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Appendix B: Data

The data used in this study come from two sources. The first data source is a compila-
tion of detailed play-by-play records for 8,102 regular season basketball games played
between November 2003 and March 2008 downloaded from the website statsheet.com.
The raw play-by-play data consists of a list of game events for each team (i.e., shot at-
tempts, rebounds, and turnovers) and, for each event, the time remaining in the game
when the event occurred. These 8,102 games exclude games for which the play-by-play
record is insufficiently detailed to allow an accurate calculation of the time elapsed from
the shot clock at the conclusion of each possession.1 The second data source is a set of
gambling point spreads for 24,868 regular-season games played during the same time
period. This data is publicly available from the website covers.com. Merging these two
data sources by the two team names and the game’s date shows that the intersection
contains 5,258 games. Data from those 5,258 games are used to construct a data set for
analysis.

From these raw data, I construct a data set containing one observation per posses-
sion. The set of information for each possession includes the team that was on offense,
the time that elapsed from the shot clock during the possession, and the event that
caused the possession to end. The key piece of information that must be computed is
the time elapsed from the shot clock. Beginning with the raw play-by-play records, I use
the following steps:

1. Classify each play-by-play observation in to one of the categories; made 2-point
shot, missed 2-point shot, made 3-point shot, missed 3-point shot, turnover, rebound,
foul, free throw attempt, assist, blocked shot, substitution, or timeout using keyword
searches of the record’s raw text string.

2. Drop events that are not relevant to the model’s estimation and do not impact the
shot clock. These include assists, blocked shots, substitutions, and timeouts. The events
that are not dropped retain all information relevant to estimation.
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1In particular, some games not selected for the sample do not contain a record of turnovers.
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3. Flag events that reset the shot clock. These include made shots, fouls, turnovers,
and rebounds.

4. For each event, compute the time elapsed from the shot clock when the event oc-
curred as the difference between the game time at which the event occurred and the
game time at which the shot clock was most recently reset.2

5. Reshape the dataset from one containing one observation per event to one con-
taining one observation per possession. For possessions including multiple events,
maintain the record of the event sequence that occurred during the possession, and the
possession’s duration. The possession’s duration is the time elapsed from the shot clock
at the time of the possession’s final event.

6. Code each possession to one of the model’s terminal events. For possessions end-
ing with a turnover, a made or missed 2-point shot, or a made or missed 3-point shot, this
coding is straightforward. In other cases, use the following rules. Possessions in which a
defensive foul was committed during a 2-point shot attempt are coded as successful 2-
point shots. Possessions in which a defensive foul was committed during a 3-point shot
attempt are coded as successful 3-point shots.3 Possessions that end with an offensive
foul are coded as turnovers. Shot clock violations are coded as turnovers occurring in
the final second of the shot clock.

7. Drop possessions for which this procedure computes a possession duration ex-
ceeding the maximum possible duration (by the shot clock rule) of 35 seconds.4

8. Exclude possessions from the analysis if they have duration of 5 seconds or less.

9. Exclude possessions from the analysis if they end with a defensive foul for which
no free throws are awarded.

I create a second dataset containing one observation per observed free throw. Each
observation in this dataset describes the point spread of the game in which the free
throw occurred, the team that attempted the free throw, the game time at which the
free throw occurred, and the result of the free throw.

Appendix C: Marginal rate of substitution between time

and points across game states

C.1 Theoretical evidence

The strategy for estimating the model’s structural parameters described in Section 3
hinges on the assumption that the marginal rate of substitution between time and

2For possessions following a made shot by the opponent, I set the time at which the shot clock was reset
to 4 seconds after the game time at which the shot was made. Following a made shot, the next shot clock
does not begin counting until the team to be on offense carries the ball out of bounds and passes the ball
in. This procedure typically takes several seconds.

3Fewer than 6% of first-half possessions end with fouls during the act of shooting. Because these are
relatively rare “terminal” events and teams convert nearly 70% of free throw attempts, this simplification is
only a small deviation from reality and significantly simplifies the model.

4This procedure coded 1�21% of observations to durations exceeding 35 seconds.
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points is approximately zero in the first halves of games. To better understand why one
might expect the marginal rate of substitution between time and points (φ) is close to
zero early in games, first consider one special case of the fully dynamic game in which
the value function, and hence φ, can be approximated with a closed-form expression.
Specifically, consider a game between two evenly matched teams in a setting where
“stalling” and “hurrying” are equally costly in terms of foregone expected points per
possession. In this case, teams’ state-specific adjustments in pairs of possessions will
offset one another, and the game’s score will evolve approximately as a random walk.
By the central limit theorem, the value function (probability of team A winning) with a
current score differential of X at t seconds into the game can be approximated by
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This expression suggests two reasons to expect the φ to be small in absolute value dur-
ing the first half of games. First, point differentials X are on average smaller in abso-
lute value during the first halves of games than later in games. Second, and probably
more importantly, the absolute value of φ declines geometrically in the amount of time
remaining in the game for any given score differential, since T − t appears in the de-
nominator. Since in the first half one possession is only a small fraction of the total time
remaining, adjusting possession duration has a small impact on win probabilities com-
pared to the impact of accumulating a larger scoring lead. This expression suggests that
for a given score differential, teams’ incentives to hurry or stall may be an order of mag-
nitude smaller during the first halves of games than at the end of games. For example,
if team A leads by 10 points with 1 minute left in the game the approximation yields
φ(10�39 × 60) ≈ 0�083, but if team A leads by 10 points midway through the first half of
the game the approximation yields φ(10�10 × 60) ≈ 0�003.
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C.2 Empirical evidence

While this calculation seems to support the assumption that the marginal rate of sub-
stitution between time and points is small during the first half of games, it is important
to verify that the assumption holds empirically, since as emphasized throughout the pa-
per, the actual basketball scoring environment is not one in which stalling and hurrying
are equally costly. To do this, I compute nonparametric estimates of φ across all game
states and point spread categories. I first nonparametrically estimate the probability of
the favorite winning conditional on the time remaining in the game, the favorite’s cur-
rent lead, and the pregame point spread. The estimating equation is

1(favwini)= g(Xij� tij�psij)+ eij (3)

with i indexing games and j indexing individual possessions. Specifically, I estimate local
linear regressions with respect to Xij and tij across a grid in X × t separately by point-
spread category. I then compute a predicted marginal rate of substitution for each pos-
session using

φ̂ij(Xij� tij�psij) = ∂ĝ(Xij� tij�psij)/∂t

∂ĝ(Xij� tij�psij)/∂X
� (4)

Figure 1 presents box plots illustrating the distribution of these predicted φ̂’s by 5-
minute game intervals. Consistent with the identifying assumption of a zero marginal
rate of substitution between time and points during the first half, the distribution of es-
timated φ̂ij(Xij� tij�psij) values (across point spread categories and score differentials) is
clustered close to zero throughout games’ first 20 minutes. Consistent with the intuition
suggested by equation (A− 2), the marginal rate of substitution begins to vary substan-
tially across game states later in the game, particularly in the final 10 minutes.

Figure 1. Empirical marginal rates of substitution between time and points by time played.
Source: author’s calculations using play-by-play data from statsheet.com merged to point-spread
data from covers.com.
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http://covers.com
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Appendix D: Simulations

I simulate the distribution of winning margins in three steps. First, I numerically solve
the full model calibrated by the estimated structural parameters to obtain teams opti-
mal policy functions. Second, I used the optimal policy function to compute a transition
matrix describing the probability of achieving each possible winning margin conditional
on each possible half-time score differential. Third, I apply these transition probabilities
to a smoothed version of the empirical half-time distribution. The smoothed distribu-
tion is a discretized normal distribution with the same first and second moments as the
empirical distribution. This procedure ensures that any observed asymmetry in the sim-
ulated winning margin distribution comes from simulated second-half play.

I numerically compute the solution to the full value function V :Ω → [0�1], mapping
each element of the full state space to a probability of victory using backward induc-
tion according to equation (5), and I obtain the corresponding optimal policy function
P : Ω → Ad × Ao. Backward induction is feasible if the payoff functions Ui provide a
fixed boundary condition at the game’s conclusion: time T . However, in NCAA basket-
ball games, a 5-minute overtime period is played whenever the game is tied at the end
of play. To facilitate backward induction, I impose that each team receives a payoff of
0�5 when the game ends with a tie when I compute the numerical solution to the full
model using backward induction for the entire second half, which contains 1,200 sec-
onds. Then, in the simulations I allow 5 additional minutes (using teams’ policies for the
final 5 minutes) to be played when the score is tied at the end of the game and repeat
until the game ends with a winner and a loser.

I handle several details of the simulation process as follows. I discretize the shot op-
portunity distributions, Fo, using 10 points of support, so that I can use discrete dynamic
programming methods. In states in which one team has a very large lead and, therefore,
the winning team is not in doubt, V = 0 or 1,5 I imposed that the offensive team reverts
to maximizing expected points per possession and the defensive team chooses not to
foul.6 The model does not make a unique prediction in these states, because many poli-
cies yield the same expected payout when the winner is not in doubt.

Co-editor Petra E. Todd handled this manuscript.

Manuscript received 26 November, 2014; final version accepted 29 June, 2017; available on-
line 8 August, 2017.

5The winning team is no longer in doubt in the context of the model when insufficient time remains for
the trailing team to come from behind even given the most fortuitous possible string of events.

6One could imagine other possible policies adopted by teams when the game’s winner is no longer in
doubt. These policies are consistent with rational play if, for very small ε > 0, each team placed a weight of
(1 − ε) on the discrete outcome of winning and a weight of ε on the margin of victory/defeat.
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