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Appendix C: Approximation error: Normal versus log-normal

When computing subjective income distributions using either normal or log-normal
distributions, we have only used data on the median (C3

it ) and the difference between
first and third quartiles (C4

it −C2
it or C4

it/C
2
it ). Hence, for either the normal and log-normal

distributions, the three quartiles reported in the data (C2
it , C

3
it , C

4
it ) will not partition the

support of the subjective income distribution into four segments that each have a prob-
ability of 0�25, unless the distributional assumption is exactly correct. Therefore, we eval-
uate the validity of a particular distributional assumption using the loss function:

AE(D) = 1
N

N∑
i=1

[(
F

(
C3
it;D

) − F
(
C2
it;D

) − 0�25
)2 + (

F
(
C4
it;D

) − F
(
C3
it;D

) − 0�25
)2]

� (24)

where F(w;D) is the cdf of the distribution computed using distributional assump-
tion D.

Using the same sample as in Section 3, we compute the value of AE(D) for D =
normal and D = log-normal. We find that AE(normal)= 0�0101 and AE(log-normal) =
0�0103. Hence, we conclude that the fit of the two distributions is quite similar with, if
anything, the normal having a slightly better fit.

Appendix D: Expressing E(Wit) as a weighted sum of E(Wit |Git = 2�00),
E(Wit |Git = 3�00), and E(Wit |Git = 3�75)

We show that E(Wit) can be expressed as a weighted sum of E(Wit |Git = 2�00),
E(Wit |Git = 3�00), and E(Wit |Git = 3�75). For the ease of notation, we write E(Wit |Git =
Yifan Gong: ygong48@uwo.ca
Todd Stinebrickner: trstineb@uwo.ca
Ralph Stinebrickner: stinebricknerr@berea.edu

© 2019 The Authors. Licensed under the Creative Commons Attribution-NonCommercial License 4.0.
Available at http://qeconomics.org. https://doi.org/10.3982/QE954

mailto:ygong48@uwo.ca
mailto:trstineb@uwo.ca
mailto:stinebricknerr@berea.edu
https://creativecommons.org/licenses/by-nc/4.0/legalcode
http://qeconomics.org
https://doi.org/10.3982/QE954


2 Gong, Stinebrickner, and Stinebrickner Supplementary Material

git) as E(Wit |git). Hence,

E(Wit)= EGit

(
E(Wit |Git)

) =
∫ 4

2
E(Wit |git)dFGit

(git)

=
∫ 3

2

[
E(Wit |2�00)+ E(Wit |3�00)−E(Wit |2�00)

3�00 − 2�00
(git − 2)

]
dFGit

(git)

+
∫ 4

3

[
E(Wit |3�00)+ E(Wit |3�75)−E(Wit |3�00)

3�75 − 3�00
(git − 3)

]
dFGit

(git)

=
∫ 3

2

[
E(Wit |2�00)

(
1 − git − 2

3�00 − 2�00

)
+E(Wit |3�00)

git − 2
3�00 − 2�00

]
dFGit

(git)

+
∫ 4

3

[
E(Wit |3�00)

(
1 − git − 3

3�75 − 3�00

)
+E(Wit |3�75)

git − 3
3�75 − 3�00

]
dFGit

(git)

=
∑
G

λGit E(Wit |G)� G = 2�00�3�00 or 3�75� (25)

where λ2�00
i = ∫ 3

2 (3 − git)dFGit
(git), λ3�00

i = ∫ 3
2 (git − 2)dFGit

(git)+ ∫ 4
3 (1 − git−3

0�75 )dFGit
(git)

and λ3�75
i = ∫ 4

3
git−3
0�75 dFGit

(git).

Appendix E: Magnitude of the measurement error

In this section, we show that equation (12), along with additional assumptions, implies
equation (13). Recall that equation (12) states

Ẽ1(Wit)− Ẽ2(Wit) = ςi −
∑
git

λ
git
i ς

git
i � (12 revisited)

Taking the variance of both sides, we have

var
(
Ẽ1(Wit)− Ẽ2(Wit)

)
= var

(
ςi −

∑
git

λ
git
i ς

git
i

)

= var(ςi)+
∑
git

var
(
λ
git
i ς

git
i

)
(independence of MEs)

= var(ςi)+
∑
git

E
((
λ
git
i

)2)
E

((
ς
git
i

)2) − (
E

(
λ
git
i

)
E

(
ς
git
i

))2
(λgiti |= ςgiti )

= var(ςi)+
∑
git

E
((
λ
git
i

)2) var
(
ς
git
i

)
(E(ςi) = 0 and E(ς

git
i )= 0)

= var(ςi)
[

1 +
∑
git

E
((
λ
git
i

)2)]
� (var(ςi) = var(ςgiti ))
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Therefore,

var(ςi)= var
(
Ẽ1(Wit)− Ẽ2(Wit)

)
1 +

∑
git

E
((
λ
git
i

)2) � (13 revisited)

Appendix F: Taking into account interpolation errors

In Section 3.2.2, we note that interpolation error could be introduced into our computa-
tions because it is necessary to interpolate the means of subjective income distributions
conditional on values of GPA other than 2�00, 3�00, or 3�75. In addition, errors can be in-
troduced because it is necessary to compute distributions of final GPA from data. In this
Appendix, we show that taking into account these errors would lead to a smaller value
of var(ςi), implying a larger estimate of our measure of true heterogeneity.

We start by describing how we incorporate both types of errors into our analysis.
With respect to the potential error introduced during the computation of the distribu-
tion of final GPA, we denote FGit

(git) and F̃Git
(git) as the true CDF and the computed

CDF of Git , respectively. We allow the CDFs to potentially differ from each other and
denote the difference as F�

Git
(git) = F̃Git

(git)− FGit
(git).

For ease of notation, we denote a vector that includes (E(Wit |Git = 2�00)�E(Wit |Git =
3�00)�E(Wit |Git = 3�75)) as EW

Git
, and a vector that includes (Ẽ(Wit |Git = 2�00)�

Ẽ(Wit |Git = 3�00)� Ẽ(Wit |Git = 3�75)) as ẼW
Git

. The interpolation approach that we use
to compute the mean of subjective income distributions conditional on values of GPA
other than 2�00, 3�00, or 3�75 is essentially a mapping from ẼW

Git
to Ẽ(Wit |Git = git),

git �= 2�00�3�00�3�75. We denote this mapping as ẼW (git; ẼW
Git

). Note that the differ-

ence between the computed value of the conditional mean, ẼW (git; ẼW
Git

), and the true
value of conditional mean, E(Wit |Git = git), is a result of both the measurement error,
ẼW

Git
− EW

Git
= (ς2�00

i � ς3�00
i � ς3�75

i ), and the interpolation error, ẼW (git; EW
Git

) − E(Wit |Git =
git).

The mean of subjective income distribution computed using Approach 2, Ẽ2(Wit), is
then given by

Ẽ2(Wit) =
∫ 4

2
Ẽ(Wit |Git = git)dF̃Git

(git) =
∫ 4

2
ẼW

(
git; ẼW

Git

)
dF̃Git

(git)

=
∫ 4

2
E(Wit |Git = git)dF̃Git

(git)

+
∫ 4

2

(
ẼW

(
git; ẼW

Git

) −E(Wit |Git = git)
)
dF̃Git

(git)

=
∫ 4

2
E(Wit |Git = git)dFGit

(git)+
∫ 4

2
E(Wit |Git = git)dF

�
Git

(git)

+
∫ 4

2

(
ẼW

(
git; ẼW

Git

) −E(Wit |Git = git)
)
dF̃Git

(git)
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=E(Wit)+
∫ 4

2
E(Wit |Git = git)dF

�
Git

(git)

+
∫ 4

2

(
ẼW

(
git; ẼW

Git

) − ẼW
(
git; EW

Git

))
dF̃Git

(git)

+
∫ 4

2

(
ẼW

(
git; EW

Git

) −E(Wit |Git = git)
)
dF̃Git

(git) (26)

Following steps similar to those in Section D, we can show that∫ 4

2

(
ẼW

(
git; ẼW

Git

) − ẼW
(
git; EW

Git

))
dF̃Git

(git)=
∑
git

λ̃
git
i ς

git
i � git = 2�00�3�00 or 3�75� (27)

where λ̃2�00
i = ∫ 3

2 (3 − git)dF̃Git
(git), λ̃3�00

i = ∫ 3
2 (git − 2)dF̃Git

(git)+ ∫ 4
3 (1 − git−3

0�75 )dF̃Git
(git)

and λ̃3�75
i = ∫ 4

3
git−3
0�75 dF̃Git

(git).

Denoting �it ≡ ∫ 4
2 E(Wit |Git = git)dF

�
Git

(git) + ∫ 4
2 (Ẽ

W (git; EW
Git

) − E(Wit |Git =
git))dF̃Git

(git), equation (26) can be written as

Ẽ2(Wit) =E(Wit)+
∑
git

λ̃
git
i ς

git
i +�it� git = 2�00�3�00 or 3�75� (28)

Taking the difference between the mean computed using Approach 1 and the mean
computed using Approach 2, we obtain

Ẽ1(Wit)− Ẽ2(Wit) = ςi −
∑
git

λ̃
git
i ς

git
i −�it� git = 2�00�3�00� or 3�75� (29)

Recall that ςi and ς
git
i , git = 2�00, 3�00 or 3�75, are, by assumption, independent of other

factors. Hence, they are independent of �it since none of them show up in the expression
of �it . Taking the variance of both sides of equation (29), we find

var
(
Ẽ1(Wit)− Ẽ2(Wit)

) = var
(
ςi −

∑
git

λ̃
git
i ς

git
i

)
+ var(�it)

= var(ςi)
[

1 +
∑
git

E
((̃
λ
git
i

)2)] + var(�it)

≥ var(ςi)
[

1 +
∑
git

E
((̃
λ
git
i

)2)]
� (30)

Therefore,

var(ςi) ≤ var
(
Ẽ1(Wit)− Ẽ2(Wit)

)
1 +

∑
git

E
((̃
λ
git
i

)2) � (31)

Since both λ̃
git
i in this section and λ

git
i in Section 3.2.2 are computed using the same

distribution of Git (we assume that there is no error in the distribution of Git in Sec-
tion 3.2.2), they are numerically identical. Thus, the right-hand side of equation (31) is
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numerically identical to the right-hand side of equation (13). As a result, equation (31)
shows that our estimates of var(ςi) reported in Table 4 should be considered as upper
bounds for the true value of var(ςi).

Appendix G: Joint decomposition

In Section 4.1 and Section 4.2, we estimated the fraction of total initial uncertainty that
is explained by uncertainty about GPA and major, respectively. In this Appendix, we ex-
plain how to examine how much of total initial income uncertainty is due to uncertainty
about both of the two factors combined.

We start by decomposing total income uncertainty into the contribution of uncer-
tainty about both final GPA and major and the contribution of uncertainty about other
factors, following an equation similar to equation (4) and equation (15):

var(Wit) = varGit �Mit

(
E(Wit |Git�Mit)

) +EGit �Mit

(
var(Wit |Git�Mit)

)
= {

varGit

[
EMit |Git

(
E(Wit |Git�Mit)

)] +EGit

[
varMit |Git

(
E(Wit |Git�Mit)

)]}
+EGit �Mit

(
var(Wit |Git�Mit)

)
= {

varGit

(
E(Wit |Git)

) +EGit

[
varMit |Git

(
E(Wit |Git�Mit)

)]}
+EGit

[
EMit |Git

(
var(Wit |Git�Mit)

)]
� (32)

The sum of the two terms in the fancy bracket corresponds to the contribution of uncer-
tainty about both final GPA and major to total initial income uncertainty, while the last
term corresponds to the contribution of uncertainty about all other factors. Analogous
to equation (14) and equation (16), we define the contribution of final GPA and major to
total income uncertainty as follows:

RGM
it = (

varGit

(
E(Wit |Git)

) +EGit

[
varMit |Git

(
E(Wit |Git�Mit)

)])
/
({

varGit

(
E(Wit |Git)

) +EGit

[
varMit |Git

(
E(Wit |Git�Mit)

)]}
+EGit

[
EMit |Git

(
var(Wit |Git�Mit)

)])
� (33)

G.1 Estimation

We focus on the time of entrance (t = 0). In order to compute the joint contribution of
final GPA and major, we need to compute all three terms on the RHS of equation (32).
The first term can be computed using exactly the same method as in Section 3.1.2. We
now explain how to estimate the second and third term on the RHS.

Note that we can compute E(Wi0|Gi0) and var(Wi0|Gi0) for Gi0 = 2�00�3�00�3�75.
Hence, if we have data on the distribution of Mi0|Gi0, we can apply the method detailed
in Section 4.2 to estimate E(Wi0|Gi0�Mi0) and var(Wi0|Gi0�Mi0) for all Mi0 and Gi0 =
2�00�3�00�3�75, and compute varMi0|Gi0(E(Wi0|Gi0�Mi0)) and EMi0|Gi0(var(Wi0|Gi0�Mi0))

for Gi0 = 2�00�3�00�3�75. Then we can interpolate their values at other realizations
of Gi0 (Gi0 �= 2�00�3�00�3�75) and compute EGi0 [varMi0|Gi0(E(Wi0|Gi0�Mi0))] and
EGi0 [EMi0|Gi0(var(Wi0|Gi0�Mi0))] using a simulation-based method.
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Unfortunately, the distribution of Mi0|Gi0 is not directly available in the data. To deal
with this issue, we propose a method to estimate it using data on the unconditional
distribution of Mi0, Pij0, the distribution of Gi0, FGi0(gi0) and the expectation of Gi0|Mi0,
E(Gi0|Mi0).30

Denote the conditional probability of major, Prob(Mi0 = j|Gi0 = gi0), as PC
ij0(gi0).

Furthermore, we assume that PC
ij0(gi0) has the following form:

PC
ij0

(
gi0;ρ0

i10�ρ
1
i10� � � �

) = exp
(
ρ0
ij0 + ρ1

ij0gi0
)

∑
j′

exp
(
ρ0
ij′0 + ρ1

ij′0gi0
) � (34)

where ρ0
i70 and ρ1

i70 are normalized to 0. This leaves us 2 × (7 − 1) = 12 parameters to
estimate. Note that this specification actually corresponds to the case where final major
is determined by a multinomial logistic model with final GPA as the regressor.

We start by writing E(Gi0|Mi0) as a function of Pij0, FGi0(gi0) and PC
ij0(gi0).

E(Gi0|Mi0) =
∫

gi0 dFGi0|Mi0(gi0)

=
∫ PC

ij0(gi0)

Pij0
gi0 dFGi0(gi0)� (35)

where the second line follows from the Bayes rule.
We can rearrange the terms in equation (35) to derive an expression for Pij0:

Pij0 = 1
E(Gi0|Mi0)

∫
PC
ij0(gi0)gi0 dFGi0(gi0)

= 1
E(Gi0|Mi0)

∫ exp
(
ρ0
ij0 + ρ1

ij0gi0
)

∑
j′

exp
(
ρ0
ij′0 + ρ1

ij′0gi0
)gi0 dFGi0(gi0)� (36)

Note that, by definition, Pij0 also satisfies the following equation:

Pij0 =
∫

PC
ij0(gi0)dFGi0(gi0)

=
∫ exp

(
ρ0
ij0 + ρ1

ij0gi0
)

∑
j′

exp
(
ρ0
ij′0 + ρ1

ij′0gi0
) dFGi0(gi0)� (37)

Equations (36) and (37) allow us to express Pij0 as two different functions of
(ρ0

ij0�ρ
1
ij0), j = 1�2�3� � � � �7. We label them as P̃1

ij0(·) and P̃2
ij0(·), respectively. We then

30More precisely, what we observe in the data (Question 5 in Appendix A) is the conditional expecta-

tion of semester GPA, E(Gk
i0|Mi0), instead of the conditional expectation of final GPA, E(Gi0|Mi0). The two

would be identical if there does not exist a GPA minimum requirement for graduation. In practice, because
most students believe that receiving grades less than the minimum is highly unlikely (and do not think they
will drop out), in this section we simply approximate E(Gi0|Mi0) by E(Gk

i0|Mi0).
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define the estimator of (ρ0
ij0�ρ

1
ij0), j = 1�2�3� � � � �7 to be the minimizer of the sum of

squared differences between Pij0 and P̃1
ij0(ρ

0
i10�ρ

1
i10� � � �) and between Pij0 and P̃2

ij0(ρ
0
i10�

ρ1
i10� � � �). Formally, we have

{
ρ̂0
i10� ρ̂

1
i10� � � �

} ≡ argmin
2∑

q=1

7∑
j=1

[
P̃
q
ij0

(
ρ0
i10�ρ

1
i10� � � �

) − Pij0
]2
� (38)

Once {ρ̂0
i10� ρ̂

1
i10� � � �} are estimated, we can use equation (34) to compute the distri-

bution of Mi0|Gi0 for any realization of Gi0 and compute the three terms in equation
(32) in the way described in the second paragraph of this subsection.
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