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A. Introduction

We present a detailed procedure to obtain RMSE* provided in Table 1 in Section B. A de-
tailed algorithm to implement the proposed method is described in Section C. The prop-
erty of the minimizer of MMSEp

n , ĥ, is discussed in Section D. Finally, Section E provides
proofs for Lemmas 1 and 3 and Theorems 2 and 3.

B. A procedure to obtain RMSE*

We describe how RMSE* is computed for the LLR estimators based on the MMSE band-
widths, the IND bandwidths, the IK bandwidth, and the CCT bandwidth. We also show
how θIK in page 12 of the main text is obtained.

Once the sample size, the form of a kernel function, the functional forms of m1(c),
m0(c), f (c), σ2

1 (c), and σ2
0 (c) are given, the AMSE can be computed using the formula of

the AMSE in (2) for each of the bandwidths. We use the triangular kernel function. For
other parameters, we use true values for each design.

The MMSE bandwidths can be obtained by minimizing MMSEn(h) (not MMSEp
n (h))

provided on page 16 of the main text. The IND bandwidths can be obtained based on the
formulae provided in the footnote of page 12.

The IK bandwidth can be obtained analogously except the regularization terms,
r+ + r−. Note that

r+ = 2160σ2
1 (c)

N2�+h4
2�+

and r− = 2160σ2
0 (c)

N2�−h4
2�−

�

where

h2�+ = 3�56
(

σ2
1 (c)

f (c)
[
m

(3)
1 (c)

]2

)1/7
N

−1/7
+ and h2�− = 3�56

(
σ2

0 (c)

f (c)
[
m

(3)
0 (c)
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)1/7
N

−1/7
− �
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Hence the computation of the regularization term requires N+, N−, N2�+, and N2�−.
Since N+ and N− are the number of observations to the left and right of the threshold,
respectively (see page 942 of IK), their population analogues are computed by

N+ = n ·
∫ c

−∞
f (x)dx and N− = n ·

∫ ∞

c
f (x)dx�

Similarly, since N2�+ and N2�− are the numbers of observations with c ≤ Xi ≤ c + h2�+
and c − h2�− ≤Xi < c, respectively, their population analogues are computed by

N2�+ = n ·
∫ c+h2�+

c
f (x)dx and N2�− = n ·

∫ c

c−h2�−
f (x)dx�

The same procedure is used to obtain θIK on page 12 in the main text.
The CCT bandwidths differ from the IK bandwidth only by the regularization term

given that homoskedasticity is imposed. The regularization term, rn is given by 3V2�2/nb
5
n

where bn is the pilot bandwidth to estimate the second-order derivatives and V2�2 given
in page 38 of Calonico, Cattaneo, and Titiunik (2014b) is a function of the kernel func-
tion, f (c), σ2

1 (c), and σ2
0 (c). The pilot bandwidths bn can be obtained in two steps. First,

the pilot bandwidth to estimate the third derivative, cn, is given by

cn = C3�3

(
σ2

1 (c)+ σ2
0 (c)

f (c)
[
m(4)

1 (c)−m(4)
0 (c)

]2

)1/9
n−1/9�

where C3�3 is given in Section 3.2.3 of Fan and Gijbels (1996). Then the pilot bandwidth
bn is given by

bn = C2�2

(
σ2

1 (c)+ σ2
0 (c)

f (c)
{[
m(3)

1 (c)−m(3)
0 (c)

]2 + 3 · (3!)2V3�3/nc
7
n

}
)1/9

n−1/9�

C. Implementation

To obtain the proposed bandwidths in the case of the sharp RD design, we need pilot
estimates of the density, its first derivative, the second, and third derivatives of the con-
ditional expectation functions, and the conditional variances at the cut-off point. For
the sharp RK design, we need pilot estimates of the third and fourth derivatives in stead
of the second and third derivatives. We obtain these pilot estimates in a number of steps.

C.1 Sharp RD design

Step 1: Obtain pilot estimates for the density f (c) and its first derivative f (1)(c). We calcu-
late the density of the assignment variable at the cut-off point, f (c), which is estimated
using the kernel density estimator with an Epanechnikov kernel.1 A pilot bandwidth for

1IK estimated the density in a simpler manner (see Section 4.2 of IK). We used the kernel density esti-
mator to be consistent with the estimation method used for the first derivative. Our unreported simulation
experiments produced similar results for both methods.
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kernel density estimation is chosen using the normal scale rule with Epanechnikov ker-
nel, given by 2�34σ̂n−1/5, where σ̂ is the square root of the sample variance of Xi (see
Silverman (1986) and Wand and Jones (1994) for the normal scale rules). The first deriva-
tive of the density is estimated using the method proposed by Jones (1994). The kernel
first derivative density estimator is given by

∑n
i=1 L((c − Xi)/h)/(nh

2), where L is the
kernel function proposed by Jones (1994), L(u) = −15u(1 − u2)1{|u|<1}/4. Again, a pilot
bandwidth is obtained using the normal scale rule, given by σ̂ · (112

√
π/n)1/7.

Step 2: Obtain pilot bandwidths for estimating the second and third derivatives
m(2)

j (c) and m(3)
j (c) for j = 0�1. We next estimate the second and third derivatives of

the conditional mean functions using the third-order LPR.
We obtain pilot bandwidths for the LPR based on the estimated fourth derivatives

of m(4)
1 (c) = limx→c+m(4)

1 (x) and m(4)
0 (c) = limx→c−m(4)

0 (x). Following Fan and Gijbels
(1996), Imbens and Kalyanaraman (2012), and Calonico, Cattaneo, and Titiunik (2014a),
we use estimates of m(4)

1 (c) that are not necessarily consistent by fitting global polyno-
mial regressions. First, using observations for which Xi ≥ c, we regress Yi on 1, (Xi − c),
(Xi − c)2, (Xi − c)3, and (Xi − c)4 to obtain the OLS coefficients γ̂1 and the variance es-
timate ŝ2

1 . Using the data with Xi < c, we repeat the same procedure to obtain γ̂0 and ŝ2
0 .

The pilot estimates for fourth derivatives are m̂
(4)
1 (c) = 24 · γ̂1(5) and m̂

(4)
0 (c) = 24 · γ̂0(5),

where γ̂1(5) and γ̂0(5) are the fifth elements of γ̂1 and γ̂0, respectively. The plug-in band-
widths for the third-order LPR used to estimate the second and third derivatives are cal-
culated by

hν�j = Cν�3(K)

(
ŝ2
j

f̂ (c) · m̂(4)
j (c)2 · nj

)1/9

for j = 0�1 where n0 and n1 are the numbers of observations on the left and right of the
cut-off point, respectively (see Fan and Gijbels (1996, Section 3.2.3) for information on
plug-in bandwidths and the definition of Cν�3).2 We use ν = 2 and ν = 3 for estimating
the second and third derivatives, respectively.

Step 3: Estimation of the second and third derivatives m(2)
j (c) and m(3)

j (c) as well as

the conditional variances σ̂2
j (c) for j = 0�1. We estimate the second and third deriva-

tives at the cut-off point using the third-order LPR with the pilot bandwidths obtained
in Step 2. Following CCT, we use the triangular kernel, which yields C2�3 = 5�7851 and

C3�3 = 5�2774. To estimate m̂(2)
1 (c), we construct a vector Ya = (Y1� � � � �Yna)

′ and an
na × 4 matrix, Xa, whose ith row is given by (1� (Xi − c)� (Xi − c)2� (Xi − c)3) for ob-
servations with c ≤ Xi ≤ c + h2�1, where na is the number of observations with c ≤ Xi ≤
c + h2�1. We also construct the weighting matrix Wa where Wa = diag{K((Xi − c)/h2�1)}
and K is the triangular kernel. The estimated second derivative is given by m̂(2)

1 (c) =
2 · β̂2�1(3), where β̂2�1(3) is the third element of β̂2�1 and β̂2�1 = (Xa

′WaXa)
−1XaWaYa.

We estimate m̂(2)
0 (c) in the same manner. Replacing h2�1 with h3�1 leads to an esti-

mated third derivative of m̂(3)
1 (c) = 6 · β̂3�1(4), where β̂3�1(4) is the fourth element of

2The bandwidth we use for estimating the third derivatives are not rate optimal when the underlying
function has higher-order derivative. However, we use this bandwidth to avoid estimating higher-order
derivatives.
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β̂3�1, β̂3�1 = (Xb
′WbXb)

−1XbWbYb, Yb = (Y1� � � � �Ynb)
′, Xb is an nb × 4 matrix whose

ith row is given by (1� (Xi − c)� (Xi − c)2� (Xi − c)3) for observations with c ≤ Xi ≤
c + h3�1, Wb = diag{K((Xi − c)/h3�1)} and nb is the number of observations with c ≤
Xi ≤ c+h3�1. The conditional variance at the cut-off point σ2

1 (c) is calculated as σ̂2
1 (c) =∑n

i=1(Yi − Ŷi)
2K((Xi − c)/h2�1)/ trace(Wa −WaXa(X

′
aWaXa)

−1X ′
aWa), where Ŷi denotes

the fitted values from the regression used to estimate the second derivative. β̂2�0, β̂3�0,
and σ̂2

0 (c) can be obtained analogously.
Step 4: Numerical optimization. The final step is to plug the pilot estimates into the

MMSEp given by equation (6) in the main text and to use numerical minimization over
the compact region to obtain ĥ1 and ĥ0. Unlike AMSE1n(h) and AMSE2n(h) subject to
the restriction given in Definition 1, the MMSE is not necessarily strictly convex, partic-
ularly when the sign of the product is positive. In minimizing the objective function, it is
important to try optimization with several initial values, in order to avoid finding only a
local minimum.

C.2 Sharp RK design

Step 1 is the same as the one for the sharp RD design. We modify Steps 2, 3, and 4 but
these steps are analogous to those for the sharp RD design.

Step 2: Obtain pilot bandwidths for estimating the third and fourth derivatives m(3)
j (c)

and m
(4)
j (c) for j = 0�1. We obtain pilot bandwidths for the LPR based on the esti-

mated fifth derivatives. First, using observations for which Xi ≥ c, we regress Yi on 1,
(Xi − c), (Xi − c)2, (Xi − c)3, (Xi − c)4, and (Xi − c)5 to obtain the OLS coefficients γ̂1

and the variance estimate ŝ2
1 . Using the data with Xi < c, we repeat the same procedure

to obtain γ̂0 and ŝ2
0 . The pilot estimates for fifth derivatives are m̂(5)

1 (c) = 120 · γ̂1(6) and

m̂(5)
0 (c) = 120 · γ̂0(6), where γ̂1(6) and γ̂0(6) are the fifth elements of γ̂1 and γ̂0, respec-

tively. The plug-in bandwidths for the third-order LPR used to estimate the third and
fourth derivatives are calculated by

hν�j = Cν�4(K)

(
ŝ2
j

f̂ (c) · m̂(5)
j (c)2 · nj

)1/11

for j = 0�1 where n0 and n1 are the numbers of observations on the left and right of the
cut-off point, respectively (see Fan and Gijbels (1996, Section 3.2.3) for information on
plug-in bandwidths and the definition of Cν�3). We use ν = 3 and ν = 4 for estimating the
second and third derivatives, respectively.

Step 3: Estimation of the third and fourth derivatives m
(3)
j (c) and m

(4)
j (c) as well as

the conditional variances σ̂2
j (c) for j = 0�1. We estimate the third and fourth deriva-

tives at the cut-off point using the fourth-order LPR with the pilot bandwidths obtained
in Step 2. Following CCT, we use the triangular kernel, which yields C3�4 = 6�5261 and

C4�4 = 6�1275. To estimate m̂(3)
1 (c), we construct a vector Ya = (Y1� � � � �Yna)

′ and an na×5
matrix, Xa, whose ith row is given by (1� (Xi−c)� (Xi−c)2� (Xi−c)3� (Xi−c)4) for obser-
vations with c ≤ Xi ≤ c + h3�1, and Wa = diag{K((Xi − c)/h3�1)} where na is the number
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of observations with c ≤ Xi ≤ c + h3�1 and K is the kernel function. The estimated third

derivative is given by m̂(3)
1 (c) = 6 · β̂3�1(4), where β̂3�1(4) is the fourth element of β̂3�1 and

β̂3�1 = (Xa
′WaXa)

−1XaWaYa. We estimate m̂(3)
0 (c) in the same manner. Replacing h3�1

with h4�1 leads to an estimated fourth derivative of m̂(4)
1 (c) = 12 · β̂4�1(5), where β̂4�1(5)

is the fifth element of β̂4�1, β̂4�1 = (Xb
′WbXb)

−1XbYb, Yb = (Y1� � � � �Ynb)
′, Xb is an nb × 5

matrix whose ith row is given by (1� (Xi − c)� (Xi − c)2� (Xi − c)3� (Xi − c)4) for observa-
tions with c ≤Xi ≤ c+h4�1, Wb = diag{K((Xi−c)/h4�1)} and nb is the number of observa-
tions with c ≤ Xi ≤ c + h4�1. The conditional variance at the cut-off point σ2

1 (c) is calcu-

lated as σ̂2
1 (c) = ∑n

i=1(Yi − Ŷi)
2K((Xi − c)/h3�1)/ trace(Wa − WaXa(X

′
aWaXa)

−1X ′
aWa),

where Ŷi denotes the fitted values from the regression used to estimate the second
derivative. β̂3�0, β̂4�0, and σ̂2

0 (c) can be obtained analogously.
Step 4: Numerical optimization. The final step is to plug the pilot estimates into the

MMSEp given by equation (7) in the main text and to use numerical minimization over
the compact region to obtain ĥ1 and ĥ0.

C.3 Confidence interval

The expression of the objects necessary to construct the confidence interval provided
in Appendix B of the main text simply depend on the data except the bandwidth, kernel
function, and the conditional variance estimate. For the bandwidths, our recommen-
dation is to use (ĥ� ĥ� ĥ) following the recommendation of CCT. For the kernel function
and the conditional variance estimate, we follow the procedures described in Sections
C.1 and C.2.

D. The property of ĥ

In this section, we describe the property of the minimizer of MMSEp
n , ĥ. First, we show

the uniqueness of ĥ around m(2)
1 (c)m(2)

0 (c) = 0. Without loss of generality, we focus on

the case where m(2)
1 (c) is close to zero.

Remember that the objective function is written, with simplified notation, as

L= (
α1h

2
1 − α0h

2
0
)2 + (

β1h
3
1 −β0h

3
0
)2 + γ1

nh1
+ γ0

nh0
� (D.1)

Let λ = h1/h0, a = α0/α1, b = β0/β1 and r = γ1/γ0. Note that λ > 0 and r > 0. With this,
the objective function is reparametrized as

L= α2
1h

4
0
(
λ2 − a

)2 +β2
1h

6
0
(
λ3 − b

)2 + γ0

nh0

(
r

λ
+ 1

)
�

Then the first-order conditions are given by

∂L

∂h0
= 4α2

1
(
λ2 − a

)2
h3

0 + 6β2
1
(
λ3 − b

)2
h5

0 − γ0

nh2
0

(
r

λ
+ 1

)
= 0

and
∂L

∂λ
= 4α2

1λ
(
λ2 − a

)
h4

0 + 6β2
1λ

2(λ3 − b
)
h6

0 − γ0r

nλ2h0
= 0� (D.2)
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Solving the first-order conditions with respect to h0 produces

h0 =
(

− 2α2
1
(
λ2 − a

)(
λ3 + ar

)
3β2

1
(
λ3 − b

)(
λ4 + br

)
)1/2

� (D.3)

We consider if these equations have a unique positive solution in h0 and λ.
We need to consider four cases (i) a ≥ 0 and b ≥ 0, (ii) a ≥ 0 and b ≤ 0, (iii) a ≤ 0 and

b ≥ 0, and (iv) a ≤ 0 and b ≤ 0. In the following, we exclude the case where a= b = 0.

D.1 (i) a ≥ 0 and b ≥ 0

We consider two cases of (i-1) a1/2 < b1/3 and (i-2) b1/3 < a1/2 separately.

D.1.1 (i-1) a ≥ 0, b≥ 0 and a1/2 < b1/3 Since h0 is positive, we can restrict our attention
to the values of λ which satisfy a1/2 < λ < b1/3 by equation (D.3). The first-order condi-
tion (D.2) can be expressed as

4α2
1λ

(
λ2 − a

)
h5

0 + 6β2
1λ

2(λ3 − b
)
h7

0 − γ0r

nλ2 = 0�

Substituting the expression of h0 given by equation (D.3) into this yields

4α2
1λ

3(λ2 − a
)(− 2α2

1
(
λ2 − a

)(
λ3 + ar

)
3β2

1
(
λ3 − b

)(
λ4 + br

)
)5/2

+ 6β2
1λ

4(λ3 − b
)(− 2α2

1
(
λ2 − a

)(
λ3 + ar

)
3β2

1
(
λ3 − b

)(
λ4 + br

)
)7/2

= γ0r

n

(D.4)

or

4 ·
(

2
3

)5/2
· |α1|7
|β1|5

· λ
3(λ2 − a

)7/2(
λ3 + ar

)5/2
(b− aλ)(

b− λ3)5/2(
λ4 + br

)7/2 = γ0

n
�

Denote

f11(λ) ≡ λ3(λ2 − a
)7/2(

λ3 + ar
)5/2

(b− aλ)(
b− λ3)5/2(

λ4 + br
)7/2 �

Since limλ↓a1/2 f11(λ) = 0 and limλ↑b1/3 f11(λ) = ∞, the uniqueness of λ that satisfy the
first-order condition follows if f11(λ) is monotonically increasing. The derivative of
f11(λ) is given by

df11(λ)

dλ
= λ2(λ2 − a

)5/2(
λ3 + ar

)3/2

(
b− λ3)7/2(

λ4 + br
)9/2

×
{

10
(
λ2 − a

)(
λ3 + ar

)
(b− aλ)

(
b− λ3)(λ4 + br

)
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+ 7a
(
λ3 + ar

)
(b− aλ)

(
b− λ3)(λ4 + br

)

+ 15
2
λ3(λ2 − a

)
(b− aλ)

(
b− λ3)(λ4 + br

)

− aλ
(
λ2 − a

)(
λ3 + ar

)(
b− λ3)(λ4 + br

)

+ 15
2
λ3(λ2 − a

)(
λ3 + ar

)
(b− aλ)

(
λ4 + br

)

− 14λ4(λ2 − a
)(
λ3 + ar

)
(b− aλ)

(
b− λ3)}�

Observe that, for λ which satisfies a1/2 < λ < b1/3, we have (λ2 − a) > 0, (λ3 + ar) > 0,
(b−aλ) > 0, (b−λ3) > 0, and (λ4 +br) > 0. Since the fraction outside of the curly bracket
is positive, it is enough to show that the sum in the curly bracket is positive. It can be
shown that the sum is equal to

10br
(
λ2 − a

)(
λ3 + ar

)
(b− aλ)

(
b− λ3) + 6a

(
λ3 + ar

)
(b− aλ)

(
b− λ3)(λ4 + br

)

+ 7
2
λ3(λ2 − a

)
(b− aλ)

(
b− λ3)(λ4 + br

) + a
(
λ3 + ar

)(
b− λ3)2(

λ4 + br
)

+ 15
2
λ3(λ2 − a

)(
λ3 + ar

)
(b− aλ)

(
λ4 + br

) + 4rλ3(λ2 − a
)
(b− aλ)2(b− λ3)

> 0�

proving the required result.

D.1.2 (i-2) a≥ 0, b ≥ 0, and b1/3 < a1/2 For this case, we can restrict our attention to the
values of λ which satisfy b1/3 < λ< a1/a as in the previous case. The first-order condition
(D.4) can be expressed as

4 ·
(

2
3

)5/2
· |α1|7
|β1|5

· λ
3(a− λ2)7/2(

λ3 + ar
)5/2

(aλ− b)(
λ3 − b

)5/2(
λ4 + br

)7/2 = γ0

n
�

Denote

f12(λ) ≡ λ3(a− λ2)7/2(
λ3 + ar

)5/2
(aλ− b)(

λ3 − b
)5/2(

λ4 + br
)7/2 �

Since limλ↓b1/3 f12(λ) = ∞ and limλ↑a1/2 f12(λ) = 0, the uniqueness of λ that satisfy the
first-order condition follows if f12(λ) is monotonically decreasing. The derivative of
f12(λ) is given by

df12(λ)

dλ
= λ2(a− λ2)5/2(

λ3 + ar
)3/2

(
λ3 − b

)7/2(
λ4 + br

)9/2

×
{

10
(
a− λ2)(λ3 + ar

)
(aλ− b)

(
λ3 − b

)(
λ4 + br

)

− 7a
(
λ3 + ar

)
(aλ− b)

(
λ3 − b

)(
λ4 + br

)
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+ 15
2
λ3(a− λ2)(aλ− b)

(
λ3 − b

)(
λ4 + br

)

+ aλ
(
a− λ2)(λ3 + ar

)(
λ3 − b

)(
λ4 + br

)

− 15
2
λ3(a− λ2)(λ3 + ar

)
(aλ− b)

(
λ4 + br

)

− 14λ4(a− λ2)(λ3 + ar
)
(aλ− b)

(
λ3 − b

)}
�

Observe that, for λ which satisfies b1/3 < λ < a1/2, we have (a − λ2) > 0, (λ3 + ar) > 0,
(aλ−b) > 0, (λ3 −b) > 0, and (λ4 +br) > 0. Since the fraction outside of the curly bracket
is positive, it is enough to show that the sum in the curly bracket is negative. It can be
shown that the sum is equal to

−5
2
λ2(λ3 + ar

)
(aλ− b)

(
λ3 − b

)(
λ4 + br

) − 7
2
a
(
λ3 + ar

)
(aλ− b)

(
λ3 − b

)(
λ4 + br

)

− 15
2
rλ3(a− λ2)(aλ− b)2(λ3 − b

) − a
(
λ3 + ar

)(
λ3 − b

)2(
λ4 + br

)

− 13
2
λ4(a− λ2)(λ3 + ar

)
(aλ− b)

(
λ3 − b

) − 15
2
b
(
a− λ2)(λ3 + ar

)
(aλ− b)

(
λ4 + br

)

< 0�

This leads to the required result.

D.2 (ii) a≥ 0 and b ≤ 0

We consider two cases of (i-a) a1/2 < (−br)1/4 and (−br)1/4 < a1/2 separately.

D.2.1 (ii-1) a ≥ 0, b ≤ 0 and a1/2 < (−br)1/4 Since h0 is positive, we can restrict our
attention to the values of λ which satisfy a1/2 < λ< (−br)1/4 by equation (D.3). The first-
order condition (D.4) can be expressed as

4 ·
(

2
3

)5/2
· |α1|7
|β1|5

· λ
3(λ2 − a

)7/2(
λ3 + ar

)5/2
(aλ− b)(

λ3 − b
)5/2(−λ4 − br

)7/2 = γ0

n
�

Denote

f21(λ) ≡ λ3(λ2 − a
)7/2(

λ3 + ar
)5/2

(aλ− b)(
λ3 − b

)5/2(−λ4 − br
)7/2 �

Since limλ↓a1/2 f21(λ) = 0 and limλ↑(−br)1/4 f21(λ) = ∞, the uniqueness of λ that satisfy
the first-order condition follows if f21(λ) is monotonically increasing. The derivative of
f21(λ) is given by

df12(λ)

dλ
= λ2(λ2 − a

)5/2(
λ3 + ar

)3/2

(
λ3 − b

)7/2(−λ4 − br
)9/2

×
{

10
(
λ2 − a

)(
λ3 + ar

)
(aλ− b)

(
λ3 − b

)(−λ4 − br
)
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+ 7a
(
λ3 + ar

)
(aλ− b)

(
λ3 − b

)(−λ4 − br
)

+ 15
2
λ3(λ2 − a

)
(aλ− b)

(
λ3 − b

)(−λ4 − br
)

+ aλ
(
λ2 − a

)(
λ3 + ar

)(
λ3 − b

)(−λ4 − br
)

− 15
2
λ3(λ2 − a

)(
λ3 + ar

)
(aλ− b)

(−λ4 − br
)

+ 14λ4(λ2 − a
)(
λ3 + ar

)
(aλ− b)

(
λ3 − b

)}
�

Observe that, for λ which satisfies a1/2 < λ< (−br)1/4, we have (λ2 −a) > 0, (λ3 +ar) > 0,
(aλ − b) > 0, (λ3 − b) > 0, and (−λ4 − br) > 0. Since the fraction outside of the curly
bracket is positive, it is enough to show that the sum in the curly bracket is positive. It
can be shown that the sum is equal to

5
2
(
λ2 − a

)(
λ3 + ar

)
(aλ− b)

(
λ3 − b

)(−λ4 − br
) + 7a

(
λ3 + ar

)
(aλ− b)

(
λ3 − b

)(−λ4 − br
)

+ 15
2
λ3(λ2 − a

)
(aλ− b)

(
λ3 − b

)(−λ4 − br
) + aλ

(
λ2 − a

)(
λ3 + ar

)(
λ3 − b

)(−λ4 − br
)

− 15
2
b
(
λ2 − a

)(
λ3 + ar

)
(aλ− b)

(−λ4 − br
) + 14λ4(λ2 − a

)(
λ3 + ar

)
(aλ− b)

(
λ3 − b

)

> 0�

This leads to the required result.

D.2.2 (ii-2) a ≥ 0, b ≤ 0, and (−br)1/4 < a1/2 Since h0 is positive, we can restrict our
attention to the values of λ which satisfy (−br)1/4 < λ< a1/2 by equation (D.3). The first-
order condition (D.4) can be expressed as

4 ·
(

2
3

)5/2
· |α1|7
|β1|5

· λ
3(a− λ2)7/2(

λ3 + ar
)5/2

(aλ− b)(
λ3 − b

)5/2(
λ4 + br

)7/2 = γ0

n
�

Denote

f22(λ) ≡ λ3(a− λ2)7/2(
λ3 + ar

)5/2
(aλ− b)(

λ3 − b
)5/2(

λ4 + br
)7/2 �

Since limλ↓(−br)1/4 f22(λ) = ∞ and limλ↑a1/2 f22(λ) = 0, the uniqueness of λ that satisfy
the first-order condition follows if f22(λ) is monotonically decreasing. The derivative of
f22(λ) is given, as in (i-2), by

df22(λ)

dλ
= λ2(a− λ2)5/2(

λ3 + ar
)3/2

(
λ3 − b

)7/2(
λ4 + br

)9/2

×
{

10
(
a− λ2)(λ3 + ar

)
(aλ− b)

(
λ3 − b

)(
λ4 + br

)

− 7a
(
λ3 + ar

)
(aλ− b)

(
λ3 − b

)(
λ4 + br

)
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+ 15
2
λ3(a− λ2)(aλ− b)

(
λ3 − b

)(
λ4 + br

)

+ aλ
(
a− λ2)(λ3 + ar

)(
λ3 − b

)(
λ4 + br

)

− 15
2
λ3(a− λ2)(λ3 + ar

)
(aλ− b)

(
λ4 + br

)

− 14λ4(a− λ2)(λ3 + ar
)
(aλ− b)

(
λ3 − b

)}
�

Observe that, for λ which satisfies (−br)1/4 < λ< a1/2, we have (a−λ2) > 0, (λ3 +ar) > 0,
(aλ−b) > 0, (λ3 −b) > 0, and (λ4 +br) > 0. Since the fraction outside of the curly bracket
is positive, it is enough to show that the sum in the curly bracket is negative. It can be
shown that the sum is equal to

4br
(
a− λ2)(λ3 + ar

)
(aλ− b)

(
λ3 − b

) − 6λ2(λ3 + ar
)
(aλ− b)

(
λ3 − b

)(
λ4 + br

)

− 15
2
rλ3(a− λ2)(aλ− b)2(λ3 − b

) − a
(
λ3 + ar

)(
λ3 − b

)2(
λ4 + br

)

− 15
2
λ3(a− λ2)(λ3 + ar

)
(aλ− b)

(
λ4 + br

) − 5
2
λ4(a− λ2)(λ3 + ar

)
(aλ− b)

(
λ3 − b

)

< 0�

This leads to the required result.

D.3 (iii) a ≤ 0 and b ≥ 0

We consider two cases of (i-a) (−ar)1/3 < b1/3 and b1/3 < (−ar)1/3 separately.

D.3.1 (iii-1) a ≤ 0, b ≥ 0, and (−ar)1/3 < b1/3 Since h0 is positive, we can restrict our
attention to the values of λ which satisfy (−ar)1/3 < λ< b1/3 by equation (D.3). The first-
order condition (D.2) can be expressed as

4 ·
(

2
3

)5/2
· |α1|7
|β1|5

· λ
3(λ2 − a

)7/2(
λ3 + ar

)5/2
(b− aλ)(

b− λ3)5/2(
λ4 + br

)7/2 = γ0

n
�

Denote

f31(λ) ≡ λ3(λ2 − a
)7/2(

λ3 + ar
)5/2

(b− aλ)(
b− λ3)5/2(

λ4 + br
)7/2 �

Since limλ↓(−ar)1/3 f31(λ) = 0 and limλ↑b1/3 f31(λ) = ∞, the uniqueness of λ that satisfy
the first-order condition follows if f31(λ) is monotonically increasing. The derivative of
f31(λ) is given by

df31(λ)

dλ
= λ2(λ2 − a

)5/2(
λ3 + ar

)3/2

(
b− λ3)7/2(

λ4 + br
)9/2

×
{

3
(
λ2 − a

)(
λ3 + ar

)
(b− aλ)

(
b− λ3)(λ4 + br

)
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+ 7λ2(λ3 + ar
)
(b− aλ)

(
b− λ3)(λ4 + br

)

+ 15
2
λ3(λ2 − a

)
(b− aλ)

(
b− λ3)(λ4 + br

)

− aλ
(
λ2 − a

)(
λ3 + ar

)(
b− λ3)(λ4 + br

)

+ 15
2
λ3(λ2 − a

)(
λ3 + ar

)
(b− aλ)

(
λ4 + br

)

− 14λ4(λ2 − a
)(
λ3 + ar

)
(b− aλ)

(
b− λ3)}�

Observe that, for λ which satisfies (−ar)1/3 < λ< b1/3, we have (λ2 −a) > 0, (λ3 +ar) > 0,
(b−aλ) > 0, (b−λ3) > 0, and (λ4 +br) > 0. Since the fraction outside of the curly bracket
is positive, it is enough to show that the sum in the curly bracket is positive. It can be
shown that the sum is equal to

3br
(
λ2 − a

)(
λ3 + ar

)
(b− aλ)

(
b− λ3) + 15

2
rλ3(λ2 − a

)
(b− aλ)2(b− λ3)

− aλ
(
λ2 − a

)(
λ3 + ar

)
(b− aλ)2(b− λ3)

+ 1
2
λ3(λ3 + ar

)
(b− aλ)

{
8λ7 − 22aλ5 + 7bλ4 + brλ3 + 7abλ2 − 15abrλ+ 14b2r

}
�

The first three terms are positive and the last term is also positive when a is close to zero.
This leads to the required result.

D.3.2 (iii-2) a ≤ 0, b ≥ 0, and b1/3 < (−ar)1/3 Since h0 is positive, we can restrict our
attention to the values of λ which satisfy b1/3 < λ< (−ar)1/3 by equation (D.3). The first-
order condition (D.2) can be expressed as

4 ·
(

2
3

)5/2
· |α1|7
|β1|5

· λ
3(λ2 − a

)7/2(−λ3 − ar
)5/2

(b− aλ)(
λ3 − b

)5/2(
λ4 + br

)7/2 = γ0

n
�

Denote

f32(λ) ≡ λ3(λ2 − a
)7/2(−λ3 − ar

)5/2
(b− aλ)(

λ3 − b
)5/2(

λ4 + br
)7/2 �

Since limλ↓b1/3 f32(λ) = ∞ and limλ↑(−ar)1/3 f32(λ) = 0, the uniqueness of λ that satisfy
the first-order condition follows if f32(λ) is monotonically decreasing. The derivative of
f32(λ) is given by

df31(λ)

dλ
= λ2(λ2 − a

)5/2(−λ3 − ar
)3/2

(
λ3 − b

)7/2(
λ4 + br

)9/2

×
{

3
(
λ2 − a

)(−λ3 − ar
)
(b− aλ)

(
λ3 − b

)(
λ4 + br

)

+ 7λ2(−λ3 − ar
)
(b− aλ)

(
λ3 − b

)(
λ4 + br

)
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− 15
2
λ3(λ2 − a

)
(b− aλ)

(
λ3 − b

)(
λ4 + br

)

− aλ
(
λ2 − a

)(−λ3 − ar
)(
λ3 − b

)(
λ4 + br

)

− 15
2
λ3(λ2 − a

)(−λ3 − ar
)
(b− aλ)

(
λ4 + br

)

− 14λ4(λ2 − a
)(−λ3 − ar

)
(b− aλ)

(
λ3 − b

)}
�

Observe that, for λ which satisfies b1/3 < λ< (−ar)1/3, we have (λ2 −a) > 0, (−λ3 −ar) >

0, (b − aλ) > 0, (λ3 − b) > 0, and (λ4 + br) > 0. Since the fraction outside of the curly
bracket is positive, it is enough to show that the sum in the curly bracket is negative. It
can be shown that the sum is equal to

−3b
(
λ2 − a

)(−λ3 − ar
)
(b− aλ)

(
λ4 + br

) − 7λ2(−λ3 − ar
)
(b− aλ)2(λ4 + br

)

− bλ
(
λ2 − a

)2(−λ3 − ar
)(
λ4 + br

) − 1
2
λ3(λ2 − a

)(−λ3 − ar
)

× {
6λ4(−λ3 − ar

) + 15r
(
λ3 − b

)
(b− aλ)+ 13bλ4 + 7brλ3 + 13abrλ+ 7abr2}�

The first three terms are negative and the last term is also negative when a is close to
zero. This leads to the required result.

D.4 (iv) a ≤ 0 and b ≤ 0

For this case, we consider the original parametrization (D.1). Denote

L= (
α1h

2
1 − α0h

2
0
)2 + (

β1h
3
1 −β0h

3
0
)2 + γ1

nh1
+ γ0

nh0

≡ g1 + g2 + g3�

First, we show that g1 and g2 are convex. For this purpose, it suffices to show their Hes-
sian matrices are nonnegative definite. Observe that

∂2g1

∂h2
1

= 4
(
3α2

1h
2
1 − α1α0h

2
0
) ≥ 0�

∂2g1

∂h2
1

· ∂
2g1

∂h2
0

−
(

∂2g1

∂h1 ∂h0

)2
= −48α1α0

(
α1h

2
1 − α0h

2
0
)2 ≥ 0�

∂2g2

∂h2
1

= 30β2
1h

4
1 − 12β1β0h1h

3
0 ≥ 0�

∂2g2

∂h2
1

· ∂
2g2

∂h2
0

−
(

∂2g2

∂h1 ∂h0

)2
= −360β1β0h1h0

(
β1h

3
1 −β0h

3
0
)2 ≥ 0�

It follows that g1 and g2 are convex. In addition, the calculation above show that g1 + g2
is strictly convex unless a = b = 0. In the same manner, we can show that g3 is strictly
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convex since

∂2g3

∂h2
1

= 2γ1

nh3
1

> 0�

∂2g3

∂h2
1

· ∂
2g3

∂h2
0

−
(

∂2g1

∂h1 ∂h0

)2
= 4γ1γ0

n2h3
1h

3
3

> 0�

These imply that L is strictly convex, leading to the required result.
Given the uniqueness of ĥ, the continuity of ĥ with respect to a immediately follows

from the implicit function theorem.

E. Proofs

E.1 Proof of Lemmas 1 and 3

For both lemmas, a contribution to the MSE from a variance component is standard.
See Fan and Gijbels (1996, Section 3.2) for the details. Here, we consider the contribution
made by the bias component. For the bias component, we provide a proof for the general
results which encompass both lemmas.

Let β̂1�p(h1) and β̂0�p(h0) be the LPR estimators of order p (p ∈ N) on the right and
left of the cut-off point with bandwidth h1 and h0, respectively. Then the LPR estima-
tor can be expressed as β̂j�p(hj) = (Xp(c)

′Wj�hj (c)Xp(c))
−1Xp(c)

′Wj�hj (c)Y for j = 0�1,
where Xp(c) is an n× (p+ 1) matrix whose ith row is given by (1�Xi − c� � � � � (Xi − c)p),
Y = (Y1� � � � �Yn)

′, Wj�hj (c) = diag(Kj�hj (Xi−c)), K1�h(·) =K(·/h)I{· ≥ 0}/h and K0�h(·) =
K(·/h)I{· < 0}/h. The LPR estimator of m(ν)

j (c) based on the LPR of order p can be writ-

ten as m̂
(ν)
j�p(c) = ν!eνβ̂j�p(hj) for j = 0�1, where eν is the conformable unit vector having

one in the (ν + 1)th entry and zero in the other entry.
Lemmas 1 and 3 can be obtained by applying the next lemma to construct the bias

of τ̂ν�p = m̂
(ν)
1�p(c)− m̂

(ν)
0�p(c) by choosing (ν�p) = (0�1) for the SRD and (ν�p) = (1�2) for

the SRK, respectively.

Lemma E.1. Suppose Assumptions 1–4 and 5 with κ = p + 2 hold. Then it follows for
j = 0�1 and p ∈N, that

Bias
(
β̂j�p(h1)|X

) = hp+1H−1
p (hj)

m
(p+1)
j (c)

(p+ 1)! S−1
j�0�pcj�p+1�p

+ hp+2H−1
p (hj)

{(m
(p+1)
j (c)

(p+ 1)!
f (1)(c)

f (c)
+

m
(p+2)
j (c)

(p+ 2)!
)
S−1
j�0�pcj�p+2�p

−
m

(p+1)
j (c)

(p+ 1)!
f (1)(c)

f (c)
S−1
j�0�pSj�1�pS

−1
j�0�pcj�p+1�p

}
+H−1

p (hj)rj�n�

where Hp(hj) = diag(1�hj� � � � �h
p
j ), Sj�k�p = (μj�k+�1+�2)0≤�1��2≤p, cj�k�p = (μj�k+�)0≤�≤p,

μ1�s = ∫ ∞
0 usK(s)ds, μ0�s = ∫ 0

−∞ us ds and rj�n = op(h
p+2
j ).
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Proof. The conditional bias of β̂j�p(hj) can be expressed as, for j = 0�1,

Bias
(
β̂j�p(hj)|X

) = (
Xp(c)

′Wj�hj (c)Xp(c)
)−1

Xp(c)
′Wj�hj (c)

(
mj −Xp(c)βj�p

)
�

where mj = (mj(X1)� � � � �mj(Xn))
′ and βj�p = (mj(c)� � � � �m

(p)
j (c)/p!)′. Define, for a

nonnegative integer k, (p + 1) × (p + 1) matrices S1�k�p(h1) and (p + 1) × 1 vectors
cj�k�p(hj) as

Sj�k�p(hj) = (
sj�k+�1+�2(hj)

)
0≤�1��2≤p

� cj�k�p(h1)= (
sj�k+�(hj)

)
0≤�≤p

�

sj�k(hj) =
n∑

i=1

Kj�hj (Xi − c)(Xi − c)k� (E.1)

Note that Sj�0�p(hj) =Xp(c)
′Wj�hj (c)Xp(c). The argument made by Fan, Gijbels, Hu, and

Huang (1996) can be generalized to yield

sj�k(hj)= nhk
j

{
f (c)μj�k + hjf

(1)(c)μj�k+1 + op(hj)
}
� (E.2)

Then it follows that

Sj�0�p(h1)= nHp(hj)
{
f (c)Sj�0�p + hjf

(1)(c)Sj�1�p + op(hj)
}
Hp(hj)�

By using the fact that (A+ hB)−1 = A−1 − hA−1BA−1 + o(h), we obtain

S−1
j�0�p(hj)= n−1H−1

p (hj)

{
1

f (c)
S−1
j�0�p − hj

f (1)(c)

f (c)2 S−1
j�0�pSj�1�pS

−1
j�0�p + op(hj)

}

×H−1
p (hj)�

(E.3)

Next, we consider Xp(c)
′Wj�hj (c){mj −Xp(c)βj�p}. A Taylor expansion of mj(·) yields

Xp(c)
′Wj�hj (c)

{
mj −Xp(c)βj�p

} =
m

(p+1)
j (c)

(p+ 1)! cj�p+1�p(hj)

+
m

(p+2)
j (c)

(p+ 2)! cj�p+2�p(hj)+ nHp(hj)rj�n�

(E.4)

The definition of cj�k�j in (E.1), in conjunction with (E.2), yields

cj�k�p(hj)= nhk
j Hp(hj)

{
f (c)cj�k�p + hjf

(1)(c)cj�k+1�p + op(hj)
}
� (E.5)

Combining this with (E.3) and (E.4) gives

Xp(c)
′Wj�hj (c)

{
mj −Xp(c)βj�p

}

= nh
p+1
j Hp(hj)

{m
(p+1)
j (c)

(p+ 1)! f (c)cj�p+1�p

+ hj

(m
(p+1)
j (c)

(p+ 1)! f (1)(c)+
m

(p+2)
j (c)

(p+ 2)! f (c)

)
cj�p+2�p + op(hj)

}
�

(E.6)

Combining (E.3) and (E.6) gives the required result. �
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E.2 Proofs of Theorem 2

Recall that the objective function is

MMSEp
n (h) = {

d1
[
m̂(3)

1 (c)h2
1 − m̂(3)

0 (c)h2
0
]}2 + [

d̂2�1(c)h
3
1 − d̂2�0(c)h

3
0
]2

+ w

nf̂ (c)

{
σ̂2

1 (c)

h3
1

+ σ̂2
0 (c)

h3
0

}
�

To begin with, we show that ĥ1 and ĥ0 satisfy Assumption 2. If we choose a sequence
of h1 and h0 to satisfy Assumption 2, then MMSEp

n (h) converges to 0. Assume to
the contrary that either one or both of ĥ1 and ĥ0 do not satisfy Assumption 2. Since
m(3)

0 (c)3d2�1(c)
2 �= m(3)

1 (c)3d2�0(c)
2 by assumption, m̂(3)

0 (c)3d̂2�1(c)
2 �= m̂(3)

1 (c)3d̂2�0(c)
2

with probability approaching 1. Without loss of generality, we assume this as well.
Then at least one of the first-order bias term, the second-order bias term and the vari-
ance term of MMSEp

n (ĥ) does not converge to zero in probability. Then MMSEp
n (ĥ) >

MMSEp
n (h) holds for some n. This contradicts the definition of ĥ. Hence ĥ satisfies As-

sumption 2.
We first consider the case in which m

(3)
1 (c)m

(3)
0 (c) < 0. In this case, with proba-

bility approaching 1, m̂(3)
1 (c)m̂(3)

0 (c) < 0, so that we assume this without loss of gen-
erality. When this holds, note that the leading terms are the first term and the last
term of MMSEp

n (ĥ) since ĥ1 and ĥ0 satisfy Assumption 2. Define the plug-in version
of AMSE1n(h) provided in Definition 2 by

AMSEp
1n(h) = {

d1
[
m̂(3)

1 (c)h2
1 − m̂(3)

0 (c)h2
0
]}2 + w

nf̂ (c)

{
σ̂2

1 (c)

h3
1

+ σ̂2
0 (c)

h3
0

}
�

A calculation yields h̃1 = C̃1n
−1/7 and h̃0 = C̃0n

−1/7 where

C̃1 =
{

3wσ̂2
1 (c)

4d2
1 f̂ (c)m̂

(3)
1 (c)

[
m̂

(3)
1 (c)− λ̂2

1m̂
(3)
0 (c)

]
}1/7

� λ̂1 =
{
− σ̂2

0 (c)m̂
(3)
1 (c)

σ̂2
1 (c)m̂

(3)
0 (c)

}1/5
�

and C̃0 = C̃1λ̂1. With this choice, AMSEp
1n(h̃), and hence MMSEp

n (h̃) converges at the

rate of n−4/7. Note that if ĥ1 or ĥ0 converges at the rate slower than n−1/7, then the bias
term converges at the rate slower than n−4/7. If ĥ1 or ĥ0 converges at the rate faster than
n−1/7, then the variance term converges at the rate slower than n−4/7. Thus, the mini-
mizer of MMSEp

n (h), ĥ1, and ĥ0 converges to 0 at rate n−1/7.
Thus, we can write ĥ1 = Ĉ1n

−1/7 + op(n
−1/7) and ĥ0 = Ĉ0n

−1/7 + op(n
−1/7) for some

OP(1) sequences Ĉ1 and Ĉ0 that are bounded away from 0 and ∞ as n → ∞. Using this
expression,

MMSEp
n (ĥ) = n−4/7{d1

[
m̂(3)

1 (c)Ĉ2
1 − m̂(3)

0 (c)Ĉ2
0
]}2

+ w

n4/7f̂ (c)

{
σ̂2

1 (c)

Ĉ3
1

+ σ̂2
0 (c)

Ĉ3
0

}
+ op

(
n−4/7)�
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Note that

MMSEp
n (h̃)= n−4/7{d1

[
m̂

(3)
1 (c)C̃2

1 − m̂
(3)
0 (c)C̃2

0
]}2

+ w

n4/7f̂ (c)

{
σ̂2

1 (c)

C̃3
1

+ σ̂2
0 (c)

C̃3
0

}
+OP

(
n−6/7)�

Since ĥ is the optimizer, MMSEp
n (ĥ)/MMSEp

n (h̃)≤ 1. Thus,

{
d1

[
m̂(3)

1 (c)Ĉ2
1 − m̂(3)

0 (c)Ĉ2
0
]}2 + w

f̂ (c)

{
σ̂2

1 (c)

Ĉ3
1

+ σ̂2
0 (c)

Ĉ3
0

}
+ op(1)

{
d1

[
m̂(3)

1 (c)C̃2
1 − m̂(3)

0 (c)C̃2
0
]}2 + w

f̂ (c)

{
σ̂2

1 (c)

C̃3
1

+ σ̂2
0 (c)

C̃3
0

}
+OP

(
n−2/7) ≤ 1�

Note that the denominator converges to

{
d1

[
m

(3)
1 (c)C∗2

1 −m
(3)
0 (c)C∗2

0
]}2 + w

f(c)

{
σ2

1 (c)

C∗
1

3 + σ2
0 (c)

C∗
0

3

}
�

where C∗
1 and C∗

0 are the unique optimizers of

{
d1

[
m(3)

1 (c)C2
1 −m(3)

0 (c)C2
0
]}2 + w

f(c)

{
σ2

1 (c)

C3
1

+ σ2
0 (c)

C3
0

}
�

with respect to C1 and C0. This implies that Ĉ1 and Ĉ0 also converge to the same respec-
tive limit C∗

1 and C∗
0 because the inequality will be violated otherwise.

Next, we consider the case with m
(3)
1 (c)m

(3)
0 (c) > 0. In this case, with probability ap-

proaching 1, m̂(3)
1 (c)m̂(3)

0 (c) > 0, so that we assume this without loss of generality.

When these conditions hold, define h0 = λ̂2h1 where λ̂2 = {m̂(3)
1 (c)/m̂(3)

0 (c)}1/2. This
sets the first-order bias term of MMSEp

n (h) equal to 0. Define the plug-in version of
AMSE2n(h) by

AMSEp
2n(h) = {

d̂2�1(c)h
3
1 − d̂2�0(c)h

3
0
}2 + w

nf̂ (c)

{
σ̂2

1 (c)

h3
1

+ σ̂2
0 (c)

h3
0

}
�

Choosing h1 to minimize AMSEp
2n(h), we define h̃1 = C̃1n

−1/9 and h̃0 = C̃0n
−1/9 where

θ̂2 =
{

w
[
σ̂2

1 (c)+ σ̂2
0 (c)/λ̂

3
2
]

2f̂ (c)
[
d̂2�1(c)− λ̂3

2d̂2�0(c)
]2

}1/9
and C̃0 = C̃1λ̂2� (E.7)

Then MMSEp
n (h̃) can be written as

MMSEp
n (h̃)= n−6/9{d̂2�1(c)C̃

3
1 − d̂2�0(c)C̃

3
0
}2 + n−6/9 w

f̂ (c)

{
σ̂2

1 (c)

C̃3
1

+ σ̂2
0 (c)

C̃03

}
�

In order to match this rate of convergence, both ĥ1 and ĥ0 need to converge at the rate
slower than or equal to n−1/9 because the variance term needs to converge at the rate
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n−6/9 or faster. In order for the first-order bias term to match this rate,

m̂(3)
1 (c)ĥ2

1 − m̂(3)
0 (c)ĥ2

0 ≡ B1n = n−3/9b1n�

where b1n = OP(1) so that under the assumption that m(3)
0 (c) �= 0, with probability ap-

proaching 1, m̂(3)
0 (c) is bounded away from 0 so that assuming this without loss of gen-

erality, we have ĥ2
0 = λ̂2

2ĥ
2
1 −B1n/m̂

(3)
0 (c). Substituting this expression to the second term

and the third term of MMSEp
n , we have

MMSEp
n (ĥ) = {d1B1n}2 + {

d̂2�1(c)ĥ
3
1 − d̂2�0(c)

[
λ̂2

2ĥ
2
1 −B1n/m̂

(2)
0 (c)

]3/2}2

+ w

nf̂ (c)

{
σ̂2

1 (c)

ĥ1
+ σ̂2

0 (c)[
λ̂2

2ĥ
2
1 −B1n/m̂

(2)
0 (c)

]3/2

}
�

Suppose ĥ1 is of order slower than n−1/9. Then because m̂(3)
0 (c)3d̂2�1(c)

2 �=
m̂(3)

1 (c)3d̂2�0(c)
2 and this holds even in the limit, the second-order bias term is of order

slower than n−6/9. If ĥ1 converges to 0 faster than n−1/9, then the variance term con-
verges at the rate slower than n−6/9. Therefore, we can write ĥ1 = Ĉ1n

−1/9 +op(n
−1/9) for

some OP(1) sequence Ĉ1 that is bounded away from 0 and ∞ as n → ∞ and as before
ĥ2

0 = λ̂2
2ĥ

2
1 −B1n/m̂

(3)
0 (c). Using this expression, we can write

MMSEp
n (ĥ) = n−6/9{d1b1n}2

+ n−6/9{d̂2�1(c)Ĉ
3
1 + op(1)− d̂2�0(c)

[
λ̂2

2Ĉ
2
1 + op(1)− n−1/9b1n/m̂

(3)
0 (c)

]3/2}2

+ n−6/9 w

f̂ (c)

{
σ̂2

1 (c)

Ĉ3
1 + op(1)

+ σ̂2
0 (c)[

λ̂2
2Ĉ

2
1 + op(1)− n−1/9b1n/m̂

(3)
0 (c)

]3/2

}
�

Thus, b1n converges in probability to 0. Otherwise the first-order bias term remains and
that contradicts the definition of ĥ1.

Since ĥ is the optimizer, MMSEp
n (ĥ)/MMSEp

n (h̃) ≤ 1. Thus,

op(1)+ {
d̂2�1(c)Ĉ

3
1 − d̂2�0(c)

[
λ̂2

2Ĉ
2
1 + op(1)

]3/2}2 + w

f̂ (c)

{
σ̂2

1 (c)

Ĉ3
1 + op(1)

+ σ̂2
0 (c)[

λ̂2
2Ĉ

2
1 + op(1)

]3/2

}

{
d̂2�1(c)C̃

3
1 − d̂2�0(c)C̃

3
0

}2 + w

f̂ (c)

{
σ̂2

1 (c)

C̃3
1

+ σ̂2
0 (c)

C̃3
0

} ≤ 1�

If Ĉ1 − C̃1 does not converge to 0 in probability, then the ratio is not less than one at

some point. Hence Ĉ1 − C̃1 = op(1). Therefore, ĥ0/h̃0
p→ 1 as well.

The results shown above also imply that MMSEp
n (ĥ)/MSEn(h

∗) p→ 1 in both cases. �

E.3 Proofs of Theorem 3

Since the results follow in the same manner as those of Theorems 1 and 2 of CCT, we
outline the proof of Theorem 3. As in Calonico, Cattaneo, and Farrell (forthcoming),
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we restrict our attention to the case where hj/hp+1�j → ρj�p+1, hj/hp+2�j → ρj�p+2, and

hp+1�j/hp+2�j → ρj�p+1�p+2 with ρj�p+1 ρj�p+2 and ρj�p+1�p+2 bounded for j = 0�1. (See

Remark 2 of Calonico, Cattaneo, and Farrell (forthcoming).)

First, we note that, by Lemmas S.A.1 and S.A.2 of CCT,

V (0)
j�ν�p(hj) =Op

(
1

nh2ν+1
j

)
�

V (1)
j�ν�p�q(hj�hp+1�j) =Op

(h
2(p−ν+1)
j

nh
2p+3
p+1�j

)
�

V (2)
j�ν�p�q(hj�hp+1�j�hp+2�j) =Op

(h
2(p−ν+2)
j

nh
2p+5
p+2�j

)
�

C(0�1)
j�ν�p�q(hj�hp+1�j) =Op

(h
p−ν+1
j min{hj�hp+1�j}

nhν+1
j h

p+2
p+1�j

)
�

C(0�2)
j�ν�p�q(hj�hp+1�j�hp+2�j) =Op

(h
p−ν+2
j min{hj�hp+2�j}

nhν+1
j h

p+3
p+2�j

)
�

C(1�2)
j�ν�p�q(hj�hp+1�j�hp+2�j) =Op

(h
2p−2ν+3
j min{hp+1�j�hp+2�j}

nh
p+2
p+1�jh

p+3
p+2�j

)
� (E.8)

These, together with Lemma E.1 and the notation introduced in Appendix B of the main
text, imply

E
[
τ̂bc
j�ν�p�q(hj�hp+1�j�hp+2�j)|X

] − ν!e′
νβj�p =Op

(
h
p+3−ν
j + h

p+1−ν
j h

q−p
p+1�j + h

p+2−ν
j h

q−p−1
p+2�j

)
�

V bc
j�ν�p�q(hj�hp+1�j�hp+2�j)=Op

(
1

nh2ν+1
j

+
h

2(p−ν+1)
j

nh
2p+3
p+1�j

+
h

2(p−ν+2)
j

nh
2p+5
p+2�j

)
�

The rest of the proof follows in the same manner as Lemma S.A.4 of CCT. Observe

that

τ̂bc
j�ν�p�q(hj�hp+1�j�hp+2�j)− ν!e′

νβj�p√
V bc
j�ν�p�q(hj�hp+1�j�hp+2�j)

= ξj�1�n + ξj�2�n�

where

ξj�1�n = τ̂bc
j�ν�p�q(hj�hp+1�j�hp+2�j)−E

[
τ̂bc
j�ν�p�q(hj�hp+1�j�hp+2�j)|X

]
√
V bc
j�ν�p�q(hj�hp+1�j�hp+2�j)
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and

ξj�2�n = E
[
τ̂bc
j�ν�p�q(hj�hp+1�j�hp+2�j)|X

] − ν!e′
νβj�p√

V bc
j�ν�p�q(hj�hp+1�j�hp+2�j)

�

First, we note that

ξ2
j�2�n =Op

(
min

{
nh2ν+1

j �
nh

2p+3
p+1�j

h
2p+2−2ν
j

�
nh

2p+5
p+2�j

h
2p+4−2ν
j

})

×Op
(
max

{
h

2p+6−2ν
j �h

2p+2−2ν
j h

2q−2p
p+1�j �h

2p+4−2ν
j h

2q−2p−2
p+2�j

})

=Op

(
nmin

{
h

2p+3
j �h

2p+3
p+1�j�

h
2p+5
p+2�j

h2
j

})

×Op
(
max

{
h4
j �h

2(q−p)
p+1�j �h2

j h
2(q−p−1)
p+2�j

})
�

It follows that ξ2
j�2�n = op(1) since we use (p�q) = (1�3), and h2 and h3 of order n−1/9 for

the sharp RD design and (p�q) = (2�4), and h3 and h4 of order n−1/11 for the sharp RK
design.

Next, we show ξj�1�n
d→ N(0�1). Note that

ξj�1�n =
n∑

i=1

ζj�1�n�iεi

ζj�2�n
+ op(1)�

where

εj�i = Yi −mj(Xi)�

ζj�1�n�i = h−ν
j e′

νHp(hj)S
−1
j�0�p(hj)Kj�hj (Xi − c)φp(Xi − c)

− h
p+1−ν
j h

−p−1
p+1�jϑj�ν�p�p+1

× {
e′
p+1Hq(hp+1�j)S

−1
j�0�q(hp+1�j)Kj�hp+1�j (Xi − c)φq(Xi − c)

}

− h
p+2−ν
j h

−p−2
p+2�jϑj�ν�p�p+2

× {
e′
p+2Hq(hp+2�j)S

−1
j�0�q(hp+2�j)Kj�hp+2�j (Xi − c)φq(Xi − c)

}
�

φp(x) = (
1�x� � � � � xp

)′
�

and we have by (E.8)

ζj�2�n =
n∑

i=1

E
[
ζ2
j�1�nε

2
i

] = O

(
1

nh2ν+1
j

+
h

2(p−ν+1)
j

nh
2p+3
p+1�j

+
h

2(p−ν+2)
j

nh
2p+5
p+2�j

)
�
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Then the required result follows because the Lyapunov’s condition is satisfied

n∑
i=1

E

∣∣∣∣ζj�1�n�iεiζj�2�n

∣∣∣∣
4
= O

(
1

nhj
min

{
1�ρ−4p−6

j�p+1�n�ρ
−4p−8
j�p+1�n

})

+O

(
1

nhp+1j
min

{
ρ

4p+6
j�p+1�n�1�ρ−4

j�p+2�nρ
−4p−6
j�p+1�p+2�n

})

+O

(
1

nhp+2�j
min

{
ρ

−4p+10
p+2�j � ρ4

j�p+2�nρ
4p+6
j�p+1�p+2�n�1

})

→ 0�

where ρj�p+1�n = hj/hp+1�j , ρj�p+2�n = hj/hp+2�j , and ρj�p+1�p+2�n = hp+1�j/hp+2�j . �
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