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College choice, selection, and allocation mechanisms:
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José Raimundo Carvalho
CAEN, Universidade Federal do Ceará

Thierry Magnac
Toulouse School of Economics, University of Toulouse Capitole

Qizhou Xiong
Faculty of Economics and Management, OvGU Magdeburg and Financial Markets, IWH

We use rich microeconomic data on performance and choices of students at col-
lege entry to analyze interactions between the selection mechanism, eliciting
college preferences through exams, and the allocation mechanism. We set up a
framework in which success probabilities and student preferences are shown to
be identified from data on their choices and their exam grades under exclusion
restrictions and support conditions. The counterfactuals we consider balance the
severity of congestion and the quality of the match between schools and students.
Moving to deferred acceptance or inverting the timing of choices and exams are
shown to increase welfare. Redistribution among students and among schools is
also sizeable in all counterfactual experiments.
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1. Introduction

The matching literature provides analyses of mechanisms allocating goods or relation-
ships between many parties in the absence of a price mechanism, and examples range
from kidney exchange and marriage to school choice (see Roth and Sotomayor (1992),
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Roth (2008)). The analysis of centralized mechanisms in school choice as a many-to-
one match has been very popular in the recent theoretical and empirical literature
(for instance, Abdulkadiroğlu, Agarwal, and Pathak (2017), Agarwal (2015), Azevedo and
Leshno (2016), Budish and Cantillon (2012), Calsamiglia, Fu, and Güell (2018), Chen and
Kesten (2017), He (2017), Agarwal and Somaini (2018) among others) and has had prac-
tical value for policy implemented in primary or high schools in various countries.

College choice adds the new dimension of elicitation of college preferences over stu-
dents which is of secondary importance in primary and high school choice. This elici-
tation process costs time and money because of congestion if application costs are low.
This market friction is large when the allocation is decentralized as in the US (Che and
Koh (2016) and Chade, Lewis, and Smith (2014)) but not only. Even with centralized
mechanisms, for instance, used by universities in China (Chen and Kesten (2017)) or
Turkey (Balinski and Sönmez (1999)), it is costly to organize a general exam whose re-
sults determine students’ ranking while keeping up with the quality of selection in de-
centralized systems. This is why these exams are generally composed of proofs in differ-
ent fields (maths, literature, etc.) and at times consist of two stages. The first stage selects
out students at minimal costs while the second stage allows for a costly but more precise
evaluation (Hafalir, Hakimov, Kübler, and Kurino (2018)).

In this paper, we analyze the interactions between allocation mechanisms and selec-
tion when college choice is centralized. College preferences are not taken as granted as
in the matching literature and they are costly to elicit. We exploit an admittedly specific
college choice experiment in order to quantify some of the trade-offs that matching and
selection involve. Our observational “experiment” uses observed entry exam grades and
choices between schools within a Federal university in Brazil in 2004.

A mechanism called Vestibular was in place at this university and worked as fol-
lows. During their last high school year, students chose a single specialization field or
“school”1 before taking a two-stage exam at the end of high school. The first stage is a
cost-minimizing multiple question exam common to all fields and selects but the top-
ranked students for a more in-depth and specialized second-stage exam. Aggregating
scores of both exams yield the final rankings and admissions into each school.

This paper aims at evaluating the effects, on student allocations and their welfare, of
changing the allocation mechanism and the selection device with respect to the existing
Vestibular. In the absence of experiments (Calsamiglia, Haeringer, and Klijn (2010)) or
quasi-experiments (Pathak and Sönmez (2013)), estimating a structural model is key to
our empirical strategy. We construct such a model of college choice, exhibit conditions
under which parameters are identified, and derive empirical counterfactual results on
outcomes and welfare.

The paper makes three original contributions.
Our first contribution is to adopt a two-step empirical strategy that uses first infor-

mation on performance at the two-stage exams to estimate success probabilities at each
school. Second, we estimate preference parameters from observed school choices when
students play strategically by taking into account their expected probabilities of success

1We use the terms “college” and “school” interchangeably for these fields in the following.
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(Arcidiacono (2005), Epple, Romano, and Sieg (2006)). As far as we know, the previous
empirical literature does not estimate school choice models in which students face un-
certainty about their entrance exam scores. This is permitted by our rich data on exam
scores as well as on an initial measure of ability obtained a year before the exams are
taken.

Our second original contribution is to derive conditions under which expected suc-
cess probabilities of entry and preferences are identified from observing the distribution
of grades and college choices. Students play a “congestion” game in which choices of
other students affect their own success probabilities. We adopt specific and admittedly
strong assumptions to solve this game. The solution concept we use is a Nash equilib-
rium. Students have symmetric information about random shocks on grades, that is,
they know their distribution functions only and the information set of students and
econometricians is the same. We also assume that expectations are perfect in the sense
that they can be obtained by infinitely repeating the game with the same players. We
justify these assumptions in the specific context of our empirical application.

We show that the distribution of success probabilities can be obtained by resampling
in our observed sample and by using Nash equilibrium conditions. We derive from the
latter, grade thresholds for being admitted in a specific college at each exam stage and
show that success probabilities are identified. We then provide a proof of nonparametric
identification of preference parameters by using, as in Matzkin (1993), exclusion restric-
tions and conditions that success probabilities fully vary over the simplex. This proof of
identification specifically deals with two prevalent issues in college choice. First, data
are likely to be choice-based. Second, outside options play a much more important role
than in school choice (Agarwal and Somaini (2018)) since the number of candidates is
well above the number of seats, by a factor of 15 in our data.

Our third original contribution is to analyze the aggregate and distributive effects
on the allocation and welfare of students and schools of three different counterfactual
mechanisms that play with the trade-offs between congestion costs, the adequacy of
student selection, and the quality of the resulting match. These three experiments aim
at analyzing salient policy issues in the current debates on school choice (Roth (2018)).

In the first experiment, we restrict the number of seats available at the second-stage
exam. We argue that it reduces screening costs for schools at the risk of degrading se-
lection of adequate students. The counterfactual effect on matching quality we obtain
is, however, small. In the second experiment, students are allowed to submit a list of
two choices instead of a single one in order to get closer to a Gale–Shapley deferred ac-
ceptance mechanism. It indeed results in a positive aggregate effect in terms of utilitar-
ian social welfare though it also has distributive effects. Strategic effects in the original
mechanism are shown to be sizeable. Interchanging the timing of choices and the first
exam is the basis of our third counterfactual experiment. We allow students to choose
colleges after passing the first-stage exam instead of having them to choose before this
exam. This allocation mechanism is quite popular, as in Japan for instance (Hafalir et al.
(2018)). As expected, it has strong redistributive effects between schools and between
students since it favors more opportunistic behavior.
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Related literature

This paper touches different strands of the matching and school choice literature.
Analyzing the matching of students to schools has a long history and a brief survey

of the recent literature in which differences between school choice, college admission,
and student placement are rigorously defined is available in Sönmez and Ünver (2011).
Prominently in this literature, Gale–Shapley deferred acceptance mechanisms that sat-
isfy both properties of stability and strategy-proofness (on the student side if students
propose) if preferences are strict (e.g.,) Abdulkadiroğlu and Sönmez (2003). If such a
mechanism is used, the elicitation process through which schools decide on their rank-
ing of students has very little impact on the preference lists submitted by students. The
use of deferred acceptance mechanisms, however, could involve larger congestion costs
than other nonstable mechanisms (He and Magnac (2018)) such as deferred acceptance
with a truncated list of preferences as is the case with the mechanism we study in this
paper. The truncation is severe since the list of schools is of length one.

The seminal analysis of college admissions by Balinski and Sönmez (1999) was the-
oretical albeit oriented toward the analysis of a specific mechanism. They studied the
optimality of student placement in Turkish universities in which selection and competi-
tion among students are nationwide unlike our case. Students choose a rank-ordered list
of colleges prior to writing exams in various subjects. Student rankings are constructed
using exam grades, and are allowed to differ across colleges by weighting subjects differ-
ently. Grades in mathematics are given more weight by math schools.

Most of the empirical literature on matching, however, is concerned by primary or
high school choices. Abdulkadiroğlu, Pathak, and Roth (2009) studied the mechanisms
used in the New York high school system and focused on the trade-offs between effi-
ciency, strategy-proofness, and stability. This research line on primary and secondary
schools questions the relative standing of the Gale–Shapley and the Boston mechanisms
(Abdulkadiroğlu, Pathak, Roth, and Sönmez (2006)). Others analyze the Boston mecha-
nism as He (2017) who uses school allocation data from Beijing and evaluates the cost of
strategizing for sophisticated and naive agents. The question of the importance of trun-
cated lists of preferences used in practice in deferred acceptance mechanisms is high on
the agenda in recent research about middle or high school choices (Calsamiglia, Fu, and
Güell (2018), Fack, Grenet, and He (2017)).

School and college choice, however, differ in a number of dimensions and the ques-
tions set out in this paper are more specific to college choice. College preferences over
students depend on their past investments in human capital and abilities and not only
on priorities given by residence and siblings. This implies in particular that colleges have
strict preferences over students and the arguments underpinning the debate between
the choice of allocation mechanisms such as deferred acceptance and Boston can be
misleading for college choice. Furthermore, demand for colleges is not localized and is
much larger than supply.

In the most recent literature, demands for colleges are estimated in Hastings, Kane,
and Staiger (2009) to study how enlarging choice sets might have unintended conse-
quences for minority students. In Agarwal (2015), medical schools and medical residents
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preferences are estimated using a two-sided school choice model. Fu (2014) estimates
demand and supply equations when students have heterogenous abilities and prefer-
ences and when college applications are costly and uncertain. Akyol and Krishna (2017)
also estimated a structural model of high school choice using Turkish data in order to
understand whether the higher standing of elite schools is due to selection or to value
added. As the allocation mechanism in place is deferred acceptance, preferences can be
directly estimated from rank-ordered lists. It is remarkable that they find that estimates
of value added are small.

To our knowledge, there is no comparative survey of college admission procedures
in different countries. There exist empirical papers about the “parallel” mechanism used
in China (Chen and Kesten (2017) or Zhu (2014)) or descriptive analyses in Turkey (Do-
gan and Yuret (2013)) or in Egypt (Selim and Salem (2009)). Abizada and Chen (2011)
analyzed the eligibility restrictions to college access that gives a way of reducing costs of
evaluation of students by colleges. A descriptive analysis of the mechanism centralized
at the level of the country, which has been used in Brazil since 2010, is provided by Aygün
and Bo (2017) and Machado and Szerman (2017).

The most obvious distinction between college admission procedures is their degree
of centralization. Decentralized models of college choices, as in the United States, are
studied by Chade, Lewis, and Smith (2014), Che and Koh (2016), and Hafalir et al. (2018)
among others. In the last paper, low and high ability students are shown to have differ-
ent preferences over centralized and decentralized mechanisms and a small amount of
literature about centralization is surveyed there. Congestion is reduced by either making
students pay an application cost or by making them choose only one college. In Chade,
Lewis, and Smith (2014), school preferences are noisy signals of students’ abilities and
college strategizing can lead to inefficient sorting of students. The use of waiting lists
might lead to unstable mechanisms. In Che and Koh (2016), the uncertainty of student
preferences makes schools play strategically and this leads to inefficient and unfair as-
signments because the management of offers and acceptance of offers is uncertain and
takes time.

Centralization may avoid the costs of congestion if colleges do not have to deal with
all student files. It also streamlines the competition between colleges. Yet, centralization
assumes that college preferences are adequately translated by the information revealed
at a general exam (Hafalir et al. (2018)). In a decentralized system like in the US, many
other elements than the SAT score are evaluated and the selection is multidimensional.
The two-stage exam set-up tries to mitigate the reduction in selection quality. The se-
lection mechanism used in our empirical illustration is broadly akin to the Japanese
experience in which a first stage centralized exam is followed by a second-stage exam
decentralized at the level of each university on the same day which effectively avoids
congestion (see Hafalir et al. (2018)). The choice of college and the sequential exams are
also akin to the system now in place in South Korea (Avery, Lee, and Roth (2014)). As
a matter of fact, these two-step revelation procedures of school preferences are rather
common (job market for PhDs, “grandes écoles” in France) although their interaction
with the allocation mechanism is seldom studied in the literature (although see Lee and
Schwarz (2017)).
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Last, Agarwal and Somaini (2018) developed independently after us a proof of non-
parametric identification of preferences in a school choice model. It either relies on ex-
ogenous variation in the environment, that is, in expected success probabilities, as in
our case, or on the existence of a special regressor, such as distance to school and quasi-
linearity of preferences. Their more-in-depth analysis of the latter case is specifically
suited to school choice in primary and secondary schools, while our results bear on col-
lege choice. It is indeed more credible there that success probabilities continuously vary,
for instance because of grades, than in the case of school choice in which only discrete
priorities matter. Conversely, a special regressor such as distance is likely to be irrelevant
in college choice. Overall, the intuition for both results is based on Matzkin (1992, 1993).
We investigate more in-depth which preference functionals are identified when there
is exogenous variation in the environment and specifically because of the presence of
outside options and choice-based sampling.

The paper is organized in the following way. Section 2 describes our modeling as-
sumptions for college choices, the formation of expectations, and the conditions un-
der which preferences are identified. Section 3 presents the particulars of our empirical
application, explains the estimation and computation of success probabilities and the
estimation procedure of preference parameters. It also summarizes results from the es-
timated coefficients of grade and preference shifters. Section 4 details the results of the
three counterfactual experiments. A Supplementary Appendix, available upon request,
gathers the details and results of our many procedures.

2. Theoretical set-up

We start by describing a framework, encompassing our empirical application, in which
we provide modeling tools and identification results. We abstract from some aspects of
the empirical application, such as the two-stage nature of exams, that do not bear on
general results and are clarified in the empirical Section 3.

The first subsection defines notation, formalizes the timing of events for students
and describes the primitives of the decision problem and the observed variables. Stu-
dents are assumed to play an imperfect information game in which information on fu-
ture grades is imperfect but symmetric and its distribution known by agents. Students
have no private information and we assume that the solution concept is Nash. In par-
ticular, observed characteristics and preference shocks of students are common knowl-
edge. The construction of this set-up in terms of information sets and expectations is
presented in the second subsection. We also derive the necessary conditions for a Nash
equilibrium.

The final subsection provides conditions under which student preferences are iden-
tified.

2.1 Timing for the decision maker

First, we adopt a simplifying framework in which students choose, according to their
preferences, one and only one school among many within the university to apply to, as
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in our empirical application. Rank-ordered lists submitted by students are thus highly
truncated and more so than in the empirical application of Agarwal and Somaini (2018)
in which rank-ordered lists are of length three. The main reason for adopting such a set-
ting is that it does not change the list of identified objects. We return to this point after
stating our identification results. It is worth mentioning that this is akin to the identifica-
tion results of Agarwal and Somaini (2018) which are insensitive to the allocation mech-
anism in place provided that certain conditions are satisfied (Definitions 1–3, pp. 407–
408) excluding top-trading cycles. In this sense, having rank-ordered lists of length one is
the minimal observational requirement for preferences to be identified. This also calls to
mind that observing the ranking of alternatives in multinomial choices does not enlarge
the set of identified objects but allows them to be more precisely estimated.

Second, student preferences can be monetary or nonmonetary and describe the
consumption value of education (Alstadsæter (2011), Jacob, McCall, and Stange (2012))
as well as its investment value. The latter is derived from earnings that a degree from a
specific school raises in the labor market.

We omit the individual index for readability. A random variable, say D, describes
school choice and takes as realization, a specific school, j. The set of available schools
is denoted by a discrete set of indices, J , to which we add an outside option, D = ∅. We
denote J = card(J ) the number of available schools. Observed student characteristics
which affect preferences (resp., performance or grades) are denoted X (resp., Z) and
variables X and Z can be overlapping.

We describe the assignment mechanism by a simple sequence of four steps. At each
step, students obtain information or make decisions.

• School capacities: Every school announces the number of seats available or its ca-
pacity, nj .

• Choice of school: Students apply to one and only one school among available op-
tions, j ∈ {∅} ∪ J . The outside option j = ∅ means that one forfeits the opportunity to
get into one of these schools and either chooses another university, searches for a job, or
any other alternative (waiting until next year, staying at home). After that stage, students
are allocated, according to their school choices, to J subsamples which are observed in
our empirical application. We do not observe students who choose an external option
and in this sense we have a choice-based sample.

• Exam stage: All students take a single exam or multiple exams, identical across
schools, and exam grades are aggregated into a single grade denoted m and written as a
function of characteristics, Z, as

m=m(Z�u;β)
in which u are random individual circumstances that affect results at these exams and
β is an unknown parameter. College preferences are formed using these heterogenous
grades.

• College entry: In each subsample, defined by D = j, students are ranked according
to their values of grade m and the first nj students are accepted in school j that they
have chosen previously. This selection can be expressed using a threshold, T j , that de-
scribes the set of successful students by the condition, m≥ T j (as in Azevedo and Leshno
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(2016)). Those who succeed receive a value, V j , describing their preferences. Those who
fail, get the value of their outside option that we normalize to 0. Individual rationality
implies that j is never chosen if V j < 0.

There could be additional decision nodes to consider if the value of outside options
evolves over time because of the selection process. Students could leave the game af-
ter taking or passing exams because grades could give students a way to signal their
ability to potential employers or other universities. This would modify the value of the
outside option after the exam stage. This is why, in our empirical application, we select
elite schools which are so attractive that almost no students quit after taking or passing
exams.

Determining choices is now easy. Define the probability of success in school D as

PD = Pr
(
m(Z�u;β) ≥ TD

)
�

in which we delay until next section the precise definition of the probability measure
for random thresholds TD since it depends on the definition of information sets and
expectations. The expected value of choosing school D at the time of the choice is given
by

EV D = PDV D�

and, as the outside option has value zero, choosing j ∈ J is described by the choice-
based condition maxk∈J (V k) > 0. Moreover, maximizing expected utility leads, for any
j ∈ J , to

D= j iff max
k∈J

(
V k

)
> 0 and ∀k ∈ J /{j}; PjV j > PkV k� (1)

We shall specify later on, values as functions V j(X�ε;ζ) in which X are observed charac-
teristics, ε is an unobservable preference random term and ζ are preference parameters.
It is enough at this stage to define choices as D(X�ε�ζ� {Pj}j∈J ).

2.2 Expectations and Nash equilibrium

We now state our main assumptions, formalize the timing, explain how student beliefs
about success probabilities are formed and finish by the Nash equilibrium conditions.

2.2.1 Stochastic assumptions, information, and solution concept We first argue that the
following assumptions are adapted to our empirical setting:

Assumptions S(etting).

(S.i) Preference shocks, ε, and grade shocks, u, are independent of (X�Z) and between
each other, and both are continuously distributed.

(S.ii) The solution concept is a Nash equilibrium. Students have common knowledge
of the sample-specific preferences, εi, characteristics, Xi and Zi as well as common knowl-
edge of grade equation parameters, β, and preference parameters, ζ.
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(S.iii) The information of students and econometricians on the distribution of random
grade shocks, u, and characteristics, Xi and Zi is symmetric.

(S.iv) The distribution of grades is such that ∀j ∈ J , Pj > 0 almost everywhere PZ .

In Assumption S.i, independence of shocks and (X�Z) is a standard exogeneity as-
sumption while it is key in the following that preference shocks, ε and grade shocks, u,
are independent. It is akin to the usual assumption in consumer studies that income
and preference shocks are independent. A relaxation of this assumption would require
an instrumental strategy that is beyond the scope of this paper.2

Assumption S.ii is a complete information set-up that we adopt for two reasons.
First, school choice at this university is a game which had been repeated every year over
a long time span and which had high stakes for students, families, high schools, and
preparatory courses alike. The strategizing ability seems more acceptable in our set-up
than in the case of primary or high schools (for instance, see He (2017)). The time period
over which a student ability is assessed is much longer and many other agents like par-
ents or teachers are ready to help out students to form expectations (see Manski (1993),
for a critical appraisal of such assumptions). Second, a Bayesian–Nash solution con-
cept would be appropriate when agents have private information about their preference
shocks, εi. Yet, as this congestion game involves many players, it can be conjectured that
strong laws of large numbers ensure that the two set-ups are close in terms of aggregate
outcomes.

Assumption S.iii might be more controversial since it posits that students have no
better knowledge of their own success probabilities than their fellow students or econo-
metricians. First, school choices are shown below to ultimately depend on the ratio of
success probabilities in the different schools. Any superior knowledge of an individual
specific effect affecting success is partly wiped out by this nonlinear differencing. Sec-
ond, we use an observable pre-exam national grade in the empirical application to con-
trol for superior knowledge. We will briefly return to the effect that the existence of su-
perior information could have on our procedure at the end of this section.

Finally, Assumption S.iv makes sure that a pure strategy is optimal almost surely for
all students and simplifies the analysis of the game.

2.2.2 Timing The timing of information revelation, described in the previous section,
is formalized as follows. Before schools are chosen, the number of seats in each school,
{nj}j∈J are announced and the total number of participants, say n + 1, is observed. We
assume that n+ 1 � ∑

j∈J nj since the Vestibular exam is highly selective.
We distinguish one arbitrary applicant, indexed by 0, from all other applicants,

i = 1� � � � � n, and we analyze her decision making. We can proceed this way because
we are considering an independently and identically distributed (i.i.d.) setting and be-
cause the model is assumed symmetric between agents (although they differ ex ante
in their observed characteristics and ex post in their unobserved shocks). Applicant 0

2We test and do not reject an implication of this assumption in the empirical section, conditional on
admittedly specific auxiliary conditions.
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faces the n other applicants and we shall construct her best response to other play-
ers’ choices, {Di}i=1�����n ≡ D(n) since we use a Nash solution concept (Assumption S.ii).
The information set of student 0 at the initial stage comprises at least all elements of
W0 = (X0�Z0� ε0), X(n) = {Xi}i=1�����n, Z(n) = {Zi}i=1�����n, and D(n).

Student 0 chooses her school (D0 ∈ J ) as a function of her success probabilities,
{Pj

0}j∈J , and her preferences as shown in equation (1). Because of Assumption S.iv, stu-
dent 0 plays a pure strategy almost surely. This is her best response to the aggregate
behavior of other students on which success probabilities depend. In this sense, this is
an aggregative game (Jensen (2010)) and we will later make use of this characteristic.

After choosing one school, the exam is taken and students are selected in or out
of each school, j, by retaining the best nj students and this defines the thresholds as
functions of observed grades. There are two types of risks that student 0 faces. First, the
aggregate risks due to grade shocks affecting other students, U(n) whose elements are
ui, i = 1� � � � � n, second the individual risks due to her own grade shock, u0. Integrating
out both risks allows success probabilities to be derived as the rational expectations of
success of student 0.

2.2.3 Success probabilities and best responses Denote Z
j
(n) the set of grade shifters of

the sub-sample of students i = 1� � � � � n applying to school j ∈ J that student 0 considers
when she computes her best response to D(n). By construction, Z(n) = (Z

j
(n))j∈J . Sim-

ilarly, we denote U
j
(n) the corresponding components of U(n). We shall see in the next

subsection how subsamples are derived from primitives. Denote T = (T j)j∈J the ran-
dom vector of exam thresholds that determine entry into each school, j ∈ J and whose
realizations are observed thresholds (tj)j∈J . These thresholds are random unknowns at
the initial stage since they depend on variables, u, that are random unknowns at the
initial stage.3

Should school j be chosen by student 0, her success would be determined, consid-
ering the sample of other students, by the binary condition

1
{
m(Z0�u0�β)≥ T j

(
Z

j
(n)�U

j
(n)

)}
�

Given that the Nash solution concept, Assumption S.ii, fixes the sample of applicants to
school j, threshold T j(·) for school j ∈ J only depends on the characteristics of appli-
cants to this school, Zj

(n), and on their grade shocks, Uj
(n). Because grades are continu-

ously distributed (Assumption S.i), we can also neglect ties. The existence of thresholds
resembles what Azevedo and Leshno (2016) derived in a different context of a stable
equilibrium with an infinite number of applicants.

The formal construction of these thresholds is explained below after having deter-
mined choices but the intuition is clear. School j threshold that student 0 considers is
equal to the grade obtained by the nj-ranked student in i = 1� � � � � n. These thresholds
are not explicitly indexed by 0 although they refer to the thought experiment that stu-
dent 0 performs when constructing her expectations as a function of characteristics and
strategies of other students i = 1� � � � � n.

3We adopt the term random unknowns to signal that the distribution function of those unknowns are
common knowledge. Measurability issues are dealt with below.
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When student 0 decides upon a school to apply to, she formulates expected proba-
bilities of success by integrating the condition of success with respect to the aggregate
source of risk described by U

j
(n) (remember that student 0 observes Z(n) and conditions

on D(n)) and with respect to the individual source of risk, u0:4

P
j
0 = Pj

(
Z0�Z

j
(n)�β

) =E
U

j
(n)�u0

[
1{m(Z0�u0�β)≥ T j | Z0�Z

j
(n)

]
= E

U
j
(n)

[
pj

(
Z0�T

j�β
) |Z0�Z

j
(n)

]
� (2)

in which the following function results from integrating out the individual shock, u0,
only

pj
(
Z0�T

j�β
) =Eu0

[
1{m(Z0�u0�β)≥ T j | Z0�T

j
]
� (3)

Note that the only influence of U(n) is through thresholds which are sufficient statis-
tics. They do not depend on the determinants of student preferences, X0 and X , except
through revealed school choices and they depend on Z

j
(n) only through T j that are com-

puted below. We use the exclusion of Xs below for identification.
Denote D0(X0� ε0� ζ� {Pj

0}j∈J ) ∈ J the best response of applicant 0 resulting from
equation (1). Given that the sample is i.i.d. and that 0 is an arbitrary representative ele-
ment of the sample, we can by substitution construct the samples of applicants to school
j by using

Z
j
(n) = {

i ∈ {1� � � � � n};Di

(
Xi�εi� ζ�

{
Pk
i

}
k∈J

) = j
}
�

It is thus clear that the application mapping Z(n) into Z
j
(n) is measurable although it

remains to be shown that the application mapping Z(n) into thresholds (T j)j∈J is mea-
surable. That is what we do now.

2.2.4 The determination of the thresholds We can now return to the determination of
thresholds (T j)j∈J , considered by agent 0. For any realization of U(n), the J Nash equi-
librium conditions yield a realization of the thresholds, {tj}j∈J , as:

n∑
i=1

[
1{Di = j}1{m(Zi�ui�β)≥ tj

] = nj� (4)

As usual with empirical quantiles, this system has many solutions, tj . We retain the so-
lution corresponding to the grades of the less well-ranked applicant in each school and
because ties are absent with probability one, this solution is unique, and a measurable
function of Z(n) and U(n). This defines the random thresholds, {T j}j∈J .

Equations (1) and (4) are necessary conditions for a Nash equilibrium.5 A sketch of
proof of the existence of a Nash equilibrium is spelled out in Appendix A and builds upon

4All expectations exist since integrands are measurable and bounded.
5Because the number of applicants is very large with respect to the total capacity, we neglect the occur-

rence that seats remain unmatched. In other words, we assume that the probability that one subsample j

contains less than nj students is zero or negligible. At the university under consideration, the average rate
of success is between 5% and 20% (Table S.i, Supplementary Appendix).
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tools developed for potential games with weak strategic substitutes (Dubey, Haimanko,
and Zapechelnyuk (2006)).

2.3 Identification of success probabilities and preferences

We now study the identification of success probabilities and preferences.

2.3.1 Success probabilities Success probabilities are expressed, using equation (2), as
a function of known variables—characteristics Z0, Z(n), and decisions D(n)—and un-
known variables—parameter β, the distribution of grade shocks, u, and the distribu-
tion of thresholds {T j}j∈J . First, the grade equation, m = m(Z�u;β), identifies param-
eter β and the distribution of u. Plugging these objects into the Nash conditions (4),
given Z(n) and D(n) and computing thresholds identifies the distribution of {T j}j∈J .
In consequence, success probabilities are identified. In the following, we denote them,
{Pj(Z)}j∈J .

In general, the identification of Pj(Z) depends on the context which may be less
simple than the one we used here. Yet, it is likely in general that exogenous variation in
these probabilities could be given by various measures of ability, not only of an aggregate
type as here, but also by field-specific grades. In Section 3, we return to the identification
of success probabilities in our empirical application.

2.3.2 Choice-based sample and outside options We adopt a general random utility set-
up in which values are continuously distributed (Assumption S.i). By the probability in-
tegral transform, we can thus always adopt the representation in which each function V j

is monotonic in one unobservable, denoted εj , whose marginal distribution is uniform
on [0�1]:

∀j ∈ J � V j = V j
(
X�εj

)
< ∞�

Dependence between εjs is left unrestricted and is described by any continuous copula.
There are two issues of concern for identification that distinguishes this proof from

Agarwal and Somaini (2018). The first one regards choice-based sampling since our
sample comprises students interested by at least one school, so that we condition the
analysis on the event that maxj∈J (V j) > 0. Second, we have to consider that only some
schools could have positive value for students and we have to condition the analysis on
unobservable latent sets J+ ⊂ J of schools that provide positive utility. Namely, other
schools, in the complement of J+ in J , J c+ = J /J+, are strongly dominated by the out-
side option with probability one.

The finite set J+ whose number of elements is greater or equal to one because of
choice based sampling is a random set whose distribution is induced by the distribution
of random values, V j ,

Q(J+ | X) = Pr
(
∀j ∈ J+� Vj > 0; ∀j ∈ J c+� Vj ≤ 0 | max

j∈J
(
V j

)
> 0�X

)
�

Let us first derive the optimal school choice conditional on J+ and integrate out J+
in a second step. If set J+ is a singleton, student’s choice is its single element and success
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probabilities do not matter. If set J+ has two or more elements, success probabilities
affect choices through the relative values of PjV j (equation (1)). Students may disguise
their true preferences and act strategically. These relative values are positive because set
J+ is defined as such and because Pj > 0 by Assumption S.iv. We can rewrite the decision
model when j ∈ J+ by taking the logarithm of equation (1):

D = j if log
(
Pj

) + log
(
V j

)
> max

k∈J+/{j}
(
log

(
Pk

) + log
(
V k

))
� (5)

in which we kept the dependence of V k on X , εk and of Pj on Z implicit and in which
ties are of probability zero because of Assumption S.i. Denote �jk(Z) = log(Pj(Z)) −
log(Pk(Z)) in the following and express choice probabilities, by integrating out sets J+,
as

Pr(D = j | Z�X)

=
∑

J+;J+⊃{j}
Q(J+ |X)Pr

(∀k ∈ J+��jk(Z) > log
(
V k

) − log
(
V j

) | X�Z�J+�J c+
)
� (6)

It is useful to consider the two-school example to understand the sequence of proofs
below.

The two-school example When the choice set is reduced to two elements, J ={S�F} as
in our empirical application,6 Figure 1 exhibits how we solve the decision problem in
each of four quadrants.

Figure 1. Choice space.

6Our empirical application deals with two schools in two cities, Fortaleza and Sobral, and we use their
initials, F and S, to make easier the recollection of which school we are talking about.
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First, the southwest quadrant is composed of individuals who are excluded from the
choice-based sample and its probability measure is not identified. Second, in the north-
west quadrant, V S > 0 and V F ≤ 0, J+ = {S} and school S is necessarily chosen. The
probability measure of this quadrant is

δS(X) = Q
({S} | X) = Pr

{
V S > 0� V F ≤ 0 | max

(
V S�V F

)
> 0�X

}
�

Similarly, in the southeast quadrant, V F > 0 and V S ≤ 0, J+ = {F} and school F is nec-
essarily chosen. Its probability measure is δF(X) =Q({F} | X). In both regions, students
reveal their true preferences and do not act strategically. Note that identification is ordi-
nal only in these two quadrants.

This is different in the northeast quadrant since choices can change if success prob-
abilities PS and PF change. Specifically, school S is chosen if and only if

log
(
PS

) + log
(
V S

)
> log

(
PF

) + log
(
V F

)
�

Denoting δSF(X) as the probability of the northeast quadrant, the choice probability
regarding the first school is derived from equation (6):

Pr(D = S | X�Z)

= δS(X)+ δSF(X)Pr
{
log

(
PS

) − log
(
PF

)
> log

(
V F

) − log
(
V S

) | X�Z
}
� (7)

Returning to the general equation (6), we now study the identification of the two
following structural objects; first, the probability measure of each quadrant, Q(J+ | X);
second, the joint distribution of log-value differences, log(V j) − log(V k), in each quad-
rant J+.

2.3.3 Identification of preferences As is well known in discrete models since Manski
(1988) and Matzkin (1993), a necessary condition for identification is the full variation
of some regressors, conditionally on others. Those regressors are here the success prob-
abilities:

Assumption CV (Complete Variation). Almost everywhere (a.e.) PX , the support of
P(Z) = (Pj(Z))j∈J , conditional on X , is the set (0�1)J .

Assumption CV requires first that the set of covariates Z is at least of dimension J

and that their variation induces that the support of success probabilities is the full unit
hypercube. Success probabilities P(Z) act as prices (Azevedo and Leshno (2016)) and
the effects of preference shifters cannot be identified from success probabilities absent
exclusion restrictions. This is why this assumption requires that a sufficient number of
grade shifters, Z, should be excluded from the list of preference shifters, X . This is akin
to the exclusion of school priorities from preferences in Agarwal and Somaini (2018).

We use equation (6) and make success probabilities vary in the unit hypercube. We
adopt a two-step strategy. First, we show that the probability measures of quadrants,
Q(J+ | X), are identified.



Quantitative Economics 10 (2019) College choice, selection, and allocation 1247

Proposition 1. Under Assumption CV, for any nonempty J+ ⊂ J , Q(J+ | X) is identi-
fied.

Proof. See Appendix B.1

The intuition for this proof is better gained by using again the two-school example.
The structural probabilities of each quadrant in Figure 1 are

{
δS(X)�δSF(X)�δF(X)

}
�

and these appear in equation (7). By Assumption CV, the support of �SF(Z) = log(PS)−
log(PF) is the full real line and we can identify δS by using the limit of equation (7):

δS(X) = lim
�SF(Z)→−∞

Pr
(
D= S | �SF(Z)�X

)
�

Interchanging S and F identifies δF and δSF(X) = 1 − (δS(X)+ δF(X)).
Returning to the general case, we now prove identification of the distribution func-

tion of log-value differences, log(V j)− log(V k), in each quadrant J+.

Proposition 2. Under Assumption CV and ∀J+ ⊂ J , Q(J+ | X) > 0 a.e. PX , the joint
distribution of Pr((log(V k) − log(V j))k∈J+/{j}� | X�J+�J c+) is identified a.e. PX , for any
J+ ⊂ J , and fixing any specific j ∈ J+ as the “reference” alternative.

Proof. See Appendix B.2.

We added the condition that Q(J+ | X)> 0 for simplicity. In the case, Q(J+ | X) = 0,
preferences cannot be identified in set J+ but it has no importance.

The proof of the proposition is by induction over the total number of schools and we
thus deal with the two-school example again to provide the intuition.

A two-school example (ct’d). From equation (7) and assuming Q({S�F} | X) =
δSF(X) > 0, we can form the expression that

Pr
(
D = S | �SF(Z)�X

) − δS(X)

δSF(X)
= Pr

(
�SF(Z) > logV F − logV S | X�Z

)
� (8)

All terms on the left-hand side are identified and standard arguments (Matzkin (1993))
show that the distribution of logV S − logV F conditional on X is identified under the
condition that the support of �SF(Z), conditional on X , is the full real line.

Returning to the main argument, it is to be emphasized that Proposition 2 states
identification of a joint distribution of preferences within a quadrant. This implies that
Propositions 1 and 2 have the corollary that counterfactuals, investigating alternative
mechanisms, are identified and this is what we use in the empirical application. Ex-
pected utilities of a rank-ordered list of any length are derived from the success prob-
abilities and the joint distribution of differences of values in each set J+ of alternatives
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with positive values. Generally speaking, what matters is that expected utilities are bilin-
ear functions of the underlying values, V k, and of the success probabilities (equation (7),
Agarwal and Somaini (2018)). The corollary thus applies to all mechanisms described by
Definitions 1–3 of Agarwal and Somaini (2018).

We finish by a set of remarks about extensions.

Remark 1. Most importantly, this identification proof is obtained under the restrictive
condition that one school only is chosen by students. When a more informative rank-
ordered list comprising several schools can be submitted by students, identified objects
in Propositions 1 and 2 remain the same.7 We proceed by providing a counterexample
of a result that would state that other objects can be identified in the two-school case.

Recall that in the two-school case, observing rank-ordered lists of length one identi-
fies the probability of school, say S, to be positively valued and of school, say F , of being
negatively valued, as a limit result by varying success probabilities in such a way that
school, F , always dominates S if both are positively valued (Proposition 1). If we can
now observe rank-ordered lists of length 2, the same probability can be identified by the
probability of observing a rank-ordered list which ranks S first and the empty set second.

Using length-2 rank-ordered lists, we cannot identify, however, more than this prob-
ability in the quadrant in which VS > 0 and VF ≤ 0 and this is true as well in the other
quadrant VS ≤ 0 and VF > 0. In the quadrant VS > 0 and VF > 0 in which the log differ-
ences of values are identified (Proposition 2), this holds true as well. Admittedly, success
probabilities change if we change the length of the rank-ordered lists but their identi-
fication still relies on using the continuous variation of grades and the cutoffs are still
determined by equations similar to equation (4). In conclusion, observing longer rank-
ordered lists leads to overidentification that could help increasing the precision of pref-
erence estimates although this issue is out of the scope of this paper.

Remark 2. Differences of log-values are nonparametrically identified but levels are not
identified. In Section 4, the evaluation of counterfactual welfare is achieved by complet-
ing identifying conditions with additional assumptions.

Remark 3. We could further adopt a linear median restriction for differences between
logarithms of values such as, in the two-school example,

logV S − logV F =Xγ + ε

in which the distribution of ε, F(· | X) is restricted as

F(0 | X) = 1
2
� (9)

Parameter γ and F(ε | X) are identified.

7This result requires that students never rank negatively-valued schools in their rank-ordered lists be-
cause, for instance, they face an infinitesimal cost of refusing an offer (that they could receive from a
negatively-valued school if they rank it).
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Remark 4. It is possible to weaken Assumption CV and admit that the support of the
conditional distribution of �jk(Z) conditional on X might not be the full real line. If
we keep the two-school example to make the point in a simple setting, assume for con-
venience that the support of �SF for any value taken by X includes the value 0. Then
as developed in Manski (1988), identification becomes partial under the median restric-
tion (9) written above. Parameter γ is identified using the median restriction and F(· | X)

is identified in the restricted support in which �(Z) + Xγ varies. Our data exhibit lim-
ited variation and this is why we adopt, in the empirical application, a parametric as-
sumption for F(· | X). What nonparametric identification arguments above prove is that
this parametric assumption is a testable assumption at least in the support in which
�SF(Z)+Xγ varies.

Remark 5. We can now briefly return to the issue of superior information that students
could have with respect to econometricians. To discuss this point, suppose that each
student receives a signal, before choosing the school to apply to, about her ability, say
σi, and which is correlated with exam grades. If we keep the complete information struc-
ture, signals are fully observed by agents. Using the same model of belief about success
in each school but conditioning now on the vector of signals σ , agents use success prob-
abilities that can be written as π(Z�σ) instead of P(Z). Because of the law of iterated
expectations, we have that E(π(Z�σ)|Z) = P(Z). Denote W = π(Z�σ)/P(Z) the posi-
tive random variable standing for superior information and which is mean independent
of Z by construction.8 This is not, however, a sufficient condition to recover log-value
differences and it shall be additionally assumed that W and X , Z are independent to
prove that log value differences are identified up to an additive independent “measure-
ment” error term. A common prior assumption for agents and econometricians alike is
thus a strong assumption but absent any other observed decision variable that might
help recover or proxy σ (see Campbell (1987) for instance), dealing with the general case
seems out of reach.

3. The empirical application

We begin with describing our empirical application and with adapting the general model
described in the previous section to the particulars that Universidade Federal do Ceará
(UFC from here on out) in Northeastern Brazil used to select students in 2004. We then
turn to the computation of success probabilities and give a summary of our empirical
strategy. We finish by reviewing our estimation results.

We restrict, for various reasons, the empirical application to two medical schools
only. They are respectively located in Sobral (denoted S), the second most populated
city in the state of Ceará and Fortaleza (denoted F), the state capital. First, the content
of second-stage exams differs if schools are in different fields (for instance, medicine
or law) and this would introduce substantial heterogeneity between schools. Second, it

8We take the ratio between those probabilities because the decision model in set J+ is written in loga-
rithms.



1250 Carvalho, Magnac, and Xiong Quantitative Economics 10 (2019)

enables us to choose the best schools in the university for which our assumptions on in-
formation and outside options are the most likely to be satisfied. Third, the more schools
are analyzed, the stronger the requirement of complete variation of success probabilities
(Assumption CV) for identification is.

We chose the two best medical schools because (1) they are the schools which attract
the best students among all candidates within UFC (see Table S.ii in the Supplementary
Appendix); (2) on prior grounds, the best substitutes are a slightly lower quality medical
school in the countryside (Barbalha) or pharmacy and related fields with a lower stand-
ing in terms of cut-off grades and (3) other schools of excellence are schools of law which
are presumably bad substitutes. As a matter of fact, the best substitutes are outside the
university: a state university and three private medical colleges in Fortaleza and Sobral;
outside the state, medical schools in Recife at the closest or in Sao Paulo or Campinas
further away. All substitutes are dealt within the model as an aggregate outside option.9

We focus on medical schools also because of their attractiveness for the best stu-
dents. Almost no students desist between the two-stage exams if they pass the first stage.
Being accepted in those schools is extremely valuable and the care and attention of stu-
dents, parents, and teachers are certainly at their highest for those two schools. The
school in Sobral is small and offers 40 positions only while Fortaleza is much larger since
it offers 150 seats. As shown in the empirical analysis below, this asymmetry turns out to
be key for evincing strategic effects.

3.1 Timing and the two-stage exams of the Vestibular

The timing of the real mechanism is enriched in two ways with respect to the stylized
setting that we described in Section 2.

First, students take a standardized national exam, known as ENEM and measuring
students’ ability in different subjects (math, etc.) before college choices are made and
about one year before Vestibular exams begin. ENEM results are used by the university
when computing the passing thresholds at the Vestibular exams. It is also a very conve-
nient measure of ability that all students know when they choose their preferred school.

Second, exams are taken in two stages. The first-stage exam is identical across
schools and denoted as

m1 = m1(Z�u1;β1)

in which u1 are random individual circumstances that affect results at this exam. Af-
ter this first exam, students are ranked according to a weighted combination of grades
ENEM and m1. Those weights are common knowledge ex-ante and measure the relative
interest of schools in selecting students using the national and the local exam grades.
The thresholds of success at the first-stage exam are given by the rule that the number
of available slots is equal to four times the number of final seats offered by the school.
Given that schools have respectively 40 and 150 seats, the number of students passing
the first stage is 160 and 600 out of a total of 542 and 2325 candidates.

9See Sections S.1 and S.2 in the Supplementary Appendix which justify these arguments and comple-
ment the empirical analysis presented here.
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We write the selection rule after the first exam as

m1 ≥ t
j
1(ENEM)= τ

j
1 − a1ENEM �

in which τ
j
1 is determined by the number of candidates and positions available in the

school. Threshold t
j
1 depends on ENEM because students are ranked according to a

weighted sum of m1 and ENEM whose weights are (1� a1) but we make this dependence
implicit in the following.

Students who do not pass the first exam get their outside option D = ∅, with utility,
V∅. Other students take the second-stage exam and get a second-stage grade, denoted
m2:

m2 =m2(Z�u2;β2)�

where u2 is an error term whose interpretation is similar to u1 and u2 and is possibly
correlated with u1. These students are ranked according to a known weighted linear ag-
gregator of ENEM , m1 and m2, and this again stands for the relative importance given to
each of these dimensions by schools. Students are accepted in the order of their ranks
until completion of the positions available for each school. As before, we write the selec-
tion rule as

m2 ≥ t
j
2(ENEM �m1)�

as a function of a second threshold which also depends on previous exam grades since a
linear aggregator is used to rank students. Students who fail the second-stage exam get
the same outside utility as students who fail the first-stage exam.

We can then extend the definition of the probability of success in school D to

PD = Pr
(
m1(Z�u1;β1)≥ TD

1 (ENEM)�m2(Z�u2;β2)≥ TD
2 (ENEM �m1)

)
�

3.2 Identification of grade equations and success probabilities

Only students who pass the first-stage exam can write the second-stage exam. Therefore,
in our data, the second-stage grades, m2, are censored when first-stage grades, m1, are
not large enough that is, m1 < T

j
1 and in the absence of any restriction, the distribution

of m2 is not identified.

3.2.1 A control function approach To proceed, we shall specify that (m1(Z�u1;β1)�

m2(Z�u2;β2)) are linear indices of covariates with respective parameters β1 and β2. The
estimation of β1 proceeds under the restriction that E(u1|Z) = 0. In the second-stage
grade equation, we use a control function approach to describe the influence of the un-
observable factor derived from the first grade equation (Blundell and Powell (2003)). We
assume that

u2 = g(u1)+ u∗
2

in which u∗
2 is mean independent of u1, E(u∗

2 | u1�Z) = 0.
By doing this, we are now also able to control the selection bias since u∗

2 is supposed

to be mean independent of u1 and, therefore, E(u∗
2 | m1 ≥ T

j
1 �Z)= 0. This would identify
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parameters and the control function g(·). Nonetheless, our goal is not only to estimate
these parameters but also to estimate the joint distribution of (u1�u2). This is why in
the following we assume that u1 and u∗

2 are independent of each other and of variables
Z and simply use the estimated empirical distributions of u1 and u2 when estimating
success probabilities.

3.2.2 Simulated success probabilities To predict success probabilities, two important
elements are needed: the joint distribution of random terms u1 and u2 and the admis-
sion thresholds for the first- and second-stage grades. We already stated assumptions
under which we can recover the former. The latter are derived from the definition of the
final admission in each school as described by two inequalities as functions of linear
combinations of initial grades and first- and second-stage grades fixed by the university:

m1 + 120 ∗ ENEM/63 ≥ τ
j
1�

0�4 ∗ (m1 + 120 ∗ ENEM/63)+ 0�6 ∗m2 ≥ τ
j
2�

(10)

Thresholds (τj1� τ
j
2) are taken here as any possible realization and we construct equation

(3) from the distribution of random grade shocks. Integrating out thresholds T
j
1 and T

j
2

comes in a second step.

Conditional success probabilities We first transcribe the inequalities (10) as functions
of unobserved heterogeneity terms u1 and u2. For every student, passing the two exams
means that the two random terms in the grade equations should be large enough as
described by

u1 ≥ τ
j
1 − 120 ∗ ENEM/63 −Zβ1�

u∗
2 ≥ τ

j
2

0�6
− 2

3
(Zβ1 + u1 + 120 ∗ ENEM/63)−Zβ2 − g(u1)�

Notice that the second inequality depends on first-stage grade shocks, u1, because of the
correlation between grades. Therefore, the success probability in a school j, as defined
by a function of thresholds in equation (3), can be expressed as

pj
(
Z�β�τ

j
1� τ

j
2

) = Pr
{
u1 ≥m

j
1 −Zβ1�u

∗
2 ≥m

j
2 − 2

3
Zβ1 −Zβ2 − 2

3
u1 − g(u1)

}
�

=
∫ ∞

m
j
1−Zβ1

fu1(x)

(
Pr

{
u∗

2 ≥m
j
2 − 2

3
Zβ1 −Zβ2 − 2

3
x− g(x)

})
dx�

=
∫ ∞

m
j
1−Zβ1

fu1(x)

[
1 − Fu∗

2

(
m

j
2 − 2

3
Zβ1 −Zβ2 − 2

3
x− g(x)

)]
dx� (11)

in which m
j
1 and m

j
2 are functions of thresholds:⎧⎪⎨

⎪⎩
m

j
1 = τ

j
1 − 120 ∗ ENEM/63�

m
j
2 = τ

j
2

0�6
− 2

3
(120 ∗ ENEM/63)�
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Unconditional success probabilities As those are derived from an expectation taken
over thresholds T in equation (2), we use a simulated sample analog and compute the
distribution function of T at an arbitrary level of precision using equilibrium conditions
(4)10 by simulation of U(n). By construction, T depends on observation 0, and thus its
distribution has to be computed for every single observation. For simplicity and because
this dependence matters less and less when n grows, we compute those thresholds in
the empirical application using equation (4) in which the sums are taken over the full
sample i = 0�1� � � � � n and success probabilities are estimated only once instead of n+ 1
leave-one-out estimates.

3.3 Empirical strategy: Summary

We first estimate parameters of the grade equations and denote them β̂n. This, in turn,
allows us to compute the expectation of the success probabilities conditional on thresh-
olds τ

j
k, k = 1�2, j = S�F as in equation (11) using the estimated distribution functions

for errors in the grade equations. We then compute unconditional success probabilities
by integrating out by simulation conditional success probabilities as in equation (2).
Namely, for any simulation c = 1� � � � �C, draw in the distribution of U(n) and derive real-
izations of T , say tc in the C samples of size n by fixing choices 1{Di(Zi�εi� ζ�P

S
i �P

F
i ) =

S}, characteristics Xi, and by solving the equilibrium conditions (4). Equation (2) can
then be computed by integration as

P̂
j
0�C = 1

C

C∑
c=1

pj
(
Z0� β̂n� t

j
1�c� t

j
2�c

)
� (12)

Preferences are described by the probabilities of each quadrant in Figure 1, {δS(X)�

δSF(X)�δF(X)} and by the following parametric specification of log-value differences:

logV S − logV F = Xγ + ε� ε ∼ N(0�1)�

Preference parameters ζ = (δ�γ) are estimated using a conditional maximum likelihood
approach:

ζ̂n = arg max
ζ

l
(
ζ|P̂S

0�C� P̂
F
0�C

)
�

This is a conditional likelihood function since P̂S
0�C , P̂F

0�C depend on the first-step esti-

mate, β̂n. Standard asymptotic arguments yield

ζ̂n
P−→

n→∞ ζ�

We used bootstrap to obtain the covariance matrix of those estimates by replicating the
complete estimation procedure as a mixture of nonparametric (grade equations) and
parametric bootstrap (choice equations).

10Generalizing them to the two-stage exam setting is straightforward; see equation (13) below.
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Table 1. Descriptive statistics in the two medical majors.

Sobral: 40 positions

Variable Mean Median Std. Dev. Min. Max. N

Grade: National exam (m0) 50�43 52�00 7�29 18�00 61�00 527
Grade: First stage 71�67 73�00 15�74 20�00 103�00 527
Grade: Second stage 240�0 246�5 33�98 94�3 296�6 160
Female 0�47 0 0�50 0 1 527
Age 19�58 21�50 2�48 16�00 25�00 527
Private high school 0�87 1 0�33 0 1 527
Repetitions 0�99 1 0�88 0 2 527
Preparatory course 0�71 1 0�45 0 1 527
Father’s education 2�09 2 1�03 0 3 527
Mother’s education 2�21 3 0�98 0 3 527

Fortaleza: 150 positions

Variable Mean Median Std. Dev. Min. Max. N

Grade: National exam (m0) 49�16 52�00 10�03 12�00 63�00 2340
Grade: First stage 70�06 72�00 20�01 20�01 110�00 2340
Grade: Second stage 240�0 245�1 34�37 48�3 311�1 600
Female 0�54 1 0�50 0 1 2340
Age 19�13 17�50 2�43 16�00 25�00 2340
Private high school 0�77 1 0�41 0 1 2340
Repetitions 0�69 1 0�83 0 2 2340
Preparatory course 0�59 1 0�49 0 1 2340
Father’s education 2�13 2 1�00 0 3 2340
Mother’s education 2�15 2 0�98 0 3 2340

Note: Source: Vestibular cross section data in 2004.

3.4 A brief description of estimation results

The list of variables and descriptive statistics in the pool of applicants to the two schools
we consider appear in Table 1. Looking at admission rates, one can see that Sobral ad-
mitted 40/527 = 7�6% and Fortaleza 150/2340 = 6�4% and this makes Fortaleza more
competitive. Comparing the mean and median of initial and first-stage grades, Sobral
has nonetheless better applications than Fortaleza. As to the second-stage grades, the
group selected for Sobral has a slightly higher median than the one selected for Fort-
aleza although both groups have the same mean.

Because empirical results in this article are focused on counterfactuals, estimates
from our empirical analysis are shown and analyzed in Section S.2 in the Supplementary
Appendix. We fully report and comment therein estimates of grade equations, predic-
tions of success probabilities and estimates of preference parameters. We now discuss
only briefly our most important modeling choices and our main results.

As described in Table 1, explanatory variables are those that affect exam perfor-
mance or school preferences. For grade equations, all potential explanatory variables
are included: a proxy for ability which is the initial grade m0 obtained at the national
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exam (ENEM), age, gender, educational history, repetitions, parents’ education, and the
undertaking of a preparatory course. Our guide for selecting variables is that a better
fit of grade equations leads to a better prediction of success probabilities in the further
steps of our empirical strategy.

Second, as developed in Section 2.3.3, one exclusion restriction at least is needed to
identify preferences. We chose to exclude from preference shifters all variables related to
past educational history. Indeed, preferences are related to the forward looking value of
the schools (e.g., wages) which, conditional on the proxy for ability, is unlikely to depend
on the precise educational history of the student (e.g., private/public sector history and
undertaking a preparatory course). This is even more likely since we condition on ability
m0 which is assessed in the ENEM after educational history. This dynamic exclusion re-
striction is akin to what is assumed in panel data and posits that m0 is a sufficient statis-
tic for educational history. As a consequence, preferences are specified as a function of
ability, gender, age, education levels of father and mother, and the number of repetitions
of the entry exam. The inclusion of gender, age, and education of parents is standard in
this literature. The number of repetitions reveals either the determination of a student
through her strong preference for the schools or the lack of good outside options. We
performed a thorough specification search and tested for overidentifying restrictions.

Third, the second-stage exam has a different format (writing essays) than the first-
stage multiple choice exam and the second-stage grade equation has a much lower R2.
An interesting economic interpretation is that the first-stage exam is designed to skim
out the weaker students and this multiple question exam is quite predictable (large R2).
In the second stage, the examiners can be selective in many more dimensions and try to
pick out students using unobserved traits which are predictive of future behavior (suc-
cess in the field of studies, drop outs, etc.) and that the econometrician cannot observe.
This justifies the double stage nature of the exam as trying to minimize screening costs.
We will return to this point below.

Fourth, Table 2 reports descriptive results on predicted probabilities of success.
Means and medians of first-stage success probabilities are around 20–30% in both
schools. This is close to what is observed in the sample but not exactly identical since
these probabilities are partly counterfactual objects, for instance, success probabilities
in Sobral for those who chose Fortaleza. The second-stage success probabilities are close
to what is observed and as expected roughly four times lower than the first-stage ones.

Finally, students heavily favor Fortaleza over Sobral and this confirms that Fortaleza
is the most popular medical school in the state. The ratio of those probabilities is 10
which is approximately the ratio between the populations of the two cities albeit much
larger than the ratio of final seats in the two schools (150/40). Nonetheless, there is a
substantial fraction of students whose utilities for both schools are positive (more than
40%).11

11Full details and comments of our empirical analysis appear in Section S.2 of the Supplementary Ap-
pendix.



1256 Carvalho, Magnac, and Xiong Quantitative Economics 10 (2019)

Table 2. Simulated success probabilities.

Sobral Fortaleza

Stage 1 Final Success Stage 1 Final Success

Min. 0�000 0�000 0�000 0�000
25% 0�001 0�001 0�000 0�000
Median 0�088 0�011 0�012 0�004
Mean 0�314 0�076 0�203 0�062
75% 0�676 0�103 0�360 0�071
Max. 1�000 0�934 1�000 0�920

Note: Success probabilities are constructed using 1000 Monte Carlo simulations.

4. Evaluation of the impact of changes of mechanisms

We now investigate the impact of various changes in the allocation and selection mech-
anisms that are discussed in academic and policy debates. To organize the presentation,
some preliminary discussion of school preferences over the information obtained at the
different exams is in order. We also return to the issue of substitutes.

School preferences are revealed by the type of exams and selection rules that are
used for admission as described by equations (10). In the following, we will evaluate
outcomes and welfare in each counterfactual by conditioning on the expected final
scores used for admission.12 The first-stage selection sums two multiple-choice exam
scores—ENEM and first stage—in a roughly equivalent way.13 Final selection however
overweighs the second-stage grade (0.6) with respect to the compound ENEM and first-
stage grade (0.4). As the weight of the latter is not zero, first-stage and ENEM scores
provide valuable information in addition to the selection role they are used for. Scores
at the two stage exams presumably measure two different cognitive dimensions affect-
ing the future career of students in the schools. Note however that there is no bottom
grade requirement at the second stage as there is at the first stage and the second stage
cannot be considered as more informative even if its weight is larger.

Second, counterfactual analyses are conducted under the assumption that the
choice-based sample remains the same and this implicitly means that the value of out-
side options does not change. We also assume that the change in predetermined vari-
ables, for instance, the take-up of preparatory courses or the exit and entry flows of stu-
dents applying to these two schools because of the change in the admission rules is
second order.

The first counterfactual experiment that we implement is to cut slots proposed at the
second-stage exam by offering twice, instead of four times, the number of final seats. It
is likely that a two-stage exam is used because schools want to avoid congestion and the
tuning between the two stages is key. The first stage is very easy to grade since machines

12As expected, success probabilities are an increasing function of this score. More interestingly, the ratio
between success probabilities at Sobral relative to Fortaleza is also increasing with this score except at the
very top.

13In equation (10), the coefficient in front of ENEM is a rescaling term that equalizes ranges of m1 and
ENEM.
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can mark multiple-choice exams very quickly. The second stage is much deeper since it
relies on open-ended questions and is more costly to grade. The trade-off is therefore to
balance these substantial screening costs with the depth of the first-stage selection that
might select out good students because of the format (see also He and Magnac (2018)).
There are other examples of this in other countries: in top engineering schools in France,
selection is distinguished in an admissibility (written) and an admission stage (oral).

Second, we experiment with enlarging the choice set of students before taking ex-
ams. They would list two ordered choices instead of a single one so as to get closer to
a Gale–Shapley mechanism. This means that even if students fail the first-stage quali-
fication in one of the two schools they may still get into the second-stage exam for the
other school. This implies that the average skill level of passing students increases and
that the difference between the two schools is attenuated.

Third, since having two stages in the exam allows schools to cut costs and achieve
a more in-depth selection at the second stage, another experiment consists in chang-
ing the timing of choice. In the third counterfactual experiment, students would choose
their final school after taking the first exam and learning their grades. The experiment is
different from the previous two since students have more information on their success
probabilities when they choose. It generates however additional organization costs and
delays due to the serial dictatorship mechanism that it induces after the first stage. It is
also likely to generate more opportunistic behavior.

Before entering into the details of these counterfactual mechanisms, the identifica-
tion of utilities from estimated preferences and success probabilities is key in these eval-
uations. We show that expected utilities are underidentified and we suggest how plau-
sible bounds for counterfactual estimates can be constructed. We also explain how to
compute counterfactual estimates conditional on observed choices.

4.1 Identifying counterfactual expected utilities

Taking expectations with respect to grades using success probabilities PS
i , PF

i of ex post
utility levels, Ui, leads to

E
(
Ui | V S

i � V F
i
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Even if the location parameter is fixed by the outside option, this expected utility can

always be rescaled by any increasing function. This is why we choose the absolute value
|V F

i | as the scale factor to set:

V F
i = 1 if V F

i > 0�

V F
i = −1 if V F

i < 0�



1258 Carvalho, Magnac, and Xiong Quantitative Economics 10 (2019)

Under this normalization,
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the only unknown is V S

i when V S
i ≥ 0, V F

i < 0 since
V S
i

V F
i

when V F
i ≥ 0, V S

i ≥ 0 is identi-

fied (see Section 2.3.3). This partial identification issue comes from the fact that ordinal
preferences only are recovered in the case in which only one of the value functions is
positive and when both value functions are positive, relative cardinal utilities only can
be identified.

Various assumptions are plausible. If there is some positive correlation between V F
i

and V S
i , we would expect that
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the last expression being obtained under normality of εi. This is why we assume that
when V S

i > 0,

logV S
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where μ0 > 0 captures the positive dependence between V S

i and V F
i . This is coherent

with the previous equation since

{
V S
i = exp(Xiγ + εi) if V F

i = 1�

V S
i = exp(Xiγ + εi −μ0) if V F

i = −1�

We will thus evaluate E(Ui | V S
i � V F

i ) using bounds on μ = exp(−μ0) that we make
vary between 0 (the lower bound for V S

i ) and 1 (the case in which V S and V F are uncor-
related).

We use this measure of welfare in relative terms among students to evaluate the
amount of redistribution between them of changes in the allocation mechanisms.14

14These welfare measures could be translated back into changes of odd ratios of expected success prob-
abilities using the preference equation (5) but this does not add much to our evaluation.
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4.2 Computing equilibria

In every counterfactual experiment, we draw unknown random terms conditional on
observed choices for simulation purposes. This ensures that simulated choices are com-
patible with observed choices in the data. In each simulation, let D̄i be the counterfac-
tual choices of the students that depend on counterfactual expectations P̄S

i and P̄F
i . De-

note n̄S = 2nS and n̄F = 2nF the new number of seats in the cutting-seat counterfactual.
In other cases, n̄S = 4nS and n̄F = 4nF as in the original system.

Given that historical variables and outside option value do not change, the popula-
tion of reference does not change in the counterfactual experiments since experiments
affect success probabilities only. The pool of applicants remains the set of students
whose utilities are such that V S > 0 or V F > 0 and, therefore, we consider the same sam-
ple i = 0� � � � � n. Consistency of choices and expectations require that the counterfactual
random thresholds, T̃0, as defined as the solution (t̃S1 � t̃

S
2 � t̃

F
1 � t̃

F
2 ) to the counterfactual

counterpart of equation (4):
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have a distribution function that leads to the counterparts of equation (12):15

P̄
j
0 = E

(
1
{
m1(X0�β�u0) ≥ t̃

j
1�m2(X0�β�u0) ≥ t̃

j
2

})
� (14)

We thus propose to iterate the following algorithm (we explain it for observation 0
and this extends to any index i:

1. Initialization:
• Draw C = 499 random preference shocks ε(n)�c in their distributions conditional to

observed choices, Di, and using preference parameter estimates ζ̂n. Fix those ε(n)�c for
the rest of the procedure (see Supplementary Appendix S.3.1.1 for details).

• Draw C random vectors U(n)�c and fix them for the rest of the procedure.

• Set the initial PS�0
0 , PF�0

0 values at their simulated values P̂
j
0�C derived from equation

(12) in which we use U(n)�c and the observed experiment to compute thresholds tj1�c and

t
j
2�c using equations (4).

15Changing the timing of choices requires to acknowledge that there are no choices to make before the
first stage. The first two equations in (13) do not depend on D̄i and PS

i ;PF
i are the conditional expectations

after the second stage. Those adaptations do not modify the main principles.
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2. At step k, denote P
S�k
i , PF�k

i the expected success probabilities:

(a) Compute counterfactual choices Di(Zi�εi�c� ζ̂n�P
S�k
i �P

F�k
i ).

(b) Compute a sequence of t̃c for c = 1� � � � �C using U(n)�c and equations (13).

(c) Derive P̂
j�k+1
0�C from equation (14).

3. Repeat the previous step until a measure of distance d(P(k+1)�P(k)) is small
enough.

If this algorithm converges, then this is the fixed point we are looking for. We study
in Appendix A a simplified model in which we show that a Nash equilibrium is obtained
in a finite number of steps.

4.3 Cutting seats at the second-stage exam

We start with the easiest policy change that reduces admission rates to the second stage.
As said, the existing Vestibular system allows the number of students who take the sec-
ond exam to be four times the number of final seats. In the experiment, the number of
available positions is kept unchanged but the number of admissions after the first-stage
exam is now twice the number of seats. We explore the possible consequences of this
policy and investigate two main issues—who among students benefit from this policy
change and whether schools lose good students.

Some discussion about the expected effects are in order. Cutting seats in the sec-
ond exam reduces schools’ screening costs although this comes with the risk of losing
talented students. Students may not be always consistent in their exam performance
and even the most gifted may have a strong negative shock in the first exam. Those stu-
dents would be eliminated too early without being given a second chance. Nonetheless,
it could also be that cutting seats protect the first-stage best achievers from competition,
and thus from the risk of losing ranks at the second-stage exam. A formal argument is
as follows. Subpopulations defined by a specific final weighted score are now composed
by more top achievers at the first stage. The net result is however unclear theoretically
because the distribution of the final weighted score changes itself and needs to be inte-
grated out. This is why an empirical analysis is worthy of attention.

The simulation of the counterfactual and the computation of expected utility follow
procedures described in Section 4.1 and Section 4.2.

4.3.1 Changes in thresholds In Table 3, we present estimates of the new threshold dis-
tributions at both stage exams in the three counterfactual experiments. In the cutting
seat experiment, the counterfactual first-stage thresholds are much higher than in the
original experiment since fewer students are admitted after the first-stage exam. In con-
trast, the thresholds of the second-stage exam are slightly lower than in the original sys-
tem because there is now less competition in the second-stage exam when half as many
students are admitted. In both first- and second-stage exams, estimated thresholds in
Sobral are more volatile than the ones in Fortaleza because Sobral is a much smaller
school.
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Table 3. Thresholds of the counterfactuals.

School Sobral Fortaleza

Stage 1 Original system Mean thresholds 184�48 189�88
Standard errors (1�257) (0�401)

Cutting seats Mean thresholds 195�79 201�04
Standard errors (0�996) (0�506)

Two-choices Mean thresholds 186�98 190�13
Standard error (0�564) (0�458)

Timing-change Mean thresholds 183�05 190�11
Standard error (0�859) (0�447)

Stage 2 Original system Mean thresholds 235�41 241�44
Standard errors (1�669) (0�898)

Cutting seats Mean thresholds 233�34 237�77
Standard errors (3�094) (1�603)

Two-choices Mean thresholds 235.38 241�19
Standard error (2�589) (1�302)

Timing-change Mean thresholds 239�07 244�30
Standard error (2�722) (1�408)

Note: 1. The coefficients and their standard errors are computed by using the 499
bootstrapped estimates of preference and grade parameters and applying the procedure
in the text. 2. The cutting seats counterfactual has a few cases in which the computation
developed in Section 4.2 does not converge after many repetitions, and we have excluded
those bootstrap values that do not converge after 500 iterations.

To evaluate how this counterfactual brings benefit to schools and students, we study
in turn, changes in success probabilities and changes in students’ utilities.

4.3.2 Changes in success probabilities Schools would find that the admittance proce-
dure has improved if abler students would get a higher chance of admission and the less
gifted students would have a lower chance. This is why we evaluate changes in success
probabilities in relation to an index of students’ abilities. As our ability index, we use
the expected final grade which is, as already said, a combination of the initial, first- and
second-stage grades. We also choose to focus on the top 50% of students because the
lower 50% of the sample have almost no chance of getting admitted whether the origi-
nal or counterfactual mechanisms are used.

We represent changes in success probabilities in Figure 2 for Sobral. Three vertical
lines are drawn at the median of expected final grade and at the quantiles associated to
the first and second-stage thresholds in the original system (averaged across schools).
Changes in probabilities are very similar in the two schools.16 The dispersion of these
changes, conditional on expected grade, is due to the heterogeneity of observed charac-
teristics across students.

The very top students, who are above the second-stage admission quantile, have bet-
ter chances in the counterfactual system since they are likely to face less competition in

16The corresponding figure for Fortaleza appears in Section S.3 of the Supplementary Appendix (Fig-
ure S.iv).
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Figure 2. Cutting seats: changes of success probabilities in Sobral. [1] The circles plot individ-
ual success probability changes versus expected final grades; [2] From left to right, (1) the first
vertical line is the median, (2) the second vertical line is the average of quantiles for 1st stage
admission—(1 − 4(nos+nof )

nobs ) × 100%, and (3) the third line is the average of quantiles for 2nd

stage admission—(1 − (nos+nof )
nobs )× 100% in which nos is the number of final seats in Sobral, nof

is the number of final seats in Fortaleza, and nobs is the number of total applicants; [3] The solid
fitted curve is obtained by lowess smoothing.

the second-stage exam. Our estimates of grade equations show that second-stage grades
have a much larger variance than first-stage grades. The risk of failing is thus lower when
fewer students participate in the second-stage exam. In contrast, for students who are
between the median and first-stage threshold in terms of expected final grades, this is
the converse. They are much less often admitted after the first-stage exam and even if
the second-stage exam is less competitive, it is the former negative effect that dominates
overall. In particular, students who are around the first-stage threshold in the current
system are more likely to be selected out at the first stage.

4.3.3 Changes in students’ utilities and the impact on schools Table 4 presents sum-
maries of changes in students’ expected utility. We construct groups according to var-
ious quantiles of the distribution of the expected final grade. The closer to the top of
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Table 4. Cutting seats: expected utility changes.

Expected ALL D = Sobral D = Fortaleza

Final Grade Mean s.d. Mean s.d. Mean s.d.

0%–50% −0�00029 0�00116 −0�00109 0�00185 −0�00011 0�00084
50%–60% 0�00001 0�00744 −0�00733 0�00563 0�00252 0�00622
60%–70% 0�00674 0�01655 −0�01125 0�00931 0�01206 0�01433
70%–80% 0�03122 0�02770 −0�00919 0�01272 0�03843 0�02306
80%–82% 0�04070 0�02813 −0�00096 0�00413 0�05493 0�01574
82%–84% 0�05491 0�02896 0�00540 0�00539 0�06567 0�01887
84%–86% 0�07304 0�03128 0�00107 0�00866 0�08482 0�01123
86%–88% 0�06124 0�03374 0�00257 0�00837 0�07762 0�01367
88%–90% 0�07932 0�03072 0�00813 0�00484 0�09027 0�01308
90%–92% 0�09239 0�03272 0�00617 0�00969 0�10224 0�01463
92%–94% 0�08806 0�04041 0�00991 0�00905 0�10696 0�01227
94%–96% 0�11009 0�03125 0�00834 0�00213 0�11839 0�01114
96%–98% 0�11178 0�03456 0�01104 0�00531 0�12249 0�01008
98%–100% 0�08939 0�04669 0�00760 0�00533 0�11185 0�01989

E(�Ui) 0�01966 −0�00267 0�02487
s�d�(�Ui) 0�03785 0�00817 0�04009
Frequency(�Ui > 0) 0�4363 0�2084 0�4894

Note: 1. ALL contains all the students no matter what the original choices are. 2. D = Sobral means the subpopulation of
those who chose Sobral in the original system; and D = Fortaleza means the subpopulation of those who chose Fortaleza in
the original system. 3. E(�Ui) (resp., s�d�(�Ui)) is the sample average (resp., standard deviation) of the total utilitarian welfare
change. 4. Pr(�Ui > 0) is the frequency of students whose expected utility changes are positive.

the distribution, the smaller the groups are (2% of the population only). As defined in
Section 4.1, we set the unknown weight in utilities at μ = 0�8.17

Consistently with changes in success probabilities, top students have significant
utility improvements although this is also true for lower ranked students (above the 80%
quantile). Nonetheless, focusing on means of expected utility hide very large dispersions
in the 80–90% quantiles. This is best seen in the distribution of changes in utility (Sup-
plementary Appendix S.1, Figure S.v) in which students in the 8th and 9th deciles are
the ones whose changes in utility are the most dispersed. Furthermore, students just
above the median tend to have lower expected utility in the counterfactual system and
this is consistent with what we obtained for success probabilities. If we divide the sam-
ple by the original school choice, an indication of their preference, students who chose
Fortaleza tend to benefit more than the ones who opted for Sobral. The influence of
the second-stage exam seems to be much larger there than in Sobral. Overall, these re-
sults about this counterfactual experiment bring out a moderate total utilitarian welfare
change. Yet, there are strong distributional effects and top students are better off and
less able students are worse off.

The impact of cutting seats seems favorable for schools since the most able students
now have a higher chance of admission since they are protected from the competition

17We also performed robustness checks by using weights μ varying from 0 to 1 (see Section 4.1). Results
are shown in Table S.viii in the Supplementary Appendix. Differences are very small and our results are
quantitatively robust to the value of μ.
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of less able students at the second stage. This benefit comes in addition to cutting the
costs of organizing and correcting the second-stage exam proofs.

4.4 Enlarging the choice set

In this experiment, students can submit an enlarged list of two schools if they wish.
A choice list contains two elements d1 and d2 in which d1 is the preferred school. Since
our sample of interest only comprises students who positively value at least one of
the schools, we have d1 ∈ {S�F}. Yet, students can now apply to a second choice and
d2 ∈ {∅� S�F}/{d1} in which d2 = ∅ is the outside option chosen by students who do
not give positive value to the second school. This mechanism belongs to the deferred-
acceptance family with the additional twist that we keep the sequence of two exams as
it is. The allocation of students after the first exam needs however to be adapted and this
is the design that we now explain.

4.4.1 Design of the experiment To fix ideas, consider first a student who (1) has VS > 0
and VF > 0, and (2) chooses the list (S�F). If after the first-exam, she is above the thresh-
old for school S, her second choice does not matter.18 It is only if she would NOT be
accepted to the second-stage exam in school S that she could compete for the second-
stage exam in school F .19 She fails altogether when her grades are lower than both
thresholds.

Consider first that at equilibrium tS1 > tF1 . After the first-stage exam, there are three
possible outcomes for the student:

• m1 ≥ tS1 : she takes the second exam of school S,
• m1 < tS1 and m1 ≥ tF1 : she takes the second-stage exam of school F ,
• m1 < tF1 : she fails and takes the outside option.
While if tS1 < tF1 (the probability of a tie being equal to zero),
• m1 ≥ tS1 : she takes the second exam of school S;
• m1 < tS1 : she fails and takes the outside option.
This sequence is easily adapted to students choosing the list (F�S). Moreover, for

students submitting a list (d1�∅), the sequence of actions is the same as in the original
mechanism. Students are selected into the second-stage exam for school d1 if their grade
is above its first-stage threshold.

Furthermore, given any choice among the four lists, {(S�F)� (F�S)� (S�∅)� (F�∅)}
we can construct counterfactual success probabilities in each school PS and PF by
adapting the algorithm we used before (see Supplementary Appendix S.3.2). For any
value of success probabilities, we can then compute the optimal choice between
{(S�F)� (F�S)� (S�∅)� (F�∅)}. Details about how we get counterfactual thresholds and
choices follow the lines of what was developed in Section 4.2.

18In particular, we discard the possibility of choosing a second ranked school after a success at the first-
stage exam.

19See also the third experiment in which students choose according to the information they have on their
performance at the first stage for a variation around these constraints.
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4.4.2 Changes in thresholds The new thresholds for this counterfactual experiment are
also shown in Table 3. For the first stage, the threshold of Sobral is now slightly larger
than the original one while the threshold of Fortaleza remains roughly unchanged. This
is an indication that Sobral is admitting better students while the effect on Fortaleza
is negligible. Some of the students who were failing Fortaleza before can now com-
pete for Sobral and get admitted after the first stage. Furthermore, some of the stu-
dents who were choosing Sobral for strategic reasons in the original mechanism can
now at no risk choose Fortaleza first and Sobral second. Deferred acceptance mech-
anisms lessen strategic motives and make choices more truthful (Abdulkadiroğlu and
Sönmez (2003)) although the move is not necessarily Pareto-improving (Balinski and
Sönmez (1999)). In the original system, students tended to choose Sobral as a “safety
school” even when they truly preferred Fortaleza since success probabilities were higher
at the former school. Giving students two choices attenuates the “safety school” effect
although it does not eliminate it completely because of the two-stage nature of the exam.
Yet, thresholds for the school in Fortaleza remains higher than for Sobral at both stages
because it attracts more top-ability (m0) students as is shown by preference estimates
(see Table S.vii).

Large standard errors for counterfactual thresholds at the second-stage exam make
differences with the current ones insignificant. Even if this counterfactual experiment
moves some of the relatively good students after the first-stage exam from Fortaleza to
Sobral, Sobral however still attracts less able students than Fortaleza in the second stage
as in the first stage.

4.4.3 Changes in success probabilities Figure 3 reports changes in success probabili-
ties for Sobral (see Figure S.vi for Fortaleza). Unlike the previous counterfactual exper-
iment, the changes in Sobral and Fortaleza are now somewhat different. In Fortaleza,
the change in success probabilities is negligible as thresholds are constant and the re-
allocation of choices from Sobral to Fortaleza not strong enough. In contrast, a fraction
of students below the first admission threshold and above median has a lower success
probability in Sobral in the counterfactual experiment. This is because better students
who fail Fortaleza switch to Sobral to compete with them and lower ranked students are
evicted since first-stage thresholds are now higher in Sobral. In other words, getting So-
bral if failing Fortaleza is acting as an insurance device and students just above the first-
stage threshold benefit from the existence of this insurance. Last, note that the change
in success probabilities is small in this counterfactual compared with cutting seats since
it affects students only through the allocation mechanism.

4.4.4 Changes in expected utilities and the impact on schools From the student per-
spective, this mechanism is also attractive since a majority of students—55%—will be
(strictly) better off as shown in Table 5. Moreover, top students benefit more from the
change than less able students because they are more likely to pass to the second-stage
exam even if they happen to fail their preferred school. Deferred acceptance restricts
less the possibilities of very top students since they can keep options open. In particu-
lar, students who preferred Sobral initially, benefit much more than those who preferred
Fortaleza initially, seemingly because the pressure of competition at the top in Sobral is
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Figure 3. Two choices: success probability change in Sobral. Notes: See the notes of Figure 2.

lower since it loses its safety school status. In contrast, since Sobral has a lower threshold
at the first-stage exam, students who prefer Sobral and are ranked around the first-stage
threshold suffer from more competition from evicted students from Fortaleza. How-
ever, for those who preferred Fortaleza in the original system, expected utility mainly
increases because of the second chance they get to compete for Sobral when they fail
Fortaleza. The effect on expected utility is thus larger than the change in success proba-
bilities.

In summary, enlarging the choice set improves the average ability of those who pass
the first-stage exam in both schools. The majority of students are better off except stu-
dents ranked around the first-stage threshold in the original system and who prefer the
smallest school. From the perspective of the schools, Sobral should be more favorable to
this mechanism since it can now attract higher ranked students. Fortaleza’s thresholds
remain the same although the composition of their recruitment might have changed
since Sobral lost its safety school status. This seems however to moderately affect top
students.

This confirms theoretical insights that the move to a deferred acceptance mecha-
nism is likely to make both schools and more top students better off.
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Table 5. Two choices: expected utility changes.

Expected ALL D = Sobral D= Fortaleza

Final Grade Mean s.d. Mean s.d. Mean s.d.

0%–50% 0�00002 0�00076 0�00048 0�00144 −0�00009 0�00043
50%–60% 0�00176 0�00372 0�00537 0�00531 0�00052 0�00174
60%–70% 0�00727 0�01006 0�02106 0�01084 0�00320 0�00487
70%–80% 0�01706 0�01907 0�05619 0�01400 0�01008 0�00843
80%–82% 0�03719 0�03064 0�08629 0�00523 0�02042 0�01126
82%–84% 0�03140 0�03081 0�09163 0�00784 0�01831 0�01291
84%–86% 0�02817 0�03303 0�10573 0�00620 0�01548 0�01003
86%–88% 0�04673 0�03837 0�11457 0�00713 0�02780 0�01406
88%–90% 0�04323 0�03573 0�12548 0�00781 0�03058 0�01563
90%–92% 0�03728 0�03984 0�14298 0�01055 0�02520 0�01731
92%–94% 0�05830 0�04879 0�14871 0�00588 0�03643 0�02148
94%–96% 0�04137 0�04184 0�17341 0�00454 0�03059 0�01799
96%–98% 0�05055 0�04687 0�18008 0�00424 0�03677 0�02042
98%–100% 0�05964 0�06562 0�17849 0�01288 0�02702 0�02069

E(�Ui) 0�01143 0�03074 0�00693
s�d�(�Ui) 0�02705 0�05073 0�01400
Frequency(�Ui > 0) 0�5431 0�7029 0�5058

Note: 1. ALL contains all students no matter what the original choices are. 2. D = Sobral means the subpopulation of those
who chose Sobral in the original system; and D = Fortaleza means the subpopulation of those who chose Fortaleza in the
original system. 3. See the notes of Table 4.

4.5 Changing the timing

In the last counterfactual experiment, we try to evaluate the impact on students when
they choose schools after learning their first-stage exam grade and no longer before this
exam. Schools continue to rank students according to the same combination of ENEM
and m1.

The new selection procedure is a serial dictatorship mechanism which is Pareto-
optimal in the case of a single exam (for instance, Abdulkadiroğlu and Sönmez (1998)).
It proceeds as follows. Starting from the first-ranked student and going down the ranking
afterwards, each student chooses school S or F until the number of admitted students in
one of the schools, say j, reaches four times the number of final seats in this school. This
defines threshold t

j
1. The sequence continues going down the ranking although choice

is now restricted to the other school D �= j or to opting out until the number of admitted
students in that school reaches four times the number of final seats. The allocation of
students to the second-stage exam is then complete. The game continues afterwards as
in the current system.

As before, utilities V S and V F remain the same while this new mechanism affects the
probabilities of success PS

m1
= Pr{m2 > tS2 |m1} and PF

m1
= Pr{m2 > tF2 |m1} which are now

conditional on the first-stage grade m1. To define choices, suppose that tS1 > tF1 which
means in practice that Sobral seats are filled in faster than Fortaleza’s. A student can face
three cases:
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• m1 > tS1 : the choice set is complete and consists in {S�F}. Schools are chosen by
comparing PS

m1
V S and PF

m1
V F (since either V S > 0 or V F > 0).

• m1 < tS1 and m1 ≥ tF1 : the choice set is restricted to F and the student either opts for
the second-stage exam in F if V F > 0 or the outside option if not.

• m1 < tF1 : the only choice left is the outside option.
This algorithm is easily adapted to the case in which tS1 < tF1 prevails. Additionally,

we compute the same ex ante expected utilities by integrating out shocks in m1.

4.5.1 Changes in thresholds The new thresholds in this counterfactual experiment are
shown in Table 3. Sobral has now a slightly lower threshold at the first stage and a slightly
higher threshold at the second-stage exam while this is true but at the second stage for
Fortaleza. The school in Fortaleza is overall more popular (see Table S.vii) and even more
than the difference in offered seats. By making students choose in the order of first-stage
grades, positions in Sobral at the second-stage exam are less likely to be filled earlier than
Fortaleza’s despite the one to four ratio (160/600). For instance, if more than 80% of the
top 750 students prefer Fortaleza to Sobral, the 600 seats at Fortaleza would be filled in
after those 750 students would reveal their choices while Sobral would still have 10 seats
to fill in. Note that in simulations, such a solution can be very unstable with respect to
the random draws of grade shocks and depend very much on revealed preferences and
the first-stage randomness in selecting the set of students who can go to the second
stage.

4.5.2 Changes in success probabilities Changes in success probabilities in Sobral are
shown in Figure 4. Success probabilities, evaluated ex ante, now depend more on the
first stage than before so that students performing well at the first stage increase their
overall success probabilities while those performing worse have now lower success
probabilities. There is also a large dispersion of these changes. Ex post dispersion in-
creases with the final expected grade because it increases with the level of the initial suc-
cess probabilities and this confirms the increasing importance of the first-stage grade.
These conclusions are true for Fortaleza (see Section S.3) as well.

4.5.3 Changes in expected utilities and the impact on schools As this mechanism in-
troduces an element of flexibility for students since they can condition their choices on
their first-stage grades, their expected utility is on average mechanically larger than in
the original system. Indeed, the frequency of an increase in expected utility is the largest
in the three experiments. This mechanism is mainly attractive for the top students as
shown in Table 6. In a nutshell, top students in the first stage are better protected from
the competition of lower ranked students.

There are clear differences in utility changes among the top students conditional on
their preferences for the schools. On average, students who were choosing Fortaleza in
the original system would benefit more than those who preferred Sobral. This seems to
be due to the difference in the sizes of the school because of the argument presented
above when we were analyzing the impact on thresholds. Sobral seats are filled less
quickly than Fortaleza’s.
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Figure 4. Timing change: success probability changes in Sobral. Notes: See the notes of Fig-
ure 2.

Overall, this counterfactual seems more friendly to top students. Nonetheless, such
a system seems to select students with lower future academic success as shown by the
analysis of Wu and Zhong (2014) using historical data on China provinces which have
changed allocation mechanisms in this direction. Our data is too limited to explore this
issue.

5. Conclusion

In this paper, we use data from entry exams and an allocation mechanism to colleges to
provide an evaluation of changes in those mechanisms. We first use a model of school
choices as well as performance to estimate parameters governing success probabilities
and preferences. Expectations of sophisticated students are obtained by sampling into
the Nash equilibrium conditions. Using those estimates, we can compute in a second
step the impact of three counterfactual experiments on success probabilities and ex-
pected utility of students. This shows at what benefits and costs the current mechanism
could be changed, not only in terms of aggregate utilitarian welfare but also in terms of
potentially strong redistributive effects between schools and between students.
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Table 6. Timing change: expected utility changes.

Expected ALL D= Sobral D= Fortaleza

Final Grade Mean s.d. Mean s.d. Mean s.d.

0%–50% 0�00053 0�00158 −0�00019 0�00065 0�00070 0�00168
50%–60% 0�00731 0�00584 −0�00064 0�00182 0�01003 0�00394
60%–70% 0�01798 0�01034 0�00196 0�00291 0�02271 0�00612
70%–80% 0�03551 0�01394 0�00691 0�00491 0�04062 0�00722
80%–82% 0�04164 0�01984 0�00954 0�00386 0�05260 0�00654
82%–84% 0�04821 0�01877 0�01087 0�00588 0�05633 0�00683
84%–86% 0�05375 0�01971 0�00818 0�00574 0�06121 0�00674
86%–88% 0�05348 0�02207 0�01425 0�00571 0�06443 0�00745
88%–90% 0�06125 0�02169 0�01046 0�00434 0�06907 0�00865
90%–92% 0�06933 0�02109 0�01364 0�00633 0�07569 0�00932
92%–94% 0�06514 0�02591 0�01646 0�00808 0�07691 0�00989
94%–96% 0�07891 0�02258 0�01366 0�00598 0�08424 0�01289
96%–98% 0�07912 0�02262 0�01773 0�00570 0�08566 0�01054
98%–100% 0�06413 0�02878 0�01581 0�00784 0�07739 0�01454

E(�Ui) 0�01862 0�00288 0�02229
s�d�(�Ui) 0�02703 0�00609 0�02865
Frequency(�Ui > 0) 0�6557 0�5166 0�6881

Note: 1. ALL contains all students no matter what the original choices are. 2. D = Sobral means the subpopulation of those
who chose Sobral in the original system; and D = Fortaleza means the subpopulation of those who chose Fortaleza in the
original system. 3. See the notes of Table 4.

These cost-benefit analyses show that the choice of an allocation mechanism has
sizeable consequences for both schools and students. The mechanism in place is neither
fair nor strategic although it might be rationalized by the fact that some schools and/or
groups of students would lose if it were changed. The political economy of such a choice
of an allocation mechanism remains to be documented and analyzed and it would be
interesting to develop the analysis of the ex ante game between schools and/or students
that leads to the adoption of such or such mechanisms of selection and allocation. As a
matter of fact, Federal universities in Brazil adopted in 2010, under pressure of the Fed-
eral government, a national allocation mechanism consisting of student submissions of
a list of two preferred schools and a complicated learning mechanism. Some of us are in
the process of collecting data to evaluate this new system.

Nonetheless, the previous mechanism allowed schools to tailor their selection pro-
cedures to the information they had about the prerequisites for their courses and any
predictors of success or drop out of the students they selected. This fine tuning is lost
in the new centralized procedure which abstracts away from the question of acquiring
information that determines school preferences (Coles, Kushnir, and Niederle (2013)).
Specifically, the new allocation mechanism used in Brazil (for instance, analyzed in
Machado and Szerman (2017)) is based on a single grade given by an improved version
of ENEM which nevertheless remains of poorer quality than the Vestibular analyzed in
this paper since the additional information yielded by the two-stage exams is now lost.
Universities were also reducing opportunistic behavior as shown by the last counterfac-
tual since knowing results at the first-stage exam allows students to strategize better.



Quantitative Economics 10 (2019) College choice, selection, and allocation 1271

Our selection of two elite medical schools is admittedly specific and tailored to
minimize departures from our simplifying assumptions. As preferences for these two
schools are presumably closer than any other pair of schools, the impact of treatment
on outcomes—that is, success probabilities and school choice—might be magnified by
this selection. Whether this larger impact is translated into larger welfare effects is, how-
ever, ambiguous since differences between preferences are smaller.

On the modeling side, much remains to be done. Specifically, the modeling assump-
tions about expectations are strong and weakening them is high on the agenda. Identifi-
cation however is bound to be weak since there is nothing in our data that might indicate
whether agents are sophisticated, well or badly informed or even naive (He (2017), Agar-
wal and Somaini (2018)). The analysis shall thus proceed as an analysis of robustness
that could lead to partial identification of the costs and benefits we have been describ-
ing above. It is also true that the question of why so many students are taking this exam
although they have no chances to succeed remains pending. They could be overly op-
timistic and this relates to assumptions about expectations but they could also use the
exam as a training device for the following year or for other exams of a similar type. This
behavior seems to be easier to accommodate in the current framework.

Appendix A: Existence of a Nash equilibrium and convergence to an

equilibrium

When using the current mechanism or counterfactual experiments, the question of the
existence of a Nash equilibrium is pending. This equilibrium is defined as the solution to
the best response equations (1) and success probabilities that are mutually compatible
and compatible with the equilibrium conditions (4). We rely on the theory of pseudo
potential games as developed in Dubey, Haimanko, and Zapechelnyuk (2006)

In this discussion, we sketch the proof in a simpler game restricted to two schools
j ∈ {S�F} and a single stage exam and imposing some weak conditions. The extension
to more schools or two exams complicates notation but does not affect the intuition.
Conditions (4) become:

n∑
i=1

[
1{Di = S}1

{
m1(Zi�ui�β) ≥ tS1

}] = 4nS�

n∑
i=1

[
1{Di = F}1

{
m1(Zi�ui�β) ≥ tF1

}] = 4nF �

We will also assume that both schools are overdemanded by students who do not value
positively both schools, that is,

n∑
i=1

1
{
V S
i > 0 ≥ V F

i

}
> 4nS�

n∑
i=1

1
{
V F
i > 0 ≥ V S

i

}
> 4nF�

(15)

so that thresholds in (4) are always defined by equalities.
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Setting λj(D(n)) = 4nj∑n
i=1 1{Di=j} , we can write an explicit definition of the thresholds as

the empirical (1 − λj)-quantile of the distribution of grades in the sample of applicants
to j:

T
j
1

(
Z

j
(n)�U

j
(n)

) = F−1
{m1(Zi�ui�β)�Di=j}(1 − λj)�

Note that the strategies of other students affect λj as well as the quantile so that expected
success probabilities can be written as

P
j
0(D(n))= E

(
1
{
m1(Z0�ui�β)≥ T

j
1

(
Z

j
(n)�U

j
(n)

)})
�

It is easy to formulate deep assumptions about the distribution function of grades that
imply that the success probabilities strictly decrease when adding an additional com-
petitor to the set of applicants to d. Indeed, let us order the strategy set {S�F} as S > F .
Extend the order to a partial order in strategies D(n) in the sample by positing that

D(n) >D′
(n) iff Di ≥D′

i and for at least one i Di >D′
i�

If the distribution of grade shocks is unbounded, adding competitors creates congestion
and we have that

D(n) >D′
(n) =⇒ PS

0 (D(n)) < PS
0
(
D′

(n)

)
and PF

0 (D(n)) > PF
0
(
D′

(n)

)
�

It is now straightforward to prove that the game satisfies the dual strong single crossing
property. Suppose indeed that V S

0 > 0 and that

PS
0
(
D′

(n)

)
V S

0 ≤ PF
0
(
D′

(n)

)
V F

0 �

This implies

PS
0 (D(n))V

S
0 <PS

0
(
D′

(n)

)
V S

0 ≤ PF
0
(
D′

(n)

)
V F

0 <PF
0 (D(n))V

F
0 �

This is also trivially satisfied when V S
0 ≤ 0 and V F

0 > 0.
As this property of dual strong single crossing implies that this is a game of weak

strategic substitutes with aggregation (Dubey, Haimanko, and Zapechelnyuk (2006)), it
is a pseudo-potential game (Theorem 1, p. 81) and it has a Nash equilibrium (Propo-
sition 1, p. 84). Furthermore, since the strategy set is finite, there are no best response
cycles in the game. “If players start with an arbitrary strategic profile and each player
(one at a time) unilaterally deviates to his unique best reply, then the process terminates
in a Nash equilibrium after finitely many steps” (Remark 1, p. 85).

Appendix B: Proofs in Section 2

B.1 Proof of Proposition 1

Fix J0 ⊂ J , a set of nonempty indices. The probability that the observed choice belongs
to J0, Pr(D ∈ J0 | Z�maxj∈J (V j) > 0�X) is identified a.e. PX�Z and by equation (6) is
equal to ∑

(j�J+);J+⊃{j}⊂J0

Q(J+ | X)Pr
(∀l ∈ J+��jl(Z) > log

(
V l

) − log
(
V j

) |X�Z�J+�J c+
)
�
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Because of Assumption CV, the support of any vector {�jk(Z)}k∈J /{j} is (−∞�

+∞)card(J )−1. Consider the limit when, for all j ∈ J0 and all k ∈ J c
0 , �jk(Z) tends to

−∞,

lim
∀(j�k)∈J c

0 ×J c
0 ��

jk(Z)→−∞
Pr

(
D ∈ J0 | Z�max

j∈J
(
V j

)
> 0�X

)
�

For all k ∈ J c
0 , conditions �jk(Z) > log(V k) − log(V j) are never satisfied and the limit

above is thus equal to∑
(j�J+);J+⊃{j}⊂J0

Q(J+ | X)Pr
(∀l ∈ J+ ∩J0��

jl(Z) > log
(
V l

) − log
(
V j

) | X�Z�J+�J c+
)

=
∑

J+;J+⊂J0

Q(J+ | X) ≡ Q∗(J0 | X)

because the terms in the first line, Pr(∀l ∈ J+ ∩ J0� � � �) sum to one over j ∈ J0 for all
J+ ⊂ J0. In consequence, ∀J0 ⊂ J and J0 nonempty, Q∗(J0 | X) is identified a.e. PX .

Consider now that J0 = {j} is a singleton. Then Q({j} | X) = Q∗({j} | X) is identi-
fied. By induction, suppose that for K ≥ 2, Q(JK | X) is identified for all JK such that
card(JK)= K. Consider JK+1 with card(JK+1)= K + 1 and

Q∗(JK+1 |X) =
[ ∑
JK;JK⊂J0�card(JK)=K

Q(JK | X)

]
+Q(JK+1 |X)

which proves that Q(JK+1 | X) is identified. As this is true for K = 1, and if true for K,
true for K + 1, Q(J0 | X) is identified for all J0 ⊂ J .

B.2 Proof of Proposition 2

We proceed by induction over the number of schools, J. The two-school case is proved
in the text. To design the proof at the simplest level, we first derive the proof for J = 3
and J = {1�2�3}. The general proof will follow the same lines but at a more abstract level
and will show that if it is true for J, this is also true for J + 1.

Stage 1: From two schools to J = 3 Write the observed choice probabilities in equation
(6) when �13(Z) → −∞, which is permitted by Assumption CV:

Pr(D = 1 | Z�X) =Q
({1} | X)

+Q
({1�2} | X)

Pr
(
�12(Z) > log

(
V 2) − log

(
V 1) | X�Z�J+ = {1�2}�J c+ = {3})�

since alternative 1 is always dominated by alternative 3 when both V1 and V3 are positive.
Given that Q(·) is identified and different from zero, this identifies

Pr
(
�12(Z) > log

(
V 2) − log

(
V 1) |X�Z�J+ = {1�2}�J c+ = {3})�

By generalizing this line of argument to any pair {j�k} in {1�2�3}, this proves the identi-
fication of distributions in all quadrants of reduced dimension, J = 2.
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We can return to equation (6)

Pr(D = j | Z�X)

=
∑

J+⊃{j}
Q(J+ | X)Pr

(∀k ∈ J+��jk(Z) > log
(
V k

) − log
(
V j

) | X�Z�J+�J c+
)

in which all terms are identified except when set J+ = J . As Q(J | X) is positive
by assumption, we derive from this equation an expression for Pr(∀k ∈ J ��jk(Z) >

log(V k) − log(V j) | X�Z�J+ = {1�2�3}�J c+ = ∅) for all j ∈ J as a function of identified
terms. By the complete variation assumption CV of �jk(Z), this ensures the identifica-
tion of the joint distribution Pr((log(V k)− log(V 1))∀k∈J /{1} | X�Z�J ) if 1 is taken as the
reference alternative. The property under induction is thus true for J = 3.

Stage 2: From J to J + 1 Assume now that the property is true for J. We now show that
the property is true for J + 1. It follows the same steps as above:

(i) Assume that for all j ∈ J /{l}, �jl(Z) → −∞ which identifies, through equation (6),
for any j ∈ J /{l}:

Pr
(∀k ∈ J /{j� l}��jk(Z) > log

(
V j

) − log
(
V k

) | X�Z�J+ = J /{l}�J c+ = {l})�
(ii) Return to equation (6)

Pr(D = j | Z�X)

=
∑

J+⊃{j}
Q(J+ | X)Pr

(∀k ∈ J+��jk(Z) > log
(
V k

) − log
(
V j

) | X�Z�J+�J c+
)

in which all terms are identified except the one corresponding to J+ = J . As Q(J | X)

is positive, we can derive an expression for Pr(∀k ∈ J /{j}��jk(Z) > log(V k) − log(V j) |
X�Z�J ) for all j ∈ J . By the complete variation assumption CV of �jk(Z), this ensures
the identification of the joint distribution Pr((log(V k) − log(V 1))k∈J /{1} | X�Z�J ) if 1
is taken as the reference alternative. Identification of differences between log values is
thus true for J + 1.
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