Quantitative Economics 5 (2014), 29-66 1759-7331/20140029

Complementarity and aggregate implications of assortative
matching: A nonparametric analysis
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This paper presents econometric methods for measuring the average output ef-
fect of reallocating an indivisible input across production units. A distinctive fea-
ture of reallocations is that, by definition, they involve no augmentation of re-
sources and, as such, leave the marginal distribution of the reallocated input un-
changed. Nevertheless, if the production technology is nonseparable, they may
alter average output. An example is the reallocation of teachers across classrooms
composed of students of varying mean ability. We focus on the effects of reallocat-
ing one input, while holding the assignment of another, potentially complemen-
tary, input fixed. We introduce a class of such reallocations—correlated matching
rules—that includes the status quo allocation, a random allocation, and both the
perfect positive and negative assortative matching allocations as special cases. We
also characterize the effects of small changes in the status quo allocation. Our
analysis leaves the production technology nonparametric. Identification there-
fore requires conditional exogeneity of the input to be reallocated given the po-
tentially complementary (and possibly other) input(s). We relate this exogeneity
assumption to the pairwise stability concept used in the game theoretic literature
on two-sided matching models with transfers. For estimation, we use a two-step
approach. In the first step, we nonparametrically estimate the production func-
tion. In the second step, we average the estimated production function over the
distribution of inputs induced by the new assignment rule. Our methods build
upon the partial mean literature, but require extensions involving boundary is-
sues and the fact that the weight function used in averaging is itself estimated. We
derive the large-sample properties of our proposed estimators and assess their
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small-sample properties via a limited set of Monte Carlo experiments. Our char-
acterization of the large-sample properties of estimated correlated matching rules
uses a new result on kernel estimated “double averages,” which may be of inde-
pendent interest.

KeEywoRrbDs. Aggregate redistributional effects, complementarity, nonparametric
estimation, partial mean, assortative matching, one-to-one matching with trans-
fers, assignment problem, assignment game.

JEL crAssIFicATION. C14, C21, C52.

1. INTRODUCTION

Consider an educational production function. One factor of production—teacher
quality—is intrinsically indivisible: a teacher may teach in one, and only one, classroom.
Classrooms may be heterogeneous in mean student ability. While student achievement
may be monotone in teacher quality across all classrooms, the magnitude of its respon-
siveness may not. Student achievement might rise more sharply with teacher quality in
classrooms composed of students of above average ability. In such a situation, it may
be possible to raise average student achievement by reallocating teachers across class-
rooms; in this case, by assigning high quality teachers to classrooms composed of stu-
dents with above average ability.

Reallocations, unlike other policies, involve no augmentation of resources. Indivis-
ibility of the input under consideration further complicates their analysis. If the input
is indivisible and its aggregate stock is fixed, it is impossible to simultaneously raise the
input level for all production units or firms. We cannot place a higher quality teacher
into all classrooms if the population of teachers available for assignment remains fixed.
In such cases, the achievement effects of reassigning teachers (the “input”) across class-
rooms (the “firms”) may be of interest.

Many organizations are interested in the output implications of reallocating, as op-
posed to augmenting, existing resources (cf. Graham (2011)). Here we investigate econo-
metric methods for measuring the effects of such policies on average output. We will
call the average causal effects of these policies aggregate redistributional effects (AREs).
A key feature of the reallocations we consider is that, although they potentially alter in-
put levels for each firm, they leave its marginal distribution across the population of
firms unchanged.

The first contribution of our paper is to introduce a framework for considering such
reallocations and to define estimands that capture their key features. These estimands
include the effects of four focal reallocations, a semiparametric class of reallocations,
and the effect of a small reallocation away from the status quo.

One focal reallocation redistributes the input across production units such that it
has perfect rank correlation with a second input. This is the positive assortative match-
ing (PAM) allocation. We also consider a negative assortative matching (NAM) allocation
where the primary input is redistributed to have perfect negative rank correlation with
the second input. A third allocation involves randomly assigning the input across firms.
This allocation, by construction, ensures independence of the two inputs. A fourth al-
location simply maintains the status quo assignment of the input. More generally, we
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consider a two parameter family of feasible reallocations that includes these four focal
allocations as special cases.

Our family of reallocations, which we call correlated matching rules, traces a path
from the positive to the negative assortative matching allocations. Each reallocation
along this path keeps the marginal distribution of the two inputs fixed, but it induces
a different level of correlation between the two inputs.

We also provide a local measure of complementarity that is identified under weaker
conditions on the support of the input distribution. This estimand measures whether
a small step away from the status quo toward the perfect assortative matching raises
average output. It may be useful for assessing the probable effects of policies that induce
reallocations that are close to the status quo.

Each of our estimands is a functional of the production technology and the marginal
distributions of the two inputs.! In most applications, identification of the two input
distribution functions will be straightforward, while that of the production technology,
due to purposeful input choice on the part of firms, will be more difficult (Griliches and
Mairesse (1998)). The second contribution of our paper is to study identification and
estimation under an exogeneity condition on the input to be reallocated. This condition
ensures that the production function is nonparametrically identified.

The effects of reallocations can be very sensitive to how the sign and magnitude of
the cross-partial derivative of the production function varies with different input combi-
nations (Graham (2011)). Since a priori parametric or semiparametric restrictions on the
production function may impose substantial structure on the form of this cross-partial,
such assumptions may inappropriately restrict the range of reallocation effects allowed.
For this reason, our approach to identification and estimation invokes conditions that
are sufficiently strong to allow for a nonparametric treatment of the production tech-
nology.?

We propose analog estimators based on our identification results and characterize
their large-sample properties. Specifically, we propose an estimator for average output
under all correlated matching allocations as well as for the local complementarity mea-
sure. Except for perfect negative and positive assortative matchings, these estimators
converge at the usual parametric rate. For these two extreme matchings, the rate of con-
vergence is slower, comparable to that of estimating a regression function with a scalar
covariate at a point. In the first step of the estimation procedures, we use a nonparamet-
ric estimate of the production function. We modify existing kernel estimators to deal
with boundary issues that arise in our setting.

Our focus on reallocation rules that keep the marginal distribution of the inputs fixed
is appropriate in applications where the input is indivisible, such as in the allocation of

10ur local measure of complementarity also depends on certain features of the status quo joint input
distribution.

2In settings where our exogeneity assumption is implausible, other approaches to semiparametrically
identifying the production technology may be available (e.g., Matzkin (2008), Imbens and Newey (2009)).
Our estimation theory would need to be modified for such cases. An interesting topic for future research
would be to explore what can be learned about AREs from partially identified production technologies (cf.
Kasy (2012)).
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teachers to classes or managers to production units. In other settings, it may be more
appropriate to consider allocation rules that leave the total amount of the input constant
by fixing its average level. Such rules would require some modification of the methods
considered in this paper (cf. Bhattacharya and Dupas (2012)).

Our methods may be useful in a variety of settings. One class of examples concerns
complementarity between organizational form and technology (e.g., Athey and Stern
(1998)). A second example concerns educational production functions. Loeb, Kalo-
grides, and Béteille (2012), using administrative data from Miami-Dade County Pub-
lic Schools, presented evidence that suggests that “effective” schools attract and retain
higher quality teachers. Teacher quality may improve outcomes for all students, but av-
erage outcomes may be higher or lower depending on whether, given a fixed supply of
teachers, the best teachers are assigned to the least prepared students or vice versa. Par-
ents concerned solely with outcomes for their own children may be most interested in
the effect of raising teacher quality on expected outcomes. A school board, including the
one in Miami-Dade County, however, may be more interested in maximizing expected
outcomes, given a fixed set of classes and a fixed set of teachers, by optimally matching
teachers to classes.

A third class of examples arises in settings with social interaction (cf. Manski (1993),
Brock and Durlauf (2001)). Sacerdote (2001) studied peer effects in college by looking
at the relationship between individual outcomes and roommate characteristics. From
the perspective of the individual student, it may again be of interest whether having a
roommate with different characteristics would, in expectation, lead to a different out-
come. This is what Manski (1993) called an exogenous or contextual effect. The college,
however, may be interested in a different effect, namely the effect on average outcomes
of changing the procedures for assigning roommates. While a college may be unable to
quickly change the distribution of characteristics in incoming classes, it is able to change
the way roommates are assigned. In Graham, Imbens, and Ridder (2010), we studied the
peer effect setting further, developing methods appropriate for social groups of arbi-
trary size when agents are binary typed. Our focus in that work is on the outcome and
inequality effects of segregation.

If production functions are additive in inputs, the questions posed above have triv-
ial answers: average outcomes are invariant to input reallocations. Although realloca-
tions may raise outcomes for some units in that case, they will necessarily lower them
by an offsetting amount for others. To generate nontrivial answers, one needs to allow
for nonadditivity and nonlinearity in the production function. To reiterate, parametric
or semiparametric assumptions on the production function, although useful for achiev-
ing identification, often imply very strong a priori restrictions on the structure of any
reallocation effects. For this reason, our approach is fully nonparametric.

The current paper builds on the larger treatment effect and program evaluation
literature.3 More directly, it is complementary to the small literature on the effect of
treatment assignment rules (Manski (2004), Dehejia (2005), Hirano and Porter (2009),

3For recent surveys, see Angrist and Krueger (1999), Heckman, Lalonde, and Smith (2000), and Imbens
and Wooldridge (2009).
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Stoye (2009), Tetenov (2012)). Our focus is different from these studies. First, in a con-
ceptually straightforward extension, we allow for continuous rather than discrete or bi-
nary treatments. Second, and this is the main innovation relative to prior work, our
assignment policies take into account resource constraints (by leaving unchanged the
marginal distribution of the treatment), whereas in the previous papers, treatment as-
signment for one unit is not restricted by the assignments for other units. Stock (1989)
studied policies that induce new input distributions. However, his work does not involve
resource constraints. Our policies, in contrast, are redistributions.*

In the current paper, we focus on estimation and inference for specific assignment
rules. It is also interesting to consider optimal rules as in the Manski, Dehejia, and
Hirano—-Porter studies. The class of feasible reallocations/redistributions includes all
joint distributions of the two inputs with fixed marginal distributions. When the inputs
are continuously valued, as we assume in the current paper, this class of potential rules
is very large. Characterizing the optimal allocation within this class is, therefore, a non-
trivial problem (cf. Chiappori, McCann, and Nesheim (2010)). When both inputs are dis-
cretely valued, the problem of finding the optimal allocation is tractable as the joint dis-
tribution of the inputs is characterized by a finite number of parameters (specifically,
linear programming methods may be applied). In Graham, Imbens, and Ridder (2007),
we considered optimal allocation rules when both inputs are discrete, allowing for gen-
eral complementarity or substitutability of the inputs (cf. Bhattacharya (2009)).

Our paper is also related to recent work on identification and estimation of mod-
els of social interactions (e.g., Manski (1993), Brock and Durlauf (2001), Moffitt (2001),
Graham (2008)). We do not focus on directly characterizing the within-group mi-
crostructure of social interactions, an important theme of this literature. Rather our
goal is simply to estimate the average relationship between pair composition and out-
comes. The average we estimate may reflect endogenous behavioral responses by the
two agents to changes in each others’ attributes; it may even equal a mixture over mul-
tiple equilibria (see Bajari, Hahn, Hong, and Ridder (2011)). Viewed in this light, our
approach is reduced form in nature. However, it is sufficient for, say, a university admin-
istrator to characterize the outcome effects of alternative roommate assignment proce-
dures as long as the average response to group composition remains unchanged across
such procedures.

Finally, the approach taken here is complementary to recent work by Choo and
Siow (2006a, 2006b), Fox (2010a, 2010b), Galichon and Salanié (2011), and Graham
(2011) on the identification and estimation of one-to-one matching games with trans-
fers. Fox (2010a) identified the sign of the cross-derivative of the production func-
tion at different pairs of input values using a stochastic analog of the deterministic
theory result that any pairwise stable assignment will maximize the sum of produc-
tion from all matches in the economy (e.g., Shapley and Shubik (1972), Becker (1973),
Roth and Sotomayor (1990), Jackson (2008)). We discuss other connections to prior work
below (see, especially, Section 3).

4Since the first drafts of this paper appeared in 2004, several researchers have studied problems related
to those we explore here. Graham (2011) provided a recent review.



34 Graham, Imbens, and Ridder Quantitative Economics 5 (2014)

The econometric approach taken here builds on the partial mean literature (e.g.,
Newey (1994), Linton and Nielsen (1995)). In this literature, one first estimates a regres-
sion function nonparametrically. In the second stage, the regression function is aver-
aged, possibly after some weighting with a known or estimable weight function, over
some of the regressors. Here we also estimate the production function nonparametri-
cally as the conditional mean of the outcome given the observed inputs. In the second
stage, the averaging is over the distribution of the regressors induced by the new assign-
ment rule. This typically involves the original marginal distribution for some of the re-
gressors, but a different conditional distribution for others. Complications arise because
this conditional covariate distribution may be degenerate, which will affect the rate of
convergence for the estimator. In addition, the conditional covariate distribution itself
may require nonparametric estimation through its dependence on the assignment rule.
For the policies we consider, the assignment rule will involve distribution functions and
their inverses similar to the way they enter in the changes-in-changes model of Athey
and Imbens (2006).

The next section lays out our basic model and identifying assumptions. Section 3
relates our identifying exogeneity assumption to the notion of pairwise stability em-
phasized in theoretical work on matching. Section 4 then defines and motivates our
estimands. Section 5 presents our estimators and derives their large-sample proper-
ties for the case where inputs are continuously valued. Section 6 presents the results
from a small Monte Carlo exercise. Section 7 presents our conclusions. Appendixes A—C
are in a supplementary file on the journal website, http://qeconomics.org/supp/45/
supplement.pdf.

2. MODEL

In this section we present the basic setup and identifying assumptions. For clarity of
exposition, we use the production function terminology. For firm i, fori=1,..., N, the
production function relates a triple of observed inputs (W;, X;, V;) and an unobserved
input &; to an output Y;:

Yi=k(W,, X;,V;, &i). )]

The inputs W¥; and X;, and the output Y; are scalars. The third observed input V; and the
unobserved input ¢; can both be vectors.

We are interested in reallocating the input W across production units. We focus on
reallocations that hold the marginal distribution of W fixed. In the educational exam-
ple, the “firm” would be a classroom. The variable input W would be teacher quality,
and X would be a measure of class quality (e.g., the classroom average on an entrance
exam). The second characteristic ' could include other measures of the class (e.g., its
age or gender composition) as elements. In the roommate example, the unit would be
the individual, with W being the quality of the roommate (measured by, for example, a
high school test score), and the characteristic X would be own quality. The second set
of characteristics V' could be other characteristics of the dorm or of either of the two
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roommates such as smoking habits (which may be used by university administrators in
the assignment of roommates).

Our key identifying assumption is that conditional on firm characteristics (X, V),
the assignment of I, the level of the input to be reallocated, is exogenous:

AssumpTION 2.1 (Exogeneity). We have
e LW|X,V.
Let
gw, x,v) =E[YIW=w,X =x,V =v] (2)

denote expected output conditional on input level w and characteristics x and v. We
often refer to the derivative of g(w, x, v) with respect to w, which is denoted by

gw(w, x,v) = %g(w, X, V). (3)

Under exogeneity, we have—in the population of firms with identical values of X and
V—an equality between the counterfactual average output that we would observe if all
firms in this subpopulation were assigned W = w, and the average output we observe
for the subset of firms within this subpopulation that are in fact assigned W = w. Alter-
natively, the exogeneity assumption implies that the difference in g(w, x, v) evaluated at
two values of w (wg and w;) has a causal interpretation as the average effect of assigning
W = wy rather than W = wy:

g(wlaxav) _g(w()’xav) :E[k(UJ1,X, V’ 8) _k(w()aX, Va 8)|X:x,V:U].

3. EXOGENEITY AND PAIRWISE STABILITY

In the context of single agent production models, Assumption 2.1 is often controversial
(cf. Heckman, Lalonde, and Smith (2000), Imbens and Wooldridge (2009)). It holds un-
der conditional random assignment of W to units, as would occur in a randomized ex-
periment. Randomized allocation mechanisms are also used by administrators in some
institutional settings. For example, some universities match freshman roommates ran-
domly conditional on responses to housing questionnaires (e.g., Sacerdote (2001)). This
assignment mechanism is consistent with Assumption 2.1. In other settings, particu-
larly where assignment is bureaucratic, as may be true in some educational settings, a
plausible set of conditioning variables may be available.

While “as if” conditional random assignment may hold in some settings of empir-
ical interest, in other settings it may be more appropriate to view input levels as agent
choices. Purposeful input selection could generate a violation of Assumption 2.1 and
complicate identification arguments (cf. Griliches and Mairesse (1998)). Nevertheless,
maintaining Assumption 2.1 represents a natural starting point for studying realloca-
tion effects, since a nonparametric treatment of the production technology is desired.
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Extensions of our methods to settings where Assumption 2.1 does not hold would be a
natural area for further research.

Importantly, purposeful input choice need not be inconsistent with our exogene-
ity assumption. An important class of models for which this is true is the aggregate
matching setting studied by Choo and Siow (2006a, 2006b). Their work builds on game
theoretic treatments of two-sided matching markets with transfers or so-called assign-
ment games (e.g., Koopmans and Beckmann (1957), Shapley and Shubik (1972), Becker
(1973)). In these games, an equilibrium matching corresponds to a pairwise stable as-
signment: no pair of agents can raise net utility by leaving their current partners and
forming a new match.

In this section, by means of an extended example, we relate our exogeneity assump-
tion to the pairwise stability equilibrium concept used in the matching literature.’> While
a general treatment of the various issues involved is beyond the scope of the current
paper, our example demonstrates that an assignment can both (i) correspond to a pair-
wise stable equilibrium and (ii) exhibit a high degree of correlation, or assortativeness,
between the two inputs, yet nevertheless satisfy Assumption 2.1.

Our example builds on the basic setup of Choo and Siow (2006a, 2006b), which they
used to study “marriage markets” as pioneered by Becker (1973). We consider a single
matching market composed of two large populations. Associated with each agent in the
two populations is a vector of observed, discretely valued characteristics. The support of
this characteristic vector defines a finite set of agent types. Across observationally iden-
tical agents (i.e., those of the same type), the utility attached to matching with each type
in the opposing population is heterogeneous. Agents may transfer utility to one another.
These transfers, which are unobserved, adjust to equilibrate the market. This setup gen-
erates a two-sided model of (stochastic) multinomial choice subject to a market clearing
condition (cf. Graham (2011)).

While Choo and Siow (2006a, 2006b) made a number of strong distributional as-
sumptions, they attractively assumed that the observed assignment corresponds to a
pairwise stable matching equilibrium (cf. Fox (2010a)).5

Let i index firms with (for simplicity) the binary observable characteristic W; e W =
{wr, wy}. Let j index workers with binary observable characteristic X leX={xr,xy)
The ith firm’s realized utility or “profit” from matching with a random draw from the
subpopulation of type ! workers is given by, for [ € {L, H},

;(x;) = Ui(x)) — C, (4)

where U;(x;) is the firm’s match output and Cf is a firm-specific unobserved cost-of-
matching shifter. Note that while II;(x;) varies with the type of worker chosen, it does
not vary with the specific worker chosen. From the vantage of a given firm, workers of
the same type are perfect substitutes (cf. Chiappori, Salanié, and Weiss (2010), Galichon
and Salanié (2011)).

5Roth and Sotomayor (1990) and Burkard, Dell’Amico, and Martello (2009), respectively, provided eco-
nomics and operations research oriented surveys of this literature.

6See Chiappori, Salanié, and Weiss (2010), Galichon and Salanié (2011), and Graham (2011) for various
extensions of the basic Choo and Siow (2006a, 2006b) model.
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We assume that the firm’s match output is given by
Ui(x) = 8(W;, x)) — 7(W;, x)) — v, 5)

where 8(wg, x;) is the systematic output associated with a k-to-/ match, 7(wg, x;) is the
(equilibrium) transfer/wage a type k firm must pay to a type / worker (transfers may be
negative), and vf is an output shock that captures firm-level heterogeneity in productiv-
ity.’

We assume that firms observe their own type, ¥}, and the cost shifters C; = (CL.L, CZ.H )
when choosing workers. They do not observe »; = (viL, vfl ). Instead, they observe the
signal S; (which may be vector-valued). This signal is used to forecast »;, but conditional
on S;, neither W; nor C; has additional predictive power for »; (i.e., v; L (W}, C;)|S)).
This redundancy condition will be most plausible when §; is a good proxy for »; (cf.
Wooldridge (2005)). Firm i’s expected utility from matching with a type / worker is then

E[IT;(x)|W;, Si, Ci] = 6(W, x;) — 7(W, x1) — m(S;) — CL,

with m;(S;) = E[vf|Si]. Firms choose worker type to maximize expected utility, treating
the equilibrium vector of transfers/wages as fixed. The probability that a type W; = w,
firm matches with a type X; = xy worker is, therefore, given by

Pr(X;=xp|W;=wr)
= Pr(E[IT;(xp)IW;, Si, Ci| = E[I1;(x1)|W;, Si, Ci])
=Fr (8(wr, xp) — 8(wr, xp) — [T(wr, xpg) — T(wr, x1)]),

where Fy (-) is the conditional distribution function of 7 (S;) — 7. (S;) + C — CL given
W, =wr.

The probability that a type W; = wy firm matches with a type X; = xy worker is
similarly given by

Pr(X;=xp|W;=wn)
= Fy (8(wh, xg) — 8wy, x1) — [1(w, xp) — T(wh, x1)]),

where Fy;(+) is the conditional distribution function of 7y (S;) — . (S;) + CH — CL given
W, =wyg.

Now consider the worker side of the matching process.? The jth worker’s realized
utility from matching with a random draw from the subpopulation of type & firms is
given by, for k € {L, H},

B (wy) = Z) (wy) - DY, (6)

"Because, from the perspective of firms, workers of the same type are perfect substitutes (and likewise
for firms from the workers’ standpoint; see below), equilibrium transfers will vary with firm and worker type
alone (cf. Graham (2011)).

8We use subscripts to index units drawn from the population of firms and use superscripts for units
drawn from the population of workers.



38 Graham, Imbens, and Ridder Quantitative Economics 5 (2014)

where
Zi(wy) = 7(wy, X7) - &, )

is the worker’s match output, which consists of her wage, 7(wy, x;), and a worker-
specific shock, fi. The worker-specific cost-of-matching shifter is D{(. We assume that
while the worker observes D/ = (D’ ,DL) prior to matching, she does not observe
&= (fi, ff;{); instead, she observes the signal 7/. We assume that & is conditionally
independent of D/ and X/ given T/. Let w;(T/) = E[§{|Tf].

The probability that, respectively, type X/ = x; and X’/ = xy workers match with a
type W/ = wy firm are

Pr(Wj =wy| X/ = xp)=Gr(r(wn, xp) — 7(w,, x1)),
Pr(Wj =wy|X! =xp) = Gu(r(wy, xp) — 7(wr, X)),

where G, (-) and Gy (+) are the conditional distribution functions of wg (77) — w (T7) +
D}, — D given, respectively, X/ = x; and X/ = xp.

Transfers adjust so that in equilibrium the number of W; = wy type firms wishing
to match with a X/ = xy type worker (demand) coincides with the number of X J=xy
type workers wishing to match with a W; = wy type firm (supply). Such equalities need
to hold for all four types of matches. Within k-to-/ cells, matching is at random, because
firms (workers) are indifferent across workers (firms) of the same type.

The equilibrium must also be feasible. Let p; denote the fraction of firms of type
W; = wy, and let g; denote the fraction of workers of type X/ = x; . Let ry; denote the
share of k-to-/ matches in equilibrium. Graham, Imbens, and Ridder (2007) showed that
in the simple 2 x 2 case, all feasible assighments are indexed by r; ;.9 Graham (2011)
further showed that (under regularity conditions) the equilibrium assignment satisfies

F—1<1_PL —61L+FLL> _F—1<PL —rLL>
" l=pL L rL

+ 63l l—pL—qr+riL _g-i(4r e @)
" 1-pL L qL

= 8(wn, xy) — 8(wy, xp) — [6(wr, xp) — 8(wr, x)].

The right-hand side of (8) is a measure of systematic complementarity between firm
and worker type; it is a discrete analog of a cross-partial derivative. When it is positive,
the systematic component of the production technology exhibits so-called increasing
differences (Topkis (1998)). The value of ry;, that solves (8) is increasing in the degree
of complementarity in production. Firms and workers will endogenously match in an
assortative fashion when the systematic component of production exhibits increasing dif-
ferences.

9Given ry 1, the two marginal constraints (p; =rrr, + L, qr = ror + rur) and the adding up constraint
(I =rpp +rog +rur +rup) determine the frequency of the other three types of matches. Feasibility also re-
quires that r; ; satisfy certain inequality constraints; we ignore those here (cf. Graham, Imbens, and Ridder
(2007), Graham (2011)).
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Let n(i) = j if the ith firm matches with the jth worker in equilibrium. The sum of (5)
and (7), or total match output, is

Yi=Ui(X"0) + 2" )
_ 8(],{/“ Xn(l)) B (ViL)l(X”(i):xL)(VZ,H)I(XH(“:)CH)

— ( ”(i))l("I/i=wL) (fn(i))l(Wi=wH)
L H .

Note that Y; excludes the firm- and worker-specific cost-of-matching shifters, and hence
differs from total match surplus/utility (the sum of (4) and (6)). This is analogous to a
farmer’s interest in profit and the econometrician’s interest in the production technology
(e.g., Chamberlain (1984)).

Available is a random sample {Y;, W;, X", S;, T"D}N  from a population of equi-
librium matches (i.e., a population that satisfies (8)). Consider the conditional mean

E[Yi|W; = wy, XD = xpy, Si=s, T"D = t]
= 8(wp, xp) — E[p W = wy, X"V = xpy, S =5, T"D =1]
- E[f?—](t”m = wH>Xn(i) =xH,Si =39, Tl’l(l) = t]

Using the firm’s choice rule, the assumption of random matching within k-by-/ cells,
and conditional independence of (W}, C;) and »; given S;, we get!'®

E[v |W; = wy, X"D =xp, Si =5, T"D =t] =E[v/|Si = 5] = 7 (5). (10)

10By random matching within k-by-/ cells, we have the conditional independence relationship

fv.cs.ep,miw,x (@, ¢,5,6,d, tlw, x) = f, ¢ syw,x (¥, €, s|w, x) fg p, 7w, x (&, d, tw, x).

This implies that

fv.cs,mw,x @, ¢, s, tlw, x) = f,, ¢ sjw,x @, €, slw, X) fryw, x (tlw, x)
and hence that

fv.c.s.w,x (@, ¢, s,w, x) fryw, x (tlw, x)

9)
fe.s,rw,x (€, s, t, w, x)

fvic,s,rwx(vlc, s, t,w, x) =
Using the assumption of within-cell random matching, the denominator of (9) factors as
fes.mw,x (€, s, t,w, x) = fe siw,x (€, slw, x) friw, x (tlw, X) fw, x (w, x).
Rearranging (9), we get
fvics,rw x(@le, s, 1, w, x) = fyic.s.w x (Vlc, s, w, x).
Using the fact that the distribution of X; is degenerate conditional on C;, S;, and W;, we further have
fc.s.t,wx(@lc, s, t,w, x) = fyc.s,w¥Ic, s, w).
Finally, conditional independence of »; and (W}, C;) given S; yields

fc.s,t,w,x(@lc, s, t,w, x) = fys(v]s).
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By a similar argument, we also get
E[E}0 W = wi, X"D = xyg, S = 5, T"D = f] =E[e})1T"D =] = wp (1) (A1)
and hence
E[Y;|W; = wy, X"V =xp, S; =5, T"V =1]
= 8(wH, XH) + 7H(8) + wH (1) (12)
=g(WH, XH, V)

for v= (s, ')’ as required.

The above example provides an example where input complementarity and utility
maximization drive agents to “endogenously” match in an assortative fashion, yet As-
sumption 2.1 nevertheless holds. We conjecture that several features of our example
likely apply more generally. First, it seems essential that the criterion function used by
the agents when choosing match partners and the outcome of interest to the econome-
trician do not coincide. Second, informational assumptions are key. If C; had predictive
power for »; given the signal §;, then the equality in (10) would no longer hold and our
exogeneity requirement would fail. Similar model features are important when evaluat-
ing the appropriateness of exogeneity assumptions in the context of single agent models
(e.g., Heckman, Smith, and Clements (1997), Imbens (2004)).!1

In actual applications, identification conditions will need to be carefully justified.
The estimation and inference results we outline below are specific to an approach based
on Assumption 2.1. This will be credible in some settings and not in others. In set-
tings where it is not, other assumptions may be invoked to achieve (albeit perhaps par-
tial) identification. For example, nonparametric instrumental variables methods might
be used to identify the production function (e.g., Matzkin (2008), Imbens and Newey
(2009)).

4. AGGREGATE REDISTRIBUTIONAL EFFECTS

Much of the treatment effect literature (e.g., Angrist and Krueger (1999), Heckman,
Lalonde, and Smith (2000), Manski (1990), Imbens and Wooldridge (2009)) has focused
on the average effect of an increase in the value of the treatment. In particular, in the
binary treatment case (w € {0, 1}), interest has centered on the average treatment effect

E[g(1,X,V)— g0, X,V)].

With continuous inputs, one may be interested in the full average output function
g(w, x,v) (Imbens (2000), Flores (2005)) or in its derivative with respect to the input

gw(w, x,v)

1A classic and very elegant example is given by Chamberlain’s (1984) application of strict exogeneity in
the context of a panel data analysis of farm production. In Chamberlain’s example, the farmer maximizes
profit, while the econometrician studies output. Furthermore, the farmer makes input decisions prior to
observing non-forecastable “weather.”
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at a point, or a weighted average
Elo(W,X,V)-gw(W,X,V)].

See Powell, Stock, and Stoker (1989) or Hardle and Stoker (1989) for estimands of this
type.

Here we are interested in a fundamentally different class of estimands. We focus on
policies that redistribute the input W according to a rule based on the X characteristic
of the unit. There are at least two limitations to our approach. First, we focus on compar-
ing specific assignment rules, rather than searching for an optimal assignment rule. The
latter problem is particularly demanding with continuously valued inputs as the opti-
mal assignment for each unit depends on the characteristics of that unit as well as on
the marginal distribution of characteristics in the population. When the inputs are dis-
cretely valued, both the problems of inference for a specific rule as well as the problem
of finding the optimal rule become considerably more tractable. In that case, any rule
that corresponds to a joint distribution of the inputs is characterized by a finite number
of parameters. Maximizing estimated average output over all evaluated rules will then
generally lead to the optimal rule. Graham, Imbens, and Ridder (2007) and, motivated
by an early version of the current paper, Bhattacharya (2009), provided a discussion for
the case with discrete covariates.

A second limitation is that the class of assignment rules we consider leaves all as-
pects of the marginal distribution of the inputs unchanged. This latter restriction is per-
fectly appropriate in cases where the inputs are indivisible, as, for example, in the so-
cial interactions and educational examples. In other cases, one need not be restricted to
such assignment rules. A richer class of estimands would allow for assignment rules that
maintain some aspects of the marginal distribution of inputs, but not others. An inter-
esting class consists of assignment rules that maintain the average (and thus total) level
of the input, but allow for its arbitrary distribution across units. This can be interpreted
as assignment rules that “balance the budget.” In such cases, one might assign the max-
imum level of the input to some subpopulation and the minimum level of the input to
the remainder of the population. Finally, one may wish to consider arbitrary decision
rules where each unit can be assigned any level of the input within a set. In that case,
interesting questions include the optimal assignment rule as a function of unit-level
characteristics as well as average outcomes of specific assignment rules. In the binary
treatment case, such problems have been studied by Dehejia (2005), Manski (2004), and
Hirano and Porter (2009), among others.

Let fw|x,r (w|x, v) denote the conditional distribution of W given (X, V) in the data
and let fNW‘ x,v(w|x, v) denote a potentially different conditional distribution. We allow
fW\ x,v(w|x, v) to correspond to any distribution such that the implied marginal distri-
bution for W remains unchanged, or

/fmx,v(wlx,v)fx,v(x, v) dvdx:/fW|X,V(wa,v)fx,V(x,v) dvdx

for all w € W. This includes degenerate conditional distributions. In general, we are
interested in the average outcome that would result from the current distribution of
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(X, V, ¢) if the distribution of W given (X, V') were changed from its current distribu-
tion, fwx, v (wlx, v) to fir|x,v (wlx, v). We denote the expected output given such a real-
location by

,B;Ie:/g(u),x,v)fW‘XYV(w|x,v)fX,V(x,v)dwdxdv. (13)

In the next two subsections, we discuss some specific choices for f(-).

4.1 Positive and negative assortive matching allocations

The first estimand we consider is the expected average outcome given perfect assorta-
tive matching of W on X conditional on V/,

g7 = E[g (g (Fxiw (X)), X, V)], 14)

where Fy | (X|V) denotes the conditional cumulative distribution function (CDF) of X
given JV and where F,;,llV(q|V) is the gth quantile (for ¢ € [0, 1]) associated with the con-
ditional distribution of W given V. Therefore, FV},IW(F x| (X|V)|V) computes a unit’s lo-
cation on the conditional CDF of X given JV and reassigns it the corresponding quantile
of the conditional distribution of W given V. Thus, among units with the same realiza-
tion of IV, those with the highest value of X are reassigned the highest value of W and so
on.

For BP2™ to be well defined, we need some conditions on the joint distribution of
(Y, W, X, V). We do not state these conditions here explicitly. When we discuss estima-
tion, in Section 5, we provide conditions for consistent estimation, including compact
support and smooth distributions for (W, X), and moment conditions for the condi-
tional distribution of Y given (W, X).!? These conditions imply that gP2™ is well de-
fined.

The focus on reallocations within subpopulations defined by V/, as opposed to
population-wide reallocations, is motivated by the fact that the average outcome ef-
fects of such reallocations solely reflect complementarity or substitutability between W
and X . To see why this is the case, consider the alternative estimand

PP _ Bl (Fl (Fy (X)), X, V)]. (15)

This gives average output associated with population-wide perfect assortative matching
of W on X. If, for example, X and V' are correlated, then this reallocation, in addition to
altering the joint distribution of W and X, will alter the joint distribution of W and V.
Say V is also a scalar and is positively correlated with X. Population-wide positive as-
sortative matching will induce perfect rank correlated between W and X, but it will also
affect the degree of correlation between W and V. This complicates the interpretation
of the estimand when g(w, x, v) is nonseparable in w and v, as well as in w and x.

120ur formal distribution theory is developed in the setting without V.
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An example helps to clarify the issues involved. Let W denote an observable mea-
sure of teacher quality, let X denote mean (beginning-of-year) achievement in a class-
room, and let }V denote the fraction of the classroom that is female. If beginning-of-year
achievement varies with gender (say, with classes with a higher fraction of girls having
higher average achievement), then X and V' will be correlated. A reallocation that as-
signs high quality teachers to high achievement classrooms will also tend to assign such
teachers to classrooms with an above average fraction of females. Average achievement
increases observed after implementing such a reallocation may reflect complementarity
between teacher quality and beginning-of-year student achievement or it may be that
the effects of changes in teacher quality vary with gender and that, conditional on gen-
der, there is no complementarity between teacher quality and achievement. By focusing
on re-allocations of teachers across classrooms with similar gender mixes, but varying
baseline achievement, (14) provides a more direct avenue to learning about comple-
mentarity between W and X .13

Both (14) and (15) may be policy relevant, depending on the circumstances, and both
are identified under Assumption 2.1 and additional support conditions (which we make
explicit below). Under the additional assumption that

g(w, x,v) = g1(w, x) + g2(v),

the estimands, although associated with different reallocations, also have the same ba-
sic interpretation. In the current paper, we focus on (14), although it is conceptually
straightforward to extend our results to (15).

Our second estimand is the average outcome given negative assortative matching:

B =E[g(Fy |, (1 - Fx (X)), X, V)]. (16)

If, within subpopulations homogeneous in V, the two inputs W and X are everywhere
complements, then the difference gP*™ — B"3™M provides a measure of the strength of
input complementarity. When g(-) is not supermodular (i.e., its cross-derivative is not
everywhere positive), the interpretation of this difference is not straightforward. In The-
orem 4.1 below, we present a measure of “local” (relative to the status quo allocation)
complementarity between X and W that is interpretable in such settings.

4.2 Correlated matching allocations

The perfect positive and negative assortative allocations are focal allocations, being em-
phasized in the economic theory literature (e.g., Becker and Murphy (2000), Legros and
Newman (2002, 2007)). There are many more possible allocations. Two others that are
particularly important are the status quo allocation, and the random matching alloca-
tion. Average output under the status quo allocation is given by

BA=E[Y]=E[gW, X,V)].

13We make the connection to complementarity more explicit in Section 4.3.
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Average output under the random matching allocation is given by

= [ [ | [ stw.x. U)fW|V(w|U)fXV(x|v)i|fV(v)deXdU-

This last estimand gives average output when W and X are independently assigned
within subpopulations indexed by V.

These allocations are just four among the class of feasible allocations. This class
comprises all joint distributions of inputs consistent with fixed marginal distributions
(within subpopulations homogeneous in ). As noted in the Introduction, if the inputs
are continuously distributed, this class of joint distributions is very large. For this reason,
we only consider a subset of these joint distributions. To be specific, we concentrate on
a family of the feasible allocations, indexed by two parameters 7 and p, that includes
as special cases the negative and positive assortative matching allocations, the inde-
pendent allocation, and the status quo allocation. Let 8™ (7, p) denote average output
under the allocation indexed by 7 and p. By changing the two parameters, we trace out
a “path” in two directions: farther from or closer to the status quo allocation and farther
from or closer to the perfect sorting allocation. Borrowing a term from the literature on
copulas, we call this class of feasible allocations comprehensive, because it contains all
four focal allocations as a special case. For ease of exposition, we focus in the remainder
of the paper on the case with no covariates beyond W and X, and so drop the argument
I in the production function.!#

To facilitate estimation, the correlated matching allocations are defined using a trun-
cated bivariate normal copula. The truncation ensures that the denominator in the
weights of the correlated matching ARE are bounded from 0, so that we do not require
trimming to ensure that our estimand has a nonzero information bound (cf. Khan and
Tamer (2010)). The bivariate standard normal probability density function (PDF) is

b1, 33 p) = e WAPNE2010D) o <y 3 < 00,

271 - p?

with a corresponding joint cumulative distribution function (CDF) denoted by ®(x1, x7;
p). Observe that

Pr(—c<x1<c,—c<x3<c¢)
=d(c, ¢; p) — P(c, —¢; p) — [P(—c, ¢; p) — P(—c, —¢; p)],
so that the truncated standard bivariate normal PDF is given by

dc(x1,x2; p)

_ d(x1,x2; p)
D(c,c; p) — P(c, —c; p) — [P(—c, c; p) — P(—c, —c; p)]’

—c<x1,xy=<c.

Denote the truncated bivariate CDF by ®..

14The distributional results stated below continue to hold if we maintain conditioning on V with (mostly)
minor modification (e.g., replacing marginal with conditional densities in the appropriate places, etc.).
A complete proof of Theorem 5.3 with explicit conditioning on V' is available from the authors.



Quantitative Economics 5 (2014) Assortative matching 45

The truncated normal bivariate CDF gives a comprehensive copula, because the cor-
responding joint CDF

Hw, x (w, x) = O (O (Fy (w)), ;1 (Fx (x)); p)

has marginal CDFs equal to Hy, x (w, 00) = Fyy(w) and Hy, x (o0, x) = Fx (x), it reaches
the upper and lower Fréchet bounds on the joint CDF for p = 1 and p = —1, respectively,
and it has independent W, X as a special case for p = 0.

To define B°™(p, ), we note that the joint PDF associated with Hy x (w, x) equals

hw, x (W, x) = ¢ (P (Fw (w)), ;1 (Fx (x)); p)
y fw(w)fx(x) ‘
G (O (Fyr (w)) (P (Fx (x)))

Then we define B (p, 0) in terms of the truncated normal as

(P H(F , D NF ;

ch(p,()):/ g(w, x) P 51( w(w)), P; (7]X(x)) p)

w,x Gc( P (Fy () pe (P (Fx (X)) 17

x fw (w) fx (x) dwdx.

Average output under the correlated matching allocation is given by
B (p,7) =7 -E[YT+ (1 —1)-B(p,0)
=71 -E[Y]]
(18)

(O (Fy (w)), P71 (Fx(x)); p)
GO (Fiy (w))) e (P (Fx (x)))

+(1—T)/ g(w, x)

X fw(w) fx (x)dwdx

forre[0,1]and p € (-1, 1).
The case with 7 = 1 corresponds to the status quo:

B =B (p, 1).
The case with 7 = p = 0 corresponds to the random matching:

g™ — B (0, 0) = f / g(w, x) dFy (w) dFx (x).

The cases with (r=0,p — 1) and (7 =0, p — —1) correspond, respectively, to the per-
fect positive and negative assortative matching allocations:

pra = lim B™M(p,0) and BMT= lim B (p,0).
p— p——
More generally, with = = 0, we allocate the inputs using a normal copula in a way that

allows for arbitrary correlation between W and X indexed by the parameter p. It would
be conceptually straightforward to use other copulas.
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4.3 Local measures of complementarity

An empirical challenge posed by the correlated matching family of estimands 8™ (p, 7),
including the focal allocations BP#™ and p"@™, is that the support requirements that al-
low for their precise estimation may be difficult to satisfy in practice. This is particularly
relevant for allocations “distant” from the status quo. For example, if the status quo is
characterized by a high degree of correlation between the inputs, evaluating the effect
of allocations with a small or even negative correlation between inputs, such as random
matching or negative assortative matching, can be difficult because such allocations rely
on knowledge of the production function at pairs of input values (W, X)) that are infre-
quently seen in the data. In such situations, a measure of complementarity between W
and X in the vicinity of the status quo may be of interest, despite its more limited nature.

To this end, we next characterize the expected effect on output associated with a
small increase toward either positive or negative assortative matching. This estimand
should be most informative regarding the effects of “modest” policies (i.e., those that
induce reallocations that stay close to the status quo). We derive this local measure by
considering matching on a family of transformations of X and W, indexed by a scalar
parameter A, where for some values of A, the matching is on W (corresponding to the
status quo), and for other values of A, the matching is on X or —X, corresponding to
positive and negative assortative matching, respectively. We then focus on the derivative
of the expected outcomes from matching on this family of transformations, evaluated at
the value of A that corresponds to the status quo.

For technical reasons, and to be consistent with the subsequent formal statistical
analysis in Section 5 of the previously discussed estimands gP?™ and "™, we assume
that the support of X is the interval [x;, x,] with midpoint x,,, = (x, + x;)/2, and assume
similarly that the support of W is the interval [w;, w,] with midpoint wy, = (w, + wy)/2.
Without loss of generality, we assume that x; =0, x,, =1/2, x, =1, w; =0, w,, = 1/2,
and w, = 1. We continue to ignore the presence of additional covariates V. First define
a smooth function d(w) that goes to zero at the boundary of the support of W:

d(w) = 1w>wm (wy —w) + 1w§wm (w —wy).

This function plays the role of a fixed weight/trimming function and ensures that the
estimand introduced below has a finite semiparametric variance bound.!®

We implement our local reallocation as follows: for A € [—1, 1], define the random
variable U, as a transformation of (X, W):

Uy=A-X-dW)" M 4 (V1-2a2) .- w.

This gives us a parametric transformation of (W, X) that moves smoothly between W =
Up and X = U,. Now we consider reallocations based on positive assortative matching
on U),, for a range of values of A, as a smooth way to move from the status quo (match-
ing on W) to positive assortative matching (matching on X). For general A, the average
output associated with positive assortative matching on U, is given by

BT\ =E[g(Fy;! (Fu,(UV), X)]- (19)

15See Newey and Stoker (1993) for a related discussion in the context of weighted average derivatives.
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For A =0 and A = 1, we have U, = W and U, = X, respectively, and hence g*(0) = g4
and B''(1) = BP¥™ Perfect negative assortative matching is also nested in this framework
since

Pr(— X <—-x)=Pr(X>x)=1-Fx(x),

and hence for A = —1, we have B"(—1) = @™ Values of A close to zero induce realloca-
tions of W that are local to the status quo, with A > 0 and A < 0 generating shifts toward
positive and negative assortative matching, respectively.

We focus on the effect of a small reallocation as our local measure of complementar-

ity:

I _ (9311‘

P dA

(0). (20)

This local complementarity measure has two interesting alternative representations,
which are given in the following theorem. Before stating this result, we introduce one
assumption. This assumption is stronger than needed for this theorem, but its full force
will be used later. The required values of the parameters in this assumption, p and g, will
be specified in the theorems.

AssuMPTION 4.1 (Distribution of Data).
(i) The vectors (Y1, W1, X1), (Yo, W2, X3), ..., (YN, Wn, XN) are independent and
identically distributed.
(ii) Thesupportof W is W = [w;, wy,], a compact subset of R.
(iii) The supportof X is X = [x;, x,,], a compact subset of R.

(iv) The joint probability density function of W and X is bounded and bounded away
from zero, and q times continuously differentiable on W x X.

(v) The function g(w, x) is q times continuously differentiable with respect to w and x
onW x X,

(vi) The conditional expectation E[|Y;|?|X; = x] is bounded.'®

The first representation is as the expected value of the conditional (on W) covari-
ance of X and the returns to W, gy (w, x) = (‘;Ti(w, x), weighted by d(W). The second
r?zg
Jwdx

representation is as a weighted average of the cross-derivative
theorem formalizes these concepts.

(w, x). The following

THEOREM 4.1. Suppose Assumption 4.1 holds with q > 2. Then B'® has two equivalent
representations,

B¢ =E[d(W) - Cov(gw (W, X), X|W)] 21

161f we maintain conditioning on V, the above assumption would need to be modified to ensure that our
four estimands are well defined. In particular, fi;7—, would need to be strictly positive on W for all v € V.
A similar restriction would need to hold for fx-—,. We also require that the support of (W, X)|V coincides
with the product of its marginals (conditional on ).
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and

&zg

Jwdx

B¢ = E[S(W, X)- w, X)}, 22)

where the weight function §(w, x) is nonnegative and has the form
Fxyw(xlw) - (1 — Fxyw(x|w))
Ixpw (x|w)

(BIXIX >x, W =w] —E[X|X <x, W =w]).

S(w, x) =d(w) -

The proofs for the theorems given in the body of the text are presented in Appendix B
in the supplementary file.

Representation (21), as we demonstrate below, suggests a straightforward nonpara-
metric approach to estimating B!°. Representation (22) is valuable for interpretation.

Equation (22) demonstrates that rejecting the null Hy : 8'° = 0 implies that there is at
least one perturbation of the status quo assignment that raises average outcomes. Con-
sequently, such arejection implies that the status quo is inefficient (or rather not output
maximizing). If ,BIC > 0, then in the vicinity of the status quo, W and X are complements;
if BI¢ < 0, they are substitutes. The precise meaning of the “vicinity of the status quo” is
implicit in the form of the weight function &(w, x).

Deviations of B¢ from zero imply that the status quo allocation does not maximize
average outcomes. For B¢ > 0, a shift toward positive assortative matching will raise
average outcomes, while for B!° < 0, a shift toward negative assortative matching will
do so. Theorem 4.1 therefore provides the basis of a test of the null hypothesis that the
status quo allocation is locally efficient. Of course, acceptance of the above null does not
mean there is no output raising perturbation of the status quo (i.e., the test may have low
power in some directions).

5. ESTIMATION AND INFERENCE WITH CONTINUOUSLY VALUED INPUTS

In this section, we discuss estimation and inference. The estimators are all (variants of)
weighted averages of (derivatives of) nonparametric estimates of the regression func-
tion. These are what Newey (1994) called full and partial means and derivatives. First,
in Section 5.1, we describe our nonparametric regression function estimator. We use
a new nonparametric kernel estimator introduced in Imbens and Ridder (2009). The
usual Nadaraya—Watson kernel regression estimator has a uniform rate of convergence
on the internal region of support of the conditioning variable (e.g., Newey (1994)). In the
boundary region of support, the estimator exhibits additional bias, resulting in a slower
rate of convergence. Newey (1994) dealt with this issue by introducing a fixed trimming
function into his partial mean estimand. This function ensures that averaging only oc-
curs across observations that lie on the interior of the support. In our setting, fixed trim-
ming methods are unattractive because they change the nature of the estimands. The
nonparametric regression estimator of Imbens and Ridder (2009) includes a correction
for bias in the boundary region of support, leading to a uniform convergence rate across
the entire support of the conditioning variable.
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Next, in Section 5.2, we present estimators for the first pair of estimands, BP™ and
B"3M In Section 5.3, we discuss estimation and inference for 3™ (including ™), and in
Section 5.4, we discuss p'°. Estimation of and inference for the status quo allocation 854
is straightforward. As this estimand is a simple expectation, it is consistently estimable
by a sample average.

5.1 Estimating the production and distribution functions
For the two distributions functions, we use the empirical distribution functions

N

N

. 1 A 1

FW(w)ZNZIWiSw and FX(X)ZNZIXISX'
i=1 i=1

For the inverse distribution functions, we use the definition

—1 o N —1 _ .
Fy (@)= inf 1 >g and Fyl(@=inflp ). ..

The estimands we consider in this paper depend on the regression function g(w, x)
(in the case of gPam gnam and B™M) or its derivative in the case of Blc. The latter also
depends on the regression function m(w), defined as

m(w) =E[X|W =w]. (23)

To estimate these objects, we need estimators for the regression functions m(w) and
g(w, x), and the derivative gy (w, x). Write the regression function as

gw,x)=E[YIW =w,X =x]= M’
hi(w, x)

where
hi(w, x)=fwx(w,x) and hy(w, x)=g(w, x) - fwx(w, x).
To simplify the following discussion, we rewrite 41 (w, x) and A, (w, x) as
h(w, x) = B[ YW =w, X =x]- fwx(w, x) (24)

form=1,2, where Y = (Y; ¥,),withY; =land Y, =Y.

We focus on estimators for /,,(w, x), and use those to estimate g(w, x) and its deriva-
tives. The standard Nadaraya-Watson (NW) estimator for %,,(w, x) is, for some bivariate
kernel K (-, -),

N
. 1 - Wi—w X;—x
hnw,mm,x):N.bz;Yim-K( g ) (25)

We denote the resulting nonparametric estimator by g(w, x).
Because the support of (W, X) is assumed to be bounded, we have to deal with
boundary bias of the kernel estimators. Because we also need bias reduction, by using
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higher order kernels, we adopt the nearest interior point (NIP) estimator of Imbens and
Ridder (2009). This estimator divides, for given bandwidth b, the support of (W, X) into
an internal region and a boundary region. On the internal region, the uniform conver-
gence of the standard NW kernel estimators holds, but the estimators must be modified
on the boundary region of the support. The NIP estimator coincides with the usual NW
kernel estimator on the internal set, but it is equal to a polynomial on the boundary set.
The coefficients of this polynomial are those of a Taylor series expansion around a point
of the internal set.

To obtain a compact expression for the NIP estimator, we adopt the following nota-
tion. The vector z = (w x)" has L =2 components. Some of the results below are stated
for general L, although we only use the case with L =2. Let Z = W x X denote the (com-
pact) support of Z. Let A denote an L vector of nonnegative integers, with |A| = Zlel A
and Al = ]_[lel A;l. For L vectors of nonnegative integers A and u, let u < A be equivalent
tou; < A;foralll=1,..., L, and define

A l£[ 1£[ A
“ '()\ M)’ ,u'()u Mz)' )

=1 =1

For L vectors A and z, let z* ]_[, 1 zl . As shorthand for partial derivatives of some
function g, we use gV (2):

[Al
gM(2) = g . (26)

The definition of the internal region depends on the support of the kernel. Let K : RF
R denote the kernel function. We assume that K(u) = 0 for u ¢ U with U compact and
that K (u) is bounded. For the bandwidth b, define the internal set of the support Z as
the subset of Z such that all z with a distance of up to b times the support of the kernel
from z are also in Z:

1
-]

This is a compact subset of the interior of Z that contains all points that are sufficiently
far away from the boundary that the standard kernel density estimator at those points is
not affected by any potential discontinuity of the density at the boundary. If U = [-1, 1]*
and Z = ®;_[z11, zul, we have Z = ®j-(z; + b, z,y — b].'7 The complement of the
internal region is the boundary region

{EERL‘Z_ZGU}CZ}. 27)

ZB=Z/Z[={zeZ‘EIZgéZs.t.Z_ZeTU}. 28)

Next, we need to develop some notation for Taylor series approximations. Define for
a given g times differentiable function g:Z +— R, a point r € RE, and an integer s < g,

17The set [—1,1]" is the set of L vectors with components that are between —1 and 1. The set
®IL=1 [z11, z,] is the set of L vectors with the /th component between z;; and z,;.
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the (s — 1)th order polynomial function ¢:Z — R, which is based on the Taylor series
expansion, of order s — 1, of g(z) around the point r € Z:

s—1
1
Hzg =) ), 8V -nt (29)

J=01Al=/

Because the function g(z) is ¢ > s times continuously differentiable on Z, the remainder
term in the Taylor series expansion is

1
g(Z)-t(Z,g,r,S): Z A’ ()\)(r(z)) (Z_r)/\’

[Al=s

with 7(z) intermediate between z and r. Because Z is compact and the sth order is con-
tinuous, the sth order derivative must be bounded and, therefore, this remainder term is
bounded by C|z — r|*. For the NIP estimator, we use this Taylor series expansion around
apoint that depends on z and the bandwidth. Specifically, we take the expansion around
rp(2), the projection on the internal region:

rp(z) =argmin|z — r|. (30)
rer)

With this preliminary discussion, the NIP estimator of order s of %,,(z) can be defined as

mnlp,s(z)—z Z hgrlz\)nw rb(Z))(Z_rb(Z)))\> (31)

j= OIAIJ

with h%‘ aw the Ath derivative of the kernel estimator hm nw- For values of z in the inter-
nal region Zi, the NIP estimator is identical to the NW kernel estimator, hm,mp,s(z) =
fzmynw(z). It is only in the boundary region that a (s — 1)th order Taylor series expansion
is used to address the poor properties of the NW estimator in that region.

Now the NIP estimator for g(w, x) is

h2 .nip,s (W, X)

&nip,s(w, X) = i i () o’ (32)
and the NIP estimator for the first derivative of g(w, x) with respect to w is
P i i1, ) i (10, ) o g 10, )
2P (w, x) = Jw — . (33)
Jw I nip,s(w, X) (hl,nip,s(w> x))?

Unlike the NW kernel estimator, the NIP estimator is uniformly consistent. Its proper-
ties are discussed in more detail in Imbens and Ridder (2009). Formal statements of the
relevant properties for our discussion are given in Lemmas A.9, A.10, and A.11, and The-
orems A.1, A.2, and A.3 in Appendix A.
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In the remainder of the paper, we drop the subscripts from the estimator of the re-
gression function. Unless specifically mentioned, g(w, x) is used to denote gnip, (w, x)
for s equal to the order of the kernel, with its value stated in the lemmas and theorems.

Next we introduce two more assumptions. Assumption 5.1 describes the properties
of the kernel function, and Assumption 5.2 gives the rate on the bandwidth. Before stat-
ing the next assumption, we need to introduce a class of restrictions on kernel functions.
The restrictions govern the rate at which the kernel, which is assumed to have compact
support, goes to zero on the boundary of its support. This property allows us to deal with
some of the boundary issues. Such properties have previously been used in, for example,
Powell, Stock, and Stoker (1989).

DEFINITION 5.1 (Derivative Order of a Kernel). A kernel function K : U — R is of deriva-
tive order d if, for all u in the boundary of theset Uand all [A| <d — 1,
A

. d
I}E)I}t MK(U) =0.

AssumpTION 5.1 (Kernel). The kernel satisfies:
() K:RE > R, with K(u) =[], K(u).
(i) K(u)=0foru¢ U, withU=[-1,1]%.

(iii) K(-) is r times continuously differentiable, with the rth derivative bounded on the
interior of U.

(iv) K(-) is a kernel of order s, so that [;K(u)du =1 and [; u*K(u)du =0 for all A
such that 0 < |A| < s for some s > 1.

(v) K is a kernel of derivative order d.
We refer to a kernel that satisfies Assumption 5.2 as a derivative kernel of order (s, d).

ASSUMPTION 5.2 (Bandwidth). The bandwidth by = N~? for some 6 > 0.

5.2 Estimation and inference for BP¥™ and gnam

In this section, we introduce the estimators for gP#™ and B"@™, and present results on
the large-sample properties of the estimators. We estimate gP¥™ and "™ by substitut-
ing nonparametric estimators for the unknown functions g(w, x), Fy (w), and Fx (x):

N
1 e
@’am=ﬁzg(FW1(FX(Xi)),Xi) (34)
i=1
and

1 A
Brm == 38y (1 = Fx (X)), Xi). (35)
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It is straightforward to demonstrate consistency for these estimators. The nonparamet-
ric estimators g, Fy, and Fx are uniformly consistent under our assumptions, and con-
sistency of BPa™ follows directly from that. It is more difficult to derive the large-sample
distributions for these estimators. There are four components to their asymptotic ap-
proximations. Here we discuss the decomposition for P2, A similar argument holds
for @™, In both cases, the first component corresponds to the estimation error in
g(w, x). This component converges at a rate slower than the regular parametric (root-N)
rate. This is because, in the first stage, we estimate a nonparametric regression function
with more arguments than we average over in the second stage. As a result, BP2™ (and
Bham) is a partial (as opposed to a full) mean in the terminology of Newey (1994). The
other three terms converge faster, that is, at the regular root-N rate. There is one term
each that corresponds to the estimation error in Fjy (w) and Fx (x), respectively, and one
each that corresponds to the difference between the average of g(FV},1 (Fx (X)), X;) and
its expectation. In describing the large-sample properties, we include all four of these
terms, which leaves a remainder that is 0,(N~1/ 2). In principle, one could ignore the
three terms of O, (N ~!/2), since they will become dominated by the term that describes
the uncertainty stemming from estimation of g(w, x), but including the additional terms
is likely to lead to more accurate confidence intervals.'® We provide evidence for this in
the simulations in Section 6.

To describe the formal properties of the estimator AP2™, it is useful to introduce no-
tation for an intermediate quantity and some additional functions. Define the average
with the true regression function g(w, x) (but still the estimated distribution functions
ﬁW and Fx),

pram = Zg HFx (X)), Xi), (36)

so that we can write gPam — gpam — (gpam _ ,épam) + (pPam _ gpam) Then the first term
ppam — gpam — 0 (N—1/2) and the second term gP¥™ — gPam — O (N~ 1/2b—1/2) Recall
the notation for the derivative of g(w, x) with respect to w,

(w, 1) = 2 (w, x)
8w 5 _&U) 5 5

and define

gw (Fy' (Fx (X)), x)
fw (Fp! (Fx(x)))

P (w) =E[gP ™ (w, X)],

gw(Fy (Fx(2)), 2)
fw (Fy! (Fx(2)))

P (w, x) = (Lrp ) =Fy ) — Fx (1)),

P (x 7)) =

- (Ly<z — Fx (2)),

18Note that in the presence of additional inputs 7/, we would be required to construct estimates of the
conditional CDFs Fy i (w|v) and Fx i (x|v). Such estimates would also converge to their population values
at a slower than root- N rate and hence contribute to the asymptotic sampling variance of gPa™.
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and
P (x) = B[P (x, X)).

THEOREM 5.1 (Large Sample Properties of BPa™). Suppose Assumptions 2.1, 4.1, 5.1,
and 5.2 hold, withq>2s+1,r>s+3, p>4,d>s—1,and 1/(2s) <6 < 1/8. Then

\/N. b}l\{2~(épam _ Bpam) _d) N 0 | Qll)fm Oam |
ppam — gpam 0/°\ o o

where
o = E[Uz (Fy! (Fx (X)), X;)
'-/ul (/MZK<”1 A ij_:/)f((});)( oy 4 uz) duz>2dU1 (37)
- fwix (Fy! (FX(X))|X)]
and

O™ = E[ (5™ W) + W™ (X + g (Fy (Fx (X)), X) — BPam)].

In the expression for the large-sample variance, zpl;(am captures the uncertainty that
results from estimation of Fx (x), and w{’;m captures the uncertainty that results from
estimation of Fyy (w).

Note that the component of the variance that captures the uncertainty from estima-
tion of g(w, x), 7", depends on the kernel in a way that involves the distribution of
the data. Often when one estimates nonparametric functionals at parametric rates, the
dependence on the kernel vanishes asymptotically if one undersmoothes. Here the ker-
nel shows up in the leading term. This is also the case in the discussion of partial means
in Newey (1994).

Suppose we wish to construct a 95% confidence interval for Bpam In that case, we
approximate the variance of Pa™ — gPam by — OPI™ . N—1. pol 4 OPE™ . N1 using
suitable plug-in estimators !Alff and Qg; , and construct the conﬁdence interval as

( ﬁpam —1.96- \/@ , ﬁpam +1.96- N ). Although the first term in V dominates the second
term in large samples, in finite samples, the second term may still be important. We shall
see this in the simulations in Section 6.

Similar results hold for 8"#™, with some appropriately redefined terms:

pram = Zg H(1-Fx (X)), Xi),

F;l1—F ,
nam () xy = gw (Fy ( x(x)), x) '(IFW(w)SFX(x) —F)((x)), (38)

q
fw (Fpt (1= Fx(x)))
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P (w) = E[gyfy (w, X)],
1,4
nam(x’Z)ZgW(FW (1-Fx(z)),2)

.
fw (Fp! (1= Fx(2)))

: (lxgz - FX(Z))7
and
P (0 =E[r¥ (x, X)].

THEOREM 5.2 (Large Sample Properties of ™). Suppose Assumptions 2.1, 4.1, 5.1,
and 5.2 hold, withq>2s+1,r>s+3, p>4,d>s—1,and1/(2s) <5 < 1/8. Then

()
Bnam _ ’Bnam 0 0 Qrzléun

where
o =5 (5 (1 - Fy (1), X)
’ f (fz K(”l " fW(FVT,ljz)i (_X;X(X») e ”z) d”2>2 d
fwix (Fyt (1 - FX(X))|X):|
and

Q53 = B[ (¢ O0) + g (X0 + g, X) — g7m)?].

5.3 Estimation and inference for B™(p, 1)

The starting point for estimation of 8™ is the representation of 3™ (p, 0) in equation
a7n:

fw(w)fx(x)dwdx.

B (p, 0) = / o0, x) 2@ Fw(w)), & (Fx (x)): p)
T S G @ (P () (D7 (Fx (1))

Note that this expression is an integral over the product of the marginal PDFs of W and
X, not the joint. We estimate this by replacing the integrals with sums over the two em-
pirical distribution functions to get the analog estimator

~em 1 L&, be( L (Fy W), P (Fx (X))); p)

B (p,0) ==Y > (W, X))

N2 0 (07 By (W) e (@7 (Fx (X))

This estimator would be a standard second order I statistic if we had the true regression
function and the true distribution functions. The dependence on the estimated regres-
sion function complicates its analysis.
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Observe that if p = 0 (random matching), the ratio of densities on the right-hand
side is equal to 1, so that

- 1 N N .
B =552 D 8, X)),
i=1 j=1

For 7 > 0, the B“™(p, 7) estimand is a convex combination of average output under
the status quo and a correlated matching allocation. The corresponding sample analog
is

B (p, 7y =1-B9+(1—1)-B™(p,0),

where g4 =Y = Zf\i 1 Yi/N, the average outcome. This estimator is linear in the non-
parametric regression estimator ¢ and nonlinear in the empirical CDFs of X and W'.

An insightful representation of ™ (p, 0) is as an average of partial means. This rep-
resentation provides intuition about both the structure of the estimand and its large-
sample properties. Fixing W at W = w, but averaging over the distribution of X, we get
the partial mean

n(w; p) =Ex[g(w, X) - o(w, X: p)], (39)
where

(D7 (Fy (w)), 71 (Fx (x)); p)
b (O (Fyr () b (O (Fx (x)))

Observe that (39) is a weighted averaged of the production function over the distribution
of X, holding the value of the input to be reallocated (W) fixed at W = w. The weight
function w(w, x) depends on the truncated normal copula. In particular, the weights
give greater emphasis to realizations of g(w, X) that are associated with values of X that
will be assigned a value of W close to w as part of the correlated matching reallocation.
Thus (39) equals the average post-reallocation output for those firms being assigned
W = w. To give a concrete example, (39) is the post-reallocation expected achievement
of those classrooms that will be assigned a teacher of quality W = w.

Equation (39) also highlights the value of using the truncated normal copula. Doing
so ensures that the denominators of the copula “weights” in (39) are bounded from zero.

If we average these partial means over the marginal distribution of W, we get
B™(p, 0), since

o(w,x; p)= (40)

B (p,0) =Ew[n(W: p)],

yielding average output under the correlated matching reallocation.

From the above discussion, it is clear that our correlated matching estimator can
be viewed as a semiparametric two-step method-of-moments estimator with a moment
function of

m(Y, W, B (p, 1), n(W;p)) =7Y + (1 —1)n(W; p) — B (p, 7).
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Our estimator, B (p, 7), is the feasible generalized method of moments (GMM) esti-
mator based on the above moment function after replacing the partial mean (n(w; p)
defined in (39)) with a consistent estimate. While the above representation is less useful
for deriving the asymptotic properties of ™ (p, 7), it does provide some insight as to
why we are able to achieve parametric rates of convergence.

To state the large-sample properties of the correlated matching estimator, we need
some additional notation. Define

pde (PN (Fy (w)), P71 (Fx (x)); p)

ew(w, x) =
v (1= p2) (O (Fr(w)))2pe(dH (Fx (x)))
x [@7H(Fx (1)) — p® ! (Fiw (w))],
L pd (7 (Fy (w), P (Fx (x)); p)
ex(w,x) =

(1= p2) e (O (Fyr () b (O (Fx (x)))2
x [®71(Fw (w)) — p@ 1 (Fx (0))],
‘/fgm(y, w, )C) = (E[g(W7 x) : (U(W, .X)] - ,ch(P, 0))

(41)
+ (E[g(w, X) - w(w, X)] - B™(p, 0)),
Py, w, x) = %(y —g(w, x))o(w, x), (42)
Py, w, x) = / / (s, ew (s, 1) (Lwss — Fw () fw () fx (1) ds dt, (43)
and
Py, w, x) = / / g(s, ex (s, 1) (Lu<s — Fx (1)) fiw (s) fx () dsdr. (44)

THEOREM 5.3. Suppose Assumptions 2.1,4.1,5.1, and 5.2 hold with g >2s — 1, r > s +1,
p=>3,d>s—1,and (1/2s) <6 < 1/4. Then

B™(p, ) 5 B™(p, )

and

VN (B (p, 7) — B™(p, 7)) > N (0, ),
where

QM =E[(r(Y = B%9) + (1 — 7)™ (Y, W, X))]
and

Py, w, x) =P, w, X) + P (v w, x) + Pt (v, w, x) + P (v, w, x). (45)

Note that this estimator is root-N consistent, unlike fP2™ and g™,
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If there was no estimation error in g(w, x), Fy (w), and Fx (x), the estimator would
be root-N consistent with normalized asymptotic variance equal to E[(y5™(Y;, Wi,
X;))?]. The remaining terms in the influence function, byt (s w, x), (v, w, x), and
wgm(y, w, x), capture the uncertainty coming from estimation of Fy (w), Fx(x), and
g(w, x), respectively.

The proof of Theorem 5.3 is based on a general result for doubly averaged estimands
given in Appendix A (Theorem A.3). This result may be of independent interest.

5.4 Estimation and inference for B\

Estimation of ,81° proceeds in two steps. First, we estimate g(w, x) = E[Y|W =w, X = x]
(and its derivative with respect to w) and m(w) = E[X|W = w] using kernel methods
as in Section 5.1. In the second step, we estimate B!° by method-of-moments using the
sample analog of the moment condition

J
E[ﬁg(W, X)-dW) (X —m(W)) — B‘C] =0.

Thus,
1 5
A R R
BC:Né@g(Wi’X")'d(Wf)'(Xi‘m(W"))' (46)
Define
lc _ 1 dwxw,x) B B
Py, w,x) = Foxo) W d(w)(y — g(w, x)) (x — m(w))
om
- %m)d(w)(y — g(w, x))
ad
- %(w)(y —g(w, x))(x - m(w))
and

J
Iy w, x) =E[£g(w,X)‘W= w} -dw) - (x — m(w)).

As in the previous results, the ' are the influence functions, with w}gc( ¥, w, x) capturing
the uncertainty from estimation of g(w, x) and ¥!S(y, w, x) capturing the uncertainty
from estimation of m(w).

The asymptotic properties of 3!¢ are summarized by Theorem 5.4.

THEOREM 5.4. Suppose Assumptions2.1,4.1,5.1, and 5.2 hold with g >2s+1,r>s+1,
p=4,d>s—1,and1/(2s) <6< 1/12. Then

B"lc _P> Blc
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and
\/N(BAIC _ Blc) _d) N(O, Qlc)’

where

J
ol° = E[<<%g(W, X)-dW) - (X —m(W)) — B“)
2
H S (Y, W, X) + Yls(Y, W, X)) }

Note that BI° is an average over the joint distribution of (W, X), not the product
of the two marginals, as is the case for correlated matching rules. Consequently, it is
estimable at parametric rates under weaker support conditions.

6. A MONTE CARLO STUDY

To assess whether the asymptotic properties derived in Section 5 provide useful ap-
proximations to finite sample distributions, we carry out a small simulation study. In
the interest of brevity, we focus on gP2™ and p!¢. We consider the following data gen-
erating process. The pair (W*, X) is drawn from a bivariate normal distribution with
both means equal to 0, both variances equal to 1, and correlation coefficient equal
to {. The two covariates W; and X; are then constructed as W; =2 - ®(W;*) — 1 and
X;=2-®(X}) — 1, so that both W; and X; have a uniform distribution on [-1, 1], with
potentially some correlation between them. The outcome is generated as

Yi=W,+X;+W; - X;+¢e;, &lW,X;i~N(,0.25).

Under this data generating process, BP2™ = 0.3333, irrespective of the value of the cor-
relation between the covariates, {. The expected outcome under the current allocation
isE[Y]=0if { =0 and E[Y] = 0.1212 if { = 0.5. We fix the weight function d(w) in the
definition of the local complementarity measure at d(w) = 1 — |w|. The value of the local
reallocation parameter is !¢ = 0.1667 if { = 0 and B¢ = 0.1355 if £ = 0.5.

We estimate BPa™ using equation (35) and Blc using equation (46). We use a rect-
angular kernel on [—1, 1] and local linear regression for estimating g(w, x). The band-
width for the regression estimation is chosen using (leave-one-out least squares) cross-
validation, after which we divide the bandwidth by 2 to ensure some undersmoothing.
For density estimation, we use the Silverman rule of thumb, modified for a uniform ker-
nel. For univariate density estimation, this leads to

by=184.0-N"1/7°,

To estimate the bivariate density, we use a bivariate uniform kernel, with the bandwidths
in each direction equal to

h=184.0- N
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TABLE 1. Simulation results for P2™ and g!¢: 10,000 simulations.

N =200 N =1000
=00 =05 =00 =05
ﬁpam ﬁlc Bpam Blc Bpam Blc ﬁpam Bﬂc
Mean bias -0.009 -0.018 -0.002 -0.016 —0.003 -0.011 —0.000 —0.010
Median bias -0.010 -0.020 -0.003 -0.017 -0.003 -0.011 -0.001 —-0.010
s.d. 0.093 0.039 0.088 0.043 0.040 0.013 0.039 0.013
Ave s.e. 0.085 0.256 0.088 0.578 0.041 0.418 0.044 0.306
Median s.e. 0.085 0.051 0.087 0.064 0.040 0.020 0.044 0.039
rm.s.e. 0.093 0.043 0.088 0.046 0.040 0.017 0.039 0.016
m.a.e. 0.061 0.027 0.060 0.028 0.028 0.013 0.027 0.012

Coverage rate 90% c.i. 0.871 0.938 0.897 0.959 0.905 0.931 0.935 0.991
Coverage rate 95% c.i. 0.929 0.968 0.947 0.980 0.953 0.965 0.971 0.997

where the o is estimated on the data and so may differ in the two directions for the
bivariate kernel.

We consider four designs, based on two sample sizes, N = 200 and N = 1000, and two
dependence structures, { = 0 and ¢ = 0.5. For both designs, we calculate the two esti-
mators ﬁpam and B, and their variances. In Table 1, we report some summary statistics
from the simulations. We report the average and median bias, the standard deviation,
the average of the standard errors, the root mean squared error, the median absolute
error, and the coverage rates for the nominal 90% and 95% confidence intervals (c.i.s).
The estimators appear to work fairly well. Note that the average standard error for B¢ is
large relative to its standard deviation (the ratio is greater than 6). The reason is that oc-
casionally the estimated standard error is very large. This happens with low probability,
so the median standard error is not affected, and the coverage rate is also fine.

The estimators have a complicated structure, with the asymptotic distribution re-
lying on a number of approximations. We further investigate these approximations in
Table 2. Define

By = —Zg N(Fx(X1), X), (47)
By = Zg HFx (X)), Xi), (48)
Y™ = —Zg HFx (X)), Xi), (49)

and

grem = Zg Y(Fx (X)), X;). (50)
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TABLE 2. Simulation results: assessing the adequacy of the asymptotic approximations for gPam
(N =1000, £ =0.0).

Remainder
épam — ppam I§Iglam — gbam /él;;m — gpam gg(am —gham gbam _ gpam Panel A

Panel A
Mean —0.003 —0.002 —0.000 0.001 0.000 —0.001
s.d. 0.040 0.031 0.019 0.019 0.038 0.004
fpam fg tw % fg Nominal
Panel B
Mean —-0.074 —0.078 —0.015 0.049 0.002 0.000
s.d. 0.989 1.018 1.005 1.018 1.008 1.000
Pr(|T| > 1.645) 0.095 0.105 0.102 0.111 0.107 0.100
Pr(|T| > 1.96) 0.047 0.055 0.053 0.058 0.052 0.050
Pr(T > 1.645) 0.039 0.043 0.052 0.062 0.053 0.050
Pr(T < —1.645) 0.056 0.062 0.050 0.049 0.054 0.050
Pr(T >1.96) 0.018 0.021 0.026 0.033 0.027 0.025
Pr(T < —1.96) 0.029 0.034 0.027 0.025 0.025 0.025

Then, as stated formally in Appendix A, Lemma A.15,
épam _ Bpam — (égam _ gpam) + (l’;l;;lm _ gpam) + (ﬁl;(am _ gpam)

+ (gpam _ 'Bpam) + Op(Nfl/Z).

(6D

In Panel A of Table 2, we show the mean and standard deviation of ,épam — ppam,
BRI — gPam gRAM _ gpam gBAM _ gPam and the remainder term,

rem = (3Pam — gpam)
(BB — g (B — )+ (B ) 4 (g — o).

The results in Panel A of Table 2 suggest that the remainder term is indeed small com-
pared to the terms that are taken into account in the asymptotic distribution. Moreover,
the relative magnitude of the O,(N~!/ 2) terms are supportive of the fact that we take
into account these terms, not just the leading term, which is N~1/2p /2.

In the Appendix, we also show that

NY2pY2 . (gham _ gpam) L, pr(g, oPam), (52)
where Qll)f ™ is defined in (37),
N2 (gPam _gpamy 4, (0 B[y P2 (w)2]), (53)

N2 (Bg(am _ gpam) _d) N(O, ]E[lpl))(am(X)z]), (54)
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and
N2 (g — Pam) 5 (0, B (g(Fyy! (Fx (X0, X)) = B7™))). (55)

To assess the normal approximations, we calculate the z-statistics based on these distri-
butions (the point estimates divided by estimates of the standard deviations) and report
in Panel B of Table 2 summary statistics for these random variables, which should have
approximate normal distributions. The summary statistics we report are averages, stan-
dard deviations, and tail frequencies. We find that the actual means, standard deviations,
and tail frequencies are close to the nominal ones from the normal distribution.

7. CONCLUSIONS

In this paper, we introduce a new class of estimands that involve reallocation of inputs,
and develop statistical methods for analyzing them. We consider a class of problems
where a fixed set of inputs is reallocated to a fixed set of units. Whereas a large part of
the literature in econometrics has focused on estimating the causal effects of changing
inputs for all units or for a subset of units, here we focus on reallocation rules that take
into account resource constraints by keeping the distribution of the inputs fixed. The
effects we focus on depend critically on the degree of complementarity between inputs.
We therefore follow a flexible approach where the nature of the complementarity is not
restricted to a parametric or even semiparametric form. We propose estimators for the
effects of various reallocation rules and derive the asymptotic properties of these esti-
mators.

Our work could be extended in a number of ways. One direction for future research
would involve relaxing our exogeneity assumption. If the production function was left
nonparametric, this would lead naturally to a partial identification analysis. Alterna-
tively one could impose a priori restrictions on the production technology, but be less
restrictive on input assignment.

A second extension would involve studying optimal assignments. For continuously
valued inputs, this is computationally challenging (cf. Chiappori, McCann, and Nesheim
(2010)) and likely also challenging in terms of inference (cf. Graham, Imbens, and Ridder
(2007)).

Our theorems also invoke strong conditions on the status quo distribution of the
inputs. To nonparametrically identify the output effect of a reallocation, we need to be
able to identify the production function at all relevant input combinations. It may be
that some relevant input combinations are either unobserved or only infrequently ob-
served under the status quo. This could lead to, respectively, a failure of identification or
areduction in the rate of convergence of our estimators (i.e., irregular identification; cf.
Khan and Tamer (2010)).

Finally, it would be interesting to apply our proposed methods to a real world em-
pirical problem.
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