 0�013091 0�742531 0�392073 1.80E–09 3�395333
θ10 1�571589 0�000659 0�741674 0�391168 1.79E–10 3�412362

Panel (b): Direction 2
θ−1 1�449285 0�213085 0�755581 0�405975 2.19E–10 3�148993
θ−2 1�398558 0�301193 0�760920 0�411732 1.30E–11 3�054759
θ−3 1�347819 0�389321 0�766031 0�417282 5.23E–13 2�967750
θ−4 1�297070 0�477467 0�770930 0�422636 1.12E–12 2�887193
θ−5 1�246311 0�565629 0�775628 0�427803 3.63E–12 2�812419
θ−6 1�195543 0�653807 0�780138 0�432793 6.18E–12 2�742843
θ−7 1�144767 0�741998 0�784471 0�437615 3.12E–12 2�677957
θ−8 1�093985 0�830202 0�788638 0�442275 3.33E–12 2�617315
θ−9 1�043195 0�918417 0�792647 0�446783 4.15E–12 2�560521
θ−10 0�992400 1�006643 0�796507 0�451145 3.76E–12 2�507230

aThe parameters θj represent equally spaced points taken from the nonidentification curve extended from θ0 for 14,475
steps in direction 1 and for 101,972 steps in direction 2. The quantities λ1 and λ2 represent the smallest and the second smallest
eigenvalues of G(θi)

s , respectively. The step size of the approximation is 10−5 . Along direction 1, the curve is truncated at the
closest point to zero where ψ2 is still positive, as it determines the output weight in the Taylor rule and must be nonnegative.
Along direction 2, the curve is truncated at the last point yielding a determinate solution. Results are rounded to the nearest
sixth digit to the right of decimal.

at θ0 and the points on the curve should be expected. We therefore consider three differ-
ent measures of the discrepancies (let fθhl(ω) denote the (h� l)th element of the spectral
density matrix with parameter θ and let Ω be the set that includes the 5000 frequencies
between 0 and π):

maximum absolute deviation : max
ωj∈Ω

|fθhl(ωj)− fθ0hl(ωj)|�

maximum absolute deviation in relative form :
max
ωj∈Ω

|fθhl(ωj)− fθ0hl(ωj)|
|fθ0hl(ωj)| �

maximum relative deviation : max
ωj∈Ω

|fθhl(ωj)− fθ0hl(ωj)|
|fθ0hl(ωj)| �

Note that when computing the second measure, the denominator is evaluated at the
same frequency that maximizes the numerator. To save space, we only report results for
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Table 2. Deviations of spectra across frequencies (direction 1).a

Spectral Density Matrix Element Number

(1�1) (2�1) (3�1) (4�1) (2�2) (3�2) (4�2) (3�3) (4�3) (4�4)

Measure 1: Maximum absolute deviations across frequencies
θ1 1�49E–07 1�68E–08 9�85E–08 1�68E–08 1�99E–08 1�26E–08 1�99E–08 5�80E–08 1�26E–08 1�99E–08
θ2 2�96E–07 3�40E–08 1�97E–07 3�40E–08 3�98E–08 2�52E–08 3�98E–08 1�16E–07 2�52E–08 3�98E–08
θ3 4�43E–07 5�11E–08 2�94E–07 5�11E–08 5�83E–08 3�68E–08 5�83E–08 1�75E–07 3�68E–08 5�83E–08
θ4 5�93E–07 7�13E–08 3�97E–07 7�13E–08 7�76E–08 4�87E–08 7�76E–08 2�36E–07 4�87E–08 7�76E–08
θ5 7�35E–07 8�51E–08 4�88E–07 8�51E–08 9�78E–08 6�18E–08 9�78E–08 2�89E–07 6�18E–08 9�78E–08
θ6 8�82E–07 1�02E–07 5�86E–07 1�02E–07 1�18E–07 7�43E–08 1�18E–07 3�47E–07 7�43E–08 1�18E–07
θ7 1�04E–06 1�24E–07 6�92E–07 1�24E–07 1�37E–07 8�64E–08 1�37E–07 4�11E–07 8�64E–08 1�37E–07
θ8 1�19E–06 1�37E–07 7�88E–07 1�37E–07 1�59E–07 1�01E–07 1�59E–07 4�64E–07 1�01E–07 1�59E–07
θ9 1�34E–06 1�57E–07 8�91E–07 1�57E–07 1�79E–07 1�13E–07 1�79E–07 5�27E–07 1�13E–07 1�79E–07
θ10 1�49E–06 1�76E–07 9�94E–07 1�76E–07 1�99E–07 1�25E–07 1�99E–07 5�89E–07 1�25E–07 1�99E–07

Measure 2: Maximum absolute deviations across frequencies in relative form
θ1 6�66E–09 2�11E–09 7�03E–09 2�11E–09 8�19E–10 7�02E–09 9�83E–09 6�34E–09 7�02E–09 9�83E–09
θ2 1�32E–08 4�28E–09 1�40E–08 4�28E–09 1�64E–09 1�40E–08 1�97E–08 1�26E–08 1�40E–08 1�97E–08
θ3 1�98E–08 6�43E–09 2�10E–08 6�43E–09 2�44E–09 2�06E–08 2�89E–08 1�91E–08 2�06E–08 2�89E–08
θ4 2�65E–08 8�97E–09 2�83E–08 8�97E–09 3�32E–09 2�75E–08 3�87E–08 2�58E–08 2�75E–08 3�87E–08
θ5 3�28E–08 1�07E–08 3�48E–08 1�07E–08 4�08E–09 3�45E–08 4�85E–08 3�15E–08 3�45E–08 4�85E–08
θ6 3�94E–08 1�29E–08 4�18E–08 1�29E–08 4�91E–09 4�15E–08 5�83E–08 3�78E–08 4�15E–08 5�83E–08
θ7 4�62E–08 1�56E–08 4�93E–08 1�56E–08 5�80E–09 4�85E–08 6�83E–08 4�49E–08 4�85E–08 6�83E–08
θ8 5�29E–08 1�73E–08 5�62E–08 1�73E–08 6�60E–09 5�62E–08 7�89E–08 5�07E–08 5�62E–08 7�89E–08
θ9 5�98E–08 1�97E–08 6�35E–08 1�97E–08 7�46E–09 6�31E–08 8�87E–08 5�75E–08 6�31E–08 8�87E–08
θ10 6�66E–08 2�22E–08 7�09E–08 2�22E–08 8�34E–09 7�01E–08 9�86E–08 6�43E–08 7�01E–08 9�86E–08

Measure 3: Maximum relative deviations across frequencies
θ1 7�57E–09 3�01E–08 2�01E–08 3�01E–08 4�64E–09 9�15E–09 1�20E–08 6�34E–09 9�15E–09 1�20E–08
θ2 1�48E–08 6�36E–08 4�14E–08 6�36E–08 9�33E–09 1�83E–08 2�41E–08 1�26E–08 1�83E–08 2�41E–08
θ3 2�25E–08 8�82E–08 5�91E–08 8�82E–08 1�36E–08 2�68E–08 3�53E–08 1�91E–08 2�68E–08 3�53E–08
θ4 2�96E–08 1�27E–07 8�27E–08 1�27E–07 1�82E–08 3�56E–08 4�72E–08 2�58E–08 3�56E–08 4�72E–08
θ5 3�69E–08 1�54E–07 1�01E–07 1�54E–07 2�29E–08 4�50E–08 5�93E–08 3�15E–08 4�50E–08 5�93E–08
θ6 4�42E–08 1�89E–07 1�23E–07 1�89E–07 2�76E–08 5�41E–08 7�13E–08 3�78E–08 5�41E–08 7�13E–08
θ7 5�13E–08 2�31E–07 1�48E–07 2�31E–07 3�23E–08 6�31E–08 8�34E–08 4�49E–08 6�31E–08 8�34E–08
θ8 5�91E–08 2�60E–07 1�68E–07 2�60E–07 3�74E–08 7�33E–08 9�66E–08 5�07E–08 7�33E–08 9�66E–08
θ9 6�67E–08 2�92E–07 1�89E–07 2�92E–07 4�20E–08 8�22E–08 1�08E–07 5�75E–08 8�22E–08 1�08E–07
θ10 7�42E–08 3�28E–07 2�12E–07 3�28E–07 4�67E–08 9�13E–08 1�21E–07 6�43E–08 9�13E–08 1�21E–07

aThe parameters θ1 to θ10 are as defined in Table 1. The upper triangular elements are omitted due to symmetry.

the points in Table 1, as the rest are very similar. Both Tables 2 and 3 show that even
the largest observed deviations are quite modest (recall that the Euler method involves
a cumulative approximation error that is of the same order as the step size, in this case
10−5). This confirms that the spectral density is constant along the curve.

Note that all four parameters in (ψ1�ψ2�ρr�σ
2
r ) have to change simultaneously to

generate nonidentification. This can be further verified as follows. Suppose fixing σ2
r

still leaves (ψ1�ψ2�ρr) unidentified. Then this subvector should generate a nonidenti-
fication curve. However, using the procedure outlined above yields a curve, the points
on which produce much larger deviations from fθ0(ω) than those reported in Tables 2
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Table 3. Deviations of spectra across frequencies (direction 2).a

Spectral Density Matrix Element Number

(1�1) (2�1) (3�1) (4�1) (2�2) (3�2) (4�2) (3�3) (4�3) (4�4)

Measure 1: Maximum absolute deviations across frequencies
θ−1 8�49E–07 8�20E–08 5�00E–07 8�20E–08 1�45E–07 9�87E–08 1�45E–07 2�52E–07 9�87E–08 1�45E–07
θ−2 1�69E–06 1�59E–07 1�01E–06 1�59E–07 2�75E–07 1�86E–07 2�75E–07 5�28E–07 1�86E–07 2�75E–07
θ−3 2�52E–06 2�34E–07 1�53E–06 2�34E–07 3�95E–07 2�64E–07 3�95E–07 8�18E–07 2�64E–07 3�95E–07
θ−4 3�35E–06 3�07E–07 2�06E–06 3�07E–07 5�04E–07 3�34E–07 5�04E–07 1�13E–06 3�34E–07 5�04E–07
θ−5 4�17E–06 3�83E–07 2�60E–06 3�83E–07 6�02E–07 3�96E–07 6�02E–07 1�46E–06 3�96E–07 6�02E–07
θ−6 4�99E–06 4�64E–07 3�16E–06 4�64E–07 6�91E–07 4�50E–07 6�91E–07 1�80E–06 4�50E–07 6�91E–07
θ−7 5�80E–06 5�58E–07 3�72E–06 5�58E–07 7�72E–07 4�98E–07 7�72E–07 2�17E–06 4�98E–07 7�72E–07
θ−8 6�62E–06 6�76E–07 4�30E–06 6�76E–07 8�44E–07 5�39E–07 8�44E–07 2�55E–06 5�39E–07 8�44E–07
θ−9 7�43E–06 8�17E–07 4�89E–06 8�17E–07 9�10E–07 5�75E–07 9�10E–07 2�95E–06 5�75E–07 9�10E–07
θ−10 8�26E–06 9�74E–07 5�50E–06 9�74E–07 9�67E–07 6�04E–07 9�67E–07 3�38E–06 6�04E–07 9�67E–07

Measure 2: Maximum absolute deviations across frequencies in relative form
θ−1 3�79E–08 1�62E–08 3�56E–08 1�62E–08 3�65E–09 4�78E–08 6�30E–08 2�75E–08 4�78E–08 6�30E–08
θ−2 7�56E–08 3�07E–08 7�22E–08 3�07E–08 7�67E–09 9�22E–08 1�23E–07 5�76E–08 9�22E–08 1�23E–07
θ−3 1�13E–07 4�37E–08 1�09E–07 4�37E–08 1�18E–08 1�34E–07 1�79E–07 8�93E–08 1�34E–07 1�79E–07
θ−4 1�50E–07 5�55E–08 1�47E–07 5�55E–08 1�62E–08 1�73E–07 2�33E–07 1�23E–07 1�73E–07 2�33E–07
θ−5 1�86E–07 6�55E–08 1�86E–07 6�55E–08 2�07E–08 2�09E–07 2�84E–07 1�59E–07 2�09E–07 2�84E–07
θ−6 2�23E–07 7�42E–08 2�25E–07 7�42E–08 2�54E–08 2�42E–07 3�32E–07 1�97E–07 2�42E–07 3�32E–07
θ−7 2�59E–07 8�06E–08 2�65E–07 8�06E–08 3�01E–08 2�72E–07 3�76E–07 2�37E–07 2�72E–07 3�76E–07
θ−8 2�96E–07 8�50E–08 3�07E–07 8�50E–08 3�47E–08 3�00E–07 4�17E–07 2�79E–07 3�00E–07 4�17E–07
θ−9 3�32E–07 1�03E–07 3�49E–07 1�03E–07 3�92E–08 3�25E–07 4�55E–07 3�22E–07 3�25E–07 4�55E–07
θ−10 3�69E–07 1�22E–07 3�92E–07 1�22E–07 4�39E–08 3�48E–07 4�90E–07 3�69E–07 3�48E–07 4�90E–07

Measure 3: Maximum relative deviations across frequencies
θ−1 4�78E–08 1�32E–07 9�81E–08 1�32E–07 3�22E–08 6�66E–08 8�37E–08 5�00E–08 6�66E–08 8�37E–08
θ−2 9�58E–08 2�46E–07 1�89E–07 2�46E–07 6�14E–08 1�27E–07 1�60E–07 9�41E–08 1�27E–07 1�60E–07
θ−3 1�43E–07 3�59E–07 2�78E–07 3�59E–07 8�84E–08 1�82E–07 2�31E–07 1�34E–07 1�82E–07 2�31E–07
θ−4 1�89E–07 4�65E–07 3�64E–07 4�65E–07 1�13E–07 2�32E–07 2�96E–07 1�69E–07 2�32E–07 2�96E–07
θ−5 2�34E–07 5�67E–07 4�48E–07 5�67E–07 1�36E–07 2�78E–07 3�57E–07 2�00E–07 2�78E–07 3�57E–07
θ−6 2�80E–07 6�66E–07 5�31E–07 6�66E–07 1�56E–07 3�19E–07 4�12E–07 2�27E–07 3�19E–07 4�12E–07
θ−7 3�24E–07 7�62E–07 6�12E–07 7�62E–07 1�75E–07 3�56E–07 4�63E–07 2�50E–07 3�56E–07 4�63E–07
θ−8 3�69E–07 8�55E–07 6�92E–07 8�55E–07 1�92E–07 3�89E–07 5�09E–07 2�79E–07 3�89E–07 5�09E–07
θ−9 4�13E–07 9�47E–07 7�71E–07 9�47E–07 2�07E–07 4�19E–07 5�51E–07 3�22E–07 4�19E–07 5�51E–07
θ−10 4�57E–07 1�04E–06 8�51E–07 1�04E–06 2�21E–07 4�44E–07 5�90E–07 3�69E–07 4�44E–07 5�90E–07

aThe parameters θ−1 to θ−10 are as defined in Table 1. The upper triangular elements are omitted due to symmetry.

and 3. Specifically, maximum relative and absolute deviations in both directions are of
order 10−4 at the very first point away from θ0, which is already higher than the implied
approximation error, then reach order 10−2 for most elements of the spectrum in un-
der 4000 steps away from θ0, and keep growing fast as the curve is extended further. We
also experimented with other three-parameter subsets of (ψ1�ψ2�ρr�σ

2
r ) and reached

similar findings. These findings provide further support for our result.

3.2.2 Analysis based on the first and second order properties. We now extend the anal-
ysis to incorporate the steady state parameters. Consider the measurement equations
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from An and Schorfheide (2007) that relate the output growth, the inflation, and the in-
terest rate observed quarterly to the steady states and the elements of St :

YGRt = γ(Q) + 100(yt − yt−1 + zt)�

INFLt = π(A) + 400πt�

INTt = π(A) + r(A) + 4γ(Q) + 400rt�

where

γ(Q) = 100(γ − 1)� π(A) = 400(π − 1)� r(A) = 400
(

1
β

− 1
)
�

and γ is a constant in the technological shock equation. The parameter vector becomes

θ = (
τ�β�ν�φ�π�ψ1�ψ2�ρr�ρg�ρz�σ

2
r �σ

2
g�σ

2
z �γ

(Q)
)
�

where γ(Q) is the only nondynamic parameter. Thus, we have

μ(θ)=
⎛⎝ γ(Q)

400(π − 1)

400(π − 1)+ 400( 1
β − 1)+ 4γ(Q)

⎞⎠
and the A(L) matrix in this case is⎛⎝100 0 0 100 − 100L 0 0 0 0

0 0 0 0 400 0 0 0

0 0 400 0 0 0 0 0

⎞⎠ �

Setting γ(Q) = 0�55 as in An and Schorfheide (2007), we consider identification at

θ0 = (2�0�9975�0�1�53�6797�1�008�1�5�0�125�0�75�0�95�0�9�0�4�3�6�0�9�0�55)�

Note that μ(θ) can be easily differentiated analytically in this case.
Applying Theorem 2, we find rank(G(θ0)) = 12. Hence, θ0 is not identifiable from the

first and second order properties of the observables either. After applying the procedure
from Section 3.1, we find two subvectors, (ν�φ) and (ψ1�ψ2�ρr�σ

2
r ), which account for

nonidentification. Intuitively, we no longer detect (ν�π) and (φ�π), as π enters μ(θ) and
hence is identifiable from the mean. Since the two nonidentification curves are exactly
the same as in the dynamic parameter case, they are not reported here.

Remark 5. This example shows that in this model the Taylor rule parameters are not
separately identifiable from the (first and) second order properties of observables at θ0.
Such a finding, first documented in the current paper, was also more recently docu-
mented in Komunjer and Ng (2011). This constitutes a serious concern for estimation in
this and similar DSGE models.
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Remark 6. The results also have direct implications for Bayesian inference. Suppose
we impose a tight prior on one of the four parameters, say ψ1, while using flat priors on
the rest. Then the posterior distributions of ψ2�ρr , and σ2

r most often become concen-
trated due to their relation with ψ1. Therefore, simply comparing the marginal priors
and the posteriors may give the false impression that the parameters are separately (or
even strongly) identified and may overstate the informativeness of the data about the
parameters.

3.2.3 A procedure to ensure robustness. In the above discussion, we used a particular
step size for numerical differentiation and the default tolerance level for deciding the
ranks of G(θ0) and G(θ0). We now examine the sensitivity of the results to a range of
numerical differentiation steps (from 10−2 to 10−9) and tolerance levels (from 10−2 to
10−10). The results are reported in Table 4. We can see that the results are robust over a
wide range of step sizes and tolerance levels. Discrepancies start to occur when the step
size is very small or very large, and when the tolerance level is very stringent. This is quite
intuitive, as when the step size is too large, the numerical differentiation induces a sub-
stantial error, since the estimation error for the two-point method is of the same order as
the step size. When the step size is too small, the numerical error from solving the model
using GENSYS is large relative to the step size; therefore, the rank will also be estimated
imprecisely. Our choice of the step size of 10−7 × θ0 can therefore be seen as balancing
the trade-off between derivative precision and robustness of the rank computations to
tolerance levels as low as 10−10.

Furthermore, the nonidentification curve can be embedded into a procedure to re-
duce the reliance on the step size and tolerance level. Specifically, we can consider the
following:

Step 1. Compute the ranks of G(θ0) and G(θ0) using a wide range of step sizes
and tolerance levels (such as those in Table 4). Locate the outcomes with the smallest
rank.

Step 2. Derive the nonidentification curves conditioning on the smallest rank re-
ported. Compute the discrepancies in spectral densities using values on the curve.

The purpose of Step 1 is to avoid falsely reporting identification when the parameters
are unidentified or, more generally, to overstating identification. However, it may incor-
rectly label identified parameters as unidentified, which is further addressed in Step 2.
The idea is, if this indeed occurred, then some curves reported in Step 2 will, in fact, cor-
respond to parameter subsets that are identifiable. Therefore, the discrepancy surfaces
as we move along such curves away from θ0 and θ0. Note that applying this procedure,
with step sizes and tolerance levels stated in Table 4, leads to the same results discussed
in Sections 3.2.1 and 3.2.2.

Remark 7. Based on the evidence reported here and our experimentation with other
models, we suggest using 10−7 × θ0 (or similar magnitudes) and size(G)eps(‖G‖) as the
default step size and tolerance level when implementing the methods, followed by the
two-step procedure outlined above to ensure robustness.
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Table 4. Rank sensitivity analysis.a

Differentiation Step Size × θ0

TOL 1E–02 1E–03 1E–04 1E–05 1E–06 1E–07 1E–08 1E–09

Rank of G(θ0) in the 13-parameter model
1E–02 10 10 10 10 10 10 10 10
1E–03 10 10 10 10 10 10 10 10
1E–04 11 10 10 10 10 10 10 10
1E–05 11 10 10 10 10 10 10 10
1E–06 11 11 10 10 10 10 10 11
1E–07 12 11 10 10 10 10 10 11
1E–08 12 12 11 10 10 10 11 12
1E–09 12 12 11 10 10 10 11 12
1E–10 12 12 12 11 10 10 12 12
Default 12 12 11 10 10 10 11 12

Rank of G(θ0) in the 11-parameter model
1E–02 10 10 10 10 10 10 10 10
1E–03 10 10 10 10 10 10 10 10
1E–04 11 10 10 10 10 10 10 10
1E–05 11 10 10 10 10 10 10 10
1E–06 11 11 10 10 10 10 10 11
1E–07 11 11 10 10 10 10 10 11
1E–08 11 11 11 10 10 10 11 11
1E–09 11 11 11 10 10 10 11 11
1E–10 11 11 11 11 10 10 11 11
Default 11 11 11 10 10 10 10 11

aTOL refers to the tolerance level used to determine the rank. Default refers to the MATLAB default tolerance level.

4. FQML estimation

We first present a brief derivation of the FQML estimators and then study their asymp-
totic properties in both well specified and misspecified models. The subsequent analysis
assumes that the system is nonsingular, that is, nY ≤ nε.

4.1 The estimators

For the sole purpose of deriving the quasi-likelihood function, assume that the pro-
cess {Yt} is Gaussian. Let ωj denote the Fourier frequencies, that is, ωj = 2πj/T (j =
1�2� � � � �T − 1). The discrete Fourier transforms are given by

wT (ωj)= 1√
2πT

T∑
t=1

Yt exp(−iωjt)� j = 1�2� � � � �T − 1�

Note that replacing Yt by Yt −μ(θ̄) does not affect the value of wT (ωj) at these frequen-
cies. The transforms wT (ωj) have a complex valued multivariate normal distribution
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and for large T are approximately independent, each with the probability density func-
tion (see Hannan (1970, pp. 223–225))

1
πnY det(fθ(ωj))

exp
[− tr{f−1

θ (ωj)wT (ωj)w
∗
T (ωj)}

]
� j = 1�2� � � � �T − 1�

Therefore, an approximate log-likelihood function of θ based on observationsY1� � � � �YT

is given, up to constant multiplication, by

−
T−1∑
j=1

[
log det(fθ(ωj))+ tr{f−1

θ (ωj)IT (ωj)}
]
� (14)

where IT (ωj) =wT (ωj)w
∗
T (ωj) denotes the periodogram. Letting W (ωj) be an indicator

function as defined in the previous section, we consider the generalized version of (14):

LT (θ)= −
T−1∑
j=1

W (ωj)
[
log det(fθ(ωj))+ tr{f−1

θ (ωj)IT (ωj)}
]
� (15)

Then the FQML estimator for θ is given by

θ̂T = arg max
θ∈Θ

LT (θ)� (16)

Thus, the above procedure allows us to estimate the dynamic parameters based on the
second order properties of {Yt} without any reference to the steady state parameters.
Compared with the time domain QML, the estimate here can be obtained without de-
meaning the data.

It is also simple to estimate both dynamic and steady state parameters jointly. Let

wθ̄�T (0) = 1√
2πT

T∑
t=1

Yt −μ(θ̄) and Iθ̄�T (0) =wθ̄�T (0)wθ̄�T (0)
′�

Noticing that wθ̄�T (0) has a multivariate normal distribution with asymptotic variance
fθ(0) and is asymptotically independent of wT (ωj) for j = 1�2� � � � �T −1, we arrive at the
approximate log-likelihood function of θ̄:

L̄T (θ̄)= LT (θ)− [
log det(fθ(0))+ tr{f−1

θ (0)Iθ̄�T (0)}
]
�

Then the FQML estimator for θ̄ is given by

̂̄θT = arg max
θ̄∈Θ̄

L̄T (θ̄)� (17)

4.2 Asymptotic properties of the FQML estimators

The asymptotic properties of the estimator (16), with W (ωj) = 1 for all ωj , have been
studied under various data generating processes in the statistics literature; see, for
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example, Dunsmuir (1979) and Hosoya and Taniguchi (1982). The estimator (17) re-
ceived less attention. One exception is Hansen and Sargent (1993), who formally estab-
lished that T−1L̄T (θ̄) converges to the same limit as the time domain Gaussian quasi-
maximum likelihood function for θ̄ uniformly in θ̄ ∈ Θ̄. Their result allows for non-
Gaussianity and model misspecification. This section can be viewed as a further devel-
opment of their work in the following sense. First, we formally establish the relationship
between the identification condition and the asymptotic properties of the estimator.
Second, we explicitly derive the limiting distribution of the estimator, which is impor-
tant for inference and model comparison.

We gradually tighten the assumptions to obtain increasingly stronger results. To an-
alyze the first issue, the following assumptions are imposed on the second and fourth
order properties of the observed process {Yt}.

Assumption 5. (i) The process {Yt} is generated by

Yt = μ(θ̄0)+Yd
t (θ0)

with Yd
t (θ) satisfying (1). (ii) The spectral density matrix fθ(ω) is positive definite with

eigenvalues bounded away from 0 and ∞ uniformly in ω for all θ ∈ Θ. The elements of
∂vec(fθ(ω))/∂θ′ are bounded away from ∞ uniformly in ω for all θ ∈ Θ. The elements of
fθ(ω) belong to Lip(β) with respect to ω, the Lipschitz class of degree β, β> 1/2.

Assumption 6. The process εt is fourth order stationary. Let Qh�l�g�k(j1� j2� j3) be the
joint cumulant of εth, ε(t+j1)l, ε(t+j2)g, and ε(t+j3)k. Assume

∑∞
j1�j2�j3=−∞ |Qh�l�g�k(j1� j2�

j3)| <∞ for any 1 ≤ h� l� g�k ≤ nε.

The first part of Assumption 5 states that the model is correctly specified. This is re-
laxed in Section 4.3. The second part strengthens the first condition in Assumption 3.
It is satisfied by stationary finite order vector autoregressive moving average processes
with finite error covariance matrices, which are the forms that the solutions to linearized
DSGE models typically take. In Assumption 6, the summability of the fourth cumulant
is weaker than the independence assumption: a sufficient condition is provided in An-
drews (1991, Lemma 1).

We now define the concept of a locally unique maximizer.

Definition 3. Let L(ϕ) be some generic criterion function. We say ϕ0 is a locally
unique maximizer of L(ϕ) if there exists an open neighborhood of ϕ0 such that L(ϕ) <
L(ϕ0) for all ϕ different from ϕ0 in this neighborhood.

Define the following quantities as the limits of T−1LT (θ) and T−1L̄T (θ̄):

L∞(θ)= − 1
2π

∫ π

−π
W (ω)

[
log det(fθ(ω))+ tr{f−1

θ (ω)fθ0(ω)}]dω�

L̄∞(θ̄)= L∞(θ)− 1
2π

(μ(θ̄0)−μ(θ̄))′f−1
θ (0)(μ(θ̄0)−μ(θ̄))�
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Lemma 1. Let Assumptions 1–3, 5, and 6 hold.

(i) Then T−1LT (θ) →p L∞(θ) uniformly over θ ∈Θ.

(ii) The parameter vector θ0 is a locally unique maximizer of L∞(θ) if and only if it
is locally identified. Furthermore, if θ0 is globally identified,8 then it is the unique maxi-
mizer of L∞(θ).

(iii) The convergence θ̂T →p θ0 holds if one of the following two conditions is satisfied:
(a) θ0 is globally identified or (b) θ0 is locally identified and the maximization is carried
over the corresponding small neighborhood of identification, say δ(θ0), instead of Θ.

(iv) Let Assumptions 1–6 hold. Then properties (i)–(iii) hold when θ, θ0, θ̂T , LT (θ), and
L∞(θ) are replaced by θ̄, θ̄0, ̂̄θT , L̄T (θ̄), and L̄∞(θ̄), respectively.

The first result is essentially due to Lemma A.3.3(1) in Hosoya and Taniguchi (1982).
Their result is pointwise in θ and is established with W (ω) = 1. Our result strengthens
theirs to uniform convergence, which is important for showing property (iii). The sec-
ond result formally establishes the close link between the identification conditions and
the asymptotic properties of the FQML estimator. The result is quite intuitive ex post,
however, it is worth documenting given that the identification property is derived with-
out explicitly referring to the likelihood function. The first two results lead directly to
property (iii) by a uniform weak law of large numbers. Property (iv) holds based on the
same arguments.

To derive the limiting distribution of the estimators, the assumptions on {εt} need to
be further strengthened.

Assumption 7. (i) The process {εt} is a vector of martingale difference sequences with re-
spect to the σ-field generated by εs : s ≤ t. We have E(εtaεtb|Ft−τ) = Σab,
E(εtaεtbεtc|Ft−τ) = ξabc , and E(εtaεtbεtcεtd|Ft−τ) = ζabcd almost surely with Σaa > 0
and ζaadd > 0 for all 1 ≤ a�b� c�d ≤ nε. (ii) Let c(t� r) = εtε

′
t+r − E(εtε

′
t+r). Assume

limT→∞ T−1 ∑L
r=0

∑T
t=1 E[cab(t� r)21{cab(t� r)2 > εT }] < ε holds for any ε > 0, L<∞, and

all 1 ≤ a�b ≤ nε.

Part (i) of Assumption 7 imposes restrictions on the conditional moments up to the
fourth order, and Σaa > 0 and ζaadd > 0 are the usual positive variance conditions. It is
essentially the same as Assumption C2.3 in Dunsmuir (1979). This part can be further
relaxed to allow some conditional heteroskedasticity at the cost of some technical and
notational complications; see Theorem 3.1 in Hosoya and Taniguchi (1982). Part (ii) is a
Lindeberg-type condition. It ensures that the sample autocovariances T−1/2 ∑T−r

t=1 c(t� r)

(r = 0�1� � � � �L) satisfy a central limit theorem for any finite fixed L. It can be replaced
by other sufficient conditions that serve the same purpose. The next result states the
limiting distributions of θ̂T and ̂̄θT .

8The parameter vector θ is said to be globally identifiable from the second order properties of {Yt} at a
point θ0 if for any θ1 ∈ Θθ, fθ1(ω)= fθ0(ω) for all ω ∈ [−π�π] implies θ0 = θ1.
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Theorem 3. Suppose θ0 and θ̄0 are globally identified or the maximizations (16) and (17)
are over convex compact sets in which they are locally identified and are interior points.

(i) Let Assumptions 1–3 and 5–7 hold. Then
√
T(θ̂T − θ0) →d N(0�M−1V M−1)�

where M and V are q× q matrices, with the (j� l)th element given by

Mjl =
∫ π

−π
W (ω) tr

{
fθ0(ω)

∂f−1
θ0

(ω)

∂θj
fθ0(ω)

∂f−1
θ0

(ω)

∂θl

}
dω�

Vjl = 4πMjl +
nε∑

a�b�c�d=1

κabcd

[
1

2π

∫ π

−π
W (ω)H∗(ω)

∂f−1
θ0

(ω)

∂θj
H(ω)dw

]
ab

×
[

1
2π

∫ π

−π
W (ω)H∗(ω)

∂f−1
θ0

(ω)

∂θl
H(ω)dw

]
cd

�

where [·]ab denotes the (a�b)th element of the matrix, κabcd is the fourth cross-cumulant
of εta, εtb, εtc , and εtd , H(ω) = H(exp(−iω);θ0) = ∑∞

j=0 hj(θ0)exp(−iωj) (cf. (3)), and
H∗(ω) is its conjugate transpose.

(ii) Let Assumptions 1–7 hold. Then
√
T (̂θ̄T − θ̄0) →d N(0� M̄−1V̄ M̄−1), where M̄ and

V̄ are (q+p)× (q+p) matrices, with the (j� l)th element given by

M̄jl =
∫ π

−π
W (ω) tr

{
fθ0(ω)

∂f−1
θ0

(ω)

∂θ̄j
fθ0(ω)

∂f−1
θ0

(ω)

∂θ̄l

}
dω

+ 2
∂μ(θ̄0)

′

∂θ̄j
f−1
θ0

(0)
∂μ(θ̄0)

∂θ̄l
�

V̄jl = 4πM̄jl +
nε∑

a�b�c�d=1

κabcd

[
1

2π

∫ π

−π
W (ω)H∗(ω)

∂f−1
θ0

(ω)

∂θ̄j
H(ω)dw

]
ab

×
[

1
2π

∫ π

−π
W (ω)H∗(ω)

∂f−1
θ0

(ω)

∂θ̄l
H(ω)dw

]
cd

+Ajl +Alj

with Ajl = 2
∑nε

a�b�c=1 ξabc{
∫ π
−π W (ω)[H∗(ω)

∂f−1
θ0

(ω)

∂θ̄j
H(ω)]ab dω} × [ ∂μ(θ̄0)

′
∂θ̄l

f−1
θ0

(0)H(0)]c
and ξabc =E(εtaεtbεtc).

When W (ω) = 1, the first result reduces to Corollary 2.2 in Dunsmuir (1979, p. 497)
and Proposition 3.1 in Hosoya and Taniguchi (1982), which were obtained in the con-
text of parameter estimation in stationary vector time series models. The generalization
to a more general W (ω) is new. The limiting distribution depends on the fourth order
properties of the process. For DSGE models, this is because the same set of parame-
ters affects both the conditional mean and the conditional covariance of the process Yd

t

in (1). Technically, the term h0(θ) is in general not an identity matrix, but rather depends
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on unknown parameters. This causes the second term in Vjl to be in general nonzero.
However, in the important special case where εt are Gaussian with diagonal covariance
matrix, κabcd = 0 and the limiting distribution depends only on the second order prop-
erty of the process. This holds for different specifications of W (ω). Specifically, we have
M−1V M−1 = 4πM−1 with

[M]jl =
∫ π

−π
W (ω) tr

[
fθ0(ω)

∂f−1
θ0

(ω)

∂θj
fθ0(ω)

∂f−1
θ0

(ω)

∂θl

]
dω

or, in matrix notation,

M−1V M−1 =
[

1
4π

∫ π

−π
W (ω)

∂vec(fθ0(ω)′)′

∂θ

× (f−1
θ0

(ω)′ ⊗ f−1
θ0

(ω))
∂vec(fθ0(ω))

∂θ′ dω

]−1

� (18)

The second result in the theorem is new in the literature even for the case with
W (ω) = 1. The inclusion of the steady state parameter makes the limiting distribution
dependent on the third order properties of Yt , namely ξabc . Again, in the important spe-
cial case with Gaussianity and a diagonal covariance matrix, ξabc = 0 and only the sec-
ond order property matters.

To construct the confidence interval, fθ0(ω), H(ω), and H∗(ω) (ω ∈ [−π�π]) can be

consistently estimated by replacing θ0 and θ̄0 with θ̂T and ̂̄θT , and applying (2) and (4).
The derivatives and the integrals can be evaluated numerically. The cumulants ξabc and
κabcd can be replaced by their sample counterparts.

4.3 Misspecified models

We consider the interpretation of the parameter estimates when the DSGE models are
viewed as approximations. The next assumption allows the true data generating process
to be different from that implied by the DSGE solution.

Assumption MI. The observations {Yt}Tt=1 follow a covariance stationary process given
by Yt −μ0 = ∑∞

j=0 h0jεt−j , whose mean μ0 and spectral density f0(ω) are possibly different
from μ(θ̄0) and fθ0(ω). Also, Yt satisfies Assumptions 5(ii) with fθ(ω) replaced by f0(ω)

and Assumptions 6 and 7 with εt replaced by εt .

Suppose the estimates θ̂T and ̂̄θT are constructed in the same way as before and
define the pseudo-true values

θm0 = arg max
θ∈Θ

Lm∞(θ) and θ̄m0 = arg max
θ̄∈Θ̄

L̄m∞(θ̄)�

where

Lm∞(θ) = − 1
2π

∫ π

−π
W (ω)

[
log det(fθ(ω))+ tr{f−1

θ (ω)f0(ω)}]dω�

L̄m∞(θ̄) =Lm∞(θ)− 1
2π

(μ0 −μ(θ̄))′f−1
θ (0)(μ0 −μ(θ̄))�
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Suppose θm0 and θ̄m0 lie in the interior of Θ and Θ̄.

Corollary 7. Suppose θm0 and θ̄m0 are globally identified or the maximizations (16)
and (17) are over convex compact sets in which they are locally identified and are inte-
rior points. Let Assumption MI hold.

(i) Assume the DSGE solution Yd
t (θ) satisfies Assumptions 1–3 and 5(ii). Then

√
T(θ̂T − θm0 ) →d N(0�Ω−1ΠΩ−1)

with

Ω=
∫ π

−π
W (ω)

[
∂2

∂θ∂θ′ log det
(
fθm0 (ω)

) + ∂2

∂θ∂θ′ tr
{
f−1
θm0

(ω)f0(ω)
}]

dω�

Πjl = 4π
∫ π

−π
W (ω) tr

{
f0(ω)

∂f−1
θm0

(ω)

∂θj
f0(ω)

∂f−1
θm0

(ω)

∂θl

}
dω

+
nε∑

a�b�c�d=1

κabcd

[
1

2π

∫ π

−π
W (ω)H∗

0 (ω)
∂f−1

θm0
(ω)

∂θj
H0(ω)dw

]
ab

×
[

1
2π

∫ π

−π
W (ω)H∗

0 (ω)
∂f−1

θm0
(ω)

∂θl
H0(ω)dw

]
cd

�

where κabcd is the fourth cross-cumulant of εta, εtb, εtc , and εtd , and H0(ω) = ∑∞
j=0 h0j ×

exp(−iωj).

(ii) Assume the DSGE solution is given by μ(θ̄) + Yd
t (θ) and satisfies Assumptions 1–4

and 5(ii). Then
√
T (̂θ̄T − θ̄m0 )→d N(0� Ω̄−1Π̄Ω̄−1) with

Ω̄=
∫ π

−π
W (ω)

[
∂2

∂θ̄ ∂θ̄′ log det
(
fθm0 (ω)

) + ∂2

∂θ̄ ∂θ̄′ tr
{
f−1
θm0

(ω)f0(ω)
}]

dω

+ 2
∂μ(θ̄m0 )′

∂θ̄
f−1
θm0

(0)
∂μ(θ̄m0 )

∂θ̄′ �

Π̄jl = 4π
{∫ π

−π
W (ω) tr

{
f0(ω)

∂f−1
θm0

(ω)

∂θ̄j
f0(ω)

∂f−1
θm0

(ω)

∂θ̄l

}
dω

+ 2
∂μ(θ̄m0 )′

∂θ̄j
f−1
θm0

(0)
∂μ(θ̄m0 )

∂θ̄l

}

+
nε∑

a�b�c�d=1

κabcd

[
1

2π

∫ π

−π
W (ω)H∗

0 (ω)
∂f−1

θm0
(ω)

∂θ̄j
H0(ω)dw

]
ab

×
[

1
2π

∫ π

−π
W (ω)H∗

0 (ω)
∂f−1

θm0
(ω)

∂θ̄l
H0(ω)dw

]
cd

+Ajl +Alj
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with

Ajl = 2
nε∑

a�b�c�d=1

ξabc

{∫ π

−π
W (ω)

[
H∗

0 (ω)
∂f−1

θm0
(ω)

∂θ̄j
H0(ω)

]
ab

dω

}

×
[
∂μ(θ̄m0 )′

∂θ̄l
f−1
θm0

(0)H0(0)
]
c

and ξabc =E(εtaεtbεtc).

Misspecification in general affects both the mean and the variance of the estimate.
Note that when only estimating the dynamic parameters, misspecifying μ(θ̄) has no ef-
fect on the estimate θ̂T .

5. Quasi-Bayesian inference

This section extends the above framework to incorporate prior distributions on the
DSGE parameters. It also discusses a computationally attractive procedure to obtain
parameter estimates. The analysis is motivated by Chernozhukov and Hong (2003). We
focus on θ0 because the procedure is identical for θ̄0.

Consider the function

pT (θ) = π(θ)exp(LT (θ))∫
Θ
π(θ)exp(LT (θ))dθ

� (19)

where LT (θ) is the same as in (15) and π(θ) can be a proper prior probability density
or, more generally, a weight function that is strictly positive and continuous over Θ. Be-
cause exp(LT (θ)) is a more general criterion function than the likelihood, pT (θ) is in
general not a true posterior in the Bayesian sense. However, it is a proper distribution
density over the parameters of interest, and is termed quasi-posterior in Chernozhukov
and Hong (2003).

The estimate for θ0 can be taken to be the quasi-posterior mean

θ̂T =
∫
Θ
θpT (θ)dθ�

To compute the estimator, we can use Markov chain Monte Carlo (MCMC) methods,
such as the Metropolis–Hastings algorithm, to draw a Markov chain

S = (
θ(1)� θ(2)� � � � � θ(B)

)
whose marginal density is approximately given by pT (θ), and θ̂T can be computed as

θ̂T = 1
B

B∑
j=1

θ(j)�
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Meanwhile, for a given continuously differentiable function g :Θ → R, for example, an
impulse response at a given horizon, its estimate can be obtained via

g(θ̂T )= 1
B

B∑
j=1

g
(
θ(j)

)
�

Here we omit the details on the construction of the Markov chains, since they follow
standard procedures. One may refer to Chernozhukov and Hong (2003, Section 5) or An
and Schorfheide (2007) for more details.

The next result provides an asymptotic justification for the estimator under correct
model specification.

Theorem 4. Suppose θ0 (θ̄0) is globally identified or π(θ) (π(θ̄)) is strictly positive only
over a compact convex neighborhood of θ0 (θ̄0) in which they are locally identified and are
interior points. Then θ̂T (̂θ̄T ) has the same limiting distribution as in Theorem 3 under the
corresponding assumptions stated there.

Consider the construction of confidence intervals for the elements of θ0 or, more
generally, of g(θ0). In the important special case of Gaussianity with Σ(θ) being diago-
nal, the confidence intervals can be obtained directly from the quantiles of the MCMC
sequence (θ(1)� θ(2)� � � � � θ(B)). Such intervals are asymptotically valid because κabcd = 0
and therefore M = V . The same result holds for θ̄0 because ξabc = 0, thus M̄ = V̄ . In the
general case, because exp(LT (θ)) is a more general criterion function, implying M �= V ,
such an interval is not necessarily asymptotically valid, as clearly demonstrated in Cher-
nozhukov and Hong (2003). However, valid large sample inference can still be easily car-
ried out using the Delta method, as suggested in Chernozhukov and Hong (2003, The-
orem 4). Specifically, let M̂−1 be T times the variance–covariance matrix of the MCMC
sequence (θ(1)� θ(2)� � � � � θ(B)). Let V̂ be an estimator for V , which can be obtained us-
ing the formula in Theorem 3 by replacing H(ω), κabcd , and ∂f−1

θ0
(ω)/∂θj (j = 1�2� � � � � q)

with their consistent estimates. Then a valid (1−α) percent confidence interval for g(θ0)

is given by

[cg�T (α/2)� cg�T (1 − α/2)]�
where

cg�T (α) = g(θ̂T )+ qαT
−1/2

√
∂g(θ̂T )

∂θ′ M̂−1V̂ M̂−1 ∂g(θ̂T )

∂θ

with qα being the α-quantile of the standard normal distribution. Analogous argument
can be applied to construct confidence intervals for g(θ̄0). The asymptotic validity of
such intervals can be verified using the same argument as in Chernozhukov and Hong
(2003, Theorem 4). Therefore, the details are omitted here.

Under misspecification, a result analogous to Theorem 4 can be obtained, with the
true value replaced by the pseudo-true values and the covariance matrix modified ac-
cordingly.
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The key computational difference between the above method and the time domain
quasi-Bayesian inference is in computing the Kalman filter versus the spectral density at
the different parameter values. Therefore, the computation costs are similar. The spec-
tral domain approach has some additional advantages. First, one can exclude some fre-
quencies by specifying an appropriate W (ω), which is not easy to achieve in the time
domain. Second, if the sole interest is in estimating the dynamic parameters, it is not
necessary to specify μ(θ̄) or to demean the data. Third, although not pursued in the
current paper, the spectral domain approach can be extended to handle models with-
out requiring log linearizations. The idea is that as long as the spectral density can be
computed, analytically or by simulation, a criterion function similar to (14) can be con-
structed to obtain parameter estimates. Such an idea has been mentioned elsewhere, for
example, in Diebold, Ohanian, and Berkowitz (1998), but has not been formally studied.
Finally, it provides a platform for conducting hypothesis testing and model diagnosis
from the spectral domain, as emphasized by Watson (1993). For example, one can read-
ily obtain estimates and confidence interval for components of the spectral density ma-
trix and contrast them with the observed data. Also, it is simple to construct tests for
restrictions imposed on a given frequency component, such as the zero frequency. We
plan to explore such developments in future work.

6. Conclusion

We have provided a unified treatment of issues related to identification, inference, and
computation in linearized DSGE models in the frequency domain. In addition to pre-
senting a necessary and sufficient condition for local identification of the structural pa-
rameters, we also proposed a method to trace out nonidentification curves when lack of
identification is detected. The application of our condition is straightforward because it
mainly involves computing the first order derivatives of the spectral density. The MAT-
LAB code and the results for a more complex medium size DSGE model are available
on our webpage. For estimation, we considered a frequency domain quasi-maximum
likelihood (FQML) estimator and showed that it permits incorporation of relevant prior
distributions and is computationally attractive.

The current work can be further developed in several directions. First, we have as-
sumed determinacy, but we conjecture that our identification condition can be applied
to any selected equilibrium path under indeterminacy, provided that the state vector
and the parameter space are augmented accordingly. Second, although we have worked
with log-linearized systems, we conjecture the condition can be applied to DSGE mod-
els solved with higher order approximations, provided the resulting spectral density and
its derivatives can be computed precisely. Although the paper does not consider weak
identification, it can be shown that the frequency domain perspective affords a simple
and transparent inferential procedure robust to weak identification (see Qu (2011)). We
are currently pursuing such research directions and hope to report results in the near
future.
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