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APPENDIX A: CONSTRUCTION OF INDIVIDUAL IDENTIFIERS

This section overviews existing techniques for the construction of individual identifiers,
especially in the case of numerical variables.

The key element of our identification argument is based on the construction of the
identifying variables Z” and Z* such that we can merge some or all observations in the
disjoint data bases to enable estimation of the econometric model of interest. While we
took the existence of these variables as given, their construction in itself is an important
issue and there is a vast literature in applied statistics and computer science that is de-
voted to the analysis of the broken record linkage. For completeness of the analysis in
our paper we present some highlights from that literature.

In general the task of merging disjoint data bases is a routine necessity in may practi-
cal applications. In many cases there do exist perfect cross-data-base identifiers of indi-
vidual entries. There could be multiple reasons why that is the case. For instance, there
could be errors in data entry and processing, wrong variable formatting, and duplicate
data entry. The idea that has arisen in Newcombe, Kennedy, Axford, and James (1959)
and was later formalized in Fellegi and Sunter (1969) was to treat the record linkage
problem as a problem of classification of record subsets into matches, nonmatches, and
uncertain cases. This classification is based on defining the similarity metric between
each two records. Then given the similarity metric one can compute the probability of
a particular pair of records being a match or non-match. The classification of pairs is
then performed by fixing the probability of erroneous identification of a nonmatched
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pair of records as a match and a matched pair of records as a nonmatch by minimizing
the total proportion of pairs that are uncertain. This matching technique is based on
the underlying assumption of randomness of records being broken. As a result, using
the sample of perfectly matched records one can recover the distribution of the similar-
ity metric for the matched and unmatched pairs of records. Moreover, as in hypothesis
testing, one needs to fix the probability of record misidentification. Finally, the origin of
the similarity metric remains arbitrary.

A large fraction of the further literature was devoted to, on one hand, development
of classes of similarity metrics that accommodate nonnumeric data and, on the other
hand, development of fast and scalable record classification algorithms. For obvious rea-
sons, measuring the similarity of string data turns out to be the most challenging. Edit
distance (see Gusfield (1997) for instance) is a metric that can be used to measure the
string similarity. The distance between the two strings is determined as the minimum
number of insert, delete, and replace operations required to transform one string into
another. Another measure developed in Jaro (1989) and elaborated in Winkler (1999) is
based on the length of matched strings, and the number of common characters and their
position within the string. In its modification it also allows for the prefixes in the names
and is mainly intended to link relatively short strings such as individual names. Alterna-
tive metrics are based on splitting strings into individual “tokens” that are substrings of
a particular length and then analyzing the power of sets of overlapping and nonoverlap-
ping tokens. For instance, the Jaccard coefficient is based on the relative number of over-
lapping and overall tokens in two strings. More advanced metrics include the TF/IDF
metric that is based on the term frequency (TF) or the number of times the term (or to-
ken) appears in the document (or string) and the inverse document frequency (IDF) or
the number of documents containing the given term. The structure of the TF/IDF-based
metric construction is outlined in Salton and Harman (2003). The distance measures
may include a combination of the edit distance and the TF/IDF distance such as a fuzzy
match similarity metric as described in Chaudhuri, Ganjam, Ganti, and Motwani (2003).

Given a specific definition of the distance, the practical aspects of matching obser-
vations will entail calibration and application of a particular technique for matching
observations. The structure of those techniques is based on, first, the assumption re-
garding the data structure and the nature of the record errors. Second, it depends on
the availability of known matches, and, thus, allows empirical validation of a particu-
lar matching technique. When such a validation sample is available, one can estimate
the distribution of the similarity measures for matched and nonmatched pairs for the
validation sample. Then using the estimated distribution, one can assign the matches
for the pairs outside the validation sample. When one can use numeric information in
addition to the string information, one can use hybrid metrics that combine the known
properties of numeric data entries and the properties of string entries.

Ridder and Moffitt (2007) overview some techniques for purely numeric data combi-
nation in the absence of validation subsamples that may incorporate distributional as-
sumptions on the “similar” numeric variables. For instance, joint normality assumption
with a known sign of correlation can allow one to invoke likelihood-based techniques
for record linkage.
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APPENDIX B: MORE DETAILS ON THE RISK OF DISCLOSURE AND CHOICE OF
THRESHOLD SEQUENCES

Propositions 2 and 3 demonstrate that the compliance of the decision rule generated by
a particular threshold sequence with a given bound guarantee for the disclosure risk de-
pends on the rate at which the threshold sequence converges toward zero as the sizes of
DY and D* increase. Informally, consider two threshold sequences ay and a};, where the

former converges to zero much faster than the latter so that % — o0. Clearly, for large
enough sizes of the data sets D” and D*, the sequence a}; not only allows more observa-
tions to be included in the combined data set, but also gives a greater number of possible
combined data sets In fact all observations with the values of the constructed identi-
fiers z; between = and _— L are rejected by the decision rule implied by the sequence ay

but could be approved by the decision rule implied by the sequence ;. In addition, the
sequence o}, is much more liberal in its definition of the proximity between the iden-
tifiers z]y. and z;. As a result, the decision rule implied by the sequence «}; generates

) aN)
is less reliable than that in (—oo, — al) U ( %, oo) and because linkages for observatlons
with larger distances between the identifiers are decreasingly reliable, the sequence o},
results in a larger proportion of incorrect matches. The effect can be so significant that
even for arbitrarily large data sets the probability of making a data combination error
does not approach 0. In Proposition 2, where nondisclosure is not guaranteed and the
probability of making a data combination error of the first kind approaches 0 as N? and
N7* increase, thresholds used for the decision rule shrink to zero faster than those in
Proposition 3, where nondisclosure is guaranteed.

In the remarks below we consider cases when the tails of the distributions of identi-
fiers are geometric or exponential.

larger combined data sets. Because the matching information in (— %, —X)U (a
N

REMARK (Absence of disclosure guarantees). Here we consider cases when the tails of
the distributions of identifiers are geometric or exponential.

(a) Suppose that for small enough « > 0, we have ¢ (a) = b1a!, by, c; > 0and ¢ (a) =
bra?, by, ¢ > 0. If ay > 0 is chosen in such a way that

1
XY ep+

as NV — oo, then

inf  inf inf N(x,y,D*,D’) >1 asN’ - oo
XeX,yeY D*, DY i,j pl]( Y )

and, thus, nondisclosure is not guaranteed.

(b) Alternatively, suppose that for small enough « > 0, we have ¢(a) = bje~ /%,
b1, c; > 0and y(a) = bye=2/%, by, c; > 0. If ay — 0 is chosen in such a way that
Q

lim N¥e “~Nay=0, (§2)

NY—o00
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then

inf inf infpY(x,y,D*,D’)—>1 asN’— oo
xeX,yeY DX, DY i,j Py ( Y )

and, thus, nondisclosure is not guaranteed.
For instance, sequences ay = (NLX)H, when a, d > 0 satisfy this condition.

Prookr. (a) Let us check that if a sequence ay is chosen as in (S1), then it satisfies (10).
In other words, let us check that

N* [ 1 €2 1 @ 1
—_ - dz—0 asN’— co.
a]c\} 1 Z—anN zZ+ayn ZCI+1

ay
Indeed,

N* [® 1 @ 1 @2 1

al (=) - (55) )

ay JL zZ—ay z+an z
N* oo 2ay \?\(z=an)™®
:_Cl (1— (1— ) ) P dZ.
ay J-L Z+an €

AN

If a is small enough, then for all z > ﬁ, itholdsthat1— (1 — Z%f‘—aNN)CZ <q Zf&’N for some
1

— we have
anN

2ay \?\(z—ay)™@ an
1—-(1- <q
Z4+ay ch—l—l ZC1+C2+2

for some constant ¢, > 0. Finally, note that

QZNX /OO 1 d Clsz acz+2

zZ =
a-1 [ 1 a+e+2 l+ei+e N
ay ay A 1 2

constant g; > 0. Therefore, if o is small enough, then for all z >

—-0 asN’— oo

if ay is chosen as in (S1).
(b) Let us check that if a sequence «ay is chosen as in (S2), then it satisfies (10). In
other words, let us check that

C

o
N¥ean /1 (em@lzman) _ gmalztan))e=ci2 gz 0 as NY — oo.

aN
Indeed,

o —QQa
_ 9 QAN _ p—C2aN

[ . .
N¥ean / (e*CZ(Z*aN) _ e*CZ(Z+0¢N))e*612 dz=N*e N
1

c1+ ¢
ay

Note that for some constant » > 0,
e2N — TN <pay.

Now it is clear that if ay is chosen as in (S2), then (10) holds. O
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ReMARK (Disclosure guarantees).

(@) Suppose fora € (0, @), ¢ (a) = b1a“, by, c; > 0,and ¢ (a) = bra?, by, ¢y > 0. Let the
sequence of ay — 0 (as N — oo) be chosen in such a way that

1
lim inf N¥)at? 5, S3
;fryn_}goaN( ) > (83)

Then nondisclosure is guaranteed.

(b) Suppose for a € (0, @), ¢(a) = b1e~/%, by, c; >0 and (a) = bre™2/%, by, ¢; > 0.
Let the sequence of ay — 0 (as NY — 00) be chosen in such a way that

_2
liminf N*e N ay > 0. (84)
NY—o0
Then nondisclosure is guaranteed.

For instance, sequences ay = log%, when a > ¢;, satisfy this condition (in this case,
_a
limyy_ 00 N¥e N ay = 00).

Proor. (a) Let us check that if a sequence ay is chosen as in (S3), then it satisfies (11).
In other words, let us check that

N (o0 1 \@ 1\ 1
it () (L))o
NY—00 ay JL\\z—ay z+ay za+l

aN

Use ((ﬁ)cz — (ﬁ)@)# =(1-(1- ZTéVN )e2) (Z*Zfl’\ﬂr);cz and note that if oy is small
1

ay’

enough, then for all z >

2 &
1—(1— “N> > G —2N
zZ+an Z+an

for some constant g; > 0. Therefore, if o is small enough, then for all z > # we have

2ay \ @ 1 | . an
I—({1- > q2
z+ay z—ay) zatl Ze1tet+2

for some constant g, > 0. Finally, note that if ax is chosen as in (S3), then

X o0 1 X
liminf g,bsc dz =liminf g;bsc
It g202 10&7] n It g202¢1

AN

42 -~ 0.

c1+c+2 1+C1+62 N

z
(b) Let us check that if a sequence ay is chosen as in (S4), then it satisfies (11). In
other words, we want to check that

C_l o0
liminf c; N*¥ e~ (em2lzman) _ gmaztan))e=ciz g7 5 (),
NY—o00 1

aN
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Note that

¢[00 _ 9 QN _ p—CaN
N¥ean / <e—C2(Z—aN) _ €_C2(Z+aN))€_Clz dz= N*e o~
1

c1+ ¢
aN
and for some constant 7 > 0,
eI — eT2W > Fay.
Thus, if a) is chosen as in (S4), then (11) holds. O

It can be seen in the preceding two remarks that the rates of the threshold sequences
used for the decision rule can be described in terms of the size of the data set D* alone
rather than both DY and D*. This is quite intuitive because in the data base in Assump-
tion 2 we assumed that D” contains the subset of individuals from the data base D* and,
hence, D* is larger. The size of the larger data set is the only factor determining how
many potential matches from this data set we are able to find for any observation in the
smaller data set without using any additional information from the identifiers.

APPENDIX C: PROOF OF PROPOSITION 5
Fix 0 € On. Let 7 € IT™ be such that § minimizes
00, m) = gx(0) Wogx(0).

We can find a sequence {7 (-, -)} that converges to 7 uniformly over all y and all x. Let
Oy be any value that minimizes

On (0, 7) =gV (0) Mpg™ (9)

for the chosen 7V (-, -). Clearly, 8y € @y . Let us show that 6y — 9.
First, we establish that sup, e |On (0, 7) — Q(8, )| — 0. Note that

On (8, 7) — 08, m) = (gV(8) — g+(8)) Wo (" (8) — g~ (8))
+28:(0) Wo(gV (0) — gx(6)).
Therefore,

sup| O (6, ™) — (68, m)| < sup||g™ (6) — g-(0) | IW0
(=0 6O

+2sup| g~ (0)| sup| g™ (8) — g=() | IWp .
0O 0O

Conditions (15) imply that sup, g lIg=(6)|l < oo. Thus, we only need to establish that
SUpgep llg™ () — g-(0)|| — 0. Using condition (18), we can show that gV (6) can be rep-
resented as the sum of four terms,

gV (8) = An1 + Ana2 + By1 + Bao,
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where

ANt
[ st
-7 21> gy /12 —zf|<ay

y y y
x fy,x\z0,zx V), xil2} s 27) fzv,2¢ (2}, ) dz; d 2z dyjdx;
|zf|>$ \z;—zf|<aN

1
x fy,x\2v, 2+ (¥js inZ;Y, z¥)fzy,2¢ (ij~, z¥) dZ;Y dz; dy; dxi) ,

Axs = / / / 0yx (Dh(x)p (v, x1: 0)
\zf\>$ |2} —zf |<an

x fv,x12v, 2+ (¥js xi|zjy-, z25)fzy,2¢ (zjy-, z¥) dzjy dz} dyjdx;

|zf|>ﬁ \z;}fzf|<aN

-1
X fY,X\ZY,ZX (yj, xi|z;, Z;C)fzy,zx (Zy Z)F) dz}v de dy]' dxl-> .

J>

By
—_— = /// / h(xi)P()’j,xi;0)fy,Zy(yj’Z;’)
7 |Z,)-(\>$ |Zf*2;/\<aN

x fx,zx(xi, zF) dz; dz} dy;jdx;

-1
S [ [ ot styadastaan)
|z 1> g V12 —2] 1 <an

BN2=/// f ny(l)h(xz')P(Yj,xz';H)fY,Zy(yj,ZJy-)
|zf\>$ |z} —z]|<an

x fx,zx(xi, z¥) dzjy dz} dyjdx;

—1
) (/ / / s / Pz 7)) fxze (xi 27) dz daf dy,-dx,-) :
|Zf|>m \zf—z}’.|<aN

and terms o0,,(1) do not depend on # and are such that SUPy.cy e X loyx(1)| — 0 as
ay — 0.

Proposition 4 implies that E[A(X)p(Y, X; 6)||Z¥| > é, |Z* — ZY| < o] = E[h(X) x
p(Y, X; 6)]. Therefore,

Ay = (1= mE[(X)p(Y, X: 0)]

and, thus,

gV (0) — gx(0) = Anz + By1 + Byz — mE*[R(X)p(Y, X; 6)].
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Note that

sup || An2ll < sup|oy(D)] - E|:sup||h(X)p(Y X;0|1|z*]| > - |Zx Z| <a]
0c® Yj»Xi

= sup|oyx(1)| ~E[sup||h(X)p(Y,X; 0)”] -0
Yj»Xi 0O

as ay — 0. From Assumption 3(iv), for small @y the denominator in By /7 is the sum

/// . / y (Oxzx(l)"‘ozyy(l)+Ozyy(1)0xz*'(1))
|zf\>m |szzj\<aN

x 82(2))g1(2F) fr ) fx (xi) dz} dzf dyjdix;

—i—f ] / | gz(zjy-)gl(zf) dzjy.dzl?‘
\zj‘|>m |Zf—Zj|<aN

and, similarly, the numerator is the sum

//h(xz)P(nyz»O)fY(YJ)fX(xL)dYdez /| . / " (z))g1(zf) dz] dz}
z; >— Z —Z <aN

+ffh(xi)p(yjaxi;9)‘/|x| . /X ) (Oxzx(1)+02yy(1)+Ozyy(1)0xzx(1))
> Jzf -z |<ay

x 82(2))g1 () fy O fx (xi) dz] dz} dyjdxi,
where 0y.y(1) and oy,+(1) do not depend on 6 and are such that

sup suployzy(1)| — 0 and sup sup |0y (1)| — 0
|z |>-L—ay Vi lzf|> gL

ay N

as ay — 0. Then Byq — wE*[h(X)p(lN/, X; 0)] is the sum of the two terms

TE*[h(X)p(Y, X; 0)] - ( v - 1) (S5)
CNl+//DN1(YJ'7xi)fY(yj)fX(xi)dedxi
and
/ [ 1m0 3 D 37 50 () e dy
Cwn+ [ [ Driy v sy o ey d ’ >
where

Cni =/ / gz(z]y-)g1 () dz]y- dz},
|zf\>$ |zf—z;)\<aN

DNl(Y]axz)— 2 /|‘ ‘ (Osz(l)+0zyy(1)+Ozyy(1)0xzx(1))g2( )gl( )dzydz
Z; >— z¥ —Z <anN



Supplementary Material Identification and the risk of disclosure 9

The supremum over 6 € @ of the norm of the term in (S5) is bounded from above by
Cni

—1].
Cni+ f / D1 (yjs xi) fr 3 fx (xi) dy; dx;

mE*[sup [ H(X)p(¥, X 0)] ] ‘
0O

Because

|Dn1(yj, xi)| < sup sup  sup|oyzrzx(1)] - Cyy
|2 1> gy 121> gy —an 21

with Suplzf|>$ sup‘zjy|>$_ow Supy, x; [0yzyx2x (1)| = 0, then

Cn1

—1 asay—0.
CNl+//DNl(Yjaxi)fY(Yj)fX(xi)dyjdxi

Hence, (S5) converges to 0 uniformly over 6 € 6.
The supremum over 6 € O of the norm of the term in (S6) is bounded from above by

/ / sup [ x)p 3y, 3 0)] [ D 05, 50| fr (e dy e
0el

ko

CNl_|_f/DNl(yj,Xi)fY(Yj)fX(xi)dyjdxi

Cwi1 - E[sup|| h(X)p (¥, X: )] ]
0O

>

<m- sup sup  sup|oyzrezx(1)]-
21>y 12] 1> gy —an Yo% CNl+//DNl(}’jaxi)fY(Yj)fX(xi)d)’jdxi

which converges to 0 as ey — 0. Thus, we obtain that sup,.g || By1 — wE*[h(X)p(}N’, X;
N1 — 0.
Finally, consider supg.g | Bn2ll. This norm is bounded from above by the sum of

sup|oyx(1)] - suth(xi)p(yj, xi: 0) | fy ) fx (xi) dyj dx;
6eb

YjsXi

Cn1
CNI+ffDN1(yj,Xi)fY()’j)fX(xi)dyjdxi

X

and

sup’oyx(1)| - sup sup Sup‘OyZyxzx(l)‘

Yj>Xi x5 1o 1 oYX
It |Zi|>aN \zj|>aN ay 70t

Cni / sup || A(x)p(yj, xi: 0) | fr ) fx (xi) dyj dx;
0O

X

K

CNI_|_//DNl(yj,Xi)fY()’j)fX(xi)dyjdxi
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and, hence, sup,.g | Bn2ll = 0 as ay — 0.
To summarize our results so far, we shown that

sup g™ () — g=(8)| <sup I An2ll +sup|By1 — mE*[R(X)p(Y, X; 0)]| + sup | B2l
0O 0O 0O 0O

and, thus, sup,_g gV (6) — g (0)|| — 0 as ay — 0. This implies that

sup|On (6, 7) — Q(6, )| — 0. (S7)
0O

Now fix & > 0. Let us show that for large enough N*, N7, Q(8V, 7) < Q(5, )+ ¢e. In-
deed, (S7) implies that when N* and N” arelarge enough, Q(8", ) < On(6Y, 7wN)+¢/3.
Also, On (6N, 7N) < On (6, 7N) + /3 because 6" is an arg min of Qn (6V, V). Finally,
(§7) implies that when N* and N7 are large enough, QN(g, V) < Q(5, )+ /3.

Let S be any open neighborhood of 6 and let S¢ be its complement in R’. From the
compactness of @ and the continuity of p(-, -, -) in 6, we conclude that mingcng Q(0, 7) is
attained. The fact that 8 is the unique minimizer of Q(#6, 7) gives that mingcng Q(6, 7) >
Q(5, 7). Denote £ = mingcng Q(0, 7) — Q(g, 7). As we showed above, for this £ we have,
when N* and N” are large enough, that

N ~ .
Q(6", m) < Q(6, m) + & = min O(6, m),

which for large enough N* and N” gives 8" € S. Since S can be chosen arbitrarily small,
this means that 6 — 6.
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