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Cluster robust covariance matrix estimation in panel quantile
regression with individual fixed effects
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This study develops cluster robust inference methods for panel quantile regres-
sion (QR) models with individual fixed effects, allowing for temporal correlation
within each individual. The conventional QR standard errors can seriously un-
derestimate the uncertainty of estimators and, therefore, overestimate the sig-
nificance of effects, when outcomes are serially correlated. Thus, we propose a
clustered covariance matrix (CCM) estimator to solve this problem. The CCM es-
timator is an extension of the heteroskedasticity and autocorrelation consistent
covariance matrix estimator for QR models with fixed effects. The autocovariance
element in the CCM estimator can be substantially biased, due to the inciden-
tal parameter problem. Thus, we develop a bias-correction method for the CCM
estimator. We derive an optimal bandwidth formula that minimizes the asymp-
totic mean squared errors, and propose a data-driven bandwidth selection rule.
We also propose two cluster robust tests, and establish their asymptotic proper-
ties. We then illustrate the practical usefulness of the proposed methods using an
empirical application.

Keyworbs. Cluster robust standard errors, quantile regression, panel data, het-
eroskedasticity and autocorrelation consistent covariance matrix estimation.
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1. INTRODUCTION

This paper proposes cluster robust inference methods for panel quantile regression (QR)
models under two conditions: first, we allow for temporal correlation within each indi-
vidual (or cross-sectional group); second, we use individual fixed effects (FE) to control
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for unobserved heterogeneity across individuals. The potential pitfall of ignoring within-
group correlation in panel data mean regression models is illustrated by Bertrand, Du-
flo, and Mullainathan (2004). By generating a random fictitious law in a simulation, they
found that if one ignores serial correlation, a test at the 5% level may reject the null
hypothesis of no effect as often as 40% of the time, thus incorrectly categorizing an inef-
fective policy as effective too often. This tendency of overrejection persists, even if one
includes individual FE.

Arellano (1987) suggested a robust covariance matrix estimator for a panel data
model in the ordinary least squares (OLS) case. The estimator allows for FE and arbi-
trary within-cluster correlation structure. This clustered standard error is the method
preferred by Bertrand, Duflo, and Mullainathan (2004) to correct the size distortion. The
cluster robust method has been extended by Kézdi (2004), Donald and Lang (2007), and
Hansen (2007), and found a wide audience in applied economics and finance research.
Cameron and Miller (2015) provided a comprehensive survey of recent advancements in
this literature. We show numerically that the conventional QR estimation for panel data
models with FE suffers from similar size distortions to those seen in the least squares
case. However, although it is increasingly common in many fields of empirical research
to use a QR model to analyze panel data, to the best of our knowledge, there is no QR
equivalent of Arellano’s procedure. This study aims to fill this gap in the literature.

To solve the size distortion problem in QR panel models, we develop a cluster ro-
bust covariance matrix estimator, a quantile analogue to Arellano (1987). The proposed
estimator, hereafter referred to as the clustered covariance matrix (CCM) estimator, is
robust to heteroskedasticity and serial correlation of arbitrary forms. It is a panel data
extension of the heteroskedasticity and autocorrelation consistent (HAC) estimation of
the covariance matrix of the parameter estimators in a QR. The HAC covariance esti-
mation for a QR and its asymptotic properties have not been actively studied, even for
a single time series data. The main challenge is that the moment function that defines
the autocovariance matrices is not differentiable. We extend the results of Linton and
Whang (2007) and Okui (2010) to develop new methods for panel data QRs. The former
work proposes a quantilogram in time series QRs and develops properties for the sam-
ple autocovariance. The latter work establishes asymptotic properties for the sample
autocovariance in panel data for conditional mean models.

The CCM estimator for the quantile panel model has the standard sandwich form.
The middle term, the autocovariance element, suffers from similar bias effects to those
seen in the least squares case of the panel data models with FE, as observed in Okui
(2010). We propose to use a bias-corrected estimator for the autocovariance terms. We
then establish the asymptotic properties of the bias-corrected CCM estimator. This cor-
rection significantly improves the finite-sample performance of the CCM estimator.

To implement the proposed estimator in practice, we derive optimal bandwidth for-
mulae that minimize the asymptotic mean squared errors. We also discuss a data driven
bandwidth selection procedure. Establishing optimal bandwidths is important to mak-
ing correct inferences in applications. Therefore, we present a data-driven bandwidth
selection procedure. To the best of our knowledge, the asymptotic mean squared error
(MSE) calculation of the long-run variance matrix estimator in a QR is new.



Quantitative Economics 11 (2020) Cluster robust covariance matrix estimation 581

Note that to derive the results for the proposed CCM estimator for the panel QR,
we use large panel asymptotics, where the cross-sectional dimension, N, is compara-
ble to the time-series dimension, 7.! In addition, the CCM requires restrictions on the
time-series dependence through a mixing condition; as well as nuisance parameters,
such as a bandwidth. This is in contrast to the cluster robust standard errors for panel
data mean regression models, which do not require a mixing condition or a bandwidth.
The mixing condition is one of the requirements to obtain consistent regression coeffi-
cient estimators in FE QR models.? The choice of a tuning parameter can be viewed as
a shortcoming of the proposed method, although our simulation study shows that the
proposed bandwidth selection rule exhibits excellent finite-sample performance. The
existence of a consistent CCM estimator without truncation (that gives all observations
equal weights) for FE QR models remains an open question.

We propose two cluster robust tests. The first test is a variant of the quantile
rank-score test. When error terms share a common distribution, a rank-score test is
distribution-free, meaning that its limiting distribution does not depend on conditional
density functions (Gutenbrunner, Jureckova, Koenker, and Portnoy (1993)). We extend
this idea to FE models; thus, the resulting Score test is distribution-free and easy to im-
plement. The second test is an extension of the conventional Wald test for linear restric-
tions. Under regularity conditions, Score and Wald tests converge to a chi-squared dis-
tribution with degrees of freedom equal to the number of restrictions tested; therefore,
the critical values for a given level of significance are widely available.

Finally, we provide an empirical example to illustrate the proposed methods. We ex-
amine the effects of randomly generated fictitious laws on state unemployment rates;
the data cover 51 states over 37 years, and illustrate the main setup in which both N and
T are large and comparable to each other. The results show that the conventional QR
standard errors can seriously underestimate the uncertainty of estimators, but that the
cluster robust standard errors are effective in correcting the size issue. We also exam-
ine, through simulation and a second real-data example, the performance of the CCM
estimator when 7 is much larger than N, or vice versa, including a wide range of cases
from (N, T) = (20, 100) to (N, T) = (400, 30). Monte Carlo simulations can be found in
the Appendix of the Supplemental Material (Yoon and Galvao (2020)).

Next, we briefly review the related literature. There is a well-established body of liter-
ature on QRs with dependent outcomes. For time-series data, refer to Koenker and Zhao
(1996), Koenker and Xiao (2006), and Komunjer and Vuong (2010). For panel data, Kato,
Galvao, and Montes-Rojas (2012) showed the consistency of QR estimators, and pro-
vided a Bahadur representation for the common regression coefficients under a mix-
ing condition. However, to justify the Score test, we need a sharper convergence rate
than those available for the dependent case. To achieve this, we adapt the methods of
Masry and Fan (1997) and El Ghouch and van Keilegom (2009). However, Kato, Galvao,

11t is known that the FE QR estimator suffers from incidental parameter problems. Thus, it has become
standard in the panel QR literature to employ large panel asymptotics, where the cross-sectional dimension
is comparable to the time series dimension, together with bias correction for the estimation of the slope
coefficients of interest.

2The current proof strategy also relies heavily on the mixing condition.
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and Montes-Rojas (2012) did not provide any inference methods for the dependent out-
comes. Thus, we complement their work by providing feasible and practical inference
procedures.

There is also a growing body of literature on panel data QRs; see, for example, Abre-
vaya and Dahl (2008), Canay (2011), Galvao, Lamarche, and Lima (2013), Chernozhukov,
Ferndndez-Val, Hahn, and Newey (2013), Arellano and Bonhomme (2015), Galvao and
Wang (2015), Chetverikov, Larsen, and Palmer (2016), and Graham, Hahn, Poirier, and
Powell (2018). This study adds to this literature by proposing cluster robust inference
methods for panel QR models.

For cross-sectional data, we contribute to a growing body of literature on QR with
correlated errors. Jung (1996) studied a potential efficiency improvement when errors
are correlated in a single-equation model. Jun and Pinkse (2009) extended this approach
to models with multiple equations, where errors across equations are correlated. They
study a cross-sectional regression and focus on the efficiency of the QR estimators. Our
work is also closely related to the QR equicorrelated errors model in Wang and He (2007)
and Chen, Wei, and Parzen (2004), where a group-specific random effect is viewed as
part of the overall error.? In this setup, Parente and Santos Silva (2016) proposed a con-
sistent estimator of the covariance matrix when the error terms are correlated within
clusters, but independent across clusters. Hagemann (2017) developed a wild bootstrap
procedure for cluster-robust inferences in QR models. Our work contributes to this lit-
erature by considering a QR panel data model with individual specific FE.

The rest of the paper is organized as follows. Section 2 introduces the FE panel QR
model, and considers asymptotically unbiased estimators. Section 3 introduces the clus-
ter covariance matrix, and proposes its estimators. Section 4 studies the asymptotic
properties of the CCM estimator and the bias-correction method. Section 5 proposes
the cluster robust tests. Section 6 presents a real-data application. Lastly, Section 7 con-
cludes the paper. An Appendix in the Supplemental Material provides all mathematical
proofs and numerical simulation results.

2. THE ECONOMETRIC MODEL

We consider a FE panel data QR model
Yit:aiO(T)+x;;00(7)+eit(7), izla"'aNatzla'-'aTa (]-)

where y;; is the scalar response for the i-th individual at #th time period, x;; isa d x 1 vec-
tor of covariates. a;y(7) is the specific FE for the ith individual, and the quantile-specific
error e;;(7) measures the distance between the response y;; and its 7th conditional quan-
tile. For stationary processes {(yis, xit), t > 1}, we allow time dependence in a given in-
dividual, but assume independence across individuals. We assume that the 7th quantile
of the error ¢;(7) is equal to zero. Under this normalization, we rewrite equation (1) as

3The work of Wang and He (2007) is highly suitable for a separate problem, different to ours, known as
the Moulton problem, a term popularized by the influential papers of Moulton (1986, 1990).
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the following conditional quantile model:
Qy,, (71xit, @io (7)) = etjo () + X,00(7), 2)

where Q,, (7|x;, a;0(7)) is the conditional 7-quantile of y;;, given (x;;, a;o(7)). We use the
vector notation a(7) = (a1(7), ..., an(7)) to denote a set of FE.

The main contribution of this study is to propose a cluster robust covariance matrix
estimator for the parameters of interest in model (2), and to establish its consistency.
The estimator is an extension of the HAC covariance estimator for QR panel data, where
we correct the bias of the CCM sandwich estimator. Furthermore, we propose Score-
and Wald-type tests for general linear hypotheses on the vector 6y(7). It is possible to
formulate a wide variety of tests using variants of the Score and Wald tests, from sim-
ple tests on a single QR coefficient to joint tests involving many covariates and distinct
quantiles.

2.1 Estimators for 0y(t)

To implement the proposed methods, the parameters of interest 6y(7) in (2) need to be
estimated. This section discusses how to obtain estimators, such that

VYNT(B(r) - 0y(7)) % N(0, 3), 3)

where 3 = A~1J A~ is the sandwich formula for the variance-covariance matrix. In gen-
eral, 3, A, and J are quantile-specific, but we drop 7 in the notation to save space.

We employ bias-corrected smoothed FE QR estimators. Galvao and Kato (2016) (GK
hereafter) suggested an estimator defined by a minimizer of the QR objective check
function that uses kernels to smoothly approximate the nondifferentiable indicator
function in the objective function. The FE smoothed quantile regression (FE-SQR) es-
timator is defined as follows. Let K (-) be a kernel function and G(-) be the survival func-
tion of K(-);

/oo Ku)du=1, G(u) :=/OOK(v)dv,

where K(-) is not required to be nonnegative (we use higher-order kernels). Let {bx} be
a sequence of positive numbers (bandwidths), such that by — 0 as N — oo, and write
Gpy (-) = G(-/bn). Note that Gy, (yi; — @; — x},0) is a smooth approximation of (y;, <
o; + x;.t()).4 The FE-SQR estimator of 6y (7), 55(7), is given by

(@s(r), Os(7))

N T
. 1
:=arg  min [WZZ(}’it—ai—xQﬁ){r—GbN(yl't—ai—x;to)}], (4)

N
(a,0)e AN xB o1 =1

4GK regarded T = Ty as a function of N and assumed that Ty — oo as N — oo; the bandwidth is chosen
as afunction of N and 7', but because T is a function of N, it is denoted simply as a function of N. Because
the dependence of T on N is arbitrary, this assumption covers the case where N and T jointly go to infinity.
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where A is a compact subset of R, A" is the product of N copies of A, and B is a compact
subset of R¢. The compactness of the set AV x B is required to ensure the existence of
@(7),0(m).°

The FE-SQR estimator in (4) is asymptotically biased when N and T grow at the same
rate. In particular, the FE-SQR estimator is consistent and has a limiting normal distri-
bution with a bias in the mean. Importantly, by using the smoothing technique, GK are
able to derive an analytic expression of the incidental parameter bias. Assuming that
(N, T) — oo, with N/T — A for some 0 < A < oo, and under some regularity conditions,
GK show that

VNT(Os(r) — 09(7)) > N(VAb, A= TA7Y), 5)

where b is a factor of the bias term; see GK for the exact expression.® Thus, the FE-SQR
estimator in (4) has an asymptotic bias term /Ab. Nevertheless, this bias term can be
corrected and successfully eliminated using various methods. GK considered two such
methods: the analytical method of bias correction, and the half-panel jackknife method
(Dhaene and Jochmans (2015)). We examine the same two bias-corrected estimators
here.

The first bias-correction method is based on the analytic form of the asymptotic bias.
GK identified b in population terms, and suggested estimating its components using
their sample analogs. We refer the reader to GK for details. Define the resulting estimator
b. The bias-corrected estimator is then

Opc(7):=0s(1) —b/T. 6)

Under some suitable conditions, the bias-corrected estimator, @pc(7), has the lim-
iting normal distribution in (3). Note that the asymptotic variance-covariance matrix of
the bias-corrected estimator is equal to that of the FE-SQR estimator in (5).

The second method is the jackknife bias-corrected smoothed panel QR estimator.
Assume, for simplicity, that T is even, and divide the time index {1, ..., T} into two sub-
sets, S1={1,...,T/2}and S, ={T/2+1,...,T}. Let 351(7) be the estimator given in (4)
using data with time index ¢ € S;. Define 532(7-) similarly. Then the half-panel jackknife
estimator is

—~ —~ 1 ~
01 () = 205(7) — z(asl () + O5, (7). @)

Importantly for our purpose, it is known that @y () is approximated by the normal
distribution in (3). As in the previous case, the variance-covariance matrix of the half-
panel jackknife estimator is the same sandwich formula one obtains with the FE-SQR
estimator in (5). In the remainder of the paper, we use either §BC( T) or ajK(T) to estimate
00(7’).

5The FE-SQR estimator works under relatively mild conditions on N and 7, so is applicable to many
empirically relevant cases. However, this advantage comes at the cost of introducing an additional tuning
parameter by .

6This paper imposes the same assumptions as those in GK, thus the bias b in equation (5) has the same
form as that in GK.
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REMARK 2.1. The asymptotic results derived here assume that the length of time, T,
and the number of individuals (groups), N, grow simultaneously. Hansen (2007) used
the same joint asymptotics for the panel mean regression. A more conventional choice is
that N islarge, but T is small (fixed); see Arellano (1987), and Kézdi (2004). Theoretically,
we are compelled to use the joint asymptotics because we have only T observations to
estimate each of the FE. Because we are not allowed to difference out the FE, we need to
let T grow along with N. For a QR, Wang and He (2007) assumed fixed 7, but their model
has no individual FE. For an OLS, one can remove FE by data transformation, and thus
fixT.

3. THE CLUSTER ROBUST COVARIANCE MATRIX

This section discusses the CCM for the panel FE QR model and its estimation. The statis-
tical inference on @y(7) may be implemented by estimating 3 = A~!1JA~!. With suitable

consistent estimators A and f, suchthat A5 Aand T 5 J , the CCM estimator is given
by

S=ATAY,

. . =/
and is consistent, 3 = 3.

3.1 Clustered covariance matrix

Let fi(e|x) be the conditional density of ej;, given x;; = x, and let f;(e) = E[fi(e|x;1)] be
the marginal density of e;,. Define ¢; = E[f;(0|x;1)x;11/f:(0) and’

N
. 1
A= Nh_r)noo N E 1 E[£i(0lx;1)xi1 (xi1 — €7)'],
i=

1 N
= lim — j
Y N,YI‘IEOON;JT’“

where Jr; denotes the covariance matrix of % Zthl(T —I(ejs (1) <0))(xit — ¢;). The
components in A and J are allowed to vary across 7, as in Hahn and Kuersteiner (2011), to
accommodate cross-sectional heterogeneity. The crucial term in the covariance matrix
Jr,; is the autocovariance of /;; = 7 — I (e;;(7) < 0) between periods ¢ and s:

Oirs :==E[(7 — I (eir(1) < 0)) (7 — I(eis(1) <0))Ixir, xis, o]

In the absence of temporal dependence, g, is zero, and J becomes the variance matrix
for iid data. This is because, given the conditioning variables, g;s is P(e;:(7) <0, e;js(7) <
0) — 72. Without temporal dependence, for t # s, 05 = P(ej (1) < 0) - P(ejs(1) <0) — 12 =

"We use the notation f;(0) and f;(0|x;;) for simplicity to refer to the density functions evaluated at the
true quantile as f;(Qy(7|x;1)) and f;(Qy(7lx;1)|x;1), respectively.
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7 -7 — 72 =0. Under serial dependence, p;;; may not be equal to zero, and thus, may
contribute to the variance matrix of the estimator.
Let j = ¢ — s denote the time lag. Then J7 = SN Jr.; can be written as

T-1
Jr= Z I';, where
Jj=—T+1
. 8)
1 X
I'i= NT ; L E[(T - I(eit(T) =< O))(T - I(eit-i-j(T) - 0))(xiz —¢i)(Xit4j — Ci)/],

for j> 0, and I"; = I7. The jth order autocovariance matrix I’ reduces to the variance
matrix when j = 0; that is, I; = N~ Zfil 7(1 — DE[(xj1 — ¢;)(x;1 — ¢;)'], with J and A
given above. The resulting covariance matrix 3 allows for the heteroskedasticity and se-
rial correlation of arbitrary form.

Note that in QR models, the two terms in the sandwich formula have distinct roles;
A accounts for the heteroskedasticity, and J manages the serial correlation. The term A
includes conditional densities that allow the conditional heteroskedasticity. The term J
includes g;; = i, for j =t — s, which measures the degree of serial correlation between
periods in the ith group. In contrast, in an OLS, all actions take place in the middle term,
corresponding to J here.

It is also interesting to note how the CCM works in a QR. The sign of e;;(7) is critical.
Consider, for instance, a location-scale model with errors e;;(7) = o(x],80)u;; (), where
o(-) is a strictly positive function of a linear index x;,89, and u;,(7) is the common error,
with the rth quantile equal to zero. The overall error is defined as the product of o'(-) and
u;r(7). Because o (-) does not alter the sign of the overall error, the structure of J is de-
termined solely by the sign of u;,(7). However, for A, the conditional heteroskedasticity
induced by o (-) is still in effect. Thus, it is possible to have a model with heteroskedastic
errors, but with a time dependence structure that is identical over individuals.

This consideration motivates one important special case of the general CCM. If g;; =
T—1

o; for all i, then J7 simplifies to J5. = Zj:_T+1 Fjs, where
| NI
I7 = NT Z 0E[(xir — ei) (xij — )], 9)

i=1 t=1

for j>0,and I'* j= (Fj‘ ). In this case, the autocorrelation structure can be as flexible
as possible over time, but remains identical over individuals. This alternative, simplified
covariance matrix is useful for the Score test below.

The estimation of A in the CCM, 3, is relatively straightforward. The Powell (1991)
estimator for A is known to be consistent and asymptotically normal under weakly de-
pendent data; see Kato (2012) for details. The estimation of the term J under dependent
data is more involved; therefore, we concentrate on that here.
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3.2 Estimating the CCM

Let €;;(7) = yir — a@;(7) — x;.ta(a-) be the residual from model (1), using one of the bias-
corrected estimators in Section 2. The Powell estimator for A is

N T
ZZ I([ei(7)| < by)xie(xic =€), (10)

where b; is a bandwidth. This estimator is valid under the heteroskedasticity of
general form. To estimate ¢;, let K>(-) and b2 be a kernel function and another
bandwidth sequence, respectively. Then ¢; = Zt lblsz(‘” 0)x,[/f,(O), and f,(O)

T Zl 1 bl K> (e” 0) The conditions on K5, by, and b, can be found in Section 4.1.

Consider J 1n the CCM estimator. From (8), J = Y 72 FAR I'; is a long-run variance
matrix. As is well known in the time series literature, simply adding autocovariance es-
timates does not lead to a consistent estimator. The estimation uncertainty from the
higher-order autocovariances must be weighed down. Following Andrews (1991) and
Newey and West (1994), we consider a class of kernel estimators of the form

T—-1 . .
Tr= Ry 11)
T= Z m_T T J»

j=—T+1

where k(-) is a kernel function, and m7 is a sequence of increasing numbers known as
the lag truncation or bandwidth parameter, and I is a consistent estimator of I7.
Assume that kernel functions belong to the class:

:{k(-) :R—[-1,1]| k(0)=1,k(—z) = k(z),¥z € R,

o
/ k%(z)dz < 0o, k(-) is continuous almost everywhere and at 0}.
—0Q

The class of kernels K contains the Bartlett, Parzen, and quadratic spectrum (QS)
kernels. They generate positive semidefinite estimators in finite sample. The QS kernel
is an example of a kernel that gives nonzero weights for alllags j =1,..., T — 1.

For the kernel smoothing estimator, the choice of the bandwidth is known to be im-
portant. We propose an optimal bandwidth m. that minimizes the asymptotic MSE of
an estimator of J7. When calculating the MSE, existing arguments in Andrews (1991) or
in Newey and West (1994), are not directly applicable, because they depend crucially on
the differentiability of the moment function. We develop an alternative approach utiliz-
ing the methods in Linton and Whang (2007) and Okui (2010). To the best of our knowl-
edge, this is the first time the optimal bandwidth selection rule has been established for
along-run variance estimation in the QR literature.

The computation of (11) requires a consistent estimator of I';. We use a sample split-
ting device.® We use half the cross-sectional units to estimate 6(7), and use the remain-

8Technically, the sample splitting allows us to extend the cross-sectional independence of e;, () over
1 <i< N to that of ¢;,(7). See Section S.2 in the Supplemental Appendix for further details.
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ing half to estimate the jth autocovariance. See Bickel (1982) and Schick (1986) for ap-
plications. Let [z] denote the integer part of z. Define Ny = [N /2] and N2 =N - Ny,
and definesets I; ={1,...,Ny}and I, ={N; +1,...,N}. Let 01(7) and 02(7) be the re-
gression coefficient estimates using subsamples 11 and I, respectively. For i € I, let
©2.i(7) = yir — @i(7) — x},02(7), and define

Ny T—-j

Z Z T 62 it(17) < 0))(7 - (62 it4j (1) < 0))(xll -¢ D) (Xirrj — CZ i)

i=1 t=1

~ 1
_I".
PYTN(T =)

The sample splitting is applied to the construction of ¢; as well. For i € I, ¢, ; uses
€,;¢(7). Similarly, for i € I, let ey ;;(7) = yi; — @;(7) — x;,01(7), and define

~ 1
iy ——
P NAT =)
N T—j
X Z Z(T—I(’e],it(’r)SO))(T—I(?Litﬂ‘(T)SO))(«W—?1,i)(xiz+j—?1,i)/-
i:N1+1 t=1

The consistent jth order autocovariance matrix estimate is then given by

~ N; = Ny =~
= . N Iio. (12)
The regression slope estimate used for inference is 3(7) = N;/N ~§1(7) + Np/N -
0,(7). Observe that we use the entire sample to construct I'; and 6(7), unlike the name
“sample splitting” may suggest. The scalar autocovariance (without x;; — ¢;) can be esti-
mated by

— Ny _ Ny
0j= 701+ Nsz,z, (13)

where 0 x (k =1,2) is simply fj,k without the (x;; — ¢ ;) (xir4j — €k,;)’ term. To study the
asymptotic properties of J7, it is useful to consider a pseudo-estimator that is identical
to Jr, but that uses true errors, as follows:

T-1
Jr Z k(%) Tm i, where

j=—T+1

T-j

~ 1
I = NT =) Z Z(T —I(ejr <0)) (1 —I(ejfj <0))(xir — €)) (xirgj — €)'

i=1 t=1

There is one remaining complication. As in the standard FE conditional mean mod-
els, it turns out that the autocovariance for the QR estimator, fj, is asymptotically biased,
with the bias of order 1/ T. We formally establish this result in the next section. This im-
plies that the long-run variance estimator Jr will be asymptotically biased as well. This
is owing to the incidental parameter problem (see the following remarks). Given that
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the regression coefficient estimator 0(7) has order 1 /~/NT, the bias of size 1/T cannot
be regarded as small if N and T have the same order. For linear panel data models, this
bias property of the autocovariance estimator has been the subject of careful analysis by
Okui (2010). The asymptotic bias in the estimator negatively affects finite-sample per-
formance of the CCM estimator. The bias correction in Section 4 significantly improves
the finite-sample performance.

ReEMARK 3.1. The asymptotic bias exists because of the difficulty in estimating «; pre-
cisely. If T is finite, it would be impossible to esti/r\nate «; consistently; thus, f] would be
inconsistent. If one assumes that 7' — oo, then I will be consistent, because its bias is
of order T~!. However, this does not mean that the bias will be small in a finite sample.

REMARK 3.2. Hansen (2007) does not require truncation or kernel smoothing to show
the consistency of the CCM for the OLS case. The difference between this and the QR
case is the result of an interesting property of Arellano’s variance matrix estimator con-
sidered in Hansen (2007); that is, its consistency is not affected by the consistent estima-
tion of the FE; see Remark 9 in Stock and Watson (2008) for further details.

4. ASYMPTOTIC PROPERTIES OF THE CCM ESTIMATOR

This section derives the asymptotic properties of the CCM estimator, develops an al-
ternative bias-corrected estimator, and establishes its limiting properties. We first intro-
duce our assumptions and the notation in Section 4.1. Section 4.2 derives the asymptotic
bias expression for the covariance matrix estimator 1’3, and the asymptotic MSE of the
long-run variance matrix estimator 77 T. Section 4.3 develops a bias-correction method.
Section 4.4 presents the bias-corrected long-run variance estimator J7, and the resulting
CCM estimator. Section 4.5 develops a data-driven bandwidth selection rule.

4.1 Assumptions

This section provides a list of conditions under which the estimators for 6(7), I';, and Jr
have desirable properties.

(A1) {(yi, xit),t > 1} is stationary and B-mixing for each fixed i, and independent
across i. Let B;(j) denote the B-mixing coefficients of {(y;, x;;), t > 1}. There exist con-
stants a € (0, 1) and B > 0, such that sup,. 8;(j) < BaJ, forall j > 1.

(A2) There exists a constant M > 0, such that SUp;> 4> l1Xiell < M (as.).
(A3) Foreaché >0,
a+x,0
es:=inf inf E|:/ {Fi(slx;1) — 7} dsi| >0, (14)
i>1|al+]0]1=0 0

where || - ||; denotes the ¢; norm.?

(A4) Matrixes A and J exist and are nonsingular.

9There is no significant role in the ¢; norm, because any norm on a fixed dimensional Euclidean space
is equivalent. The ¢; norm is used simply to avoid notation such as ||(a; — @, 0" — ;).



590 Yoon and Galvao Quantitative Economics 11 (2020)

Assumption (Al) is a mixing condition. KGM used the same B-mixing condition,
whereas Hahn and Kuersteiner (2011) assume «-mixing.!? We assume exponentially de-
caying mixing coefficients. The same condition was used in KGM and in Hahn and Kuer-
steiner (2011). Assumption (A2), taken from Koenker (2004), imposes a restriction on
the covariates. Without FE, a usual assumption with dependent data is Ellxi/||*T0 < o0,
for some 6 > 0, uniformly in i and ¢ (see Koenker and Zhao (1996)). Thus, (A2) is rather
strict. It is used to ensure the asymptotic expansion of the first-order conditions. See the
proof of Proposition 3.1 in GK and Theorem 5.1 in the Appendix of the Supplemental
Material. Assumption (A3) is an identification assumption of QR coefficients. See KGM
for further descriptions. Assumption (A4) ensures that the CCM is well-defined.

Correct model specification in equation (2) and assumption (Al) constitute the
model we consider here. The conditional quantile zero restriction in (2) concerns only
contemporaneous covariate values. Thus, the model allows x;; to be predetermined with
respect to time-varying errors. We do not require strict exogeneity, but do use large panel
data asymptotics.!!

Recall that f;(e|x) denotes the conditional density of e;;, given x;; = x, and fi(e) de-
notes the marginal density of e;;. Let f; j(e1, e14j) = fij(e1, e14jlx1, X14j) denote a joint
density of (e;1, e;14)), given (x;1, X;14j) = (x1, x14;). Define ﬁ(k)(elx) = (d/de)* fi(el|x),
fork=0,1,,...,r, where fi(o)(e|x) means fi(e|x). In addition, define fl.(j’l)(e“ s eilqj) i=

k 5,1 (0,0
07k+lfl‘,j(ei1, ei1+j)/aei107€il+j’ where fi,j (ei1, ei1yj) stands for f,~7j(e1, eryj)-

(A5) Assume the following: (a) Let r > 4 be an even integer; then, f;(e) is r-times con-
tinuously differentiable. (b) Forallk =0,1,...,r, | fi(k)(elx)l < Cy uniformly over e and i,
and ¢y < fi(O|x), for all i. (c) f; j(ei1, ej14)) is r-times continuously differentiable with re-
spect to (e;1, ¢;1+;). (d) There exista constant C} > 0 and an integrable function D, such

that |f( Ve, e Ll+j)| < Cp and |f Deei, ei1+j)| < Dy(ej14j) uniformly over (e;1, ej1+;)
andzforallk 0,1,. randl_Ol...,r

Assumptions (A5)(a)—(b) are restrictions on the marginal and conditional densities.
They are stronger than those common in the literature, which require that the given con-
ditions hold for r = 1. We need stronger conditions because the bias correction requires
higher-order asymptotics. Assumptions (A5)(c)-(d) are restrictions on a joint error den-
sity. They are used to obtain a useful upper bound for covariances across error terms.
For kernel functions and bandwidths, we have the following conditions:

(A6) (a) The kernel function K (-) for the smoothed QR is symmetric and three-times
differentiable, and has bounded support. It is an rth order kernel, with r as defined in
(A5), satisfying

00 00 | 00
/ Kuwdu=1, / wWKu)ydu=0, j=1,...,r—1, / U K(u)du#0.
—00 —00

—0o0

10See Bradley (2005) for the definitions of several strong mixing conditions and their relationship.

n standard conditional mean models, if the strict exogoneity assumption is violated, then the FE es-
timator is not fixed-T consistent, however, as T — oo with N, the FE estimator becomes consistent for the
coefficient vector on x;;, provided that the specification is correct; see, for example, Hahn and Kuersteiner
(2002).
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(b) The bandwidth for the smoothed QR has order by = O(T~¢), where 1/r < ¢ < 1/3.
(c) The kernel function K,(-) is continuous and bounded, and of bounded variation.
(d) The bandwidth sequences b, j =1, 2, satisfy that b; — 0 and (logN)/(Th;) — 0.

Assumptions (A6)(a)-(b) are conditions needed to obtain the smoothed FE-QR es-
timator. We use them for the bias-corrected regression coefficient estimators. Assump-
tion (c) is a mild condition on the kernel function, satisfied by a Gaussian or an Epane-
chinikov kernel, and (d) is a common condition on bandwidths.

For the rest of the paper, we assume there exist regression coefficient estimates sat-
isfying & (1) — aio(t) = O,(T~/?), for each 1 < i < N and 8(r) — 8y(7) = O,((NT)~/?).
Under conditions (A1)-(A6), the two estimators discussed in Section 2 are known to sat-
isfy these conditions. Thus far, conditions (A1)—(A6), taken from GK, are used to con-
struct asymptotically unbiased regression coefficient estimates. For the variance matrix
estimation, some additional conditions are necessary.

Two types of autocovariances are important for the CCM estimator, corresponding
to two moment functions. The first is related to

hir(ai, 0) =1 —I(eis < a; — ajo + x;,(0 — 6))).

Use hj; as a short notation for A (aj, 0g) = (7 — I(e;y < 0)). The jth order auto-

covariance of &, is 9;j = E[h; hjiy j1 = E[(7 — I (e;; < 0))(7 — I(e;j14j < 0))], and the vari-
ance of 7! Zthl hj; (for the i-th group) is

T—-1 T — ]
Vri=0i0+ ZZ; — -
Jj=

LetVp=N"1 Zﬁil Vr,i. The quantity V7 is equal to J7, without (x;; — ¢;)(xi4j — ¢;)'.
The second moment function concerns

Hi(aj, 0) = hj(a;, 0)(xi: — ¢;).

Let X;; = (x;; — ¢;) and H;, denote H;,(«a;o, 0p). With this notation, Ij; = E[H;;H;;,;] is
the jth order autocovariance for H;;, and I; = N -1 Zfil I}j. Let J7,; be the variance of
7= Hj; then, J;r = N~ Y | J7 ;. We have the following conditions on /;, and H;.
Let || - | denote the Euclidean norm of a vector or matrix.

(A7) Foreach1<i<N,>772 lojl<occand } 72 I}l < oo.

This assumption restricts the autocovariances to be absolutely summable. It is also
required that E[h; h;;hjhin] < C and E[H;H;; H;;H;p,] < C, for a constant C < oo and
for any ¢, k, I, m. From (A2) and |A;| < 1, the finite fourth moment condition is satis-
fied. Another crucial condition in this regard is the summability of the cumulants. Fol-
lowing Andrews (1991), define (¢, + j,t + 1, t + m) as the fourth-order cumulant of
(i, Bty js Riggrs Rigym). Similarly, let K;bcg(t, t+j,t+1,t+ m) denote the fourth-order
cumulant of (Hg,ir, Hp jr4j> He,it+1, Hg,ir+m), where H, j; denotes the ath element of Hj;.
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(A8) Foreach1<i<N, hj and H;; are mean zero, fourth-order stationary sequences
of random variables, and Z;’im:_m Ki(t, t+], t+1, t+m) < oo and Z;"}m: (¢, t+
Jt+1,t+m)<oo,foralla,b,c,ge{l,2,...,d}.

i
—00 Kabcg

Hagemann (2013) showed that the geometric moment contracting property, a
weaker condition than the summability of cumulants, would be sufficient to achieve
the same goal. This direction is promising but is left to future research.

4.2 Asymptotic properties of estimators for I';y and Jt

As is the common regression coefficient estimate 5(7), the autocovariance estimator E
is asymptotically biased. The bias is of order 1/T. The next theorem states the result.

THEOREM 4.1. Assume conditions (A1)-(A6) hold. Fix j. AsN, T — oo,

~ B;
«/NT{I}'—[}"l'—]}

T
| N
= —— > Y {(r—1I(ei <O) (7 —I(eirsj < 0))FieKiyy; — I}} +0,p(1),  (15)
NT i=1 t=1
where
LN
B]_ngnoo—;w,] Vi and
i(0]x; ij 0’0 i1> X j ~ o~
wij = E|:<2fl( [xi1) _ fl]( [xi1 2xl1+1)>xi1x;‘1+j:|-
fi(0) £i(0)
In particular, if N/T — A, for a constant 0 < A < oo, then
A B; -1
=T ==+ o,(17)

It is shown in the Supplemental Appendix that I; — I, = —B;/ T +0,((NT)~/2). This
implies the first part of Theorem 4.1. The second part states that when N and T are com-
parable in size, the remainder terms in the bias become of order o p(T” ), and can be
ignored in the subsequent analysis. In fact, the necessary condition for simplification is
that N2/ T — oo, which holds under the assumption N/T — A. To keep the presentation
simple, we use this implication throughout the remainder of the paper.

In the special case where e;; and e;;;; are independent and the model does not
include any covariates x;;, the asymptotic bias simplifies to —V7/T. This is because
fi(0lx;1) = £i(0) and f;;(0, Olx;1, X;14j) = fiZ(O), which make w;; = 1. Interestingly, the bias
in this special case does not depend on j. This is the quantile analogue of the bias ex-
pression in Okui (2010), who studied a linear panel model without covariates. However,
in general, unlike Okui (2010), the bias in the autocovariance estimator for a QR depends
onj.
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The sign of the bias B; can be positive or negative, in general. Of the two terms that
constitute the bias, V7 ; is the long-run variance of 4;;, and so is always positive. The sign
of the bias depends on w;;. To motivate the bias correction in the autocovariance esti-
mator, we consider the special case where (e;;, ¢, ;) follow a bivariate normal distribu-
tion, with unit variances and correlation coefficient p, and the model has no covariates.
Then w;; reduces to 2 — ¢;(0, 0)/¢(0)2, where ¢;(-,-) denotes a bivariate normal den-
sity with mean (—®~1(7), —d~1(1)), variances (1, 1), and correlation coefficient p, and
®~1(.) is the quantile function of the standard normal random variable.'? In the spe-
cial case of p = 0, w;; is equal to one. As p increases toward one, w;; stays positive but
reduces to zero. The sign of w;; eventually becomes negative. When 7 = 0.5, the turning
point comes when 8 = 0.867, after which w;; becomes negative.'® In this example, un-
less the autocorrelation coefficient is not too close to 1, w;; will be positive, which means
that the bias will be downward; that is, 1/"; < I';. Hence, without the bias correction, the
bias is not properly adjusted, and the resulting cluster robust variance estimator will
underestimate the true uncertainty in the regression coefficient estimates.

To see how the bias correction works, suppose for a moment that B; can be con-
sistently estimated by B ;. Then it is possible to define a bias-corrected autocovariance
estimator as

=1+ ;73‘] (16)

The following proposition provides an asymptotic representation for 1':].(1).

ProrosiTION 4.1. Suppose that N/T — X and Ej =Bj+o0,(1). Then

/NT{I";(U }
T-j

N
D3 (r = Iein =0)(r = I(eiry; < 0))%iuX}ry; — Ij} +0p(1). (A7)
i=1 t=1

%F
ﬂ

The crucial step in constructing a feasible bias correction is to estimate B;. This is
the main topic in Section 4.3.

REMARK 4.1. The bias in the jth autocovariance matrix estimator f] has order 1/T. It is
plausible to expect that the effect of the bias correction will be larger for a relatively short
panel. However, the same reasoning may not be true for the long-run variance estimator
Jr, because it is a weighted sum of many autocovariances over j.

We now study the asymptotic properties of J7 in (11), the bias-uncorrected mid-
dle term in the CCM estimator. We examine the bias-corrected estimator in the follow-
ing sections. Following Parzen (1957), define kg = lim,_,o(1 — k(x))/|1x]9, for 0 < g < oo.
A larger value of g for which k; is finite means that the kernel is smoother at zero. Let g

12Here, ¢ (-) denotes a univariate normal density with mean —®~1(r) and variance one.
13The value of w;; is quantile dependent. When 7 = 0.25, the turning points becomes & = 0.792.
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be the largest, positive g, such that 0 < k; < oc. For the truncated kernel, g = 0 because
=0 for all g < cc. For the Bartlett kernel, ¢ = 1 and k; = 1, and for the QS kernel, g =2
and k, = 1.4212. Define J (@) = Y I
Let W be a d* x d* weighting matrix, and vec(-) be the column by column vector-
ization function. Let tr(-) denote the trace function, and ® be the Kronecker product
operator. Let K4, denote the d? x d> communication matrix that transforms vec(A4) into
vec(A'), as in Andrews (1991). That is, K ; = Zle Z;jzl e,-e;. ® eje;, where e; is the i-th
elementary d x 1 vector. Define MSE(f T) = E[Vec(f r—J T)’erc(f 7 —J7)]. Consider ker-
nels that allows a nonzero k, for 0 < g < oc. These include the Bartlett kernel in Newey
and West (1994) and the QS kernel in Andrews (1991).

THEOREM 4.2. Assume conditions (A1)—(A8) hold. Let k(-) € K; such that [ |k(z)|dz < oo
and [ |z|k(z)dz < co. (i) Assuming that mr — oo, mp/T — 0, and m3./(NT?/?) — 0, we
have

Ir B .

(i) In addition, assume that mT/T — 0 and, for some q € (0, ), kq and |J'?| are finite.

2q+1

Assuming thatm /T — 0andm7'" " /(NT) — v, for some 0 <v < oo, we have

T
lim L MSE(7r) = k2 2 (vec(J D) W vec(1 @)t + / K*(2)dz - tr(W(I + Kgq)J ®1J).
N, T—oco mT

On the other hand, assuming that qu/T — v, for some 0 < v < oo, mqu/(NT) — 0,

and D :=lim7_, oo my Z]_7T+1 (mT)B] exists, we have

2

lim T— MSE(J7) = (vec(—kgJ Pv=! — D) Wvec(—k,J @v~1 — D)).
N, T—o0 mT

For the bias, variance, and MSE of J; T, some comments are in order. First, the bias
has two leading terms, of order 1/ qu and my/T, respectively. The first bias term exists
because we use a kernel estimator; the second bias term is due to the bias in autoco-
variance estimator. Second, the variance has two leading terms, of order m7/(NT) and
sz /(NT?3/?), respectively. The second term exists because the regression coefficients
are unknown and have to be estimated. If sz /T — 0, the first variance term dominates
the second and, therefore, the estimation uncertainty for the regression coefficients can
be ignored. Third, we consider the MSE expressions. If qu /T — 0, the first bias term
dominates the second, and if mz’”1 /(NT) — v, the order of the squared bias is compa-
rable to the variance. This leads to the first MSE of J; 7. If one uses an optimal bandwidth
of order (NT)Y/4+D  the given conditions imply that N9*t1/T9 — 0. If qu/ T — v, the
two leading bias terms are comparable, and if m2qu1 /(NT) — 0, the squared bias dom-
inates the variance. This leads to the second MSE expression. Note that if we use an
optimal bandwidth of order 7'/(4+1, the conditions mean that N9+1/ T — cc.
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4.3 Bias correction in the autocovariance matrix estimator

This subsection discusses how to estimate B; and construct bias-corrected estimators
for I'; and J7. The bias of F is B]/T where B N~ 121 1 w;;V7,;. For each i, we can
estimate w;; and V7 ;. Leti e Il. Let w;; = 2w j;j — w2 ;j, where

@1 = TZ b K2<32 lt)(xzt 021)(xtt+j 021) /fl(O) >

11 (o &

- 2,i t

O2i=7). 5 ( b ’ +’)(:cn CRIETRERIAURE

=1 73

where b3 is another sequence of bandwidths, and K3(-, -) is a bivariate kernel function.
Assume the following conditions:

(A9) (a) Ks(-,-) is a bivariate density function that is continuous and bounded,
and of bounded variation. (b) The bandwidth sequence b3 satisfies that b3 — 0 and
(logN)2/(Th3) — 0.

Because V7 ; is the long-run variance of 4;;, we use a kernel method. For each i let
nr,;— oo as T — oo, and define V7 ; = Z;——T-H k(nT ) T'”@, and 9;; = T — Zt (1- -
I(e2,i; <0))(1 —I(e3,1+j <0)). Then the bias in Theorem 4.1 can be estimated as

1 N
= ﬁz;wijl/r,i. (18)
1=

The working paper version of this study, Yoon and Galvao (2019), shows that Ej is con-
sistent.

Although the estimation for each i is feasible, we find that using a simpler alternative
often leads to better finite-sample performance. To keep the discussion simple, we focus
on the case where V7; = V7 for all i. This amounts to the case that g;; = g; for all i.
Note that this simplifying assumption applies only to the bias correction, and not to the
estimation of the CCM estimator itself.

Under this simplification, Bj = w; - V7, where w; = N1 Zﬁil wjj. Write w; =2w1,j —
w2, ;. Bach term can be estimated by

N N
~ 1 ~ ~ 1 ~
W=y > @14, and @;= N > @
i=1

i=1
Let nt be a bandwidth sequence, possibly different from my. Then
T-1

> JNT -l
VT= Z k(—) T Qj,

n
j=T+1 T

with 9; as defined as in (13). The results show that, as in the case of I}, the scalar au-
tocovariance estimator 9; has asymptotic bias of order 1/T. The following proposition
states the result.
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ProPOSITION 4.2. Assume conditions (A1)-(A6) hold. Let ¢;; = 0}, forall1 <i < N. De-
fine £;(0,0) =E[£;(0, 01x;1, xi14 )], and s; = N~ YN 2= L899 Ag N, T — oo, we have

f20)
g
N T—j
—TZ {(r—I(ew <O) (7= I(eirrj <0)) — 0j} + 0p(1). (19)
i=1 t=1

REMARK 4.2. As before, if ¢;; and e;;,; are independent in the time-series dimension,
sj = 1, because f;;(0,0) = fl.2(0). In this special case, the asymptotic bias becomes
—Vr/T, and does not depend on ;.

To obtain good finite-sample performance of the CCM estimator, we apply the bias-
correction procedure for ;. If /7 and s; can be consistently estimated by Vr and 5,
respectively, it becomes possible to define a bias-corrected autocovariance estimator
5;” =0, + +5;Vr. Analogous to Proposition 4.1, if 57 is a consistent estimator of s;V7,

one can obtain

~

—Jj
{(r=1(eir =0)) (7 — I (eitj <0)) — 0j} + 0p(1).
1

Mz

\/N—{Qﬁl) —oj}= \/——

Il
=
-
Il

i

There is a subtle point to make. It would be desirable to use a bias-corrected auto
covariance estimator ’@;1), instead of the biased estimator 9}, to obtain Vr. However,
this is not feasible because the bias in ¢; depends on the long-run variance itself. For
this reason, we consider an iterative procedure.

If the autocovariance estimator underestimates the true value, 0; < 9, Vr will un-
derestimate }’7. In order to correct this, we apply the iterative method of Okui (2010).
To keep the presentation simple, consider a special case where s; is known to be one. In
general, the term s; in the bias expression can be estimated in the same way as w;. The
general case can be found in Yoon and Galvao (2019). After the ith iteration, the next
long-run variance is estimated by

T-1

ZOREEY k<_>—T 01",

n
j=—T+1 r

and the autocovariance estimators are updated by
~ 1l .
@j’“)_QﬁTV}’“), j=1,...T—1.

Note that 9, is the original autocovariance estimator, and is fixed in iteration. This is
repeated until convergence, with the resulting estimators denoted as ’@;OO) and VT(OO). To
keep the exposition simple, we use the same bandwidth ny throughout the iteration.

The iteration procedure can be characterized as follows. Let o) = (98’), 5;’), ... A(T’) D
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and 0 = (09, 01,-.-,07—-1)". Let vy be a T x 1 vector of ones, and let I7 be the T x T
identity matrix. Define

T—1 (1\ ,T-2(2 1, (T-1\Y
Kr= 25—k — ). 2Tk =), ..., 2 :
r= (k02 k () () ()

The limit of the iterative procedure can be written as

~ 1 -
0> = <1T - _T"TK/T> 0,
and

/
I Kr \~
T re TT_vkr )T
The iteration converges when k(z) < 1, for z # 0, which is satisfied by commonly
used kernels, such as the Bartlett and the QS kernel. See Okui (2010) for further discus-
sions.

THEOREM 4.3. Assume conditions (A1)—(A9) hold, and that o;; = 0;. Let k(-) € Ky, such
that [|k(z)|dz < oo and [ |z|k(z)dz < oco. Assuming that ny — oo, nt/T — 0, and
n2./(NT??) — 0, we have

v By

Moreover, assume that nZT/T — 0 and, for some q € (0, 00), kq and [V @] are finite. As-

suming that nquH/(NT) — v, for some 0 < v < oo, we have

NT .
lim —— MSE(V,>) =212 / k(22 dz + (kgV @) v
N,T—o0 AT

A comparison of the results of Theorems 4.2 and 4.3 shows that the MSE expression
becomes simpler. This is because the bias correction helps simplify the bias of VT(OO).

To summarize, the bias in f] can be estimated by T _1§j =T 1'% je VT(OO). The band-
width n7 used to calculate Vr(oo) is obtained by minimizing the MSE in Theorem 4.3.

4.4 The bias-corrected CCM estimator

When the bias-corrected autocovariance estimator fj(l) = fj + %E ; is available, we can
define the following bias-corrected estimator for J7:

= J\T —1Jl
Ir=> k(= —_ S 20
r= (mT) T (20)
]:—T+1

The next result presents the limiting properties of J7.
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THEOREM 4.4. Assume conditions (A1)—(A9) hold. Let k(-) € Ky, such that [ |k(z)|dz < oo
and [ |z|k(z)dz < oco. Assuming that my — oo, mr/T — 0, and m3./(NT3/?) — 0, we
have

Ir 2 gr.
In addition, assume that mZT/T — 0 and, for some q € (0, 00), k; and |JD| are finite.
Assuming thatmq+1/(N1/2T) — 0and m2q+1/(NT) — v, for some 0 < v < 0o, we have

o im % MSE(J7) =k (vec(J @) W vec(J?))v / KA (z)dz - tr(W(I + Kga)] ® 7).
—00

Compared with those in Theorem 4.2, the results in Theorem 4.4 are simpler. There
is only one MSE expression, and the condition m?'l /T — 0in Theorem 4.2 is replaced
by the weaker condition m?’l J(N'2T) — 0. This is owing to the bias correction. The
bias-corrected CCM estimator is then given by

S—AUpAl 21)

It is straightforward to see that the bias-corrected CCM estimator Sin (21) consistently
estimates the asymptotic covariance matrix of 9, that is, A=1JA~1.

In some cases, the simplified long-run variance matrix J4. is suitable. For example,
the Score test in Section 5 assumes that f;(e;;|x) = fi(ei) and, under this conditional
homoskedasticity assumption, o;; = o; for all i. A natural estimator for this case, fST, is
considered in Yoon and Galvao (2019), who show that m1/T — 0 instead of mZT /T —0
is sufficient to obtain the MSE of fsT

4.5 Optimal bandwidth and data-driven bandwidth selection

The optimal bandwidth for the bias-corrected estimator J7 in (20) can be obtained as
follows. By differentiation, obtain the MSE optimal bandwidth

k2 1/(2q+1)
. (M) (NTYYCD . where

m =
/kz(z) dz
(22)
(g = 2vec(J(q)) W vec(J9)
D= W+ Kl ®7)

Once a kernel function k(-) is fixed, all elements are determined in (22), except ¢ (g).
When the number of covariates is one, this quantity reduces to ¢(q) = (#)2. For the
Bartlett and QS kernels, the values of g are one and two, respectively, and we have

mh = 1.1447(¢(1)NT)1/3, for Bartlett kernel;

my=13221(¢(2NT)"”,  for QS kernel.
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The value of ¢ (g) is unknown, and thus has to be estimated. Let H;; , be the ath ele-
ment of H;,. To estimate ¢ (q), we follow Andrews (1991) and use the parametric approx-
imation that is valid if each H;; , follows an AR(1) process (with different parameters for
each a). We employ a d univariate approximation with a simple weighting matrix W. For
this purpose, let W assign weights only to the diagonal elements of J7. A natural choice
would be an equal weight of one, fora =1, ..., d. We use this case, and obtain

d
Z J(q)

b= —,

4
2 _Jaa
a=1

where J‘(IZ) and J,, are the a-th diagonal elements of J(? and J, respectively. Consider
an AR(1) model for Hj; ,, with (8,4, o) as the autoregressive and innovation variance
parameters, respectively, fora =1, ..., d. Thus, we have that

L e
M /z L and
= (1=3)°(1+30) 1(1—&,

5254

4y
@)= § 1-3 a>8/2(1—6>4

With these estimates, the optimal bandwidth selector is given by

-~ 1/(2g+1)
k2
fﬁ’; — (M) (NT)l/(2tI+1). (23)

[kz(z) dz

Examples of the bandwidth selection rule are

<)

mh = 1. 1447(¢(1)NT)1/3, for Bartlett kernel;

1/5

Aty =1.3221(¢(2)NT) " for QS kernel.

Similarly, the optimal bandwidth for estimating I/,* is

2 1/(2g+1)
"y = (q Gl )> (NT)!/CarD), (24)

/kz(z) dz

where ¢1(q) = (V(q) )2. When #;; follows an AR(1) process with the autoregressive coef-

ficient 8, then
28 \? 28\’
D=|—— d D=—]).
b1(1) (1—82> and ¢1(2) ((1—8)2>
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Let $1(1) and $1(2) be estimates of ¢1(1) and ¢1(2), respectively, using 5. Then the
feasible bandwidth selection rule is 774 = 1.1447(31 (1)NT)!/3 for the Bartlett kernel, and
4 =1.3221(¢1 (2)NT)'/ for the QS kernel.

5. CLUSTER ROBUST INFERENCE METHODS

This section develops two tests based on the CCM and establishes their limit distribu-
tions. Let 0y(7) = (By(7)’, yo(7)") and x;; = (w},, z},)’, where w;, and z;, are dy, x 1 and
d, x 1 vectors, respectively.

5.1 Score test

For the Score test, we estimate model (1) under the null hypothesis Hy : y,(7) = 0. By an
abuse of notation, let (a(7), ﬁ(T)) denote one of the bias-corrected estimators in Sec-
tion 2, obtained under the null hypothesis.

Let W*and Z* be NT x dy, and NT x d, matrices, with elements w;, and z;;, respec-
tively. Let d; be a dummy variable for the ith individual, and W = (dy,...,dny_1, W¥).
Define Z as the projection error of Z* on the space spanned by the columns of the ma-
trix W; that is, Z = (I — W(W'W)~'W')Z*. Let Z;; be an entity in Z that corresponds to
the ¢th period of the ith individual. Observe that Zthl Zi=0and Z,Tzl ziw), =0, fora
given i. Let ﬁl (1) and EZ(T) be the slope estimates using samples /1 and I,, respectively.
The test statistic is based on a subgradient

~ N ~ N —~
S(@(r), B(r)) = Wl -S1(@(n), B(m) + WZ - Sy(@(m), B(m), (25)

where

N1 T
1 . i y
TN 2o 27 = 1 S ) i Bo(m))
14 =1 ¢=1

1 NI .
(7= I(yir <Qi(7) + W, B1(7)))Zir-
VN T i—%;l ; t

For the Score test, in this section, J}. uses Z;, in place of x;;. By Lemma S.3 in the Sup-
plemental Appendix, and a straightforward variance calculation, one can easily show
that J3, is the CCM for S(a(7), E(T)). This CCM can be estimated by fST (using z;; in place
of x;;). The Score statistic H(7) is then defined by

S1(@(n), B(m) =

Sa(@(n), B(m)) =

H(r):=S(@(n), Bm)(7) ' S(@r), Bm). 26)

The asymptotic properties of S(a@(7), E(T)), and H (1) are stated below.
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THEOREM 5.1. Assume conditions (A1)-(A9) hold, and fi(e|x) = fi(e), for any x. Under
the null hypothesis Hy : yy(7) =0,

() S(@r), B(n) -5 N(0,75),
i) Hr) -5 X3

Theorem 5.1 states that the Score statistic H(7) is asymptotically Xiz distributed.
Therefore, the critical values for a given level of significance are easy to find.

In general, Score tests in QR work under the location-shift model. The Score test we
propose for the FE-QR is no exception, in that it does not allow heteroskedastic errors.
Given this drawback, the main advantage of the Score test lies in its simplicity, because
it is free of the A term, which includes conditional densities. When it is appropriate to
allow heteroskedastic errors, the Wald test in the next section is useful.

5.2 Wald test

Consider a general linear hypothesis Hy : ROy (7) = r versus Hj : ROy(7) # r. Estimate all
coefficients in model (1) and let 8(7) denote one of the bias-corrected estimators. Define
the Wald statistic as follows:

W(r)=NT(RO(r) —r) (R A\ A~'R) " (RO(r) — r). 27)
The limiting null distribution of the Wald statistic is stated in the next lemma.

THEOREM 5.2. Assume conditions (A1)-(A9) hold. Then (i) AL A (ii) Under the null
hypothesis, W () LN Xfiz'

The Wald statistic W () is valid under heteroskedasticity of arbitrary form. The prac-
tical implementation of the test is simple. For a Wald test with a 100(1 — &) % significance
level, we reject the null hypothesis of no effect when the value of W (r) from our sample
is greater than the 100(1 — «)-th percentile of the chi-square distribution with d, degrees
of freedom.

In our simulation, we concentrate on the special case Hy : yy(7) =0vs. Hy : yo(7) #0
to compare the Wald and Score tests. In this special case, the Wald test relies on the size
of the difference y (1) — y( (7). Divide

A= Apw  Aw; ci= Cwi
Ay Az )’ l Czi

Define w;; = z;s — ¢, — AZXA;X1 (wj; — cy;). Let J3 be equal to J7, but using w;; in place
of x;,. Define Q = (A;; — Az Ayl Ay) VR (AL — AzwAgh Awz) ™! Let O be its estimate
using the CCM. Then the Wald statistic becomes

W(r)=NTF(1) —vo(1) 2~ (F(7) — yo(7)). (28)

The limit distribution of W (1) is the chi-squared distribution with d, degrees of freedom.
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6. REAL-DATA APPLICATION

To illustrate the use of the CCM estimator, we consider the movement of state-level un-
employment rates. This exercise closely follows the spirit of Bertrand, Duflo, and Mul-
lainathan (2004), who analyzed state-level female wages.'*

The sample includes the yearly unemployment rates of 51 states for a period of 37
years, ranging from 1976 to 2012; thus, there are 51 x 37 = 1887 observations. The un-
employment rates and other state and national level variables were extracted from the
Bureau of Labor Statistics’s unemployment database.!® To remove the common trend in
the movement of the unemployment rate, we subtract the national unemployment rate
from each state’s unemployment rate. The dependent variable measures state-specific
shocks in the labor market in a given year, not shared by other states. This detrended
state unemployment rate is still highly serially correlated; see Table 1. The independent
variables include the logarithm of the total number of employed in a given state, the
state FE, and a randomly generated placebo law. We estimate model (2) with these vari-
ables.

To investigate how some commonly used testing methods perform in the presence
of serial correlation, we examine their empirical sizes under randomly introduced laws.
We first draw a year at random, and choose half of the 51 states at random. The selected
states after the chosen year are considered to be affected by the passage of the law. Be-
cause the law is chosen at random, it is independent of the outcome. Therefore, we ex-
pect that a 5% significance test will reject the null hypothesis of no treatment effect 5%
of the time.

In each simulation run, we repeat the random draws of the treated years and states.
We then estimate the model and count how often the absolute value of the t-statistic
on the spurious treatment variable exceeds 1.97. We try two different standard errors for
QR, and one for the OLS: “QR-1” uses a standard error assuming iid errors, and “QR-2"
uses a standard error that allows non-iid errors.'® Finally, we report “OLS” which uses
the conventional OLS standard error, assuming iid errors, for the sake of comparison.

Table 1(a) illustrates the problem. It reports the rejection ratios of the tests when the
nominal rate is 5%. We find that the conventional QR standard errors have high rejection
ratios, much larger than the nominal rate of 5%. This is a clear indication that we need to
correct the dependence in the errors. It also indicates that the degree of the size inflation
may depend on the quantile levels. The rejection ratio of the uncorrected OLS standard
error, about 35%), is close to the ratios reported in Bertrand, Duflo, and Mullainathan
(see their Table 3). The results confirm that a QR estimation of a panel data model with
FE suffers from similar size distortion effects to those seen in the OLS case.

We then examine how our proposed solutions fare in this exercise. The bias-
corrected CCM estimator, 3 = A~ /7 A~ is obtained as follows:

14A second alternative illustration, which considers a capital structure model, can be found in the work-
ing paper of this study, Yoon and Galvao (2019).

15available from the BLS website http://www.bls.gov/data/#unemployment

16We use the R function rq() for implementation. For QR-1, we use the option se="1id’, which es-
timates the model assuming iid errors. For QR-2, we use an option se="ker’, which use Powell’s kernel
estimate of the sandwich variance matrix formula.
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TaBLE 1. Size of tests. State unemployment rate regression.

(a) Conventional t-tests in QR and OLS.

Quantile Index Pl ) D3 QR-1 QR-2 OLS
7=0.50 0.892 0.758 0.624 0.258 0.216 0.351
(0.091) (0.159) (0.219) (0.001) (0.001) 0.011)
7=0.75 0.382 0.298
(0.011) (0.010)

(b) Robust Score and Wald tests.

Score Wald
Quantile Index So S1 S, Wy /4] 72)
7=0.50 0.269 0.054 0.049 0.215 0.067 0.052
(0.009) (0.005) (0.005) (0.009) (0.006) (0.005)
7=0.75 0.295 0.065 0.060 0.313 0.100 0.061
(0.010) (0.006) (0.005) (0.010) (0.006) (0.005)

Note: The tables report the fractions of simulation runs in which we reject the null hypothesis of no treatment effect. The
nominal rate is 0.05, and the number of simulation replications is 2000. The dependent variable is the state unemployment
rate. The first three columns in Table (a) show the average values of three autocorrelation coefficients of the dependent vari-
able. Columns 4-6 show the rejection ratios of the conventional t-statistics of the spurious treatment variable in the QR and
OLS. Table (b) shows the empirical sizes of the Score and Wald tests. ¥ uses the conventional variance matrix estimator as-
suming independent errors, W uses the CCM estimator without bias correction J7, and W, uses the CCM estimator with bias

correction J’ 7- The same naming convention applies to the Score tests.

(1) Under the QR model in (1), use the FE-SQR estimator to obtain a bias-corrected
estimate, §BC or §]K (in (6) or (7), resp.). Then ¢;(7) is obtained. Following GK, we
use the fourth-order kernel (as defined in their Section 4) and the bandwidth rule
by =3, - (NT)~'/7, where 3, is the standard deviation of €;, obtained by the FE-SQR es-
timator. To estimate A, we use equation (10), with the uniform kernel with bandwidth
b1 = min(s, IQR/1.34) - bys. Here, s and IQR are the standard deviation and the inter-
quartile range of the residuals ¢j;, and byg is the Hall and Sheather (1988) bandwidth
using ¢;;, as implemented in Koenker and Machado (1999).17 To estimate fi and c;, we
use the Gaussian kernel for K;(-) with the bandwidths b, selected by Silverman’s rule of
thumb using ej;.

(2) To compute J7, we need to calculate the bias B; = @; - ;> and I} as in (12), and
then construct the bias-corrected autocovariance matrix fj(]) as in (16). The bias cor-
rection §j requires that we estimate the scalar long-run variance V7, and the quantities
sj and w;. The former can be estimated by the iterative bias correction in Section 4.3,
and the latter can be estimated by a nonparametric estimator with the following choice
of tuning parameter: the kernel K3(-, -) is a product of Gaussian kernels, and the band-
width is chosen by a bivariate rule of thumb, b3 = 5, - (NT)~/°. For simplicity, we use
the same bandwidth for each coordinate. In our experience, a simple alternative, taking
sj=1and w; =1 as a simple approximation of nonparametric estimates worked well,
too.

17The Hall and Sheather bandwidth is calculated using the R function bandwidth. rq.



604 Yoon and Galvao Quantitative Economics 11 (2020)

(3) Now, we estimate the middle term of the CCM using the bias-corrected J T in (20).
Here, note that a one-time bias correction is sufficient. We use the optimal bandwidth
estimate m*T in (23) to estimate J7. A bandwidth cannot exceed T — 1 by design. There-
fore, we use min(7%., T — 1) as the bandwidth value in actual implementation.

(4) Finally, the CCM estimator is constructed from (21), from which cluster robust
standard errors can be obtained. The sample splitting is a useful theoretical device, but it
is known to make little difference in actual implementation. See Schick (1986) for related
discussions. Therefore, we do not use this in our simulation exercise.

We now examine the results. Table 1(b) reports the rejection ratios of the cluster ro-
bust Score and Wald tests. Because we focus on a single regression coefficient, robust
t-tests employing CCM estimators will lead to the same results as those of the Wald tests
here. W uses the conventional variance matrix estimator, assuming independent errors,
W uses the CCM estimator without bias correction 7z T, and W, uses the CCM estimator
with bias correction J7. The same naming convention applies to the Score tests. Both Jr
and J 1 use the same bandwidth; thus, if two estimators lead to different results, this is
due solely to the bias correction.

A nonrobust Wald test W has size distortions of similar magnitude to those in a con-
ventional t-test. Empirical rejection ratios of a 5% test can be as high as 31.3%, and using
CCM estimators can greatly improve this problem. With ¥, the rejection ratios change
from 0.215 to 0.067 (r = 0.5) and from 0.313 to 0.100 (7 = 0.75). The remaining gap is
further reduced by the bias correction. With W;, the rejection ratios become 0.052 and
0.061 (when = 0.5 and 0.75, resp.) and are close to the nominal rate. The Supplemental
Appendix, Section S.1, provides an extensive simulation exercise that examines several
issues, the Score versus Wald tests, the performance of confidence interval estimators,
several N and 7, and choices of regression coefficients estimators.

7. CONCLUSION

It has become common practice among applied researchers using OLS to correct the
clustering problem in an inference when there is serial correlation in the errors. This
study shows that it is equally important to correct standard errors in FE panel QR mod-
els. We show by simulation that conventional QR standard errors have a serious size
distortion problem. We then show by simulation exercises and real data examples that
the proposed CCM estimator can be an effective solution. To ensure good finite-sample
performance of the CCM estimator, we propose a bias-correction method and an MSE
optimal bandwidth selection rule. Our results indicate that the proposed methods are
effective. Many issues remain to be investigated. An extension to a two-way panel model
accounting for time fixed effects is a topic in future work. Moreover, we have suggested a
bias corrected estimator for the asymptotic CCM matrix in which the inside term of the
sandwich formula is corrected. However, the estimator of the outside terms of the ma-
trix depend nonlinearly on the FE estimator and might benefit from the bias-correction.
Such extension will be pursued in further research.
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