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Nonstationary dynamic models with finite dependence
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The estimation of nonstationary dynamic discrete choice models typically re-
quires making assumptions far beyond the length of the data. We extend the class
of dynamic discrete choice models that require only a few-period-ahead condi-
tional choice probabilities, and develop algorithms to calculate the finite depen-
dence paths. We do this both in single agent and games settings, resulting in ex-
pressions for the value functions that allow for much weaker assumptions regard-
ing the time horizon and the transitions of the state variables beyond the sample
period.
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1. Introduction

Estimation of dynamic discrete choice models is complicated by the calculation of ex-
pected future payoffs. These complications are particularly pronounced in games where
the equilibrium actions and future states of the other players must be margined out to
derive a player’s best response. Originating with Hotz and Miller (1993), two-step meth-
ods provide a computationally cheap way of estimating structural payoff parameters in
both single-agent and multiagent settings. These two-step estimators first estimate con-
ditional choice probabilities (CCPs) and then characterize future payoffs as a function
of the CCPs when estimating the structural payoff parameters.1

CCP estimators fall into two classes: those that exploit finite dependence, and those
that do not.2 The former entails expressing the future value term or its difference across
two alternatives as a function of just a few-period ahead conditional choice probabilities
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and flow payoffs.3 Intuitively, ρ period finite dependence holds when there exist two
sequences of choices that lead off from different initial choices but generate the same
distribution of state variables ρ+ 1 periods later. The sequences of choices need not be
optimal and may involve mixing across choices within a period.

When a finite dependence representation exists, it is possible to relax some of the
assumptions about time that are commonly made when estimating dynamic discrete
choice models. Nonstationary infinite horizon models can be estimated when finite de-
pendence holds. In finite horizon models, assumptions about the length of the time
horizon and the evolution of the state variables beyond the sample period, can be re-
laxed. For example, a dynamic model of schooling requires making assumptions regard-
ing the age of retirement, and also the functional form of utilities of older workers, al-
though the data available to researchers might only track individuals into their twenties
or thirties. Furthermore, estimation is fast because conditional choice probabilities need
only be computed for a few periods ahead of the current choices.

Many papers have used the finite dependence property in estimation, often em-
ploying either a terminal or renewal action.4 More general forms of finite dependence,
whether a feature of the data or imposed by the authors, have been applied in models of
fertility and female labor supply Altug and Miller (1998), Gayle and Golan (2012), Gayle,
Hincapie, and Miller (2018), migration (Bishop (2012), Coate (2016), Ma (forthcoming),
Ransom (2018)), participation in the stock market Khorunzhina (2013), agricultural land
use Scott (2013), smoking Matsumoto (2014), education Arcidiacono, Aucejo, Maurel,
and Ransom (2016), occupational choice James (2014), and housing choices Khorun-
zhina and Miller (2016). These papers demonstrate the advantage of exploiting finite
dependence in estimation: it is not necessary to solve the value function within a nested
fixed-point algorithm, nor invert matrices the size of the state space.5

The current method for determining whether finite dependence holds or not is to
guess and verify. The main contribution of this paper is to provide a systematic way of
determining whether finite dependence holds when there are a (large but) finite number
of states. To accomplish this, we slightly generalize the definition of finite dependence
given in Arcidiacono and Miller (2011). Key to the generalization is recognizing that the
ex ante value function can be expressed as a weighted average of the conditional value
functions of all the alternatives plus a function of the conditional choice probabilities,
where all the weights sum to one but some may be negative or greater than one. As one
of our examples shows, this slight generalization enlarges the class of models that can be

3See Hotz and Miller (1993), Altug and Miller (1998), Arcidiacono and Miller (2011), Aguirregabiria and
Magesan (2013, 2017), and Gayle (2017).

4See, for example, Hotz and Miller (1993), Joensen (2009), Scott (2013), Arcidiacono, Bayer, Blevins, and
Ellickson (2016), Declerq and Verboven (2018), Mazur (2017), and Beauchamp (2015). The last three exploit
one-period finite dependence to estimate dynamic games.

5The finite dependence property has also been directly imposed on the decision making process in mod-
els to economize on the state space. See, for example, Bishop (2012) and Ma (forthcoming). Assuming play-
ers do not use all the information at their disposal reduces the state space players use to solve their opti-
mization problems. This approach provides a parsimonious way of modeling bounded rationality when the
state space is high dimensional.
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cheaply estimated by exploiting this more inclusive definition of the finite dependence
property.

Determining whether finite dependence holds for a pair of initial choices is a nonlin-
ear problem, yet the algorithm we propose for dynamic optimization problems only has
a finite number of steps. We partition candidate paths for demonstrating finite depen-
dence in say ρ periods; paths that reach the same set of states reached with a nonzero
weight are collected together. Partitioning by whether a weight is zero or not, rather than
the value of the weight, reduces an uncountable infinity of paths to a finite set. Each el-
ement in the partition maps into a linear system of equations, and we check the rank
of the system, also a finite number of operations. The size of the linear system is based
on the number of states attainable in ρ − 1 periods from the initial state, not the total
number of states in the model. The algorithm proceeds iteratively, by checking the de-
terminants of selected elements in the partition. If one (or more) of the elements has a
nonzero determinant, then the pair of choices exhibits ρ period finite dependence; oth-
erwise it does not. Once finite dependence is established, another linear operation (on a
finite number of equations) yields a set of weights that can be used in any CCP estimator
that exploits finite dependence.

In game settings, finite dependence is applicable to each player individually. Here,
finite dependence relates to transition matrices for the state variables when a desig-
nated player places arbitrary weight on each of her possible future decisions (so long
as the weights sum to one within a period) and the other players follow their equilib-
rium strategies. Consequently, finite dependence in games cannot be ascertained from
the transition primitives alone (as in the individual optimization case). Indeed, whether
or not finite dependence holds might also hinge on which equilibrium is played, not
a paradoxical result, because different equilibria for the same game sometimes reveal
different information about the primitives, so naturally require different estimation ap-
proaches.

Up until now, research on finite dependence in games has been restricted to models
with a terminal action (that ends the process governing the state variables for individ-
ual players). Otherwise one-period finite dependence typically fails to hold, because the
equilibrium actions of the other players depend on what the designated agent has al-
ready done. Hence the distribution of the state variables, which the other players partly
determine, depends on the actions of the designated player two periods earlier. These
stochastic connections, a vital feature of many strategic interactions, has limited em-
pirical research in estimating games with nonstationarities. We develop an algorithm
to solve for finite dependence in a broader class of games than those characterized by
terminal and renewal actions. In the general case, a bilinear system of equations must
be solved, where the number of equations is dictated by the possible states that can be
reached a few periods ahead, but in some specializations, including but not limited to
terminal and renewal actions, our algorithm reduces to solving a linear system of equa-
tions.

The rest of the paper proceeds as follows. Section 2 lays out our framework for ana-
lyzing finite dependence in discrete choice dynamic optimization problems and nonco-
operative equilibrium games. In Section 3, we define finite dependence, and show how
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this property can be used in estimation, generalizing existing estimators that exploit fi-
nite dependence to order to accommodate the many new applications our algorithm
on finite dependence reveals. The fourth section provides a new representation of this
property, and uses the representation to demonstrate how to recover finite dependence
paths in single agent optimization problems. Section 5 extends the approach to mul-
tiagent equilibrium settings. New examples with finite dependence, derived using the
algorithm, are provided in Section 6, while Section 7 concludes.

2. Framework

This section first lays out a general class of dynamic discrete choice models. Drawing
upon our previous work (Arcidiacono and Miller (2011)), we extend our representation
of the conditional value functions which plays an overarching role in our analysis, and
then modify our framework to accommodate games with private information.

2.1 Dynamic optimization discrete choice

In each period t ∈ {1� � � � �T } until T ≤ ∞, an individual chooses among J mutually exclu-
sive actions. Let djt equal one if action j ∈ {1� � � � � J} is taken at time t and zero otherwise.
The current period payoff for action j at time t depends on the state xt ∈ X , a finite set.6

If action j is taken at time t, the probability of xt+1 occurring in period t + 1 is denoted
by fjt(xt+1|xt).

The individual’s current period payoff from choosing j at time t is also affected by a
choice-specific shock, εjt , which is revealed to the individual at the beginning of the pe-
riod t. We assume the vector εt ≡ (ε1t � � � � � εJt) has continuous support, is drawn from a
probability distribution that is independently and identically distributed over time with
density function g(εt), and satisfies E[max{ε1t � � � � � εJt}] ≤ ε <∞. The individual’s cur-
rent period payoff for action j at time t is modeled as ujt(xt)+ εjt .

The individual takes into account both the current period payoff as well as how his
decision today will affect the future. Denoting the discount factor by β ∈ (0�1), the in-
dividual chooses the vector dt ≡ (d1t � � � � � dJt) to sequentially maximize the discounted
sum of payoffs:

E

{
T∑
t=1

J∑
j=1

βt−1djt
[
ujt(xt)+ εjt

]}
� (2.1)

where at each period t the expectation is taken over the future values of xt+1� � � � � xT and
εt+1� � � � � εT . Expression (2.1) is maximized by a Markov decision rule which gives the
optimal action conditional on t, xt , and εt . We denote the optimal decision rule at t as
dot (xt� εt), with jth element dojt(xt� εt). The probability of choosing j at time t conditional
on xt , pjt(xt), is found by taking dojt(xt� εt) and integrating over εt :

pjt(xt)≡
∫
dojt(xt� εt)g(εt)dεt � (2.2)

6Our analysis is based on the assumption that xt belongs to a finite set, an assumption that is often made
in this literature; see Aguirregabiria and Mira (2002) for example. However, it is worth mentioning that finite
dependence can be applied without making that assumption; see Altug and Miller (1998) for example.
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We then define pt(xt)≡ (p1t (xt)� � � � �pJt(xt)) as the vector of conditional choice proba-
bilities (CCPs).

Denote Vt(xt), the ex ante value function in period t, as the discounted sum of ex-
pected future payoffs just before εt is revealed and conditional on behaving according
to the optimal decision rule:

Vt(xt)≡E
{

T∑
τ=t

J∑
j=1

βτ−tdojτ(xτ� ετ)
(
ujτ(xτ)+ εjτ

)}
�

Given state variables xt and choice j in period t, the expected value function in pe-
riod t + 1, discounted one period into the future, is β

∑X
xt+1=1 Vt+1(xt+1)fjt(xt+1|xt). Un-

der standard conditions, Bellman’s principle applies and Vt(xt) can be recursively ex-
pressed as

Vt(xt)=
J∑
j=1

∫
dojt(xt� εt)

[
ujt(xt)+ εjt +β

X∑
xt+1=1

Vt+1(xt+1)fjt(xt+1|xt)
]
g(εt)dεt �

We then define the choice-specific conditional value function, vjt(xt), as the flow pay-
off of action j without εjt plus the expected future utility conditional on following the
optimal decision rule from period t + 1 on:7

vjt(xt)= ujt(xt)+β
X∑

xt+1=1

Vt+1(xt+1)fjt(xt+1|xt)� (2.3)

Our analysis is based on a representation of vjt(xt) that slightly generalizes Theo-
rem 1 of Arcidiacono and Miller (2011). Both results are based on their Lemma 1, that
for every t ∈ {1� � � � �T } and p ∈ �J , the J dimensional simplex, there exists a real-valued
function ψj(p) such that

ψj
[
pt(x)

]≡ Vt(x)− vjt(x)� (2.4)

To interpret (2.4), note that the value of committing to action j at period t before see-
ing εt and behaving optimally thereafter is vjt(xt)+ E[εjt]. Therefore, the expected loss
from precommitting to j versus waiting until εt is observed and only then making an op-
timal choice, Vt(xt), is the constant ψj[pt(xt)] minus E[εjt], a composite function that
only depends on xt through the conditional choice probabilities. This result leads to the
following theorem, proved using an induction.

Theorem 1. For each choice j ∈ {1� � � � � J} and τ ∈ {t + 1� � � � �T }, let any ωτ(xτ� j) de-
note any mapping from the state space {1� � � � �X} to RJ satisfying the constraints that

7For ease of exposition, we refer to vjt (xt) as the conditional value function in the remainder of the paper.
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|ωkτ(xτ� j)|<∞ and
∑J
k=1ωkτ(xτ� j)= 1. Recursively, define κτ+1(xτ+1|xt� j) as

κτ+1(xτ+1|xt� j)

≡

⎧⎪⎪⎨⎪⎪⎩
fjt(xt+1|xt) for τ = t�
X∑
xτ=1

J∑
k=1

ωkτ(xτ� j)fkτ(xτ+1|xτ)κτ(xτ|xt� j) for τ = t + 1� � � � �T�
(2.5)

Then for T < T ,

vjt(xt) = ujt(xt)+
T∑

τ=t+1

J∑
k=1

X∑
xτ=1

βτ−t
[
ukτ(xτ)+ψk

[
pτ(xτ)

]]
ωkτ(xτ� j)κτ(xτ|xt� j)

+
X∑

xT +1

βT +1−tVT +1(xT +1)κT +1(xT +1|xt� j)� (2.6)

and for T = T ,

vjt(xt)= ujt(xt)+
T∑

τ=t+1

J∑
k=1

X∑
xτ=1

βτ−t
[
ukτ(xτ)+ψk

[
pτ(xτ)

]]
ωkτ(xτ� j)κτ(xτ|xt� j)� (2.7)

For the purposes of this work, it is convenient to interpret T as the final period in
the sample; typically T < T . Arcidiacono and Miller (2011) proved the theorem when
T = T and ωkτ(xτ� j) ≥ 0 for all k and τ. In that case, κτ+1(xτ+1|xt� j) is the probability
of reaching xτ+1 by following the sequence defined by ωτ(xτ� j) and the value function
representation extending over the whole decision-making horizon.8

2.2 Extension to dynamic games

This framework extends naturally to dynamic games. In the games setting, we assume
that there are N players making choices in periods t ∈ {1� � � � �T }. The systematic part
of payoffs to the nth player not only depends on his own choice in period t, denoted
by d(n)t ≡ (d

(n)
1t � � � � � d

(n)
Jt ), and the state variables xt , but also the choices of the other

players, which we now denote by d(∼n)t ≡ (d
(1)
t � � � � � d

(n−1)
t � d

(n+1)
t � � � � � d

(N)
t ). Denote by

U
(n)
jt (xt� d

(∼n)
t )+ ε

(n)
jt the flow utility of player n in period t, where ε(n)jt is an identically

and independently distributed random variable that is private information to player n.
Although the players all face the same observed state variables, these state variables typ-
ically affect players in different ways. For example, adding to the nth player’s capital may
increase his payoffs and reduce the payoffs to the others. For this reason, the payoff
function is superscripted by n.

The players make simultaneous choices in each period. We denote by Pt(d
(∼n)
t |xt)

the joint conditional choice probability that the players aside from n collectively choose

8The extension to negative weights is also noted in Gayle (2017).
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d(∼n)t at time t given the state variables xt . Since ε(n)t is independently distributed across
all the players, Pt(d

(∼n)
t |xt) has the product representation:

Pt
(
d
(∼n)
t |xt

)= N∏
n′=1
n′ 	=n

(
J∑
j=1

d
(n′)
jt p

(n′)
jt (xt)

)
� (2.8)

We assume each player acts like a Bayesian when forming his beliefs about the choices
of the other players and that a Markov-perfect equilibrium is played. Hence, the beliefs
of the players match the probabilities given in equation (2.8). Taking the expectation of
U(n)jt (xt� d

(∼n)
t ) over d(∼n)t , we define the systematic component of the current utility of

player n as a function of the state variables as

u(n)jt (xt)=
∑

d
(∼n)
t ∈JN−1

Pt
(
d(∼n)t |xt

)
U(n)jt

(
xt�d

(∼n)
t

)
� (2.9)

For future reference, we call u(n)jt (xt) the reduced form payoff to player n from taking
action j in period t when the state is xt .

The values of the state variables at period t+1 are determined by the period t choices
by all the players as well as the values of the period t state variables. We consider a model
in which the state variables can be partitioned into those that are affected by only one of
the players, and those that are exogenous. For example, to explain the number and size
of firms in an industry, the state variables for the model might be indicators of whether
each potential firm is active or not, and a scalar to measure firm capital or capacity; each
firm controls their own state variables, through their entry and exit choices, as well as
their investment decisions.9 The partition can be expressed as xt ≡ (x(0)t � x(1)t � � � � � x(N)t ),
where x(0)t denotes the states that are exogenously determined by transition probability
f0t (x

(0)
t+1|x(0)t ), and x(n)t ∈ X (n) ≡ {1� � � � �X(n)} is the component of the state controlled or

influenced by player n. Let f (n)jt (x
(n)
t+1|x(n)t ) denote the probability that x(n)t+1 occurs at time

t + 1 when player n chooses j at time t given x(n)t . Many models in industrial organi-
zation exploit this specialized structure because it provides a flexible way for players to
interact while keeping the model simple enough to be empirically tractable.10 Since the
transitions of the exogenous variables do not substantively effect our analysis, we ignore
them for the rest of the paper to conserve on notation.

Denote the state variables associated with all the players aside from n as

x(∼n)t ≡ (x(1)t � � � � � x(n−1)
t � x(n+1)

t � � � � x(N)t

)
∈ X (∼n) ≡ X (1) × � � �×X (n−1) ×X (n+1) × � � �×X (N)�

9The second example in Arcidiacono and Miller (2011) also belongs to this class of models.
10All the empirical applications of structural modeling of which we are aware have this property, includ-

ing those based on Ericson and Pakes (1995). For example, firms affect their own product quality through
their own investment decisions, but do not directly affect the product quality of other players. Thus each
firm’s decisions affect the product quality of other players only through the effect on the decisions of the
other players.
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Under this specification, the reduced form transition generated by their equilibrium
choice probabilities is defined as

f (∼n)t

(
x(∼n)t+1 |xt

)≡ N∏
n′=1
n′ 	=n

[
J∑
k=1

p(n
′)

kt (xt)f
(n′)
kt

(
x(n

′)
t+1|x(n

′)
t

)]
�

As in Section 2.1, consider for all τ ∈ {t� � � � �T } any sequence of decision weights:

ω(n)τ (xτ� j)≡ (ω(n)1τ (xτ� j)� � � � �ω
(n)
Jτ (xτ� j)

)
subject to the constraints

∑J
k=1ω

(n)
kτ (xτ� j) = 1 and starting value ω(n)jt (xt� j) = 1. Given

the equilibrium actions of the other players impounded in f (∼n)t (x(∼n)t+1 |xt), we recur-

sively define κ(n)τ+1(xτ+1|xt� j) for the sequence of decision weights ω(n)kτ (xτ� j) over pe-
riods τ ∈ {t + 1� � � � �T } in a similar manner to (2.5) as

κ
(n)
τ+1(xτ+1|xt� j)

≡ f0τ
(
x
(0)
τ+1|x(0)τ

) X∑
xτ=1

J∑
k=1

f (∼n)τ

(
x
(∼n)
τ+1 |xτ

)
ω
(n)
kτ (xτ� j)f

(n)
kτ

(
x
(n)
τ+1|x(n)τ

)
κ(n)τ (xτ|xt� j) (2.10)

with initializing function:

κ(n)t+1(xt+1|xt� j)≡ f (n)jt

(
x
(n)
t+1|x(n)t

)
ft
(
x
(∼n)
t+1 |xt

)
f0t
(
x
(0)
t+1|x(0)t

)
� (2.11)

Letting

fjt
(
xt+1|xt

)= f0t
(
x(0)t+1|x(0)t

)
f (∼n)t

(
x(∼n)t+1 |xt

)
f (n)jt

(
x(n)t+1|x(n)t

)
(2.12)

and adding n superscripts to all the other terms in (2.7), it now follows that Theorem 1
applies to this multiagent setting in exactly the same way as in a single agent setting.

3. The finite dependence property

Theorem 1 shows that the future value term can be expressed relative to any weighted
choice sequence as long as the sum of the weights add up to one in each period. Given
that many paths can be chosen, it may be possible to line up the distribution of states
given two different initial choices at some point in the future, say ρ periods later. If this is
the case, then expressing the future value terms relative to these sequences results in the
future value terms after ρ periods cancel out once differences in the conditional value
function are taken across the two choices. Hence any information that would result in
differences between the two choices in the future is already embedded in the conditional
choice probabilities. In this section, we formalize the concept of finite dependence. We
then show how it can be used in estimation.
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3.1 Defining finite dependence

Turning first to individual optimization problems, consider two sequences of decision
weights that begin at date t in state xt , one with choice i and the other with choice j. We
say that the pair of choices {i� j} exhibits ρ-period dependence if there exist sequences
of decision weights from i and j for xt such that

κt+ρ+1(xt+ρ+1|xt� i)= κt+ρ+1(xt+ρ+1|xt� j) (3.1)

for all xt+ρ+1 ∈ {1� � � � �X}. That is, the weights associated with each state are the same
across the two paths after ρ periods.11

Several comments on this definition are in order. First, finite dependence trivially
holds in all finite horizon problems. However, the property of ρ-period dependence only
merits attention when ρ < T − t. To avoid repeatedly referencing the trivial case of ρ=
T − t, we will henceforth write finite dependence holds only when (3.1) applies for ρ <
T − t. Second, finite dependence is defined with respect to a pair of choices conditional
on the value of the state variable, not the whole model. The main reason for this narrow
definition is that finite dependence might hold for some choice pairs but not others,
and for certain states but not others. Even in this case, we can reduce the computational
burden of estimating the model by exploiting finite dependence on the pairs of choices
where it holds. Finally, a more general definition of finite dependence would encompass
mixed choices to start the sequence, not just pure strategies; our analysis easily extends
to the more general case.

Under finite dependence, differences in current utility ujt(xt) − uit(xt) can be ex-
pressed as

ujt(xt)− uit(xt)=ψi
[
pt(xt)

]−ψj[pt(xt)]
+

t+ρ∑
τ=t+1

J∑
k=1

X∑
xτ=1

βτ−t
{
ukτ(xτ)+ψk

[
pτ(xτ)

]}
× [ωkτ(xτ� i)κτ(xτ|xt� i)−ωkτ(xτ� j)κτ(xτ|xt� j)

]
� (3.2)

This equation follows directly from equations (2.4) and (2.7), in Theorem 1.12

Extending the definition of finite dependence to dynamic games is straightforward.
It is applied to a given equilibrium at date t in state xt , one with choice i and the other
with choice j taken by a given player n. The two sequences of decision weights apply
to the future choices of n when the other players follow their equilibrium strategies.
Equation (2.12) defines the transition probabilities, while (2.11) and (2.10) determine
the transitions of κ(n)τ+1(xτ+1|xt� j). Thus in this multiagent setting ρ-period dependence

11Aguirregabiria and Magesan (2013, 2017) and Gayle (2017) restricted their analyses to cases where there
is one- period finite dependence, thus ruling out labor supply applications such as Altug and Miller (1998),
as well as games.

12Appealing to (2.4), replace vjt (x) with Vt(x)−ψj[pt(x)] in (2.7) and perform a similar substitution for
vit (x). Upon differencing the two equations, the Vt(x) terms drop out.
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exists if there is a pair of sequences that give, for all xt+ρ+1 ∈ {1� � � � �X}:

κ
(n)
t+ρ+1(xt+ρ+1|xt� i)= κ(n)t+ρ+1(xt+ρ+1|xt� j)� (3.3)

3.2 Exploiting finite dependence in estimation

When finite dependence holds, estimation may be much computationally less demand-
ing. The empirical applications we cited in the introduction illustrate estimators based
on finite dependence have appealing computational advantages. Equation (3.2) pro-
vides a basis for estimation without resorting to the inverting high dimensional matri-
ces or simulating future paths. In addition, finite dependence has empirical content; it
is straightforward to test whether (3.1) is rejected by the data.

To illustrate how to exploit finite dependence in estimation, suppose the data
comprise N observations of the state variables and decisions denoted by {dntn�xntn�
xn�tn+1}Nn=1 sampled within a time frame of t ∈ {1� � � � �T }. Say there are M separate
instances of finite dependence as defined in (3.1) within that time frame where, for
the sake of exposition, each pair of choices includes choice 1. Label the M paths by
(jm�xm� tm�ρm) for m ∈ {1� � � � �M}.13 Assume that for each t ∈ {1� � � � �T } the probability
of the sample selection mechanism drawing x ∈ {1� � � � �X} is strictly positive.14

We then make the standard assumptions in the literature. First, assume the subjec-
tive discount factor β, and g(εt), the joint probability density function for the unob-
served idiosyncratic taste shock εt , are known.15 Second, assume ujt(x) can be param-
eterized by a finite dimensional vector θ ≡ (θ1� � � � � θK) ∈Θ, a closed convex set in RK ,
and normalize the first choice to zero, by writing ujt(x) = ũjt(x�θ), where ũjt(x�θ) is a
known function with ũ0t (x�θ)= 0 for all (t�x).16 Finally, assume that theM instances of
finite dependence are sufficient to identify θ.17

We propose the following minimum distance CCP estimator for θ, new to the litera-
ture:

1. For all t ∈ {1� � � � �T } and x ∈ {1� � � � �X}, define the cell estimators of pjt(x) as

p̂jt(x)≡

N∑
n=1

1{dnt(n)j = 1}1{tn = t}1{xnt(n) = x}

N∑
n=1

1{tn = t}1{xnt(n) = x}

13For example, in models with a renewal action or a terminal choice, every other choice at every state
exhibits one- period dependence so in these casesH =X(J − 1)T .

14This assumption is made for expositional simplicity: the state space could be redefined to be time
specific, including only those states that are reached with strictly positive probability in each period t ∈
{1� � � � �T }.

15Both assumptions can be relaxed without losing identification depending on how restrictive are the
assumptions on the functional form of ujt(x).

16Note that ujt(x) can be represented as a (J − 1)XT dimensional vector, so this parameterization
amounts to imposing at most (J − 1)XT − K restrictions on that vector. For more details on identifying
such models in nonstationary settings, see Arcidiacono and Miller (forthcoming).

17A necessary condition for identification is thenM >K.
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and estimate theXJT CCP vector p≡ (p11(1)� � � � �pJT (X))′ with p̂ formed from p̂jt(x).
Also, if the state transitions are unknown, estimate fjt(x) with f̂jt(x) in this first stage,
for example, with a cell estimator (similar to the CCP estimator).

2. Let y(p� f ) ≡ (y1(p� f )� � � � � yH(p� f ))
′ and Z(p�f�θ) ≡ (Z1(p� f�θ)� � � � �

ZM(p�f�θ))
′ where

ym(p�f )≡ψ1
[
pt(m)(xm)

]−ψj(m)[pt(m)(xm)]
+

tm+ρm∑
τ=tm+1

J∑
k=1

X∑
xτ=1

βτ−t(m)ψk
[
pτ(xτ)

]
× [ωkτ(xτ�1)κτ(xτ|xm�1)−ωkτ(xτ� jm)κτ(xτ|xm� jm)

]
�

Zm(p�f�θ)≡ ũj(m)�t(m)(xm�θ)

−
tm+ρm∑
τ=tm+1

J∑
k=1

X∑
xτ=1

β
τ−t(m)
kτ ũkτ(xτ�θ)

× [ωkτ(xτ�1)κτ(xτ|xm�1)−ωkτ(xτ� jh)κτ(xτ|xm� jm)
]
�

3. LetW denote anM dimensional positive definite matrix and choose θ to minimize:[
y(p̂� f̂ )−Z(p̂� f̂ � θ)]′W [y(p̂)−Z(p̂� f̂ � θ)]� (3.4)

It is straightforward to show that θ̂, the solution to (3.4), is
√
N consistent and asymp-

totically normal, because (3.1) implies yt(x�p� f ) = Zt(x�p� f�θ) at the true parameter
values.18 For example, denoting a consistent estimate of the inverse of the asymptotic
covariance matrix of (p̂′� f̂ ′)′ by Ŵ , and setting W = Ŵ , the asymptotic covariance ma-
trix of θ̂ is [Z(p̂� f̂ � θ)/∂θ′Ŵ Z(p̂� f̂ � θ)/∂θ]−1. When W is diagonal matrix, (3.4) reduces
to nonlinear least squares in this case. A second specialization is to assume ũjt(x�θ) is

linear in θ. In this case, the solution to (3.4) has a closed form and whenW = Ŵ :

θ̂= {[∂Z(p̂� f̂ � θ)/∂θ]′Ŵ [∂Z(p̂� f̂ � θ)/∂θ]}−1[
∂Z(p̂� f̂ � θ)/∂θ

]′
Ŵ y(p̂� f̂ )�

Finally, the estimator carries over to the games case with minimal notational changes.

4. Finite dependence in individual optimization problems

We now turn to determining when finite dependence holds. As foreshadowed in the In-
troduction, the algorithm for determining ρ-period dependence for ρ > 1 iterates be-
tween two procedures: checking the rank of a matrix, and listing the elements of the
matrix. The procedure is simpler to establish one-period dependence as there are no

18Note that a full solution approach, based on solving the underlying dynamic programming problem
for each value of θ ∈ Θ does not exist when T < T unless the econometrician makes strong assumptions
about the functional form utility takes in all periods τ ∈ {T + 1� � � � �T } beyond the end of the data.
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intermediate decisions between the initial choice and the choice of weights that gener-
ate finite dependence. Hence, checking the rank of a particular matrix is sufficient for
determining one-period dependence.

There is a second reason for investigating one-period dependence before analyz-
ing the more general case. Because the guess and verify method is essentially the only
method researchers have to determine finite dependence, almost all empirical applica-
tions of finite dependence have exploited two special cases of one-period dependence,
models with two choices where one of them is either a terminal or a renewal choice.
Terminal choices end the optimization problem or game by preventing any future de-
cisions; irreversible sterilization against future fertility (Hotz and Miller (1993)), and
firm exit from an industry (Aguirregabiria and Mira (2007), Pakes, Ostrovsky, and Berry
(2007)) are examples. The defining feature of a renewal choice is that it resets the states
that were influenced by past actions. Turnover and job matching (Miller (1984)), or re-
placing a bus engine (Rust (1987)), are illustrative of renewal actions. In such models,
following any choice with a terminal or renewal choice yields the same value of the state
variable after two periods. Therefore, the key difference between terminal and renewal
actions is that the former end the dynamic sequence, turning the optimization problem
into a stopping problem. Designate the first choice as the terminal or renewal choice.
Following any choice j ∈ {1� � � � � J} with a terminal or renewal choice leads to same value
of state variables after two periods, because for all xt+2:

X∑
xt+1=1

f1�t+1(xt+2|xt+1)fjt(xt+1|xt)=
X∑

xt+1=1

f1�t+1(xt+2|xt+1)f1t (xt+1|xt)� (4.1)

Therefore, equation (3.1) is satisfied at t + 2 for all j ∈ {1� � � � � J} and x ∈ X by setting
weights ωk�t+1(xt+1� j)= 1 if k= 1 and zero otherwise.

4.1 One-period dependence in optimization problems with two choices

We begin a systematic search for finite dependence by analyzing the special case of one-
period dependence where there are two choices. Formally, the definition of κt+1(x

′|xt� j)
given by equation (2.5) implies that one-period dependence holds in this specialization
at xt if and only if there exists a weighting rule such that κt+2(x

′|xt�1) = κt+2(x
′|xt�2)

for all x′ ∈ X . Since J = 2 and the weights sum to one, we can economize on sub-
scripts by setting ωt+1(xt+1� j) ≡ ω2�t+1(xt+1� j), the weight on the second action. Thus
ωt+1(xt+1� j)must solve

X∑
xt+1=1

{[
f2�t+1

(
x′|xt+1

)− f1�t+1
(
x′|xt+1

)]
× [ωt+1(xt+1�2)f2t (xt+1|xt)−ωt+1(xt+1�1)f1t (xt+1|xt)

]}
=

X∑
xt+1=1

f1�t+1
(
x′|xt+1

)[
f1t (xt+1|xt)− f2t (xt+1|xt)

]
(4.2)
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for all x′ ∈ X . Nominally, this is a linear system of X − 1 equations in ωt+1(xt+1�1) and
ωt+1(xt+1�2); if the X − 1 equations are satisfied for all but one of the state variables,
the equation associated with the remaining state will automatically be satisfied since
summing κt+2(x

′|xt� j) over x′ equals one.
The dimension of ωt+1(xt+1� j) is X for each j ∈ {1�2}. Therefore, there are fewer

equations than unknowns. However, if a state is not reached at t + 1, then changing the
weight placed on an action at that state cannot help in obtaining finite dependence.
Therefore, we need only consider states at t + 1 that can be reached with positive prob-
ability from at least one of the initial choices.

The fact that some of the states may not be reached at t + 1 regardless of the initial
choice effectively reduces the number of relevant unknowns in the system. Another fea-
ture of the system reduces the relevant number of equations. The equations associated
with states at t + 2 that cannot be reached given either initial choice are automatically
satisfied: given either initial choice, the weight on these states at t + 2 is zero.

We can incorporate these two features into the system of equations given by (4.2) as
follows. Suppose Aj�t+1 states can be reached with positive probability in period t + 1
from state xt with choice j at time t, and denote their set by Aj�t+1 ⊆ X . Thus x ∈ Aj�t+1 if
and only if fjt(x|xt) > 0. Let At+2 ⊆ X denote the states that can be reached with positive
probability in period t + 2 from any element in the union A1�t+1 ∪A2�t+1 with either ac-
tion at t+ 1. Thus x′ ∈ At+2 if and only if fk�t+1(x

′|x) > 0 for some x ∈ A1�t+1 ∪A2�t+1 and
k ∈ {1�2}. Finally, denote by At+2 the number of states in At+2(xt). It now follows that
the matrix-equivalent of equation (4.2) reduces to a linear system ofAt+2 − 1 equations
withA1�t+1 +A2�t+1 unknowns.19

Denote by Kj�t+1(Aj�t+1) the Aj�t+1 dimensional vector of nonzero probabilities
in the string: fjt(1|xt)� � � � � fjt(X|xt). It gives the one-period transition probabilities to
Aj�t+1 from xt when choice j is made. Let Fk�t+1(Aj�t+1) denote the firstAt+2 −1 columns
of the Aj�t+1 ×At+2 transition matrix from Aj�t+1 to At+2 when choice k is made in pe-
riod t + 1.20 A typical element of Fk�t+1(Aj�t+1) is fk�t+1(x

′|x) where x ∈ Aj�t+1 and x′ ∈
At+2. Note that some elements of Fk�t+1(Aj�t+1) may be zero. Finally, let Ωt+1(Aj�t+1� j)

denote an Aj�t+1 dimensional vector of weights on each of the attainable states at t + 1
for taking the second choice at that time given initial choice j, comprising elements
ωt+1(x� j) for each x ∈ Aj�t+1.

To see how these matrices relate to (4.2), momentarily consider what would happen
if all the states were attainable at both t + 2 and t + 1 given an initial state xt and initial
choice j. In this case,

A1�t+1 = A2�t+1 = At+2 = X � Ωt+1(Aj�t+1� j)=Ωt+1(X � j)�

Kj�t+1(Aj�t+1)= Kj�t+1(X )�

19We can remove one equation from the At+2 system because if the weights associated with each state
match forAt+2 − 1 states, they must also match for the remaining state

20We focus on the first At+2 − 1 columns because the last column must be given by one minus the sum
of the previous columns.
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so we can write

Ωt+1(X � j) ◦ Kj�t+1(X )=
[
ωt+1(1� j)fjt(1|xt) � � � ωt+1(X� j)fjt(X|xt)

]′
�

where ◦ refers to element-by-element multiplication. Also Fk�t+1(Aj�t+1) becomes the

t + 1 transition matrix given choice k, less one column, say

Fk�t+1(Aj�t+1)= Fk�t+1(X )=
⎡⎢⎣ fk�t+1(1|1) � � � fk�t+1(X − 1|1)

���
� � � � � �

fk�t+1(1|X) � � � fk�t+1(X − 1|X)

⎤⎥⎦ �
Stacking the equations in (4.2) for all x′ ∈ {1� � � � �X − 1}, the left-hand side of the stack is

a linear combination of four expressions, each taking the form:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

X∑
xt+1=1

fk�t+1(1|xt+1)ωt+1(xt+1� j)fjt(xt+1|xt)
���

X∑
xt+1=1

fk�t+1(X − 1|xt+1)ωt+1(xt+1� j)fjt(xt+1|xt)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
= [Fk�t+1(X )

]′[
Ωt+1(X � j) ◦ Kj�t+1(X )

]
� (4.3)

Note that when k= 2, equation (4.3) is the weight for each element of X when the initial

choice j is followed by the second choice.

Typically, not all states in X are attainable at period t + 1 given initial choice j.

For all x̃ /∈ Aj�t+1, that is, when fjt(x̃|xt) = 0, we remove the element ωt+1(x̃� j)fjt(x̃|xt)
from Ωt+1(X � j) ◦ Kjt(X ) and the x̃th row in Fk�t+1(X ). This reduces the dimension of

Ωt+1(X � j) ◦ Kj�t+1(X ) to Aj�t+1 and the dimension of Fk�t+1(X ) from X × (X − 1) to

Aj�t+1 × (X − 1). Similarly, if x̂ /∈ At+2, in words if x̂ is unattainable given either ini-

tial choice regardless of the weighting rules at t + 1, then we remove the x̂th column

of Fk�t+1(X ), which is a vector of zeros. The transition matrix Fk�t+1(Aj�t+1) is then a

Aj�t+1 × (At+2 − 1)matrix.

Substituting these transformations into (4.2), we now express the system ofAt+2 − 1
equations with A1�t+1 +A2�t+1 unknowns in matrix form. Define the At+2 − 1 dimen-

sional vector Kt+1, and the (At+2 − 1)× (A1�t+1 +A2�t+1)matrix Ht+1, respectively as

Kt+1 ≡
[

F1�t+1(A1�t+1)

−F1�t+1(A2�t+1)

]′ [
K1�t+1(A1�t+1)

K2�t+1(A2�t+1)

]
�

Ht+1 ≡
[

F2�t+1(A2�t+1)− F1�t+1(A2�t+1)

F1�t+1(A1�t+1)− F2�t+1(A1�t+1)

]
�
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Then one-period dependence holds if and only if there exists an (A1�t+1 +A2�t+1) vector
of unknowns denoted by Dt+1 solving

Kt+1 = Ht+1

[
Ωt+1(A2�t+1�2) ◦ K2�t+1(A2�t+1)

Ωt+1(A1�t+1�1) ◦ K1�t+1(A1�t+1)

]
≡ Ht+1Dt+1� (4.4)

Note that if the weights placed on all the states in Aj�t+1 but one are the same across
the two paths then the weights placed on the remaining state must be the same as well.
A solution to (4.4) for Dt+1 exists if and only if the rank of Ht+1 equals the rank of the

augmented matrix H∗
t+1 ≡ [Kt+1

���Ht+1] formed by augmenting Ht+1 with the extra column
Kt+1.

Denote the rank of Ht+1 byRt+1 and the rank of of H∗
t+1 byR∗

t+1. Clearly,Rt+1 ≤R∗
t+1 ≤

Rt+1 + 1 and Rt+1 ≤ min{At+2 − 1�A1�t+1 +A2�t+1}. There are two cases to consider:

1. Suppose Rt+1 = A1�t+1 + A2�t+1. If in addition Rt+1 = At+2 − 1, implying Ht+1 is
square, we solve for the weights by inverting Ht+1 and then element-by-element dividing
both sides of (4.4) by the matching K vectors, yielding[

Ωt+1(A2�t+1�2)
Ωt+1(A1�t+1�1)

]
= H−1

t+1Kt+1◦
/[K2�t+1(A2�t+1)

K1�t+1(A1�t+1)

]
� (4.5)

where ◦/ refers to element-by-element division. IfRt+1 >At+2 −1, we successively elim-
inate A1�t+1 +A2�t+1 −At+2 + 1 linearly dependent columns of Ht+1 to form a square
matrix of rank At+2 − 1. We now remove the corresponding elements in Dt+1 in (4.4) so
that the reducedAt+2 −1 dimensional vector conforms with the square matrix, by delet-
ing the elements that would have been multiplied by the columns removed from Ht+1,
effectively giving zero weight to the second action for the removed elements. Finally, an
analogous equation to (4.5) is solved for the weights characterizing finite dependence.21

2. Alternatively, Rt+1 < A1�t+1 + A2�t+1. First, we successively eliminate A1�t+1 +
A2�t+1 − Rt+1 linearly dependent columns of Ht+1 to form an (At+2 − 1) × Rt+1 ma-
trix denoted by Ht+1. This operation corresponds to reducing the vector length of Dt+1

from A1�t+1 + A2�t+1 to Rt+1 by effectively setting A1�t+1 + A2�t+1 − Rt+1 weights to
zero. Denote the Rt+1 × 1 vector of weights not eliminated by Dt+1. We now eliminate
At+2 − Rt+1 − 1 rows of Ht+1 to form an Rt+1 dimensional square matrix with rank
Rt+1 denoted by Ht+1. Strictly for notational purposes, so without loss of generality,
we reorder the equations defining (4.4) so that the linearly independent equations are

the bottom ones. This allows us to partition H
′
t+1 ≡ [H′

t+1
���H′
t+1] and K′

t+1 ≡ [K′
t+1
���K′
t+1],

where Ht+1 is (At+2 − 1 − Rt+1) × Rt+1, while K′
t+1 is (At+2 − 1 − Rt+1) × 1 and Kt+1

is Rt+1 × 1. Inverting Ht+1, we obtain Dt+1 = H
−1
t+1Kt+1. Thus a solution to (4.4) attains

in this knife edged case if and only if Dt+1 solves At+2 − Rt+1 − 1 additional equations

Kt+1 = Ht+1H
−1
t+1Kt+1.

21The set of weights generated by this procedure depends on which linearly dependent columns are
removed. Therefore, the weight vectors satisfying finite dependence are not unique.
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To illustrate the algorithm in the renewal and terminal state models mentioned
above, let X ≡ {1�2� � � � �X}, and suppose the first choice denotes the terminal or renewal
choice which returns the state variable x to the value one, while the second increases x
by one unit for all x <X and returnsX when x=X .22 Because the transitions are deter-
ministic, A1�t+1 =A2�t+1 = 1, with A1�t+1 = {1} and A2�t+1 = {xt + 1}. Also At+2 = 3, with
At+2 = {1�2�xt + 2}. It now follows that in this example:

F1�t+1(A1�t+1)= F1�t+1(A2�t+1)=
[
1 0

]
�

F2�t+1(A1�t+1)=
[
0 1

]
� F2�t+1(A2�t+1)=

[
0 0

]
�

Ht+1 =
[
−1 1
0 −1

]
or H−1

t+1 =
[
−1 −1
0 −1

]
�

Substituting these expressions into (4.5), and noting thatΩt+1(Aj�t+1� j)=ωt+1(x� j) be-
cause K1t (A1�t+1)= K2t (A1�t+1)= 1, demonstrates that zero weight is placed on the non-
renewal/nonterminal action to achieve one-period dependence:[

ωt+1(x�2)
ωt+1(x�1)

]
=
[
−1 −1
0 −1

][
1 −1
0 0

][
1
1

]
◦
/[1

1

]
=
[

0
0

]
�

The limitations of the guess and verify approach become evident when such a widely
used class of models in empirical analysis is revealed to have such a simple structure.
The class of models exhibiting even one-period finite dependence is much larger than
terminal and renewal models, and the method developed here provides a systematic
way of discovering them.

4.2 Solving nonlinear systems to attain ρ-period dependence

Analyzing the existence of finite dependence for ρ > 1 introduces nonlinearity into the
system. For convenience, we relabel the two initial choices i and j in equation (3.1) as 1
and 2, and the initial state as xt . Analogous to the one-period finite dependence case, for
any τ ∈ {t+ 1� � � � � t+ρ− 1} we say xτ ∈ {1� � � � �X} is attainable by a sequence of decision
weights from initial choice j ∈ {1�2} if the weight on xτ is nonzero.23 LetAjτ ∈ {1� � � � �X}
denote the number of attainable states, and Ajτ ⊆ X the set of attainable states for the
sequence beginning with choice j.24 Define Kjτ(Ajτ) as an Ajτ vector containing the
weights for transitioning to each of the Ajτ attainable states given the choice sequence
beginning with j and state xt . Similarly, letAτ+1 ∈ {1� � � � �X} denote the number of states
that are attainable by at least one of the sequences beginning either with choice 1 or 2,
and denote by Aτ+1 ⊆ X the corresponding set. Given an initial state and choice, we

22More formally, f1�t+1(1|xt) = 1, for all t and xt , while for all t, f2�t+1(xt + 1|xt) = 1 if xt < X and
f2�t+1(X|X)= 1.

23For example, suppose X ≡ {1�2�3} and xt = 3. Also assume f1�t+1(1|3)= 3/4, and f1�t+1(2|3)= 1/4. Then
the the first two states are attainable in t + 1 from taking the first choice but the third is not.

24In our simple example,A1�t+1 = 2 and A1�t+1 = {1�2}.
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denote by Fkτ(Ajτ) the first Aτ+1 − 1 columns of the Ajτ ×Aτ+1 transition matrix from
Ajτ to Aτ+1 when k is chosen at period τ, with F̃kτ(Ajτ) containing all the columns of
the transition matrix. The matrix comprises elements fkτ(x′|x) for each x ∈ Ajτ and x′ ∈
Aτ+1.

The Aτ+1 system of equations exhibits ρ-period dependence, that is κτ+1(xτ+1|xt�
1) = κτ+1(xτ+1|xt�2) with τ = t + ρ, if and only if there exist vectors Ωkτ(Ajτ�1) and
Ωkτ(Ajτ�k) for each k ∈ {2� � � � � J} solving:

Kτ+1 ≡ F1τ(A1τ)K1τ(A1τ)− F1τ(A2τ)K2τ(A2τ)= HτDτ� (4.6)

where the (Aτ+1 − 1)× (J − 1)[A1τ +A2τ] matrix Hτ , and the (J − 1)[A1τ +A2τ] vector
Dτ , are respectively defined by25

Hτ ≡

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

F2τ(A2τ)− F1τ(A2τ)
���

FJτ(A2τ)− F1τ(A2τ)

F1τ(A1τ)− F2τ(A1τ)
���

F1τ(A1τ)− FJτ(A1τ)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

′

� Dτ ≡

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ω2τ(A2τ�2) ◦ K2τ(A2τ)
���

ΩJτ(A2τ�2) ◦ K2τ(A2τ)

Ω2τ(A1τ�1) ◦ K1τ(A1τ)
���

ΩJτ(A1τ�1) ◦ K1τ(A1τ)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
� (4.7)

Appealing to Hadley (1961, pp. 168–169) yields necessary and sufficient conditions for
the existence of a solution to this linear system, which we state as a theorem.

Theorem 2. Define the (Aτ+1 − 1) × {(J − 1)[A1τ + A2τ] + 1} matrix H∗
τ ≡ [Hτ

���Kt+1],
obtained by adding an extra column Kt+1 to Hτ . Finite dependence from xt with respect to
choices i and j is achieved in ρ= τ− t periods if and only if there exist weights from t + 1
to τ− 1 such that the rank of Hτ equals the rank of H∗

τ .

Theorem 2 shows that establishing one-period dependence when there are more
than two choices is a straightforward extension of the case in which J = 2. However, non-
linearity in the weights enter (4.6) when ρ > 1 because Kjτ(Ajτ) depends onΩks(A2s� j),
the weight on action k ∈ {2� � � � � J} for every period s < τ given initial choice j ∈ {1�2}.
Denote K̃jτ(Aτ) as the Aτ vector containing the weights for transitioning to each of
the Aτ states, that is, the attainable states from either path-given the initial choice of j.
Kjτ(Ajτ) is then the nonzero entries of K̃jτ(Aτ). The following recursive structure is then
evident:

K̃jτ(Aτ)=
⎡⎢⎣F̃2�τ−1(Aj�τ−1)

���

F̃J�τ−1(Aj�τ−1)

⎤⎥⎦
′⎡⎢⎣Ω2�τ−1(Aj�τ−1� j) ◦ Kj�τ−1(Aj�τ−1)

���

ΩJ�τ−1(Aj�τ−1� j) ◦ Kj�τ−1(Aj�τ−1)

⎤⎥⎦ � (4.8)

25One of the equations is redundant because if all other states have the same weight assigned to them
across the two paths then the last one must be lined up as well, implying that if the rank of Hτ is Aτ+1 − 1
then finite dependence holds in ρ periods.
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Taking the nonzero elements out of K̃jτ(Aτ) to form Kjτ(Ajτ) and substituting in for
Kjτ(Ajτ) using (4.8) in (4.7) and (4.6) demonstrates that cross products of elements in
Ω2�τ−1(Aj�τ−1� j) and Ω2τ(A2τ�2) enter (4.8). Formally, the system is bilinear, not lin-
ear.

To see that the system is bilinear, suppose J = 2 and write ωτ(xτ� j) ≡ ω2τ(xτ� j):
expanding (4.6) term by term proves that two-period dependence exists for some given
xt if and only if:

X∑
xt+2=1

X∑
xt+1=1

f1�t+2(xt+3|xt+2)f1�t+1(xt+2|xt+1)
[
f1t (xt+1|xt)− f2t (xt+1|xt)

]

=
X∑

xt+2=1

X∑
xt+1=1

[
f2�t+2(xt+3|xt+2)− f1�t+2(xt+3|xt+2)

]
× [f2�t+1(xt+2|xt+1)− f1�t+1(xt+2|xt+1)

]
× [ωt+2(xt+2�2)ωt+1(xt+1�2)f2t (xt+1|xt)
−ωt+2(xt+2�1)ωt+1(xt+1�1)f1t (xt+1|xt)

]
+

X∑
xt+2=1

X∑
xt+1=1

[
f2�t+2(xt+3|xt+2)− f1�t+2(xt+3|xt+2)

]
× f1�t+1(xt+2|xt+1)ωt+2(xt+1�1)f1t (xt+1|xt)
× [ωt+2(xt+1�2)f2t (xt+1|xt)−ωt+2(xt+1�1)f1t (xt+1|xt)

]
+

X∑
xt+2=1

X∑
xt+1=1

f1�t+2(xt+3|xt+2)
[
f2�t+1(xt+2|xt+1)− f1�t+1(xt+2|xt+1)

]
× [ωt+1(xt+1�2)f2t (xt+1|xt)−ωt+1(xt+1�1)f1t (xt+1|xt)

]
(4.9)

for all xt+3 ∈ X . Since products of weights appear in (4.9), bilinear solution techniques
are required to solve this problem. More generally, cross products to the power of ρ enter
into the equation system defining ρ-period dependence.

We exploit the special structure of this nonlinear problem by dividing it into two
parts, each having a finite number of operations. The second part is the linear inversion
problem to which Theorem 2 applies. The first part delineates the subsets of nodes in X
that can be reached by period t + ρ with nonzero weight by a path from each of the two
initial choices being considered. Having established existence, we can obtain weights
satisfying (3.1) as a by-product.

There are an infinite number of weighting schemes, each of which might conceivably
establish finite dependence, a fact that might explain why researchers have opted for
guess and verify methods when designing models exhibiting this computationally con-
venient property. Our next theorem, however, proved by construction in the Appendix,
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shows that an exhaustive search for a set of weights that establish finite dependence
can be achieved in a finite number of steps. The key to the proof is that although the
definition of Hτ does indeed depend on the weights, many sets of weights produce the
same A1τ and A2τ (and hence the same Aτ+1). Since the inversion of Hτ hinges on the
attainable states, and the sets of all possible attainable states is finite, a finite number of
operations is needed to establish whether a finite dependence path exists.

Theorem 3. For each τ ∈ {t + 1� � � � � t + ρ}, the rank of Hτ and H∗
τ can be determined in a

finite number of operations.

Theorem 3 applies to any dynamic discrete choice problem described in Section 2.
However, the number of calculations required to determine ρ-period dependence is
specific to the number of choices, J, in periods between t + 1 and t + ρ, the number
of states in each of those periods, and the transition matrices. As ρ increases, so too will
the sets of possible attainable states, increasing computational complexity in finding the
finite dependence path. Increasing the number of choices, J, also will increase the sets
of possible attainable states. At the same time, increasing J gives more control to line
up the states. When examining finite dependence for a pair of initial choices, the mini-
mum ρmust be weakly decreasing as more choices are available as one could always set
the weight on these additional choices to zero. Finally, the complexity of the state space
does not necessarily require more calculations to determine finite dependence for two
reasons. First, it is only the states that can be reached in ρ periods from the current state
that are relevant for determining finite dependence. Second, as the sets of attainable
states increase, the researcher also has more options for finding paths that exhibit finite
dependence.

5. Finite dependence in games

Applications of finite dependence in the empirical literature on games are scarce. One
exception are models with exit decisions, which have the terminal state property. Al-
though finite dependence is usually not exploited in these models (but see Beauchamp
(2015) and Mazur (2017), Collard-Wexler (2013), Dunne, Klimek, Roberts, and Xu (2013),
and Ryan (2012)) all exhibit the finite dependence property that could be used to sim-
plify estimation.

In principle, the methods developed above are directly applicable to dynamic games
off short panels, that is, after defining fjt(xt+1|xt) with (2.12). Let F(n)kτ (Ajτ) denote the
first Aτ − 1 columns of the transition matrix from Ajτ to Aτ+1 given choice k by player

n at time τ when everyone else plays their equilibrium strategy and let F̃(n)kτ (Ajτ) de-
note the transition matrix containing all the columns. These are defined analogously to
Fkτ(Ajτ) and F̃kτ(Ajτ) in the individual optimization case. Also letΩ(n)k�τ(A2τ� j) denote a

vector of weights on choice k for each of the Ajτ states in Ajτ . Finally, let K(n)jτ (Ajτ) de-
note the τ-period transition probabilities to Ajτ when n initially chooses j and follows
the weights when everybody else plays their equilibrium strategies. Analogous to (4.6),
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ρ period dependence holds for the first two actions if

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

F(n)2τ (A2τ)− F(n)1τ (A2τ)
���

F(n)Jτ (A2τ)− F(n)1τ (A2τ)

F(n)1τ (A1τ)− F(n)2τ (A1τ)
���

F(n)1τ (A1τ)− F(n)Jτ (A1τ)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

′⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ω(n)2�τ(A2τ�2) ◦ K(n)2τ (A2τ)
���

Ω(n)Jτ (A2τ�2) ◦ K(n)2τ (A2τ)

Ω(n)2�τ(A1τ�1) ◦ K(n)1τ (A1τ)
���

Ω(n)Jτ (A1τ�1) ◦ K(n)1τ (A1τ)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=
[

F(n)1τ (A1τ)

−F(n)1τ (A2τ)

]′ [
K(n)1τ (A1τ)

K(n)2τ (A2τ)

]
� (5.1)

In practice, establishing finite dependence is generally more onerous in games than

in individual optimization problems. Finite dependence in a game is player specific; in

principle finite dependence might hold for some players but not for others. Further-

more, the transition of the state variables for any one player taking a particular ac-

tion depends on the equilibrium decisions of all the other players. Thus, finite depen-

dence in games is ultimately a property that derives not just from the game primitives,

but also equilibrium play. Consequently, games do not typically exhibit one-period fi-

nite dependence: if two different choices of n at time t affect the other players’ equi-

librium choices in t + 1 (or later), it is generally not feasible to line up all the states

xt+2 ≡ (x(0)t+2�x
(1)
t+2� � � � � x

(N)
t+2) across both paths emanating from the respective initial

choices of n within two periods.

A key feature of the incomplete information games settings we consider is that at t,

when the players other than n collectively choose d(∼n)t , they condition on the lagged

choice of n (i.e., how d(n)t−1 affects x(n)t ), but not on d(n)t , the current choice of n. Our ap-

proach to determining finite dependence in games exploits this feature in the following

way. First, we obtain necessary and sufficient conditions for player n to take a sequence

of weighted actions inducing, say after ρ − 1 periods, the other players to take actions

at t + ρ that match up the weight distributions of x(∼n)t+ρ+1, conditional on x(∼n)t , mean-

ing:26

κt+ρ+1
(
x(∼n)t+ρ+1|xt� i

)= κt+ρ+1
(
x(∼n)t+ρ+1|xt� j

)
� (5.2)

Clearly, (5.2) is a necessary condition for (3.3) to hold. Second, with one last choice of

weight pairs at t + ρ, player n lines up the joint distribution of the states of all the play-

ers, setting ω(n)k�t+ρ(xt+ρ� i) and ω(n)k�t+ρ(xt+ρ� j), and incorporating the restrictions that

give (5.2), so that (3.3) simultaneously holds.

26This inducement is based on the other players following their equilibrium strategies.
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5.1 Finite dependence for state components controlled by other players

From (3.1), finite dependence at τ requires

X∑
xτ=1

J∑
k=1

f (∼n)τ

(
x(∼n)τ+1 |xτ

)
f (n)kτ

(
x(n)τ+1|x(n)τ

)
ω(n)kτ (xτ� j)κ

(n)
τ (xτ|xt� j)

=
X∑
xτ=1

J∑
k=1

f (∼n)τ

(
x
(∼n)
τ+1 |xτ

)
f
(n)
kτ

(
x
(n)
τ+1|x(n)τ

)
ω
(n)
kτ (xτ� i)κ

(n)
τ (xτ|xt� i)� (5.3)

Necessary and sufficient conditions for (5.3) to hold are found in the same way as finite
dependence is determined for individual optimization problems. They are based on the
intuition that from periods t through τ− 1 player n takes pairs of weighted actions start-
ing with i and j that induce the other other players to align the probability distributions
for x(∼n)τ+1 through their equilibrium choices.

A necessary condition for τ dependence comes from summing (5.3) over the x(n)τ+1
outcomes. Noting that

X(n)∑
x
(n)
τ+1=1

X∑
xτ=1

f (∼n)τ

(
x
(∼n)
τ+1 |xτ

)[ J∑
k=1

ω
(n)
kτ (xτ� j)f

(n)
kτ

(
x
(n)
τ+1|x(n)τ

)]
κ(n)τ (xτ|xt� j)

=
X∑
xτ=1

f (∼n)τ

(
x(∼n)τ+1 |xτ

)[ J∑
k=1

ω(n)kτ (xτ� j)

][
X(n)∑
x(n)=1

f (n)kτ

(
x(n)τ+1|x(n)τ

)]
κ(n)τ (xτ|xt� j)

=
X∑
xτ=1

f (∼n)τ

(
x(∼n)τ+1 |xτ

)
κ(n)τ (xτ|xt� j) (5.4)

we simplify the sum (5.3) over x(n)τ+1 using (5.4) to obtain

X∑
xτ=1

f (∼n)τ

(
x(∼n)τ+1 |xτ

)[
κ(n)τ (xτ|xt� j)− κ(n)τ (xτ|xt� i)

]= 0� (5.5)

This proves that whether (5.5) holds or not depends on the weights assigned to n in
periods t + 1 though τ− 1, but not on the period τ weights.

To derive a rank condition under which (5.5) holds, it is notationally convenient to
focus on the first two choices as before. Suppose (5.5) holds at τ+ 1. Then there must be
decision weights at τ − 1 with the following property: the states that result in τ lead the
other players to make (equilibrium) decisions at τ so that each of their own states have
the same weight across the two paths at τ+ 1. Formally, let Aj�τ−1 ⊆ X denote the set of
attainable states at τ−1 for the weight sequence beginning with n choosing j ∈ {1�2}. Let
Aτ ⊆ X denote the set of attainable states at τ for the weight sequence beginning with n
either choosing 1 or 2. Let A(∼n)τ+1 ⊆ X (∼n) denote the attainable states of the other players

at τ + 1 given the two weight sequences. Let A(∼n)τ+1 denote the number of elements in
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A(∼n)τ+1 . Let P(∼n)τ (Aτ) denote the transpose of the firstA(∼n)τ+1 − 1 columns of the transition

matrix from Aτ to the set of competitor states A(∼n)τ+1 . Finally, define H(∼n)τ and K(∼n)τ+1 as

H(∼n)τ ≡ P(∼n)τ (Aτ)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

F̃(n)2�τ−1(A2�τ−1)− F̃(n)1�τ−1(A2�τ−1)
���

F̃(n)J�τ−1(A2�τ−1)− F̃(n)1τ−1(A2�τ−1)

F̃(n)1�τ−1(A1�τ−1)− F̃(n)2�τ−1(A1�τ−1)
���

F̃(n)1�τ−1(A1�τ−1)− F̃(n)J�τ−1(A1�τ−1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

′

� (5.6)

K(∼n)τ+1 ≡ P(∼n)τ (Aτ)
[̃
F(∼n)1�τ−1(A1�τ−1)K

(n)
1�τ−1(A1�τ−1)− F̃(∼n)1�τ−1(A2�τ−1)K

(n)
2�τ−1(A2�τ−1)

]
� (5.7)

Finite dependence requires weighting rules from t + 1 to τ − 1 so that when the other
players take equilibrium actions at τ on the two paths the states of the other players are
lined up at τ + 1. The effects of these equilibrium actions on the state operate through
P(∼n)τ (Aτ) in (5.6). Thus the similarity of H(∼n)τ and Hτ is evident from comparing (5.6)
with (4.7); likewise the similarities between K(∼n)τ+1 and Kτ+1 are obvious from (4.6) and
(5.7). Following the same logic as Theorem 2, we obtain the following result.

Theorem 4. Given an initial period and state (t�xt), and initial choices 1 and 2, (5.5)
holds for all x(∼n) ∈ X(∼n) if and only if there exists a pair of weight sequences defining

H(∼n)τ and K(∼n)τ+1 such that H(∼n)τ and [H(∼n)τ
���K(∼n)τ+1 ] have the same rank.

5.2 Aligning the joint distributions

For one specialization, checking the conditions of Theorem 4 suffices to determine
whether (3.3) holds or not. Suppose that for each x ∈ Aτ , there is an action d(n)(x) yield-
ing some fixed x(n) ∈X(n) for sure.27 Then satisfying the conditions of Theorem 4 imply
the conditions of Theorem 2 are met too. In this specialization, the joint distribution
across the two paths is aligned in τ+ 1 because (i) κ(∼n)τ (x(∼n)τ+1 |xt� j), the marginal weight
distribution of the other players’ states is aligned, and (ii) the state of player n does not
vary across the states of the other players. Thus verifying finite dependence reduces to
finding conditions that satisfy (5.2) in this case. Renewal and terminal actions provide
examples because the renewal or terminal state, x(n) ∈ X (n), can be reached from any
x(n) ∈ X (n) in one period with certainty. Section 6.2 illustrates our step-by-step proce-
dure for establishing finite dependence in a coordination game.

A second special case occurs when the rank of H(∼n)τ is A(∼n)τ+1 − 1 and the set of

weights is unique. We first derive the unique set of weightsω(n)kτ (xτ�1) andω(n)kτ (x
′
τ�2) for

τ ∈ in this linear subproblem; then following the approach in the preceding subsection,
we show below, as a special case of a more general result, that whether a set of weights

27More generally, there exists one action d(n)(x), or some weighted mixture of actions, that when applied

to either sequence, yields the same weight distribution over x(n) ∈X(n) for all x ∈ A(n)
τ .



Quantitative Economics 10 (2019) Nonstationary dynamic models 875

exists establishing τ- period finite dependence or not, reduces to solving a second linear
problem in ω(n)kτ (xτ�1) and ω(n)kτ (x

′
τ�2) for k ∈ {2� � � � � J} and xτ ∈ A1�τ+1 and x′

τ ∈ A2�τ+1,
similar to those analyzed in the single agent problems.

If the set of weights equalizing the marginal distributions for x(∼n)t+ρ+1 ∈ X(∼n) is not
unique, then an uncountable number do, since any convex combination of say two sets
of weights also equalize the marginal distributions. Since the weights determining the
solution to the states of the other players also help determine the conditional distribu-
tion for x(n)t+ρ+1, the selection of a solution for the other players may impact whether the

conditional distributions for x(n)t+ρ+1 can be aligned or not.

To treat both cases formally, let Ω(n)k�τ−1(A2�τ−1� j) denote an Aj�τ−1 dimensional row
vector of unknown weights assigning a real number to choice k ∈ {2� � � � � J} for each state
in Aj�τ−1 at τ− 1, given strictly positive weights K(n)2�τ−1(A2�τ−1). Denote 1J−1 as a (J − 1)

column vector of ones. DefineΩ(n)τ−1 and K(n)τ−1 as

Ω(n)τ−1 ≡

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ω(n)2�τ−1(A2�τ−1� j)
���

Ω(n)J�τ−1(A2�τ−1� j)

Ω
(n)
2�τ−1(A1�τ−1� j)

���

Ω(n)J�τ−1(A1�τ−1� j)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

′

� K(n)τ−1 ≡
[
1J−1 ⊗ K(n)2�τ−1(A2�τ−1)

1J−1 ⊗ K(n)1�τ−1(A1�τ−1)

]
� (5.8)

where ⊗ is the Kronecker product.
If there exists weightsΩ(n)τ−1 solving

K(∼n)τ+1 = H(∼n)τ

(
Ω
(n)
τ−1 ◦ K(n)τ−1

)
(5.9)

then a necessary condition for finite dependence embodied in (5.5), relating the weights
of all the players aside from n, is satisfied. In the special case where (A1�τ−1 +A2�τ−1)(J−
1)=A(∼n)τ+1 − 1 and H(∼n)τ = H

(∼n)
τ inverts, from (5.9),

Ω(n)τ−1 = [H(∼n)τ

]−1K(∼n)τ+1 ◦ / K(n)τ−1� (5.10)

More generally, let D
(n)
τ−1 denote anA(∼n)τ+1 −1 dimensional vector given byΩ

(n)
τ−1 ◦K

(n)
τ−1 and

D(n)τ−1 a vector of dimension (A1�τ−1 +A2�τ−1)(J − 1)− (A(∼n)τ+1 − 1) given by Ω(n)τ−1 ◦ K(n)τ−1.

Also partition H(∼n)τ at the (A(∼n)τ+1 −1)th column, writing H(∼n)τ = [ H
(∼n)
τ H(∼n)τ ], where H

(∼n)
τ

conforms to D
(n)
τ−1, and H(∼n)τ to D(n)τ−1. Then (5.9) can be expressed as

K(∼n)τ+1 = H
(∼n)
τ D

(n)
τ−1 + H(∼n)τ D(n)τ−1� (5.11)

From (5.11), it is evident that whether a solution to D
(n)
τ−1 exists hinges on H

(∼n)
τ , but not

on the values of D(n)τ−1. For example, a sufficient condition for a solution to the first step
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is that the rank of H
(∼n)
τ equals A(∼n)τ .28 Moreover, from (5.11) when the rank condition

for H
(∼n)
τ is satisfied, D

(n)
τ−1 varies with D(n)τ−1; specifically

D
(n)
τ−1 = [H(∼n)τ

]−1(K(∼n)τ+1 − H(∼n)τ D(n)τ−1

)
� (5.12)

To establish finite dependence at period τ + 1 for the joint system, it suffices to
show that there exists some D(n)τ−1 and a set of weights on the choices made by n in

period τ solving the joint system when we incorporate the effects of D(n)τ−1 operating

through K(n)j�τ−1. Modify (4.8) by superscripting with n the F̃(n)j�τ−1(Aj�τ−1) transitions, as

well as the weight vectors K̃jτ(Aτ) and Kj�τ−1(Aj�τ−1), to indicate the player for whom
finite dependence is being checked. Also replace the vector formed from the elements
Ωk�τ−1(Aj�τ−1� j) ◦ Kj�τ−1(Aj�τ−1) with D(n)τ−1. Then (4.8) becomes

K̃(n)jτ (Ajτ)=

⎡⎢⎢⎣
F̃(n)2�τ−1(Aj�τ−1)

���

F̃(n)J�τ−1(Aj�τ−1)

⎤⎥⎥⎦
′

D(n)τ−1� (5.13)

Form the vector D̂(n)τ−1 by replacing the elements in D
(n)
τ−1 with the linear mappings defined

in (5.12), and substitute for K(n)jτ (Ajτ) using the nonzero elements of (5.13) into (5.1).

These operations yield a bilinear system of equations to be solved in Ω(n)τ and D(n)τ−1. We
then check for a solution by minimizing a quadratic norm of the equation system. Finite
dependence is achieved when the quadratic norm attains a value of zero for some Ω(n)τ
and D(n)τ−1. The production quality game considered in Section 6.3 illustrates this stepwise
procedure.

6. Applications

This section provides three illustrations, new to the literature, that apply our finite de-
pendence representation. The first is a job search model. Establishing finite dependence
in a search model would seem difficult given that there is no guarantee one will receive
another job offer in the future if an offer is turned down today, and hence lining up, for
example, future experience levels would seem difficult. We show that our representation
applies directly to this case, and in the process highlight the practical importance of us-
ing negative weights. The second is a coordination game where we apply the results of
Theorem 4 to show that we can achieve two-period finite dependence in a strategic set-
ting when the conditions for the specialization discussed in the previous section hold.
Third, we analyze a product quality game that does not satisfy the conditions for the
specialization and defies a guess and verify approach.

6.1 A search model

The following simple search model shows why negative weights are useful in establish-
ing finite dependence, and uses the algorithm to exhibit an even less intuitive path to

28Necessary and sufficient conditions are found in the same way as the single agent optimization case.
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achieve finite dependence. Each period t ∈ {1� � � � �T } an individual may stay home by
setting d1t = 1, or apply for temporary employment setting d2t = 1. Job applicants are
successful with probability λt , and the value of the position depends on the experience
of the individual denoted by x ∈ {1� � � � �X}. If the individual works, his experience in-
creases by one unit, and remains at the current level otherwise. The preference primi-
tives are given by the current utility from staying home, denoted by u1(xt), and the utility
from working, u2(xt). Thus the dynamics of the model arise only from accumulating job
experience, while nonstationarities arise from time subscripted offer arrival weights.

6.1.1 Constructing a finite dependence path The guess and verify approach is useful
for verifying this model satisfies one-period finite dependence: we simply construct two
paths that generate the same probability distribution of xt+2 conditional on xt . Denote
ωτ(xt� j) as the weight placed on action 2 at time τ given initial choice j. Then set

ωt+1(xt�2)=ωt+1(xt + 1�2)= 0� ωt+1(xt�1)= λt/λt+1�

The distribution of xt+2 from following either path is the same: xt+2 = xt with probability
f2t (xt |xt)= 1 − λt , and xt+2 = xt + 1 with probability f2t (xt + 1|xt)= λt .

Applying the finite dependence path, the difference in conditional value functions
can then be expressed as

v2t (xt)− v1t (xt)

= λt
[
u2(xt)− u1(xt)+βu1(xt + 1)−βu2(xt)

]
+β
[
λtψ1

[
pt+1(xt + 1)

]+ λt( 1
λt+1

− 1
)
ψ1
[
pt+1(xt)

]− λt+1

λt
ψ2
[
pt+1(xt)

]]
� (6.1)

Note that if λt > λt+1 then ωt+1(xt�1) > 1, demonstrating that negative weights and
weights exceeding one can be used to establish finite dependence.

6.1.2 Applying Theorem 2 While Section 6.1.1 provides a constructive example of
forming a finite dependence path, it is also useful to show how the results from Sec-
tion 3.2 apply. We now use the results from Section 3.2 to derive another finite depen-
dence path.

To do so, we first define relevant terms in equation (4.4). A1�t+1 and A2�t+1 are given
by {xt} and {xt�xt + 1}. If the individual stays home the state remains unchanged, and
if the individual applies for temporary employment he may be employed, or not. Thus
K1�t+1(A1�t+1) and K2�t+1(A2�t+1) are [1] and [1 − λ λ]′. The relevant transition matrices
are given by

F1�t+1(A1�t+1)=
[
1 0

]
� F1�t+1(A2�t+1)=

[
1 0
0 1

]
�

F2�t+1(A1�t+1)=
[
1 − λt+1 λt+1

]
� F2�t+1(A2�t+1)=

[
1 − λt+1 λt+1

0 1 − λt+1

]
�
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The last column, giving the transitions to state xt + 2, is omitted because if the proba-
bilities are aligned in all but one attainable state, then the remaining probability must
match up as well.

The system of equations in (4.4) has two equations (one for the probability of state
xt ; another for the probability of state xt+1), plus three choice variables. The three choice
variables are the weights on the probability of choosing work conditional on either
(i) work in the first period but no job (xt+1 = xt ), (ii) work in the first period and ob-
taining a job (xt+1 = xt + 1), and (iii) not working in the first period (xt+1 = xt ). We then
have the following expression for the first term on the left-hand side of (4.4):[

F2t+1(A2�t+1)− F1t+1(A2�t+1)

F1t+1(A1�t+1)− F2t+1(A1�t+1)

]′
=
[
−λt+1 0 λt+1

λt+1 −λt+1 −λt+1

]
� (6.2)

To reduce the system to two equations and two unknowns, we set the weight on looking
for a job to zero conditional on being in state xt at t + 1 and having chosen not to look
for work at t. The last column of (6.2) can then be eliminated. Noting that[

−λt+1 0
λt+1 −λt+1

]−1

=
[
−1/λt+1 0
−1/λt+1 −1/λt+1

]

the solution to the system, given ωt+1(xt�1)= 0, is then[
ωt+1(xt�2)

ωt+1(xt + 1�2)

]
=
[
−1/λt+1 0
−1/λt+1 −1/λt+1

][
λt

−λt

]
◦
/[1 − λt

λt

]
=
⎡⎣ −λt
(1 − λt)λt+1

0

⎤⎦ �
Finite dependence can then be achieved by setting:

ωt+1(xt�1)=ωt+1(xt + 1�2)= 0� ωt+1(xt�2)= −λt
[
(1 − λt)λt+1

]−1
�

Here, the path that begins with not looking for work involves not looking for work in
period 2 either. By placing negative weight on looking for work conditional on (i) looking
for work in period t and (ii) not finding work at period t, we can cancel out the gains from
successful search in period t. Hence we arrive at the state xt along both choice paths.

6.2 A coordination game

To illustrate why finite dependence holds for a much broader class of games than those
with terminal choices, we first consider the following simple two player coordination
game. Each player n ∈ {1�2} chooses whether or not to compete in a market at time t,
competing by setting d(n)t = 2, not competing by setting d(n)t = 1. Let the superscript ∼ n
refer to the rival player of n; we define the state space xt ≡ (x

(n)
t � x

(∼n)
t ) from the nth

player’s perspective, and assume x(n)t = d(n)t−1. Therefore, the state variable transition ma-

trix is deterministic and time invariant. Let p(n)2t (xt) denote the equilibrium probability
of n competing at date t when the state variable is xt , and analogously denote the prob-
ability of noncompeting by p(n)1t (xt) = 1 − p

(n)
2t (xt). To prevent this game from degen-

erating to a single agent optimization problem, we assume p(n)2�t+1(2�1) 	= p(n)2�t+1(2�2); in
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equilibrium, the rival’s actions affect the player’s choice through the state variables. Con-
ditional on the lagged participation of the other player, we also assume an individual’s
choices depend on his own lagged participation, implying p(n)2�t+1(1�2) 	= p(n)2�t+1(2�2).
Both assumptions can be tested with data generated from an equilibrium for the game.
Summarizing, the dynamics of the game arise purely from the effect of decisions made
by both players in the previous period on current payoffs. Nonstationarity arises from
the flow payoffs that may depend on time, and hence the corresponding choice proba-
bilities.

We prove two-period dependence by construction. Let ω(n)t+2(x
(n)
t+2� j) denote the

weight for action 2 given x(n)t+2 ∈ {1�2} and initial action j ∈ {1�2} taken at time t, and

set ω(n)t+2(x
(n)
t+2� j) = 1, implying x(n)t+3 = 1 for both initial actions j ∈ {1�2}. This ensures

x(n)t+3 is the same for both paths by setting the t + 2 choice weight to be the same across
both paths.29 All that remains is to find two weighting sequences for n, one for each ini-
tial choice j ∈ {1�2} at t, such that when the other player makes his equilibrium choice
at t + 2, the distribution of d(∼n)t+2 , and hence the distribution of x(∼n)t+3 , is the same for

both sequences. In this model, the rank condition for H(∼n)τ is easy to check because
x(∼n)t+3 ≡ d(∼n)t+2 only takes two values. Theorem 5 establishes two period dependence by

specifying a ω(n)t+1(x
(n)
t+1� j), that in conjunction with setting ω(n)t+2(x

(n)
t+2� j)= 1, achieves fi-

nite dependence.

Theorem 5. The coordination game exhibits two period dependence for all xt .

6.3 A product quality game

We now consider a game where the solution cannot readily be solved by hand. In the
process, we outline an algorithm that, while not covering all cases, makes it easier to
find finite dependence paths in games settings.

Setup The game we consider has two players n ∈ {1�2}. In each period t ∈ {1� � � � �T },
the players simultaneously decide whether to increase their product quality from x(n)t
to x(n)t + 1 subject to a maximal product quality of x. With some probability π nature
reduces the product quality of both players to a minimum denoted by x. The expected
profit for player n for maintaining product quality (choosing j = 1), and increasing prod-
uct quality (choosing j = 2), net of an independent shock, are given by

u(n)1 (xt) = ln
[
x(n)t
]{
α0 + α1Et

[
γ(∼n)(xt)

]}
�

u(n)2 (xt) = ln
[
min
{
x(n)t + 1�x

}]{
α0 + α1Et

[
γ(∼n)(xt)

]}+ α2

respectively, where

Et
[
γ(∼n)(xt)

]= p(∼n)1t (xt) ln
[
x(∼n)t

]+p(∼n)2t (xt) ln
[
min
{
x(∼n)t + 1�x

}]
29Recall from our general discussion of finite dependence in games that the choice of n at t + 2 has no

effect on the other player’s choice at that time because it is not one of his state variables at t + 2.
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is the expected logged product quality of the rival, α0 gives the baseline returns to prod-
uct quality, α1 measures how profit is diminished by rivalry, and α2 is the cost of increas-
ing product quality. We assume that the payoff shock associated with each action is dis-
tributed Type 1 extreme value, and induce nonstationarity into the game by imposing a
finite horizon.

In the numerical specification we analyze, the time horizon is set to T = 20, the max-
imal product quality to x= 25, the minimal product quality to x= 2, and the probability
that both products become worthless to π = 0�05. Regarding preferences, we set the dis-
count factor to β = 0�9, the baseline flow return from product quality to α0 = 0�35, the
coefficient of the rival’s product quality to α1 = −0�15, and the cost of increasing product
quality to α2 = −3.

To solve for a symmetric pure strategy Markov perfect equilibrium, we first calcu-
late the probabilities of taking each action in the period T states by solving a fixed-
point problem in probability space. The period T solution (the equilibrium for the static
model) gives us the expected future utility at period T − 1 for each of the possible
choices. We then solve a fixed-point problem to obtain the choice probabilities in pe-
riod T − 1, continuing this procedure until the first period.

Algorithm We now show how the finite dependence properties of this game can be in-
vestigated using the techniques developed in this paper. Specifically, we check whether
the game satisfies two-period dependence at (t�x(n)t � x(∼n)t )= (1�4�5), that is investigat-
ing finite dependence in the first period when the product quality of player n is 4 and the
product quality of her rival is 5. Following the decomposition argument in Section 5.1,
we first obtain the weighted choices of n in period 2 that induce finite dependence for
x(∼n)3 , aligning the two marginal distributions of the rival’s states in period 3. We then
derive the period 3 weights that line up the two joint distributions for x4, the states for
both players in period 4.

Should nature destroy the product quality of both firms, the state is automatically
reset independently of past actions. Hence to determine whether the game exhibits fi-
nite dependence, we only need to consider paths on which nature has no debilitating
consequences. The description of the algorithm as applied to this example accordingly
ignores this aspect of nature. A program solving this example is provided in the Online
Supplementary Material (Arcidiacono and Miller (2019)).

1. Form the vector K(n)j�t+1(Aj�t+1) with dimension Aj�t+1 and elements given by the
probabilities associated with each states in Aj�t+1. In our example, when player n
chooses action 2 at time t, the state transitions from (4�5) to either (5�5) or (5�6), de-
pending whether her rival takes action 1 or 2, which implies

K(n)2�t+1(A2�t+1)=
[
p
(∼n)
1t (4�5) p

(∼n)
2t (4�5)

]′
�

2. Recall At+2 are the attainable states at t + 2 for the two initial choices at t and any
decision at t + 1. Form F(n)k�t+1(Aj�t+1), the transition matrix from Aj�t+1 to At+2, for all
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(j�k), given choice k by n at t + 1 and equilibrium choices by the rival. Its columns, give

the probabilities of transitioning from each of the states associated with K(n)j�t+1(Aj�t+1)

to one of the possible states in At+2; its rows refer to the states in At+2. Our example

features nine attainable states at t + 2 because each player can make the second choice

zero times, once, or twice, and thus

At+2 = {(4�5)� (5�5)� (6�5)� (4�6)� (5�6)� (6�6)� (4�7)� (5�7)� (6�7)
}
� (6.3)

The rows of F(n)k�t+1(A2�t+1) correspond to the possible states at t + 1 given action 2 was

taken at t. Hence the dimension of F(n)k�t+1(A2�t+1) is 2 × 9 and, ordering the columns

following theAt+2 list of elements above:

F(n)2�t+1

(
A(n)2�t+1

)= [0 0 p
(∼n)
1�t+1(5�5) 0 0 p

(∼n)
2�t+1(5�5) 0 0 0

0 0 0 0 0 p(∼n)1�t+1(5�6) 0 0 p(∼n)2�t+1(5�6)

]
�

The other transition matrices F(n)1�t+1(A1�t+1), F(n)1�t+1(A2�t+1), and F(n)2�t+1(A1�t+1), are

formed in a similar way.

3. Form P(∼n)t+2 (At+2), the transpose of the transition matrix from At+2 to A(∼n)t+3 , trun-

cated by a row (reflecting the linear dependence from summing the probabilities). A row

of this matrix has the probabilities of transitioning to a particular other player state at

t + 3 from each of the attainable states at t + 2. In our example, A(∼n)t+3 = {5�6�7�8}, and

(without loss of generality) we drop the row associated with x(∼n)t+3 = 8. With reference to

(6.3), the 3 × 9 dimensional matrix P(∼n)t+2 (At+2) takes the form:

⎡⎢⎢⎣
p
(∼n)
1t+1(4�5) p(∼n)1t+1(5�5) p(∼n)1t+1(6�5) 0 0 0 0 0 0

p(∼n)2t+1(4�5) p(∼n)2t+1(5�5) p(∼n)2t+1(6�5) p(∼n)1t+1(4�6) p(∼n)1t+1(5�6) p(∼n)1t+1(6�6) 0 0 0

0 0 0 p
(∼n)
2t+1(4�6) p(∼n)2t+1(5�6) p(∼n)2t+1(6�6) p(∼n)1t+1(4�7) p(∼n)1t+1(5�7) p(∼n)1t+1(6�7)

⎤⎥⎥⎦ �

4. Form K(∼n)t+3 defined by (5.7). In our example, K(∼n)t+3 is the 3×1 vector taking numer-

ical value:

K(∼n)t+3 = P(∼n)t+2 (Aτ)
[
F(n)1�t+1(A1�t+1)K

(n)
1�t+1(A1�t+1)− F(n)1�t+1(A2�t+1)K

(n)
2�t+1(A2�t+1)

]
=
[
−0�7081 −0�7592 0�0899

]′
� (6.4)

5. Form H(∼n)t+2 , the (A(∼n)t+3 − 1) × At+2 dimensional matrix defined by (5.6). In our

example, P(∼n)t+2 (At+2) is a 3 × 9 matrix whereas F(n)2�t+1(A2�t+1) − F(n)1�t+1(A2�t+1) and

F(n)1�t+1(A1�t+1) − F(n)2�t+1(A1�t+1) are both 2 × 9 matrices, so H(∼n)t+2 is 3 × 4. Substituting

the values of the equilibrium CCPs computed as the solution to the model into (6.5)
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yields

H(∼n)t+2 = P(∼n)t+2

(
A(n)t+2

)[F(n)2�t+1

(
A(n)2�t+1

)− F(n)1�t+1

(
A(n)2�t+1

)
F(n)1�t+1

(
A(n)1�t+1

)− F(n)2�t+1

(
A(n)1�t+1

)]′

=
⎡⎢⎣ 0�0892 0 −0�0611 0

−0�0139 0�0890 −0�0802 −0�0776
−0�0753 −0�0441 0�1413 −0�0256

⎤⎥⎦ � (6.5)

If the rank of H(∼n)t+2 is less than At+3, then two-period dependence does not hold. Using

(6.5) it is straightforward to verify that H(∼n)t+2 is rank three in our example.

6. Partition H(∼n)t+2 into [H(∼n)t+2
���H(∼n)t+2 ] where H

(∼n)
t+2 denotes a square matrix with dimen-

sion and rank At+2 and H(∼n)t+2 denotes a matrix comprising the remaining columns.

In our example, any one of the four columns could be removed to yield a matrix

of rank 3. Accordingly, we omit the first column of H(∼n)t+2 corresponding to state

(5�5) to obtain the 3 × 3 matrix H
(∼n)
t+2 , and the 3 × 1 vector H(∼n)t+2 =

[0�0892 − 0�0139 − 0�0753]′.
7. Let D

(n)
t+1 denote an At+1 − 1 dimensional real vector with generic component

D
(n)
kj�t+1 for k = 2 and j ∈ {1�2}. Similarly, let D(n)t+1 denote an At+1 − (A

(∼n)
t+3 − 1) di-

mensional weight vector with generic elements D(n)kj�t+1, and solve for D
(n)
t+1 as a lin-

ear mapping in D(n)t+1 using (5.12). In our example, D
(n)
t+1 is 3 × 1 and D(n)t+1 is a real

number. Substituting the numerical values for H(∼n)τ , H
(∼n)
t+2 , and K(∼n)t+3 , (5.12) simplifies

to

D
(n)
t+1 =

⎡⎢⎣−0�2643
2�7522
1�4614

⎤⎥⎦+
⎡⎢⎣0�2560

0�4073
0�1114

⎤⎥⎦D(n)t+1� (6.6)

8. Substitute (5.12) and D(n)t+1 into (5.13) to obtain an expression for K(n)j�t+2(Aj�t+2) in

terms of D(n)t+1 and K(∼n)t+3 . In our example, this yields

K̃(n)j�t+2(Aj�t+2) = F(n)2�t+1(Aj�t+1)
′D(n)t+1

+ F(n)2�t+1(Aj�t+1)
′[H(∼n)t+2

]−1(K(∼n)t+3 − H(∼n)t+2 D(n)t+1

)
� (6.7)

9. Substitute the linear expressions for K(n)j�t+1(Aj�t+1) into (5.1) and check for a so-

lution to the resulting bilinear equation system. In our example, (5.1) specializes

to the case where J = 2. There is two-period dependence if and only if the crite-

rion function (6.8) defined below attains a minimal value of zero for some D(∼n)t+1 and
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Table 1. Weights that generate finite dependence.

Probability of d(n)2τ = 1

Time State d
(n)
1t = 1 d

(n)
2t = 1

t + 1 (4�5) 4�7859
(4�6) 2�0178
(5�5) 1�3928
(5�6) 1�0139

t + 2 (4�5) 1
(4�6) 1
(4�7) 1
(5�5) 0 4�7475
(5�6) 0 11�0759
(5�7) 0 45�7515
(6�5) 0
(6�6) 0
(6�7) 0

Ω(n)t+2:

{[
F(n)2�t+2(A2�t+2)− F(n)1�t+2(A2�t+2)

]′[
Ω(n)2�t+2(A2�t+2�2) ◦ K(n)2�t+2(A2�t+2)

]
+ [F(n)1�t+2(A1�t+2)− F(n)2�t+2(A1�t+2)

]′[
Ω
(n)
2�t+2(A1�t+2�1) ◦ K(n)1�t+2(A1�t+2)

]
+ [F(n)1�t+2(A2�t+2)

]′[
K(n)2�t+2(A2�t+2)

]− [F(n)1�t+2(A1�t+2)
]′[

K(n)1�t+2(A1�t+2)
]}2
� (6.8)

In this example, we exploit the bilinear property of (6.8) by solving for Ω(n)t+2 as a linear

system in the scalar D(∼n)t+1 , then substituting the solution for Ω(n)t+2 back into (6.8), and

finally resolving the resulting system in the scalar D(∼n)t+1 . Weights giving a zero value to
(6.8) are displayed in Table 1. Thus two-period dependence is established by construc-
tion.

7. Conclusion

CCP methods provide a computationally cheap way of estimating dynamic discrete
choice models in both single-agent and multiagent settings. This paper precisely de-
lineates and expands the class of models that exhibit the finite dependence property
used in CCP estimators, whereby only a-few-period-ahead conditional choice probabil-
ities are used in estimation. Our approach applies to a wide class of problems lacking
stationarity, and is free of assumptions about the structure of the model and the beliefs
of players regarding events that occur after the (short) panel has ended. Thus our meth-
ods provide an approach to estimating nonstationary infinite horizon games even when
there are no terminal actions.
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Appendix: Proofs

Proof of Theorem 1. With (bounded) negative weights the finite horizon results of
Theorem 1 of Arcidiacono and Miller (2011) is easily adapted, since the positivity or neg-
ativity of the weights is not used in that proof.

Proof of Theorem 3. Denote by A ≡{x(1)A � � � � � x
(A)
A } where x

(a)
A ∈ X for all a ∈

{1� � � � �A}. Thus A ∈ S , the set containing 2X elements of all subsets of X . Also define
the set A attains at τ by

B ≡ {x(b)B ∈ X such that fjτ
(
x(b)B |x) 	= 0 for some x ∈ A and some j = 1� � � � � J

}
�

Thus B ={x(1)B � � � � � x(B)B } for some B ≤X . For each a ∈ {1� � � � �A}, define the (J − 1)× 1
weight vector:

ωτ
(
x(a)A
)= (ω1τ

(
x(a)A
)
� � � � �ωJ−1�τ

(
x(a)A
))′
�

where |ωjτ(x(a)A )|<∞ andωJτ(x
(a)
A )≡ 1 −∑J−1

j=1 ωjτ(x
(a)
A ). Let KA ≡ (K(1)A � � � � �K(A)A )′ de-

note an A × 1 weight vector over the states in A, that is satisfying
∑A
x=1 K

(a)
A = 1 with

|K(a)A |<∞ and K(x)A 	= 0. We also define

K(b)B ≡
A∑
a=1

J∑
j=1

fjτ
(
x(b)B |x(a)A

)
ωjτ
(
x(a)A
)
K(a)A

and note that
B∑
b=1

K(b)B =
B∑
b=1

A∑
a=1

J∑
j=1

fjτ
(
x(b)B |x(a)A

)
ωjτ
(
x(a)A
)
K(a)A

=
A∑
a=1

J∑
j=1

ωjτ
(
x(a)A
)
K(a)A =

A∑
a=1

K(a)A = 1� (A.1)

Depending on KA, and also the choice of ωτA ≡ (ωτ(x
(1)
A )� � � � �ωτ(x

(A)
A ))′, some ele-

ments of KB ≡ (K(1)B � � � � �K(B)B )′ may be zero. We say that A reaches A∗ ⊆ A′ at τ for the
vector weighting KA if, for some choice of ωτA, every element in A∗ is attained (has
nonzero weight), and every element in the complement of A∗ is not attained (has zero
weight).

Theorem 2, and its proof in the text, shows that only a finite number of operations are
required to determine whether or not finite dependence can be achieved in one period
from two given sets A1�t+ρ and A2�t+ρ. In particular, it is evident from the construction
of Hτ , that the operations do not depend on the ωτ�A1�t+ρ and ωτ�A2�t+ρ , the respective
weights on elements in A1�t+ρ and A2�t+ρ. Given j ∈ {1�2}, and a sequence of weights
defined from t + 1 to t + ρ, a unique sequence of sets is determined: say {Ajτ}ρτ=t+2. Al-
though there are an uncountable number of paths, since Ajτ ∈ S and S contains (only)
2X elements, there are at most 2(ρ−1)X sets that any weight sequence can successively
reach, from Aj�t+1 ≡ {x ∈ X : fjt(x|xt) > 0} up to and including Aj�t+ρ. Therefore, the
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proof is completed by showing that a finite number of operations suffice to determine
whether or not a given A ⊆ A′

j�τ+1 can be reached from any Ajτ ∈ S , for all possible
(nonzero) weights KA.

To determine whether A reaches A∗ at τ, we extend similar arguments given in the
text for checking whether ρ= 2 in the special case where J = 2. Without loss of generality,
we focus on the case where A∗ is might be reached because the first A∗ elements of
KA∗ are nonzero and the remaining B∗ −A∗ are zero. (The other cases are covered by a
reordering of the states.) Thus KB ≡ (K(1)B � � � � �K(B)B )′ is a weighting for A∗ if and only if

K(b)B =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 −
A∗∑
b=2

K(b)B for b= 1�

any nonzero value for b ∈ {2� � � � �A∗}
subject to the constraint

A∗∑
b=2

K(b)B 	= 1�

0 for b ∈ {A∗ + 1� � � � �B
}
�

(A.2)

The existence of a solution to an unconstrained linear system, comprising B − 1
equations in (J − 1)A unknowns, determines whether A reaches A∗ at τ or not. The
unknown variables in the linear system are the A choice weight vectors ωτ(x

(a)
A ), each

of dimension J − 1. The B − 1 equations correspond to the nonzero weights placed on
the states {x(2)B � � � � � x(A

∗)
B } and the zero weighting placed on the last B−A∗ states, which

belong to B but not A∗. All choice weights satisfying the equations corresponding to
{x(2)B � � � � � x(A

∗)
B } also satisfy the first state in B by (A.1) and (A.2).

Given K(b)B satisfying (A.2), a solution to this linear system exists if there exists A

choice weight vectors ωτ(x
(a)
A ) for each b ∈ {2� � � � �B} solving

K(b)B =
A∑
a=1

fJτ
(
x(b)B |x(a)A

)
K(a)A +

A∑
a=1

J−1∑
j=1

[
fjτ
(
x(b)B |x(a)A

)− fJτ(x(b)B |x(a)A
)]
ωjτ
(
x(a)A
)
K(a)A � (A.3)

Let Fjτ(A) denote the A× (B − 1) transition matrix for A into all but the first states in
B for choice j ∈ {1�2� � � � � J − 1}. Define [KA ◦ωτ(A)] as the A(J − 1)× 1 vector formed
from the element-by-element product K(a)A ωjτ(x

(a)
A ). Denote the (B− 1)×A(J− 1) con-

catenated matrix of transitions by

Fτ(A)′ ≡ [F1τ(A)′ · · · FJ−1�τ(A)′
]

=
⎡⎢⎣f1τ

(
x(2)B |x(1)A

) · · · f1τ
(
x(2)B |x(A)A

) · · · fJ−1�τ
(
x(2)B |x(1)A

) · · · fJ−1�τ
(
x(2)B |x(A)A

)
���

� � �
��� · · · ���

� � �
���

f1τ
(
x(B)B |x(1)A

) · · · f1τ
(
x(B)B |x(A)A

) · · · fJ−1�τ
(
x(B)B |x(1)A

) · · · fJ−1�τ
(
x(B)B |x(A)A

)
⎤⎥⎦ �

Defining K∗
B as a (B− 1)× 1 vector formed from all but the first element of KB satisfying

(A.2) then (A.3) may be expressed in matrix notation as

K∗
B = FJτ(A)′KA + [Fτ(A)′ − FJτ(A)′][KA ◦ωτ(A)

]
� (A.4)
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Appealing to Hadley (1961, pp. 168–169), for a given K∗
B , a solution to (A.4) in

[KA ◦ω∗
τ(A)] exists if and only if the rank of [Fτ(A)′ −FJτ(A)′] equals the rank of the aug-

mented matrix formed by adding the column [K∗
B −FJτ(A)′KA] to [Fτ(A)′ −FJτ(A)′]. By

construction, the augmented matrix either has the same rank as, or one plus the rank

of [Fτ(A)′ −FJτ(A)′]. Since determining the rank of a finite dimensional matrix requires

only a finite number of operations, and there are only a finite number of steps, the the-

orem is proved.

Proof of Theorem 5. The proof is by construction. In this game, each player n ∈ {1�2}
controls two states, namely the choices of the previous period “in” or “out,” so from (5.9)

a sufficient condition for two-period dependence is the existence of a solution to

H(∼n)t+2

[
Ω(n)2�t+1(A2�t+1�2) ◦ K2�t+1(A2�t+1�2)
Ω(n)2�t+1(A1�t+1�1) ◦ K1�t+1(A1�t+1�1)

]

= P(∼n)t+2

(
A(n)t+2

)[ F(n)1�t+1(A1�t+1)

−F(n)1�t+1(A2�t+1)

]′ [
K1�t+1(A1�t+1)

K2�t+1(A2�t+1)

]
� (A.5)

where the definitions of H(∼2)
τ , given in (5.6), Kj�t+1(A2�t+1) and Ω(n)2�t+1(A2�t+1� j), given

above (5.1) and P(∼n)t+2 (At+2), given above (5.6) specialize to30

H(∼n)t+2 ≡ P(∼n)t+2 (At+2)

[
F(n)2�t+1(A2�t+1)− F(n)1t+1(A2�t+1)

F(n)1�t+1(A1�t+1)− F(n)2t+1(A1�t+1)

]′
�

Ω(n)2�t+1(A2�t+1� j)= [ω(n)t+1(j�2)�ω(n)t+1(j�1)
]′
�

K2�t+1(A2�t+1)= K1�t+1(A2�t+1)=
[
p
(∼n)
2t (xt) p

(∼n)
1t (xt)

]′
�

P(∼n)t+2 (At+2)=
[
p
(∼n)
2�t+2(2�2) p

(∼n)
2�t+2(2�1) p

(∼n)
2�t+2(1�2) p

(∼n)
2�t+2(1�1)

]
and in this example:

[
F(n)1�t+1(A1�t+1)

−F(n)1�t+1(A2�t+1)

]′

=

⎡⎢⎢⎢⎢⎣
0 0 0 0
0 0 0 0

p(∼n)2�t+1(1�2) p(∼n)2�t+1(1�1) −p(∼n)2�t+1(2�2) −p(∼n)2�t+1(1�2)

p(∼n)1�t+1(1�2) p(∼n)1�t+1(1�1) −p(∼n)1�t+1(2�2) −p(∼n)1�t+1(2�1)

⎤⎥⎥⎥⎥⎦ �

30Since matching the weight on one state automatically matches the weight on the other, we can elimi-

nate the last row of P(∼n)t+2 (A
(n)
t+2).
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F(n)2�t+1(A2�t+1)− F(n)1�t+1(A2�t+1)

F(n)1�t+1(A1�t+1)− F(n)2�t+1(A1�t+1)

]′

=

⎡⎢⎢⎢⎢⎢⎣
p(∼n)2�t+1(2�2) p

(∼n)
2�t+1(2�1) −p(∼n)2�t+1(1�2) −p(∼n)2�t+1(1�1)

p(∼n)1�t+1(2�2) p(∼n)1�t+1(2�1) −p(∼n)1�t+1(1�2) −p(∼n)1�t+1(1�1)

−p(∼n)2�t+1(2�2) −p(∼n)2�t+1(2�1) p
(∼n)
2�t+1(1�2) p

(∼n)
2�t+1(1�1)

−p(∼n)1�t+1(2�2) −p(∼n)1�t+1(2�1) p(∼n)1�t+1(1�2) p(∼n)1�t+1(1�1)

⎤⎥⎥⎥⎥⎥⎦ � (A.6)

Notingω(n)t+1(xt+1� j)≡ω(n)t+1((j�d
(∼n)
2t )� j)we now defineω(n)t+1(xt+1)≡ω(n)t+1(xt+1� j) to

eliminate the notational redundancy, and substitute the expressions above into the left-
hand side of (A.5) to obtain⎡⎢⎢⎢⎢⎢⎣

p(∼n)2�t+2(2�2)

p(∼n)2�t+2(2�1)

p
(∼n)
2�t+2(1�2)

p(∼n)2�t+2(1�1)

⎤⎥⎥⎥⎥⎥⎦
′⎡⎢⎢⎢⎢⎢⎣

p(∼n)2�t+1(2�2) p
(∼n)
2�t+1(2�1) −p(∼n)2�t+1(1�2) −p(∼n)2�t+1(1�1)

p(∼n)1�t+1(2�2) p(∼n)1�t+1(2�1) −p(∼n)1�t+1(1�2) −p(∼n)1�t+1(1�1)

−p(∼n)2�t+1(2�2) −p(∼n)2�t+1(2�1) p
(∼n)
2�t+1(1�2) p

(∼n)
2�t+1(1�1)

−p(∼n)1�t+1(2�2) −p(∼n)1�t+1(2�1) p(∼n)1�t+1(1�2) p(∼n)1�t+1(1�1)

⎤⎥⎥⎥⎥⎥⎦

×

⎡⎢⎢⎢⎢⎢⎣
ω(n)t+1(2�2)p(∼n)2t (xt)

ω(n)t+1(2�1)p(∼n)2t (xt)

ω
(n)
t+1(1�2)p(∼n)2t (xt)

ω(n)t+1(1�1)p(∼n)2t (xt)

⎤⎥⎥⎥⎥⎥⎦ � (A.7)

Since p(∼n)2t (xt) > 0, we can establish two-period dependence by equating (A.7) with the
right-hand side of (A.5) and solving for the unknowns. By inspection, (A.7) is 1 × 1, and
(A.5) reduces to a single equation, with four unknowns that conform to the 1 × 4 row
vector H(∼n)t+2 .

To complete the proof, it is useful to define for i ∈ {1�2} the expression:

Ci ≡ p(∼n)2�t+2(2�1)−p(∼n)2�t+2(1�1)

+p(∼n)2�t+1(2� i)
[
p
(∼n)
2�t+2(2�2)+p(∼n)2�t+2(1�1)−p(∼n)2�t+2(2�1)−p(∼n)2�t+2(1�2)

]
� (A.8)

We now prove C2 	= 0 if C1 = 0. Note that

C2 −C1 = [p(∼n)2�t+1(2�2)−p(∼n)2�t+1(2�1)
]

× [p(∼n)2�t+2(2�2)+p(∼n)2�t+2(1�1)−p(∼n)2�t+2(2�1)−p(∼n)2�t+2(1�2)
]
� (A.9)

If the second bracketed term is zero, then C1 = C2 from (A.9), and hence from (A.8)
C1 	= 0 because by assumption p(∼n)2�t+2(2�1) 	= p

(∼n)
2�t+2(1�1). Therefore, if C1 = 0 the brack-

eted term is nonzero. In that case, C2 	= C1 by (A.9) because p(∼n)2�t+1(2�1) 	= p(∼n)2�t+1(2�2) by
assumption.

We consider two possibilities, in whichω(n)t+2(x
(n)
t+2� j)= 1 for j ∈ {1�2} andω(n)t+1(1� i)=

0 for i ∈ {1�2} for both possibilities. Also set ω(n)t+1(2�2)= 0 if C1 = 0, and set ω(n)t+1(2�1)=
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0 if C1 	= 0. Using (A.8) and noting p(∼n)1�t+1(2�2) = 1 − p(∼n)2�t+1(2�2), simplify (A.7) to

Cip
(∼n)
2t (xt)ω

(n)
t+1(2� i). Solving for the only nonzero weight, take the quotient of the scalar

(A.7) and Cip
(∼n)
2t (xt) to obtain

ω(n)t+1(2� i)= P(∼n)t+2

(
A(n)t+2

)[ F(n)1�t+1(A1�t+1)

−F(n)1�t+1(A2�t+1)

]′ [
K(n)1�t+1(A1�t+1)

K(n)2�t+1(A2�t+1)

]
◦
/ [

p(∼n)2t (xt)Ci
]
� (A.10)

where the matrices in (A.10) are given above. Thus ω(n)t+1(2�1) is determined by setting

i = 1 in (A.10) when C1 	= 0 and ω(n)t+1(2�2) is determined by setting i = 2 in (A.10) when
C1 = 0. Two-period dependence can now be established by direct verification.
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